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Abstract
Using raw structural and diffusion brain MRI data from the UK Biobank (UKB; N = 3,155, ages
45-75 years) and the Lothian Birth Cohort 1936 (LBC1936; N = 534, all age 73 years), we
examine aging of regional grey matter volumes (nodes) and white matter structural connectivity
(edges) within networks-of-interest in the human brain connectome. In UKB, the magnitude of
age-differences in individual node volumes and edge weights corresponds closely with their
loadings on their respective principal components of connectome-wide integrity (|7nodes| = 0.459;
[Fedges| = 0.595). In LBC1936, connectome-wide and subnetwork-specific composite indices of
node integrity were predictive of processing speed, visuospatial ability, and memory, whereas
composite indices of edge integrity were associated specifically with processing speed.
Childhood IQ was associated with greater node integrity at age 73. However, node and edge
integrity remained associated with age 73 cognitive function after controlling for childhood IQ.
Adult connectome integrity is therefore both a marker of early-life cognitive function and a

substrate of late-life cognitive aging.
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Many cognitive abilities exhibit declines across adulthood'. These declines have
consequences both for individuals, who may be less able to perform important everyday
functions®#, and for aging societies, whose workforce productivity and social and medical
resources may be prematurely exhausted®. Delineating the neurodegenerative processes
underlying aging-related cognitive decline may crucially advance our ability to detect, and
ultimately mitigate, prevent, or ameliorate aging-related cognitive impairments.

The human brain exhibits widespread structural changes with aging®, the patterning of
which is only partly documented. It is not yet known which aging-related changes in brain
structure are particularly relevant for adult cognitive functioning. Here, we take a cross-cohort
magnetic resonance imaging (MRI) approach to identify elements of brain morphometry and
inter-regional white matter connectivity that show sensitivity to aging and are relevant to late-life
cognitive functioning. Following recent advances in network neuroscience, we model each
participant's brain as a macroscale connectome: a network of discrete grey matter regions (nodes)
that are connected by bundles of myelinated white matter fibers (edges)’. In the UK Biobank
(UKB) sample, we identify major dimensions of connectome-wide edge and node integrity,
which we examine in relation to cross-sectional age trends in connectome elements. Using
regression weights obtained from these UKB analyses, we create indices of general dimensions
of edge and node integrity in the whole-brain connectome and ten of its subnetworks-of-interest
in the narrow-aged Lothian Birth Cohort 1936 (LBC1936; all age 73 years). We use these
weighted indices of connectomic integrity to predict core cognitive abilities known to decline
with adult age®*!°: processing speed, visuospatial ability, and memory.

The current work extends beyond well-replicated findings that coarse measures of brain

structure have moderate associations with age and cognitive abilities. Measures of whole- and

L1213 and white matter microstructure!*15:16

regional-brain volumes across multiple major tracts
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have been linked to cognitive function and age-related cognitive decline. For example, in over
18,000 adult participants in middle and older age, Cox et al.!” reported » = 0.276 for the relation
between total brain volume (TBV) and general cognitive ability. The same study reported that
when multiple global indices of grey- and white-matter macrostructure and microstructure were
used to predict general cognitive ability in a subsample of older adults, the prediction increased
to 7muttiple = 0.361. Moderate to strong associations have also been found between gross MRI
measures and age (7’s = -0.573 to -0.254)'8. Taken together, these findings suggest roles for
omnibus measures of brain structure in cognitive aging. The relatively low resolution of these
indices, however, has constrained the level of specific insight able to be gleaned regarding the
neuroanatomical networks relevant for cognitive aging.

Here, we further investigation the neurobiology of cognitive aging by examining the
individual elements of the human structural connectome in relation to adult age and late-life
cognitive function'’. We move beyond previous studies, which have largely documented age

2021 or have

trends in summary indices of connectome topology (e.g., strength, global efficiency
used large-scale, exploratory methods to examine how a range of morphometric and diffusion
tensor measures relate to age and a broad array of sociodemographic variables?>?*. Building on

research detailing intrinsic networks within the human functional connectome?*?

, We create
structural connectome masks to partition the whole-brain connectome into ten prespecified
networks-of-interest (NOIs). Several of these networks have been previously implicated in
cognitive function (e.g., Central Executive?®?; Parieto-Frontal Integration Theory (PFIT)?%;
Multiple Demand?*3"), whereas others underscore more basic functions (e.g., Salience®>33;
Sensorimotor*#3®), and therefore serve as negative controls. These subnetworks are distributed

throughout the brain and partially overlap. We examine age trends for individual elements within

the whole-brain connectome and within each NOI, before exploring how these age trends relate
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to general dimensions of regional volume and interregional connectivity, respectively. We use
summary indices of volumetric structure and white matter connectivity at age 73 years to predict
concurrent measures of processing speed, visuospatial ability, and memory, and examine the

robustness of these associations relative to controls for TBV and age-11 cognitive function.
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Results
Description of Structural Connectome Construction and Analyses
Whole-brain structural connectomes were created for each participant in UK Biobank (UKB; N =
3,155; ages 45-75 years) and the Lothian Birth Cohort 1936 (LBC1936; N = 534; all age 73)
from 85x85 matrices of fractional anisotropy weights (edges), reflecting strength of connections
between cortical and subcortical regional volumes (nodes) parceled per the Desikan-Killiany
atlas®®. Masks were created to partition whole-brain connectomes into nine prespecified NOIs
(Fig. 1; Table S1; Table S2), including a null network consisting of edges and nodes not
contained in any other NOI. Several NOIs were composed of partially overlapping edges and
nodes, collectively referred to here as elements (Table S3). Where applicable, results provide

details for how overlapping elements were handled.

P-FIT Multiple demand Central executive

Salience
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Figure 1. Anatomical maps of each NOI. Anatomical maps of each prespecified brain NOI displaying the
network-specific connectome elements (i.e., edges and nodes). We also considered a whole-brain network and a null
network comprised of elements not belonging to any prespecified network.

Analyses were run using unthresholded matrices, which were determined to be largely similar to
consistency-based thresholded®” matrices (Fig. S1; Supplementary Method and Results). We
performed two sets of analyses, one within-sample and one out-of-sample. Within the large, age-
heterogeneous UKB sample, we documented age differences in the volumetric and structural
connectivity properties of each NOI. We then assessed whether general dimensions of overall
network integrity (Fig. S2) were preferentially associated with age-sensitive elements. In the age-
homogeneous LBC1936, we used UKB-trained models of connectome age and connectome
integrity to predict variation in cognitive functions. Finally, we ran a series of sensitivity

analyses.

Connectome Aging

Cross-sectional age-trends in all individual elements were estimated in the UKB structural MRI
sample. Density distributions of the element-wise age associations for the whole-brain
connectome and each individual NOI are presented in Fig. 2. The majority of elements showed
small to modest negative associations with age (edges: 2299/3570 [64.4%] < 0, mean » = -0.034,
range = -0.414 to 0.265; nodes: 83/85[97.6%] < 0, mean r = -0.172, range = -0.313 to 0.085).
Several subnetworks displayed bimodal distributions of age-node associations, potentially
indicating multiple aging-related processes within these networks. Elements within the Central
Executive network, a subset of the larger PFIT network, displayed the steepest average age-
related gradients (mean 7age-edge = -0.161; mean rage-node = -0.242; Table S4), indicating that it
demarcates a particularly age-sensitive constellation of elements. Only the Salience network
contained a majority of edges with positive age associations (37/45 [82.2%] r’s > 0). In contrast,

all ten of its nodes displayed negative age associations.
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Figure 2. Density distributions of age associations. Density distributions of each element’s association with age,
categorized by prespecified NOIs. All subnetworks are subsets of the whole-brain (Global) network, such that
comparison with the red distribution at the top of both panels is not a comparison of independent elements, but a
comparison of a subset to a whole.

General dimensions of connectome integrity. The widespread patterns of age-related
decrements across NOIs suggests that individual elements may represent broader dimensions of
interindividual variation in global connectome integrity. We examined this possibility in edges
and nodes separately using PCA (Fig. S2). The first PC accounted for 10.8% and 35.7% of
variation in edges and nodes, respectively. The second PC accounted for less than 1/5 the
variance accounted for by the first corresponding first Eigen value (Fig. S3). When PCAs were
performed on covariance matrices of network-specific composite indices of integrity (Fig. S2d),
the first PC accounted for 59.7% and 83.5% of the variation for edges and nodes, respectively
(Fig. S4; Tables S5 & S6; Supplementary Results).

Whole-brain loadings were overwhelmingly positive (edges: 95.6% of loadings > 0,
nodes: 100% of loadings > 0). There was considerable heterogeneity in whole-brain loadings
across elements within NOIs (Fig. 3). Elements within the Central Executive network displayed
the largest average loadings, again suggesting that this small subset of the PFIT network may
disproportionately index overall brain integrity. As with the age associations, several networks
displayed bimodal distributions of PC loadings, potentially suggesting that the same clusters of
elements that show concurrent age-sensitivity also represent equivalent indices of overall

network integrity.
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Figure 3. Density distributions of whole-brain principal component loadings. Density distributions of loadings
on the first principal component of the whole-brain connectome, categorized by prespecified NOIs.

Connectome aging occurs along general dimensions of variation in edge and node

integrity. We tested the extent to which aging-related differences in individual connectome

elements occurred along the general dimensions of edge and node integrity identified above. In

UKB, we estimated the correlation between two vectors: (1) a vector of the loadings of each

element on the first PC (both whole-brain and network-specific) and (2) a vector of the age

correlations between each element and age. We conducted this analysis separately for edges and

nodes. Note that because the connectome elements were partialled for age prior to conducting the

Eigen decompositions, the resulting association between age-sensitivity and PC loadings is not

an artifact of age effects driving connectome element covariation.

Fig. 4 displays the association between the loadings and the age correlations for edges

(left) and nodes (right) in the whole brain. Edges that had stronger loadings evinced steeper age-

gradients (r = -0.595): the more indicative an edge was of global variation in brain connectivity,

the greater its negative association with age. The same pattern was evident for the nodes (» = -

0.459): the more representative a node was of global variation in brain volume, the stronger its

negative association with age. Similar patterns were obtained when analyses were conducted

separately for each individual NOI (Figs. S5 & S6; Supplementary Results).
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Figure 4. Scatterplot of age correlations and principal component loadings. Scatterplots of each connectome
element’s correlation with age against its loading on a single principal component (based on an age-partialled
correlation matrix (Fig. S2)). Analyses were conducted separately for edges (left) and nodes (right). Each point
represents a single element of the connectome (3,564 non-zero edges; 85 nodes). Points are categorized by the NOI
to which the element belongs. Elements belonging to multiple NOIs are plotted once for each group membership
and jittered for the sake of visual interpretation. Reported correlations and displayed regression lines reflect analyses
including each element only once.

We tested whether the observed associations between PC loadings and age correlations were
explained by how central the elements were within the whole-brain connectome, a potential
metabolic cost that could confer susceptibility to degeneration with age®® (Figs. S7 & S8;
Supplementary Results). We found that the topological centrality of elements was strongly
correlated with loadings on their respective PCs (Fedges = 0.650; rnodes = 0.558; all p’s < 0.0005;
Fig. S7), but only modestly associated with its age correlation (7edges = -0.194, p < 0.0005; rnodes =
-0.235, p = 0.031; Fig. S8). Topological connectedness of connectome elements was therefore

insufficient to explain associations between PC loadings and age correlations.

General Dimensions of Connectome Integrity are Associated with Late-Life Cognitive

Function
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The finding that connectome aging occurs along general dimensions of variation in edge and
node integrity suggests that these dimensions may be particularly relevant for cognitive aging.
To test this hypothesis, we used the linear composite indices of connectome elements in
LBC1936 (Fig. S2d), weighted by either PC loadings of connectome-wide edge or node integrity
or age correlations in UKB, to test associations with latent processing speed, visuospatial ability,
and memory factors (see Method). As would be expected on the basis of the sizable associations
between age correlations and PC loadings, age-weighted and PC-weighted composites were very
highly correlated (7edge-based composites = -0.892; Fnode-based composites = -0.999) and exhibited very
similar patterns of associations with the cognitive outcomes. This indicates that brain age and
overall integrity are virtually indistinguishable.

Edge-based composites. Composite indices of connectome-wide edge integrity were
significantly associated with processing speed (7age-weighting = -0.190; 95% CI = [-0.282, -0.099];
7pC-weighting = 0.178; 95% CI = [0.085, 0.270]), but not with visuospatial ability (7age-weighting = -
0.091; 95% CI = [-0.188, 0.006]; 7pc-weighting = 0.066; 95% CI = [-0.032, 0.163]) or memory (Fage-
weighting = -0.083; 95% CI = [-0.186, 0.020]; rpc-weighting = 0.053; 95% CI = [-0.051, 0.157]). For
both age-weighting and PC-weighting, a 1000-fold permutation test (Fig. S9; Table S7;
Supplementary Method & Results) in which the weights were randomly shuffled across edges
indicated that observed edge-based composites were more predictive of both processing speed
and visuospatial ability than over 99% of the permuted data (empirical p’s < 0.01) and more
predictive of memory than over 95% of the permuted data (empirical p’s < 0.05).

Composite indices created for the individual NOIs varied in their magnitudes of
prediction of processing speed (Fage-weighting range = -0.192 to -0.037; rpc-weighting range = -0.099 to
0.186), but displayed null associations with visuospatial ability (7age-weighting range = -0.153 to

0.009; rpc-weighting range = 0.069 to 0.100) and memory (7age-weighting range = -0.102 to 0.002; rpc.
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weighting Tange = -0.034 to 0.100; top left panels of Figs. 5 & S10). Differences in the magnitudes
of association across NOIs may stem from differences in their sizes, with large networks
aggregating more information. To examine prediction relative to network size, we divided the
magnitude of the correlation by the total number of elements on which the composite indices
were each based (Fage-weighting adjusted Tange = -0.0063 to -0.0001 with processing speed; rpc-
weighting_adjusted Tange = -0.0022 to 0.0066 with processing speed; top right panels of Figs. 5 and
S10). Edge-based composite indices of Central Executive network integrity showed the largest
size-adjusted magnitudes of association with processing speed. As edge strength was generally
unrelated to visuospatial ability and memory, we do not interpret the size-adjusted associations

with either domain of cognitive function.
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Figure 5. Prediction of cognitive function from UKB-weighted indices of connectome integrity. Raw and
adjusted associations between weighted-composite scores reflecting variation in overall connectome integrity and
cognitive function in LBC1936. Adjusted estimates were created by dividing the raw estimates by the number of
edges or nodes in the network. Note that raw associations for edges and nodes are presented on the same y-axis
scale, whereas the scale for the adjusted associations differs for edges and nodes. Scores were created across the
whole brain and all NOIs by summing the LBC1936 data weighted by each element’s loading on the first principal
component of its respective subnetwork discovered in UK Biobank. Plots are broken down by element type (i.e.,
edges or nodes) and reflect correlations between respective weighted composites from each NOI and the cognitive
domains of processing speed, visuospatial ability, and memory. Error bars represent 95% confidence intervals.

Node-based composites. Composite indices of connectome-wide node integrity were
significantly associated with all cognitive domains (processing speed: Fage-weighting = -0.244; 95%

CI =[-0.344, -0.154]; rpc-weighting = 0.235; 95% CI = [0.146, 0.326]; visuospatial ability: rage-
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weighting = -0.386; 95% CI = [-0.471, -0.301]; rpc-weighting = 0.383; 95% CI =[0.298, 0.468];
MEemOry: Fage-weighting = -0.124; 95% CI = [-0.223, -0.025]; pc-weighting = 0.118; 95% CI =[0.019,
0.217]). For both age-weighting and PC-weighting, a 1000-fold permutation test (Fig. S9; Table
S7; Supplementary Method & Results) in which the weights were randomly shuffled across
nodes indicated that observed node-based composites were not substantially more predictive of
processing speed, visuospatial ability, or memory than the permuted data (empirical p’s > 0.08).
This is consistent with the high intercorrelations among the node volumes, and the observations
that the distributions of associations for nearly all permuted node runs were very narrow,
indicating that node volumes may be largely exchangeable with respect to cognitive ability-
relevant information.

Network-specific composite indices varied in their magnitudes of prediction across NOls,
with prediction of visuospatial ability generally exceeding that of processing speed or memory
(processing speed: Fage-weighting range = -0.289 to -0.125; rpc-weighting range = 0.122 to 0.282;
visuospatial ability: 7age-weighting range = -0.376 to -0.281; rpc-weighting range = 0.292 to 0.373;
MEMOTY: Fage-weighting range = -0.151 to -0.062; rpc-weighting range = 0.050 to 0.147; bottom left
panels of Figs. 5 & S10). After adjusting for the number of elements, the age-weighted nodes in
the Central Executive network displayed the largest magnitude of associations all domains of
cognitive function (processing speed: Fage-weighting adjusted = -0.026, 95% CI = [-0.038, -0.015]; rpc-
weighting_adjusted = 0.026, 95% CI =[0.014, 0.037]; visuospatial ability: 7age-weighting_adjusted = -0.044,
95% CI =[-0.055, -0.033]; 7pC-weighting_adjusted = 0.044, 95% CI =[0.033, 0.055]; memory: rage-
weighting_adjusted = -0.013, 95% CI = [-0.025, -0.0003]; 7pC-weighting_adjusted = 0.013, 95% CI = [0.000,

0.025]; bottom right panels of Figs. 5 & S10).
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General dimensions of edge and node integrity predict late-life cognitive function
incremental of TBV. We fitted multiple regression models in LBC1936 to test whether the
associations between general dimensions of connectome integrity and cognitive function were
unique of TBV, which is perhaps the most robust and well-validated structural MRI predictor of

cognitive function'®!’

. Results are presented in the top portions of each panel of Table 1. TBV
displayed very strong associations with node-based composite scores (Fage-weighting = -0.866; rpc-
weighting = 0.876; all p’s <0.0005), but weak associations with edge-based composites (7age-weighting
=-0.014, p = 0.750; rpc-weighting= 0.017, p = 0.707).

Processing speed. TBV was significantly associated with processing speed (5 =0.165, p
=0.001). However, edge- and node-based composites of connectome integrity predicted
processing speed incremental of TBV (edges: Page-weighting = -0.189; fpc-weighting= 0.175; nodes:
Page-weighting = -0.396; fpc-weighting= 0.379; all p’s < 0.0005).

Visuospatial ability. TBV was significantly associated with visuospatial ability (f =
0.333, p <0.0005). However, node-based composites of connectome integrity predicted
visuospatial ability incremental of TBV (Bage-weighting = -0.395; Brc-weighting = 0.397; all p’s <
0.0005).

Memory. TBV was not significantly associated with memory (= 0.012, p = 0.815).
Node-based composites of connectome integrity predicted memory incremental of TBV (fage-
weighting = -0.437; Bpc-weighting = 0.437; all p’s < 0.0005)

General dimensions of edge- and node- integrity predict late-life cognitive function
incremental of one another. We fitted multiple regression models to test whether the
associations between edge- and node-based indices of connectome integrity and cognitive

function were unique of one another. Results are presented in the middle portions of each panel

of Table 1. All associations that were present in the univariate context remained in this multiple
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regression context. For processing speed, the multiple R?s from the models that included both
edge- and node-based indices were over 40% larger than the R?s from models including only
node-based indices, and over 100% larger than the R?s from models including only edge-based
indices. For visuospatial ability and memory, multiple R?s from the models that included both
edge- and node-based indices were only marginally larger than the R?s from models including
node-based indices alone.

General dimensions of edge- and node- integrity predict late-life cognitive function
incremental of childhood intelligence. The LBC1936 study has available a high-quality index
of IQ at age 11 years, the Moray House Test No. 12. Age-11 1Q was associated with node-based
indices of connectome integrity at age 73 (Bage-weighting = -0.159; Bpc-weighting = 0.155; all p’s
<.0005) but was not significantly associated with edge-based indices of connectome integrity at
age 73 (Page-weighting = -0.080, p = 0.074; Brc-weighting = 0.076, p = 0.090). These results are
consistent with previous findings in the same sample that demonstrated comparable associations
between age-11 1Q and other age-73 structural MRI indices (brain cortical thickness)*®, and
collectively suggest that general dimensions of node integrity may at least partially reflect
lifelong brain health.

To probe whether associations between composite indices of age-73 connectome integrity
and age-73 cognitive function were plausibly reflective of aging-specific processes, we examined
whether the associations persisted after controlling for age-11 1Q. Results are presented in the
bottom portions of each panel of Table 1. Age-73 connectome-integrity indices maintained their
associations with age-73 processing speed and visuospatial ability even after controlling for age-
11 IQ. The modest node-based associations with memory did not persist after controlling for

age-11 1Q, suggesting that the association between age-73 node-based connectome integrity and
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age-73 memory function may be a vestige of associations between early-life differences in

cognitive ability and node-based connectome integrity.
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Table 1. Associations between weighted connectome (edge and node) composites, total brain volume, and age 11

1Q.

Table 1a: Processing Speed

Composite |Model| Predictor 1 | Predictor 2 p1 (p-value) 52 (p-value) R’ | Multiple R
la - TBV - 0.165 (0.001) | 0.027 0.165
b Edges TBV -0.189 (< 0.0005)| 0.163 (0.001) | 0.063 0.251
Ic Nodes TBV -0.396 (< 0.0005)| -0.176 (0.062) | 0.067 0.259
2a | Edges only - -0.190 (< 0.0005) - 0.036 0.190

Age-based 2b - Nodes only - -0.244 (< 0.0005)| 0.059 0.244
2¢ Edges Nodes -0.162 (0.001) |-0.223 (< 0.0005)| 0.085 0.292
3a - Age 111Q - 0.511 (< 0.0005) | 0.261 0.511
3b Edges Age 111Q | -0.145(0.001) | 0.498 (<0.0005) | 0.281 0.530
3c Nodes Age 111Q [-0.161 (<0.0005)] 0.484 (< 0.0005) | 0.285 0.534
4a - TBV - 0.165 (0.001) | 0.027 0.165
4b Edges TBV 0.175 (<0.0005) | 0.163 (0.001) | 0.058 0.241
4¢ Nodes TBV 0.379 (<0.0005) | -0.165 (0.092) | 0.062 0.249
S5a | Edges only - 0.178 (< 0.0005) - 0.032 0.178

PC-based 5b - Nodes only - 0.234 (< 0.0005) | 0.055 0.234
5¢c Edges Nodes 0.154 (0.001) | 0.219 (<0.0005) | 0.079 0.281
6a - Age 111Q - 0.511 (< 0.0005) | 0.261 0.511
6b Edges Age 111Q | 0.134(0.002) | 0.500 (<0.0005) | 0.277 0.526
6¢ Nodes Age 111Q | 0.154 (<0.0005) | 0.486 (< 0.0005) | 0.283 0.532

Table 1b: Visuospatial Ability

Composite |Model| Predictor 1 | Predictor 2 p1 (p-value) S2 (p-value) R’ | Multiple R
la - TBV - 0.333 (<0.0005) | 0.111 0.333
b Edges TBV -0.084 (0.077) | 0.330 (< 0.0005) | 0.117 0.342
Ic Nodes TBV -0.395 (< 0.0005)| -0.011(0.909) | 0.149 0.386
2a | Edges only - -0.091 (0.067) - 0.008 0.091

Age-based 2b - Nodes only - -0.386 (< 0.0005)| 0.149 0.386
2¢ Edges Nodes -0.039 (0.415) |-0.380 (< 0.0005)| 0.150 0.387
3a - Age 111Q - 0.553 (< 0.0005) | 0.306 0.553
3b Edges Age 111Q | -0.040(0.372) | 0.549 (<0.0005) | 0.307 0.554
3c Nodes Age 111Q [-0.308 (<0.0005)| 0.504 (< 0.0005) | 0.397 0.630
4a - TBV - 0.333 (<0.0005) | 0.111 0.333
4b Edges TBV 0.059 (0.219) | 0.331(<0.0005) | 0.114 0.338
4¢ Nodes TBV 0.397 (<0.0005) | -0.016 (0.869) | 0.146 0.382
5a | Edges only - 0.066 (0.187) - 0.004 0.066

PC-based 5b - Nodes only - 0.383 (< 0.0005) | 0.147 0.383
5c Edges Nodes 0.023 (0.628) | 0.380 (< 0.0005) | 0.147 0.383
6a - Age 111Q - 0.553 (< 0.0005) | 0.306 0.553
6b Edges Age 111Q | 0.019(0.676) | 0.552 (<0.0005) | 0.306 0.553
6¢ Nodes Age 111Q | 0.306 (<0.0005) | 0.506 (< 0.0005) | 0.397 0.630
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Table 1, continued

Table 1c: Memory

Composite |Model| Predictor 1 | Predictor 2 p1 (p-value) S2 (p-value) R’ | Multiple R
la - TBV - 0.012 (0.815) 0.0001 0.012
1b Edges TBV -0.083 (0.115) 0.008 (0.877) | 0.007 0.084
Ic Nodes TBV -0.437 (<0.0005) | -0.361 (< 0.0005) | 0.048 0.219
2a | Edges only - -0.083 (0.113) - 0.007 0.083

Age-based 2b - Nodes only - -0.124 (0.014) | 0.015 0.124
2¢ Edges Nodes -0.066 (0.212) -0.166 (0.024) | 0.020 0.141
3a - Age 111Q - 0.613 (<0.0005) | 0.376 0.613
3b Edges Age 111Q | -0.027 (0.551) | 0.615 (<0.0005) | 0.381 0.617
3c Nodes Age 111Q | -0.033(0.466) | 0.611 (<0.0005) | 0.381 0.617
4a - TBV - 0.012 (0.815) 0.0001 0.012
4b Edges TBV 0.053 (0.323) 0.009 (0.866) | 0.003 0.055
4¢ Nodes TBV 0.437 (< 0.0005) [-0.365 (< 0.0005) | 0.045 0.212
5a | Edges only - 0.053 (0.318) - 0.003 0.053

PC-based 5b - Nodes only - 0.118 (0.020) | 0.014 0.118
Sc Edges Nodes 0.038 (0.480) 0.114 (0.026) | 0.015 0.122
6a - Age 111Q - 0.613 (<0.0005) | 0.376 0.613
6b Edges Age 111Q | -0.002 (0.969) | 0.616 (<0.0005) | 0.379 0.616
6¢ Nodes Age 111Q | 0.028 (0.526) | 0.612 (<0.0005) | 0.380 0.616

Note. TBV = Total brain volume

19
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Regularized LASSO regression models. We were interested in whether a least absolute
shrinkage and selection operator (LASSO) approach for indexing connectome age could improve
prediction of late-life cognitive function beyond the simple composite indices reported above
(see Supplementary Method for detail). LASSO models include penalty functions that shrink
regression coefficients toward zero in order to introduce sparsity into the predictor set and guard
against overfitting.

In UKB, a LASSO model based on all edges predicted 50.7% of the variance in age in
the UKB holdout sample, whereas a model based on all nodes predicted only 33.4% of the
variation in age (Fig. S11; Supplementary Results). The model based on edges alone had good
prediction accuracy in a holdout subsample (RMSE = 5.32 years). The model based on nodes
alone showed had slightly worse prediction accuracy than the model based on edges alone
(RMSE = 6.1 years). A LASSO model based on both edges and nodes, and a LASSO model that
incorporated Edge x Node interactions did not appreciably improve prediction of age relative to
the model based on edges alone (Fig. S12; Supplementary Results).

Similar patterns of results were obtained for LASSO analyses based on NOls, albeit at
lower overall levels of age prediction (R’ = 0.166 to 0.507 using edges; 0.087 to 0.334 using
nodes; Figs. S11 & S12), as would be expected when less information is made available for
predictive modelling. Likewise, removing potentially spurious edges with consistency-based
thresholding prior to conducting the LASSO analyses slightly depreciated predictions relative to
unthresholded data (mean ratio of unthresholded R to thresholded R? across NOIs = 1.477,;
Supplementary Results).

We predicted cognitive function in LBC1936 from connectome elements, using LASSO
models trained in UKB (see Supplementary Method). We confine our prediction to processing

speed and visuospatial ability, as memory was not associated with connectome integrity above
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and beyond age-11 IQ. Edge-based LASSO predictors were generally not significantly related to
cognitive function (Fig. S13). Node-based LASSO predictors were significantly associated with
both processing speed (Fwhole-brain = -0.199; 95% CI = [-0.289, -0.109]) and visuospatial ability
(Pwhole-brain = -0.177; 95% CI =[-0.271, -0.083]; Fig. S13). Effect sizes were not appreciably
larger than those obtained using the simple composite indices (outside of a LASSO framework)
reported earlier (Fig. S14). Thus, the sparsity introduced by regularized methods was not
advantageous — and in the case of edge-based predictors, was disadvantageous — for predicting
variation in late-life cognitive abilities from indices of connectome aging. Rather, the simple
regression-weighted MRI composite scores reported earlier are able to produce impressively
large associations with cognitive function that rival, if not exceed, those obtained for more

complex algorithmic learning methods*.


https://doi.org/10.1101/2019.12.13.875559
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875559; this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

CONNECTOME AGING 22

Discussion

Elucidating the neural bases of cognitive aging will be fundamental to detecting, and
ultimately mitigating, preventing, or ameliorating aging-related cognitive impairments. Rather
than focus on TBV, or a narrow selection of very specific regions of interest, we undertook a
network approach that examined variation in elements of the whole-brain connectome and
several of its NOIs in relation to variation in adult chronological age and adult cognitive abilities.
Using age-heterogenous data from UKB, we found that the aging of elements within the
connectome occurs along the same general dimensions of global brain health that underlie age-
partialled correlations amongst connectome element integrities. We used indices of these general
dimensions of edge and node integrity in LBC1936 to predict processing speed, visuospatial
ability, and memory, three aging-sensitive domains of cognitive function in older adulthood®*-1°,
Indices of connectome-wide node integrity were related to all domains of cognitive function,
whereas indices of connectome-wide edge integrity were specifically related to processing speed.
Network-specific analyses indicated a disproportionally large role of the Central Executive
network in these patterns relative to its small size. Associations with processing speed and
visuospatial ability were incremental of TBV, and persisted after controlling for age-11 1Q,
suggesting that they capture aging-specific processes, whereas associations with memory appear
to be a vestige of early-life differences in cognitive function.

Our analysis within UKB revealed a potentially important connection between individual
differences in neurostructural integrity and aging-related decrements. We found that connectome
elements that had stronger loadings on their corresponding PCs (i.e., elements that were better
indicators of overall levels of neurostructural integrity) also tended to have stronger correlations
with age. Although loadings on the PCs were robustly related to the centrality of each element

within the physical topology of the connectome, this association was not sufficient to explain the
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strong correspondence between PC loadings and age correlations of the individual connectome
elements. This pattern parallels results from cognitive aging research, where similar
methodological approaches have found that tests with stronger loadings on a general factor of
cognitive ability, indicated by many different measures, also tend to be more closely correlated

with age*!#?

, suggesting a strong shared genetic basis for cognitive aging across different ability
domains®. The current results extend this phenomenon to the context of the brain and suggest
that researchers addressing the causes of individual differences in aging-related cognitive and
neurostructural decline would benefit from focusing their efforts on understanding broad, general
mechanisms of aging, in addition to more specific or granular mechanisms.

That brain aging occurs along general dimensions of individual differences in
connectome integrity suggests that the neurobiological substrates of cognitive aging may be very
broad, but also raises considerable interpretation challenges to work on apparent brain age.
Apparent brain age may simply be a marker of overall connectome health or integrity, rather than
a marker specific to apparent aging. Using a high-quality measure of age-11 IQ, we found that
late-life connectome integrity is partly accounted for by pre-existing differences in cognitive
ability prior to the initiation of aging. By controlling for age-11 IQ, we confirmed that the
detected associations between age-73 connectome integrity and age-73 processing speed and
visuospatial ability are also likely to be partly reflective of the aging process proper. Other work
that does not have high-quality controls for prior intelligence and/or brain structure will need to
exercise caution when interpreting associations between indices of brain age and external
outcomes. Not only were age correlations strongly related to PC loadings, but age-correlation
weighted indices of connectome age were nearly entirely collinear with PC-loading weighted

lndlceS Of ConneCtome lntegl‘lty (redge-based composites = '0892; V'node-based composites = '0999) ThuS, a.ny
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given association with apparent brain age might just as appropriately be conceptualized as an
association with overall brain integrity.

It is notable that elements within the Salience network were found to be relatively spared
in late-life, implying that its trajectory across middle to older adulthood is flatter than other
NOIs. Previous functional research has suggested that the Salience network acts as a control on
other networks, such as the Central Executive and Default Mode networks, and that disruption of
this control, or loss of functional connections between networks, is among the causes of
cognitive decline***>4¢, Though we did not examine between-network connections here, our
analyses did highlight the Central Executive network as being of particular interest for cognitive
aging, despite it containing the fewest number of elements of any network. To correct for the
additive effect of the size of each network, we adjusted their predictions of age and cognitive
functions for their respective number of elements. Consistently across methodological
approaches, element types, and outcome variables, the Central Executive network stood out after
this adjustment: its small number of elements had disproportionately stronger associations with
both processing speed and visuospatial ability relative to its size. Thus, the integrity of this
network is likely to be of particular relevance to cognitive aging.

Although this study examined an important, theoretically-informed set of brain networks
in large-scale samples with high-quality brain-imaging and cognitive testing, and used a cross-
cohort (wide-to-narrow age range) design to limit problems of overfitting, it nevertheless had
some key limitations. First, though the LBC1936 (testing) and UKB (training) samples were
non-overlapping, they still had many qualities in common: they were based in the United
Kingdom, had the same broad ethnic and cultural background, and — perhaps most importantly —
they were self-selecting samples that were healthier, better-educated, and more cognitively able

than average*”*. It would be of interest to examine whether the brain-network predictors derived
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here are still effective in samples that are further removed from this context, or are more
representative of the broader population. For this reason, we have made the weightings for each
of our predictors publicly available for the use of other researchers in their own appropriate
datasets (see Table S9). Second, the study focused on predicting cross-sectional differences in
cognitive function in old age from connectome indices alone. Future work would benefit from
investigating neural predictors of the longitudinal slopes of cognitive change in late-life,
assessing whether the brain networks that explain individual differences in cognitive level are the
same as those that explain individual differences in cognitive decline. Relatedly, the predictors of
cognitive function were trained on cross-sectional differences in brain structure. Research
integrating measurement of aging-related brain changes with previously identified determinants
of cognitive decline®, including medical comorbidities (e.g., small vessel disease indicators,
inflammation, vascular disease), lifestyle indicators (e.g., diet, smoking, physical function), and
genetic risk, may help to critically advance prediction of cognitive aging. Third, our analyses
were based on unthresholded connectivity matrices. Though we found that edge-wise age trends
and PC loadings were largely unchanged by thresholding, it is possible that edges that occur in
very few subjects and involve very few streamlines contain greater measurement error>’ !, Fifth,
the LBC1936 and UKB MRI scanners differed in acquisition strength (1.5T and 3T,
respectively). It is potentially nontrivial to compare brain indices across scanners of different
magnetic strength, and future research would benefit from assessing the extent to which these
differences bias results in cross-cohort MRI studies. Finally, the neurostructural perspective is
inherently limited in that it does not include functional information; since previous studies have
found functional connections between several of the networks studied here**, our investigation,
which treated networks separately, may have missed these links, which might explain additional

cognitive variance over and above the properties of the individual networks. Integrating the
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structural and functional perspectives is a critical future task for network-focused cognitive
neuroscience.

This study represents the most comprehensive investigation to date of the out-of-sample
predictive validity of several theoretically-informed brain structural networks for late-life
cognitive function. We found evidence that aging in the brain as a whole, and within specific
networks, tends to occur on broad, general dimensions, with brain features that are more
representative of their network in general being more related to age. Age-related elements of
each network often made substantial out-of-sample predictions of cognitive abilities, with the
Central Executive showing disproportionately large relation with processing speed, visuospatial
ability, and memory relative to its size. Given the wealth of neuroimaging data now available,
the cross-cohort-comparison approach will be a viable and fruitful way of producing predictors
of cognitive abilities that are robust to context, and thus of potential use in predicting and

understanding differences in cognitive aging.
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Methods
Participants
UK Biobank. A large-scale population epidemiology study, UK Biobank (UKB) involved the
recruitment of approximately 500,000 individuals across Great Britain for medical, psychosocial,
and biological data collection®. A subset of around 100,000 UKB participants were invited to
complete brain MRI scanning (scanner details are provided in the next section); as of this
writing, data collection is still in progress, but portions of the data have been made available. The
initial release of diffusion MRI (dMRI) data included 5,455 individuals. Data for a subset of
these individuals (n = 567) was acquired at an earlier scanning phase, rendering their dIMRI data
incompatible with subsequent data acquisition (see section 2.10 of the Brain Imaging

Documentation (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id = 1977) for details). A further

subset (n = 1,314) was removed during dMRI quality-control procedures prior to data release. In
the present study, 3,155 participants (1,623 female) who had MRI data were included, with an
average age of 61.6 years (SD = 7.5, range = 44.64 — 77.12). Of the 3,155 participants with
structural MRI data, 3,124 had usable volume data and 3,087 reported their age at the time of
scanning. All participants were free of potentially confounding dementias and neurological
syndromes (e.g., multiple sclerosis, stroke). Despite previous research that has demonstrated

neuroanatomical sex differences in men and women?%->3

, we found largely similar patterns of
connectome aging across men and women (Fedge-age correlations = 0.852; 7node-age correlations = 0.943, all
p’s <0.0005). We therefore did not further correct for biological sex. All the data from the
present study come from the UK Biobank recruitment center in Manchester, UK. UKB received

ethical approval from the Research Ethics Committee (reference 11/NW/0382). All participants

provided informed consent to participate.
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Lothian Birth Cohort 1936. In 1947, almost all children attending schools in Scotland
and born in 1936 completed an intelligence test as part of the Scottish Mental Survey 194754,
1,091 of these individuals living mostly in the Edinburgh and Lothians area of Scotland were
contacted and returned for re-testing at an average age of 69.5 years, becoming the Lothian Birth
Cohort 1936 (LBC1936)*-5, a longitudinal study of aging. As part of the second wave of testing,
at age 72.8 years (SD = 0.70), 731 LBC1936 members underwent brain MRI scanning (see
scanner details below), of whom 528 (246 female) had reliable brain and cognitive data for the
cognitive prediction analysis. Participants were largely healthy: only seven scored in the mild
range of dementia on the Mini-Mental State Exam, zero self-reported symptoms of dementia,
and 65 met for neuroradiologically-identified stroke®®. Only data from this second wave are

included in the present study.

Brain Image Acquisition and Processing

UK Biobank. MRI data for all participants was collected on the same 3T Siemens Skyra
MRI scanner (see Miller et al.”’& Alfaro-Almagro et al.>® for full details). T1-weighted volumes
were acquired in the sagittal plane using a 3D MP-RAGE sequence. The T1-weighted volumes

were preprocessed and analyzed using FSL tools (http://www.fmrib.ox.ac.uk/fsl) by the UKB

brain imaging team. A full overview of the preprocessing and analysis pipeline is available at

http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf. FoV-reduced T1-weighted volumes from

the first release of UKB MRI data were used to reconstruct and segment the cortical mantle using

default parameters in FreeSurfer v5.3%° (http://surfer.nmr.mgh.harvard.edu/). Reconstruction and

segmentation were based on the Desikan-Killiany atlas®. Automated anatomical segmentation of
subcortical structures (accumbens area, amygdala, caudate, hippocampus, pallidum, putamen,

thalamus, ventral diencephalon, and brainstem) was also conducted in FreeSurfer using default
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settings and atlas®®. Each output underwent visual assessment and subjects were excluded if
major errors in tissue identification or skull stripping were identified (which were not analyzed
further).

Lothian Birth Cohort 1936. MRI data for all participants was collected at Wave 2 on
the same GE Signa Horizon HDx 1.5T clinical scanner (General Electric, Milwaukee, WI)
equipped with a self-shielding gradient set (33 mT/m maximum gradient strength) and
manufacturer supplied eight-channel phased-array head coil (see Wardlaw et al.>® for full
details). High-resolution T1-weighted volumes were acquired in the coronal plane using a 3D
fast-spoiled gradient echo (FSPGR) and subsequently processed in FreeSurfer v5.1. As with the
UK Biobank data, reconstruction and segmentation were based on the Desikan-Killiany atlas®®°.
Segmentation and parcellation errors were corrected manually after visual inspection of each
image.

Tractography. Probabilistic tractography pipelines were identical across both datasets,
though acquisition procedures differed slightly. For UKB, dMRI acquisitions are publicly

available from the UKB website in the form of a Protocol

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?1d=2367), Brain Imaging Documentation (and in

Miller et al.>”)). The dMRI data were acquired using a spin-echo echo-planar imaging sequence
(50 b= 1000 s/mm?, 50 b = 2000 s/mm? and 10 b = 0 s/mm?) resulting in 100 distinct diffusion-
encoding directions. The field of view was 104 x 104 mm with imaging matrix 52 x 52 and 72
slices with slice thickness of 2 mm resulting in 2 x 2 x 2 mm voxels. For LBC1936, dMRI data
was acquired from both T2-weighted and sets of diffusion-weighted (b = 1000 s/mm?) axial
single-shot spin-echo echo-planar (EP) volumes acquired with diffusion gradients applied in 64
noncolllinear directions®. Both datasets were corrected for head motion and eddy currents, and

processed using BEDPOSTx, with within-voxel modeling of multi-fibre tract orientation
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structure. Probabilistic tractography with crossing fiber modeling was carried out using

PROBTRACKXx®!. Streamlines were seeded from all white matter voxels using 100 Markov

Chain Monte Carlo iterations with a fixed step size of 0.5 mm between successive points.
Connectome Construction. Our treatment of the structural brain data from both UKB

and LBC1936 is based on an automated connectivity mapping pipeline?63

, wherein T1-weighted
volumes are decomposed into 85 distinct cortical and subcortical nodes based on the Desikan-
Killiany atlas. Such segmentations are used to model the brain as a structural network (i.e.,
connectome) comprised of nodes, or variables in the network, and edges, or the connections
between nodes. As such, we constructed connectomes for each participant in UKB and
LBC1936, where nodes represented grey matter regional volumes and white matter edge weights
were the mean fractional anisotropy averaged along the length of all streamlines identified
between each pair of nodes (k = 3,570 possible edges). Fractional anisotropy is a diffusion tensor
MRI-derived measure of white matter organization that describes the directional coherence of
water molecule diffusion. Six edges were estimated as zero across all participants (i.e.,
probabilistic tractography found no route between the nodes involved). Network data were not
thresholded. For graph-theory analyses, we used the igraph®* package in R to compute network
parameters.

Networks-of-Interest. In order to develop greater specificity of the neuroanatomical
correlates of cognitive aging, we decomposed each participant’s whole-brain connectome into
ten prespecified NOIs (see Fig. 1; Table S1). NOIs were largely representative of previous,

intrinsically-defined networks in the human brain?*2>

, several of which have been previously
implicated in cognitive ability (Table S1). A null network was created from regions that were not

included in any of the prespecified NOIs.
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Cognitive Testing

Members of the LBC1936 have completed a range of cognitive tests at every wave of testing.
For the present study, we focused on tests from the domains of processing speed, visuospatial
ability, and memory, which have been characterized within this cohort in our previous research®.
Visuospatial ability was measured using tests of Matrix Reasoning and Block Design from the
Wechsler Adult Intelligence Test, 3 UK Edition (WAIS-IITV¥)®, and the Spatial Span test
(forwards and backwards) from the Wechsler Memory Scale, 3¢ UK Edition (WMS-IITVK)¢7,
Processing speed was measured using the Digit-Symbol Substitution and Symbol Search tests
from the WAIS-IIIYX, a test of 4-choice reaction time administered on a dedicated button-box
instrument®®, and a psychophysical test of inspection time administered on a computer monitor
with a fast refresh rate®®. Memory was measured using the Logical Memory and Verbal Paired
Associates subtests of the WMS-IIIVX and the Digit Span Backward subtest of the WAIS-IITVX,
All cognitive domains were modeled as latent variables. Fit indices, factor model parameter

estimates, and descriptive statistics for the cognitive tests are reported in Table S8.

Statistical software

All analyses were run in R7°. Graphics were created using the ggplot2 package’'. Anatomical
network plots were created using BrainNet Viewer’2, Factor modeling and structural regression
models were estimated using the lavaan package”. LASSO model fitting and associated cross-
validation was conducted within the cv.glmnet package’, with wrapper functions from the caret

package” in R (see Supplementary Method for details).

Code availability
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Sample code to run analyses presented here, including discovery of age correlations and
principal component loadings in UKB, creation of weighted composite scores in LBC1936, and

latent variable associations with cognitive function in LBC1936 will be made available upon

publication.
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