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CONNECTOME AGING 2 

Abstract 

Using raw structural and diffusion brain MRI data from the UK Biobank (UKB; N = 3,155, ages 

45-75 years) and the Lothian Birth Cohort 1936 (LBC1936; N = 534, all age 73 years), we 

examine aging of regional grey matter volumes (nodes) and white matter structural connectivity 

(edges) within networks-of-interest in the human brain connectome. In UKB, the magnitude of 

age-differences in individual node volumes and edge weights corresponds closely with their 

loadings on their respective principal components of connectome-wide integrity (|rnodes| = 0.459; 

|redges| = 0.595). In LBC1936, connectome-wide and subnetwork-specific composite indices of 

node integrity were predictive of processing speed, visuospatial ability, and memory, whereas 

composite indices of edge integrity were associated specifically with processing speed.  

Childhood IQ was associated with greater node integrity at age 73. However, node and edge 

integrity remained associated with age 73 cognitive function after controlling for childhood IQ. 

Adult connectome integrity is therefore both a marker of early-life cognitive function and a 

substrate of late-life cognitive aging. 
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CONNECTOME AGING 3 

Many cognitive abilities exhibit declines across adulthood1,2. These declines have 

consequences both for individuals, who may be less able to perform important everyday 

functions3,4, and for aging societies, whose workforce productivity and social and medical 

resources may be prematurely exhausted5. Delineating the neurodegenerative processes 

underlying aging-related cognitive decline may crucially advance our ability to detect, and 

ultimately mitigate, prevent, or ameliorate aging-related cognitive impairments. 

The human brain exhibits widespread structural changes with aging6, the patterning of 

which is only partly documented. It is not yet known which aging-related changes in brain 

structure are particularly relevant for adult cognitive functioning. Here, we take a cross-cohort 

magnetic resonance imaging (MRI) approach to identify elements of brain morphometry and 

inter-regional white matter connectivity that show sensitivity to aging and are relevant to late-life 

cognitive functioning. Following recent advances in network neuroscience, we model each 

participant's brain as a macroscale connectome: a network of discrete grey matter regions (nodes) 

that are connected by bundles of myelinated white matter fibers (edges)7. In the UK Biobank 

(UKB) sample, we identify major dimensions of connectome-wide edge and node integrity, 

which we examine in relation to cross-sectional age trends in connectome elements. Using 

regression weights obtained from these UKB analyses, we create indices of general dimensions 

of edge and node integrity in the whole-brain connectome and ten of its subnetworks-of-interest 

in the narrow-aged Lothian Birth Cohort 1936 (LBC1936; all age 73 years). We use these 

weighted indices of connectomic integrity to predict core cognitive abilities known to decline 

with adult age8,9,10: processing speed, visuospatial ability, and memory. 

The current work extends beyond well-replicated findings that coarse measures of brain 

structure have moderate associations with age and cognitive abilities. Measures of whole- and 

regional-brain volumes11,12,13 and white matter microstructure14,15,16 across multiple major tracts 
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CONNECTOME AGING 4 

have been linked to cognitive function and age-related cognitive decline. For example, in over 

18,000 adult participants in middle and older age, Cox et al.17 reported r = 0.276 for the relation 

between total brain volume (TBV) and general cognitive ability. The same study reported that 

when multiple global indices of grey- and white-matter macrostructure and microstructure were 

used to predict general cognitive ability in a subsample of older adults, the prediction increased 

to rmultiple = 0.361. Moderate to strong associations have also been found between gross MRI 

measures and age (r’s = -0.573 to -0.254)18. Taken together, these findings suggest roles for 

omnibus measures of brain structure in cognitive aging. The relatively low resolution of these 

indices, however, has constrained the level of specific insight able to be gleaned regarding the 

neuroanatomical networks relevant for cognitive aging. 

Here, we further investigation the neurobiology of cognitive aging by examining the 

individual elements of the human structural connectome in relation to adult age and late-life 

cognitive function19. We move beyond previous studies, which have largely documented age 

trends in summary indices of connectome topology (e.g., strength, global efficiency)20,21, or have 

used large-scale, exploratory methods to examine how a range of morphometric and diffusion 

tensor measures relate to age and a broad array of sociodemographic variables22,23. Building on 

research detailing intrinsic networks within the human functional connectome24,25, we create 

structural connectome masks to partition the whole-brain connectome into ten prespecified 

networks-of-interest (NOIs). Several of these networks have been previously implicated in 

cognitive function (e.g., Central Executive26,27; Parieto-Frontal Integration Theory (PFIT)28,29; 

Multiple Demand30,31), whereas others underscore more basic functions (e.g., Salience32,33; 

Sensorimotor34,35), and therefore serve as negative controls. These subnetworks are distributed 

throughout the brain and partially overlap. We examine age trends for individual elements within 

the whole-brain connectome and within each NOI, before exploring how these age trends relate 
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CONNECTOME AGING 5 

to general dimensions of regional volume and interregional connectivity, respectively. We use 

summary indices of volumetric structure and white matter connectivity at age 73 years to predict 

concurrent measures of processing speed, visuospatial ability, and memory, and examine the 

robustness of these associations relative to controls for TBV and age-11 cognitive function. 
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CONNECTOME AGING 6 

Results 

Description of Structural Connectome Construction and Analyses 

Whole-brain structural connectomes were created for each participant in UK Biobank (UKB; N = 

3,155; ages 45-75 years) and the Lothian Birth Cohort 1936 (LBC1936; N = 534; all age 73) 

from 85x85 matrices of fractional anisotropy weights (edges), reflecting strength of connections 

between cortical and subcortical regional volumes (nodes) parceled per the Desikan-Killiany 

atlas36. Masks were created to partition whole-brain connectomes into nine prespecified NOIs 

(Fig. 1; Table S1; Table S2), including a null network consisting of edges and nodes not 

contained in any other NOI. Several NOIs were composed of partially overlapping edges and 

nodes, collectively referred to here as elements (Table S3). Where applicable, results provide 

details for how overlapping elements were handled.  
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CONNECTOME AGING 7 

Figure 1. Anatomical maps of each NOI. Anatomical maps of each prespecified brain NOI displaying the 
network-specific connectome elements (i.e., edges and nodes). We also considered a whole-brain network and a null 
network comprised of elements not belonging to any prespecified network. 
 
Analyses were run using unthresholded matrices, which were determined to be largely similar to 

consistency-based thresholded37 matrices (Fig. S1; Supplementary Method and Results). We 

performed two sets of analyses, one within-sample and one out-of-sample. Within the large, age-

heterogeneous UKB sample, we documented age differences in the volumetric and structural 

connectivity properties of each NOI. We then assessed whether general dimensions of overall 

network integrity (Fig. S2) were preferentially associated with age-sensitive elements. In the age-

homogeneous LBC1936, we used UKB-trained models of connectome age and connectome 

integrity to predict variation in cognitive functions. Finally, we ran a series of sensitivity 

analyses.  

 

Connectome Aging 

Cross-sectional age-trends in all individual elements were estimated in the UKB structural MRI 

sample. Density distributions of the element-wise age associations for the whole-brain 

connectome and each individual NOI are presented in Fig. 2. The majority of elements showed 

small to modest negative associations with age (edges: 2299/3570 [64.4%] < 0, mean r = -0.034, 

range = -0.414 to 0.265; nodes: 83/85 [97.6%] < 0, mean r = -0.172, range = -0.313 to 0.085). 

Several subnetworks displayed bimodal distributions of age-node associations, potentially 

indicating multiple aging-related processes within these networks. Elements within the Central 

Executive network, a subset of the larger PFIT network, displayed the steepest average age-

related gradients (mean rage-edge = -0.161; mean rage-node = -0.242; Table S4), indicating that it 

demarcates a particularly age-sensitive constellation of elements. Only the Salience network 

contained a majority of edges with positive age associations (37/45 [82.2%] r’s > 0). In contrast, 

all ten of its nodes displayed negative age associations.  
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Figure 2. Density distributions of age associations. Density distributions of each element’s association with age, 
categorized by prespecified NOIs. All subnetworks are subsets of the whole-brain (Global) network, such that 
comparison with the red distribution at the top of both panels is not a comparison of independent elements, but a 
comparison of a subset to a whole. 
 

General dimensions of connectome integrity. The widespread patterns of age-related 

decrements across NOIs suggests that individual elements may represent broader dimensions of 

interindividual variation in global connectome integrity. We examined this possibility in edges 

and nodes separately using PCA (Fig. S2). The first PC accounted for 10.8% and 35.7% of 

variation in edges and nodes, respectively. The second PC accounted for less than 1/5 the 

variance accounted for by the first corresponding first Eigen value (Fig. S3). When PCAs were 

performed on covariance matrices of network-specific composite indices of integrity (Fig. S2d), 

the first PC accounted for 59.7% and 83.5% of the variation for edges and nodes, respectively 

(Fig. S4; Tables S5 & S6; Supplementary Results). 

Whole-brain loadings were overwhelmingly positive (edges: 95.6% of loadings > 0, 

nodes: 100% of loadings > 0). There was considerable heterogeneity in whole-brain loadings 

across elements within NOIs (Fig. 3). Elements within the Central Executive network displayed 

the largest average loadings, again suggesting that this small subset of the PFIT network may 

disproportionately index overall brain integrity. As with the age associations, several networks 

displayed bimodal distributions of PC loadings, potentially suggesting that the same clusters of 

elements that show concurrent age-sensitivity also represent equivalent indices of overall 

network integrity. 
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Figure 3. Density distributions of whole-brain principal component loadings. Density distributions of loadings 
on the first principal component of the whole-brain connectome, categorized by prespecified NOIs.  
 

Connectome aging occurs along general dimensions of variation in edge and node 

integrity. We tested the extent to which aging-related differences in individual connectome 

elements occurred along the general dimensions of edge and node integrity identified above. In 

UKB, we estimated the correlation between two vectors: (1) a vector of the loadings of each 

element on the first PC (both whole-brain and network-specific) and (2) a vector of the age 

correlations between each element and age. We conducted this analysis separately for edges and 

nodes. Note that because the connectome elements were partialled for age prior to conducting the 

Eigen decompositions, the resulting association between age-sensitivity and PC loadings is not 

an artifact of age effects driving connectome element covariation.  

Fig. 4 displays the association between the loadings and the age correlations for edges 

(left) and nodes (right) in the whole brain. Edges that had stronger loadings evinced steeper age-

gradients (r = -0.595): the more indicative an edge was of global variation in brain connectivity, 

the greater its negative association with age. The same pattern was evident for the nodes (r = -

0.459): the more representative a node was of global variation in brain volume, the stronger its 

negative association with age. Similar patterns were obtained when analyses were conducted 

separately for each individual NOI (Figs. S5 & S6; Supplementary Results). 
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Figure 4. Scatterplot of age correlations and principal component loadings. Scatterplots of each connectome 
element’s correlation with age against its loading on a single principal component (based on an age-partialled 
correlation matrix (Fig. S2)). Analyses were conducted separately for edges (left) and nodes (right). Each point 
represents a single element of the connectome (3,564 non-zero edges; 85 nodes). Points are categorized by the NOI 
to which the element belongs. Elements belonging to multiple NOIs are plotted once for each group membership 
and jittered for the sake of visual interpretation. Reported correlations and displayed regression lines reflect analyses 
including each element only once.  

 
We tested whether the observed associations between PC loadings and age correlations were 

explained by how central the elements were within the whole-brain connectome, a potential 

metabolic cost that could confer susceptibility to degeneration with age38 (Figs. S7 & S8; 

Supplementary Results). We found that the topological centrality of elements was strongly 

correlated with loadings on their respective PCs (redges = 0.650; rnodes = 0.558; all p’s < 0.0005; 

Fig. S7), but only modestly associated with its age correlation (redges = -0.194, p < 0.0005; rnodes = 

-0.235, p = 0.031; Fig. S8). Topological connectedness of connectome elements was therefore 

insufficient to explain associations between PC loadings and age correlations. 
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CONNECTOME AGING 11 

The finding that connectome aging occurs along general dimensions of variation in edge and 

node integrity suggests that these dimensions may be particularly relevant for cognitive aging. 

To test this hypothesis, we used the linear composite indices of connectome elements in 

LBC1936 (Fig. S2d), weighted by either PC loadings of connectome-wide edge or node integrity 

or age correlations in UKB, to test associations with latent processing speed, visuospatial ability, 

and memory factors (see Method). As would be expected on the basis of the sizable associations 

between age correlations and PC loadings, age-weighted and PC-weighted composites were very 

highly correlated (redge-based composites = -0.892; rnode-based composites = -0.999) and exhibited very 

similar patterns of associations with the cognitive outcomes. This indicates that brain age and 

overall integrity are virtually indistinguishable.  

Edge-based composites. Composite indices of connectome-wide edge integrity were 

significantly associated with processing speed (rage-weighting = -0.190; 95% CI = [-0.282, -0.099]; 

rPC-weighting = 0.178; 95% CI = [0.085, 0.270]), but not with visuospatial ability (rage-weighting = -

0.091; 95% CI = [-0.188, 0.006]; rPC-weighting = 0.066; 95% CI = [-0.032, 0.163]) or memory (rage-

weighting = -0.083; 95% CI = [-0.186, 0.020]; rPC-weighting = 0.053; 95% CI = [-0.051, 0.157]). For 

both age-weighting and PC-weighting, a 1000-fold permutation test (Fig. S9; Table S7; 

Supplementary Method & Results) in which the weights were randomly shuffled across edges 

indicated that observed edge-based composites were more predictive of both processing speed 

and visuospatial ability than over 99% of the permuted data (empirical p’s < 0.01) and more 

predictive of memory than over 95% of the permuted data (empirical p’s < 0.05).  

Composite indices created for the individual NOIs varied in their magnitudes of 

prediction of processing speed (rage-weighting range = -0.192 to -0.037; rPC-weighting range = -0.099 to 

0.186), but displayed null associations with visuospatial ability (rage-weighting range = -0.153 to 

0.009; rPC-weighting range = 0.069 to 0.100) and memory (rage-weighting range = -0.102 to 0.002; rPC-
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weighting range = -0.034 to 0.100; top left panels of Figs. 5 & S10). Differences in the magnitudes 

of association across NOIs may stem from differences in their sizes, with large networks 

aggregating more information. To examine prediction relative to network size, we divided the 

magnitude of the correlation by the total number of elements on which the composite indices 

were each based (rage-weighting_adjusted range = -0.0063 to -0.0001 with processing speed; rPC-

weighting_adjusted range = -0.0022 to 0.0066 with processing speed; top right panels of Figs. 5 and 

S10). Edge-based composite indices of Central Executive network integrity showed the largest 

size-adjusted magnitudes of association with processing speed. As edge strength was generally 

unrelated to visuospatial ability and memory, we do not interpret the size-adjusted associations 

with either domain of cognitive function. 
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Figure 5. Prediction of cognitive function from UKB-weighted indices of connectome integrity. Raw and 
adjusted associations between weighted-composite scores reflecting variation in overall connectome integrity and 
cognitive function in LBC1936. Adjusted estimates were created by dividing the raw estimates by the number of 
edges or nodes in the network. Note that raw associations for edges and nodes are presented on the same y-axis 
scale, whereas the scale for the adjusted associations differs for edges and nodes. Scores were created across the 
whole brain and all NOIs by summing the LBC1936 data weighted by each element’s loading on the first principal 
component of its respective subnetwork discovered in UK Biobank. Plots are broken down by element type (i.e., 
edges or nodes) and reflect correlations between respective weighted composites from each NOI and the cognitive 
domains of processing speed, visuospatial ability, and memory. Error bars represent 95% confidence intervals.  
 

Node-based composites. Composite indices of connectome-wide node integrity were 

significantly associated with all cognitive domains (processing speed: rage-weighting = -0.244; 95% 

CI = [-0.344, -0.154]; rPC-weighting = 0.235; 95% CI = [0.146, 0.326]; visuospatial ability: rage-
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weighting = -0.386; 95% CI = [-0.471, -0.301]; rPC-weighting = 0.383; 95% CI = [0.298, 0.468]; 

memory: rage-weighting = -0.124; 95% CI = [-0.223, -0.025]; rPC-weighting = 0.118; 95% CI = [0.019, 

0.217]). For both age-weighting and PC-weighting, a 1000-fold permutation test (Fig. S9; Table 

S7; Supplementary Method & Results) in which the weights were randomly shuffled across 

nodes indicated that observed node-based composites were not substantially more predictive of 

processing speed, visuospatial ability, or memory than the permuted data (empirical p’s > 0.08). 

This is consistent with the high intercorrelations among the node volumes, and the observations 

that the distributions of associations for nearly all permuted node runs were very narrow, 

indicating that node volumes may be largely exchangeable with respect to cognitive ability-

relevant information. 

Network-specific composite indices varied in their magnitudes of prediction across NOIs, 

with prediction of visuospatial ability generally exceeding that of processing speed or memory 

(processing speed: rage-weighting range = -0.289 to -0.125; rPC-weighting range = 0.122 to 0.282; 

visuospatial ability: rage-weighting range = -0.376 to -0.281; rPC-weighting range = 0.292 to 0.373; 

memory: rage-weighting range = -0.151 to -0.062; rPC-weighting range = 0.050 to 0.147; bottom left 

panels of Figs. 5 & S10). After adjusting for the number of elements, the age-weighted nodes in 

the Central Executive network displayed the largest magnitude of associations all domains of 

cognitive function (processing speed: rage-weighting_adjusted = -0.026, 95% CI = [-0.038, -0.015]; rPC-

weighting_adjusted = 0.026, 95% CI = [0.014, 0.037]; visuospatial ability: rage-weighting_adjusted = -0.044, 

95% CI = [-0.055, -0.033]; rPC-weighting_adjusted = 0.044, 95% CI = [0.033, 0.055]; memory: rage-

weighting_adjusted = -0.013, 95% CI = [-0.025, -0.0003]; rPC-weighting_adjusted = 0.013, 95% CI = [0.000, 

0.025]; bottom right panels of Figs. 5 & S10).  
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General dimensions of edge and node integrity predict late-life cognitive function 

incremental of TBV. We fitted multiple regression models in LBC1936 to test whether the 

associations between general dimensions of connectome integrity and cognitive function were 

unique of TBV, which is perhaps the most robust and well-validated structural MRI predictor of 

cognitive function13,17. Results are presented in the top portions of each panel of Table 1. TBV 

displayed very strong associations with node-based composite scores (rage-weighting = -0.866; rPC-

weighting = 0.876; all p’s < 0.0005), but weak associations with edge-based composites (rage-weighting 

= -0.014, p = 0.750; rPC-weighting = 0.017, p = 0.707). 

Processing speed. TBV was significantly associated with processing speed (β = 0.165, p 

= 0.001). However, edge- and node-based composites of connectome integrity predicted 

processing speed incremental of TBV (edges: βage-weighting = -0.189; βPC-weighting = 0.175; nodes: 

βage-weighting = -0.396; βPC-weighting = 0.379; all p’s < 0.0005). 

Visuospatial ability. TBV was significantly associated with visuospatial ability (β = 

0.333, p < 0.0005). However, node-based composites of connectome integrity predicted 

visuospatial ability incremental of TBV (βage-weighting = -0.395; βPC-weighting = 0.397; all p’s < 

0.0005). 

Memory. TBV was not significantly associated with memory (β = 0.012, p = 0.815). 

Node-based composites of connectome integrity predicted memory incremental of TBV (βage-

weighting = -0.437; βPC-weighting = 0.437; all p’s < 0.0005) 

General dimensions of edge- and node- integrity predict late-life cognitive function 

incremental of one another. We fitted multiple regression models to test whether the 

associations between edge- and node-based indices of connectome integrity and cognitive 

function were unique of one another. Results are presented in the middle portions of each panel 

of Table 1. All associations that were present in the univariate context remained in this multiple 
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regression context. For processing speed, the multiple R2s from the models that included both 

edge- and node-based indices were over 40% larger than the R2s from models including only 

node-based indices, and over 100% larger than the R2s from models including only edge-based 

indices. For visuospatial ability and memory, multiple R2s from the models that included both 

edge- and node-based indices were only marginally larger than the R2s from models including 

node-based indices alone. 

General dimensions of edge- and node- integrity predict late-life cognitive function 

incremental of childhood intelligence. The LBC1936 study has available a high-quality index 

of IQ at age 11 years, the Moray House Test No. 12. Age-11 IQ was associated with node-based 

indices of connectome integrity at age 73 (βage-weighting = -0.159; βPC-weighting = 0.155; all p’s 

<.0005) but was not significantly associated with edge-based indices of connectome integrity at 

age 73 (βage-weighting = -0.080, p = 0.074; βPC-weighting = 0.076, p = 0.090). These results are 

consistent with previous findings in the same sample that demonstrated comparable associations 

between age-11 IQ and other age-73 structural MRI indices (brain cortical thickness)39, and 

collectively suggest that general dimensions of node integrity may at least partially reflect 

lifelong brain health. 

To probe whether associations between composite indices of age-73 connectome integrity 

and age-73 cognitive function were plausibly reflective of aging-specific processes, we examined 

whether the associations persisted after controlling for age-11 IQ. Results are presented in the 

bottom portions of each panel of Table 1. Age-73 connectome-integrity indices maintained their 

associations with age-73 processing speed and visuospatial ability even after controlling for age-

11 IQ. The modest node-based associations with memory did not persist after controlling for 

age-11 IQ, suggesting that the association between age-73 node-based connectome integrity and 
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age-73 memory function may be a vestige of associations between early-life differences in 

cognitive ability and node-based connectome integrity.  
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Table 1. Associations between weighted connectome (edge and node) composites, total brain volume, and age 11 
IQ. 

Table 1a: Processing Speed 
Composite Model Predictor 1 Predictor 2 β1 (p-value) β2 (p-value) R2 Multiple R 

Age-based 

1a - TBV - 0.165 (0.001) 0.027 0.165 
1b Edges TBV -0.189 (< 0.0005) 0.163 (0.001) 0.063 0.251 
1c Nodes TBV -0.396 (< 0.0005) -0.176 (0.062) 0.067 0.259 

  

2a Edges only - -0.190 (< 0.0005) - 0.036 0.190 
2b - Nodes only - -0.244 (< 0.0005) 0.059 0.244 
2c Edges Nodes -0.162 (0.001) -0.223 (< 0.0005) 0.085 0.292 

  

3a - Age 11 IQ - 0.511 (< 0.0005) 0.261 0.511 
3b Edges Age 11 IQ -0.145 (0.001) 0.498 (< 0.0005) 0.281 0.530 
3c Nodes Age 11 IQ -0.161 (< 0.0005) 0.484 (< 0.0005) 0.285 0.534 

  

PC-based 

4a - TBV - 0.165 (0.001) 0.027 0.165 
4b Edges TBV 0.175 (< 0.0005) 0.163 (0.001) 0.058 0.241 
4c Nodes TBV 0.379 (< 0.0005) -0.165 (0.092) 0.062 0.249 

  

5a Edges only - 0.178 (< 0.0005) - 0.032 0.178 
5b - Nodes only - 0.234 (< 0.0005) 0.055 0.234 
5c Edges Nodes 0.154 (0.001) 0.219 (< 0.0005) 0.079 0.281 

  

6a - Age 11 IQ - 0.511 (< 0.0005) 0.261 0.511 
6b Edges Age 11 IQ 0.134 (0.002) 0.500 (< 0.0005) 0.277 0.526 
6c Nodes Age 11 IQ 0.154 (< 0.0005) 0.486 (< 0.0005) 0.283 0.532 

 

Table 1b: Visuospatial Ability 
Composite Model Predictor 1 Predictor 2 β1 (p-value) β2 (p-value) R2 Multiple R 

Age-based 

1a - TBV - 0.333 (< 0.0005) 0.111 0.333 
1b Edges TBV -0.084 (0.077) 0.330 (< 0.0005) 0.117 0.342 
1c Nodes TBV -0.395 (< 0.0005) -0.011 (0.909) 0.149 0.386 

  

2a Edges only - -0.091 (0.067) - 0.008 0.091 
2b - Nodes only - -0.386 (< 0.0005) 0.149 0.386 
2c Edges Nodes -0.039 (0.415) -0.380 (< 0.0005) 0.150 0.387 

  

3a - Age 11 IQ - 0.553 (< 0.0005) 0.306 0.553 
3b Edges Age 11 IQ -0.040 (0.372) 0.549 (< 0.0005) 0.307 0.554 
3c Nodes Age 11 IQ -0.308 (< 0.0005) 0.504 (< 0.0005) 0.397 0.630 

  

PC-based 

4a - TBV - 0.333 (< 0.0005) 0.111 0.333 
4b Edges TBV 0.059 (0.219) 0.331 (< 0.0005) 0.114 0.338 
4c Nodes TBV 0.397 (< 0.0005) -0.016 (0.869) 0.146 0.382 

  

5a Edges only - 0.066 (0.187) - 0.004 0.066 
5b - Nodes only - 0.383 (< 0.0005) 0.147 0.383 
5c Edges Nodes 0.023 (0.628) 0.380 (< 0.0005) 0.147 0.383 

  

6a - Age 11 IQ - 0.553 (< 0.0005) 0.306 0.553 
6b Edges Age 11 IQ 0.019 (0.676) 0.552 (< 0.0005) 0.306 0.553 
6c Nodes Age 11 IQ 0.306 (< 0.0005) 0.506 (< 0.0005) 0.397 0.630 
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Table 1, continued 

Table 1c: Memory 
Composite Model Predictor 1 Predictor 2 β1 (p-value) β2 (p-value) R2 Multiple R 

Age-based 

1a - TBV - 0.012 (0.815) 0.0001 0.012 
1b Edges TBV -0.083 (0.115) 0.008 (0.877) 0.007 0.084 
1c Nodes TBV -0.437 (< 0.0005) -0.361 (< 0.0005) 0.048 0.219 

  

2a Edges only - -0.083 (0.113) - 0.007 0.083 
2b - Nodes only - -0.124 (0.014) 0.015 0.124 
2c Edges Nodes -0.066 (0.212) -0.166 (0.024) 0.020 0.141 

  

3a - Age 11 IQ - 0.613 (< 0.0005) 0.376 0.613 
3b Edges Age 11 IQ -0.027 (0.551) 0.615 (< 0.0005) 0.381 0.617 
3c Nodes Age 11 IQ -0.033 (0.466) 0.611 (< 0.0005) 0.381 0.617 

  

PC-based 

4a - TBV - 0.012 (0.815) 0.0001 0.012 
4b Edges TBV 0.053 (0.323) 0.009 (0.866) 0.003 0.055 
4c Nodes TBV 0.437 (< 0.0005) -0.365 (< 0.0005) 0.045 0.212 

  

5a Edges only - 0.053 (0.318) - 0.003 0.053 
5b - Nodes only - 0.118 (0.020) 0.014 0.118 
5c Edges Nodes 0.038 (0.480) 0.114 (0.026) 0.015 0.122 

  

6a - Age 11 IQ - 0.613 (< 0.0005) 0.376 0.613 
6b Edges Age 11 IQ -0.002 (0.969) 0.616 (< 0.0005) 0.379 0.616 
6c Nodes Age 11 IQ 0.028 (0.526) 0.612 (< 0.0005) 0.380 0.616 

 

Note. TBV = Total brain volume 
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Regularized LASSO regression models. We were interested in whether a least absolute 

shrinkage and selection operator (LASSO) approach for indexing connectome age could improve 

prediction of late-life cognitive function beyond the simple composite indices reported above 

(see Supplementary Method for detail). LASSO models include penalty functions that shrink 

regression coefficients toward zero in order to introduce sparsity into the predictor set and guard 

against overfitting. 

In UKB, a LASSO model based on all edges predicted 50.7% of the variance in age in 

the UKB holdout sample, whereas a model based on all nodes predicted only 33.4% of the 

variation in age (Fig. S11; Supplementary Results). The model based on edges alone had good 

prediction accuracy in a holdout subsample (RMSE = 5.32 years). The model based on nodes 

alone showed had slightly worse prediction accuracy than the model based on edges alone 

(RMSE = 6.1 years). A LASSO model based on both edges and nodes, and a LASSO model that 

incorporated Edge × Node interactions did not appreciably improve prediction of age relative to 

the model based on edges alone (Fig. S12; Supplementary Results). 

Similar patterns of results were obtained for LASSO analyses based on NOIs, albeit at 

lower overall levels of age prediction (R2 = 0.166 to 0.507 using edges; 0.087 to 0.334 using 

nodes; Figs. S11 & S12), as would be expected when less information is made available for 

predictive modelling. Likewise, removing potentially spurious edges with consistency-based 

thresholding prior to conducting the LASSO analyses slightly depreciated predictions relative to 

unthresholded data (mean ratio of unthresholded R2 to thresholded R2 across NOIs = 1.477; 

Supplementary Results).  

We predicted cognitive function in LBC1936 from connectome elements, using LASSO 

models trained in UKB (see Supplementary Method). We confine our prediction to processing 

speed and visuospatial ability, as memory was not associated with connectome integrity above 
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and beyond age-11 IQ. Edge-based LASSO predictors were generally not significantly related to 

cognitive function (Fig. S13). Node-based LASSO predictors were significantly associated with 

both processing speed (rwhole-brain = -0.199; 95% CI = [-0.289, -0.109]) and visuospatial ability 

(rwhole-brain = -0.177; 95% CI = [-0.271, -0.083]; Fig. S13). Effect sizes were not appreciably 

larger than those obtained using the simple composite indices (outside of a LASSO framework) 

reported earlier (Fig. S14). Thus, the sparsity introduced by regularized methods was not 

advantageous – and in the case of edge-based predictors, was disadvantageous – for predicting 

variation in late-life cognitive abilities from indices of connectome aging. Rather, the simple 

regression-weighted MRI composite scores reported earlier are able to produce impressively 

large associations with cognitive function that rival, if not exceed, those obtained for more 

complex algorithmic learning methods40. 
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Discussion 

Elucidating the neural bases of cognitive aging will be fundamental to detecting, and 

ultimately mitigating, preventing, or ameliorating aging-related cognitive impairments. Rather 

than focus on TBV, or a narrow selection of very specific regions of interest, we undertook a 

network approach that examined variation in elements of the whole-brain connectome and 

several of its NOIs in relation to variation in adult chronological age and adult cognitive abilities. 

Using age-heterogenous data from UKB, we found that the aging of elements within the 

connectome occurs along the same general dimensions of global brain health that underlie age-

partialled correlations amongst connectome element integrities. We used indices of these general 

dimensions of edge and node integrity in LBC1936 to predict processing speed, visuospatial 

ability, and memory, three aging-sensitive domains of cognitive function in older adulthood8,9,10. 

Indices of connectome-wide node integrity were related to all domains of cognitive function, 

whereas indices of connectome-wide edge integrity were specifically related to processing speed. 

Network-specific analyses indicated a disproportionally large role of the Central Executive 

network in these patterns relative to its small size. Associations with processing speed and 

visuospatial ability were incremental of TBV, and persisted after controlling for age-11 IQ, 

suggesting that they capture aging-specific processes, whereas associations with memory appear 

to be a vestige of early-life differences in cognitive function.  

Our analysis within UKB revealed a potentially important connection between individual 

differences in neurostructural integrity and aging-related decrements. We found that connectome 

elements that had stronger loadings on their corresponding PCs (i.e., elements that were better 

indicators of overall levels of neurostructural integrity) also tended to have stronger correlations 

with age. Although loadings on the PCs were robustly related to the centrality of each element 

within the physical topology of the connectome, this association was not sufficient to explain the 
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strong correspondence between PC loadings and age correlations of the individual connectome 

elements. This pattern parallels results from cognitive aging research, where similar 

methodological approaches have found that tests with stronger loadings on a general factor of 

cognitive ability, indicated by many different measures, also tend to be more closely correlated 

with age41,42, suggesting a strong shared genetic basis for cognitive aging across different ability 

domains43. The current results extend this phenomenon to the context of the brain and suggest 

that researchers addressing the causes of individual differences in aging-related cognitive and 

neurostructural decline would benefit from focusing their efforts on understanding broad, general 

mechanisms of aging, in addition to more specific or granular mechanisms. 

That brain aging occurs along general dimensions of individual differences in 

connectome integrity suggests that the neurobiological substrates of cognitive aging may be very 

broad, but also raises considerable interpretation challenges to work on apparent brain age. 

Apparent brain age may simply be a marker of overall connectome health or integrity, rather than 

a marker specific to apparent aging. Using a high-quality measure of age-11 IQ, we found that 

late-life connectome integrity is partly accounted for by pre-existing differences in cognitive 

ability prior to the initiation of aging. By controlling for age-11 IQ, we confirmed that the 

detected associations between age-73 connectome integrity and age-73 processing speed and 

visuospatial ability are also likely to be partly reflective of the aging process proper. Other work 

that does not have high-quality controls for prior intelligence and/or brain structure will need to 

exercise caution when interpreting associations between indices of brain age and external 

outcomes. Not only were age correlations strongly related to PC loadings, but age-correlation 

weighted indices of connectome age were nearly entirely collinear with PC-loading weighted 

indices of connectome integrity (redge-based composites = -0.892; rnode-based composites = -0.999). Thus, any 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.13.875559doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.875559
http://creativecommons.org/licenses/by-nd/4.0/


CONNECTOME AGING 

 

24 

given association with apparent brain age might just as appropriately be conceptualized as an 

association with overall brain integrity.  

It is notable that elements within the Salience network were found to be relatively spared 

in late-life, implying that its trajectory across middle to older adulthood is flatter than other 

NOIs. Previous functional research has suggested that the Salience network acts as a control on 

other networks, such as the Central Executive and Default Mode networks, and that disruption of 

this control, or loss of functional connections between networks, is among the causes of 

cognitive decline44,45,46. Though we did not examine between-network connections here, our 

analyses did highlight the Central Executive network as being of particular interest for cognitive 

aging, despite it containing the fewest number of elements of any network. To correct for the 

additive effect of the size of each network, we adjusted their predictions of age and cognitive 

functions for their respective number of elements. Consistently across methodological 

approaches, element types, and outcome variables, the Central Executive network stood out after 

this adjustment: its small number of elements had disproportionately stronger associations with 

both processing speed and visuospatial ability relative to its size. Thus, the integrity of this 

network is likely to be of particular relevance to cognitive aging.  

Although this study examined an important, theoretically-informed set of brain networks 

in large-scale samples with high-quality brain-imaging and cognitive testing, and used a cross-

cohort (wide-to-narrow age range) design to limit problems of overfitting, it nevertheless had 

some key limitations. First, though the LBC1936 (testing) and UKB (training) samples were 

non-overlapping, they still had many qualities in common: they were based in the United 

Kingdom, had the same broad ethnic and cultural background, and – perhaps most importantly –

they were self-selecting samples that were healthier, better-educated, and more cognitively able 

than average47,48. It would be of interest to examine whether the brain-network predictors derived 
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here are still effective in samples that are further removed from this context, or are more 

representative of the broader population. For this reason, we have made the weightings for each 

of our predictors publicly available for the use of other researchers in their own appropriate 

datasets (see Table S9). Second, the study focused on predicting cross-sectional differences in 

cognitive function in old age from connectome indices alone. Future work would benefit from 

investigating neural predictors of the longitudinal slopes of cognitive change in late-life, 

assessing whether the brain networks that explain individual differences in cognitive level are the 

same as those that explain individual differences in cognitive decline. Relatedly, the predictors of 

cognitive function were trained on cross-sectional differences in brain structure. Research 

integrating measurement of aging-related brain changes with previously identified determinants 

of cognitive decline49, including medical comorbidities (e.g., small vessel disease indicators, 

inflammation, vascular disease), lifestyle indicators (e.g., diet, smoking, physical function), and 

genetic risk, may help to critically advance prediction of cognitive aging. Third, our analyses 

were based on unthresholded connectivity matrices. Though we found that edge-wise age trends 

and PC loadings were largely unchanged by thresholding, it is possible that edges that occur in 

very few subjects and involve very few streamlines contain greater measurement error50 ,51. Fifth, 

the LBC1936 and UKB MRI scanners differed in acquisition strength (1.5T and 3T, 

respectively). It is potentially nontrivial to compare brain indices across scanners of different 

magnetic strength, and future research would benefit from assessing the extent to which these 

differences bias results in cross-cohort MRI studies. Finally, the neurostructural perspective is 

inherently limited in that it does not include functional information; since previous studies have 

found functional connections between several of the networks studied here44, our investigation, 

which treated networks separately, may have missed these links, which might explain additional 

cognitive variance over and above the properties of the individual networks. Integrating the 
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structural and functional perspectives is a critical future task for network-focused cognitive 

neuroscience. 

This study represents the most comprehensive investigation to date of the out-of-sample 

predictive validity of several theoretically-informed brain structural networks for late-life 

cognitive function. We found evidence that aging in the brain as a whole, and within specific 

networks, tends to occur on broad, general dimensions, with brain features that are more 

representative of their network in general being more related to age. Age-related elements of 

each network often made substantial out-of-sample predictions of cognitive abilities, with the 

Central Executive showing disproportionately large relation with processing speed, visuospatial 

ability, and memory relative to its size. Given the wealth of neuroimaging data now available, 

the cross-cohort-comparison approach will be a viable and fruitful way of producing predictors 

of cognitive abilities that are robust to context, and thus of potential use in predicting and 

understanding differences in cognitive aging. 
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Methods 

Participants 

UK Biobank. A large-scale population epidemiology study, UK Biobank (UKB) involved the 

recruitment of approximately 500,000 individuals across Great Britain for medical, psychosocial, 

and biological data collection52. A subset of around 100,000 UKB participants were invited to 

complete brain MRI scanning (scanner details are provided in the next section); as of this 

writing, data collection is still in progress, but portions of the data have been made available. The 

initial release of diffusion MRI (dMRI) data included 5,455 individuals. Data for a subset of 

these individuals (n = 567) was acquired at an earlier scanning phase, rendering their dMRI data 

incompatible with subsequent data acquisition (see section 2.10 of the Brain Imaging 

Documentation (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id = 1977) for details). A further 

subset (n = 1,314) was removed during dMRI quality-control procedures prior to data release. In 

the present study, 3,155 participants (1,623 female) who had MRI data were included, with an 

average age of 61.6 years (SD = 7.5, range = 44.64 – 77.12). Of the 3,155 participants with 

structural MRI data, 3,124 had usable volume data and 3,087 reported their age at the time of 

scanning. All participants were free of potentially confounding dementias and neurological 

syndromes (e.g., multiple sclerosis, stroke). Despite previous research that has demonstrated 

neuroanatomical sex differences in men and women20,53, we found largely similar patterns of 

connectome aging across men and women (redge-age correlations = 0.852; rnode-age correlations = 0.943, all 

p’s < 0.0005). We therefore did not further correct for biological sex. All the data from the 

present study come from the UK Biobank recruitment center in Manchester, UK. UKB received 

ethical approval from the Research Ethics Committee (reference 11/NW/0382). All participants 

provided informed consent to participate. 
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Lothian Birth Cohort 1936. In 1947, almost all children attending schools in Scotland 

and born in 1936 completed an intelligence test as part of the Scottish Mental Survey 194754. 

1,091 of these individuals living mostly in the Edinburgh and Lothians area of Scotland were 

contacted and returned for re-testing at an average age of 69.5 years, becoming the Lothian Birth 

Cohort 1936 (LBC1936)48,55, a longitudinal study of aging. As part of the second wave of testing, 

at age 72.8 years (SD = 0.70), 731 LBC1936 members underwent brain MRI scanning (see 

scanner details below), of whom 528 (246 female) had reliable brain and cognitive data for the 

cognitive prediction analysis. Participants were largely healthy: only seven scored in the mild 

range of dementia on the Mini-Mental State Exam, zero self-reported symptoms of dementia, 

and 65 met for neuroradiologically-identified stroke56. Only data from this second wave are 

included in the present study. 

 

Brain Image Acquisition and Processing 

 UK Biobank. MRI data for all participants was collected on the same 3T Siemens Skyra 

MRI scanner (see Miller et al.57& Alfaro-Almagro et al.58 for full details). T1-weighted volumes 

were acquired in the sagittal plane using a 3D MP-RAGE sequence. The T1-weighted volumes 

were preprocessed and analyzed using FSL tools (http://www.fmrib.ox.ac.uk/fsl) by the UKB 

brain imaging team. A full overview of the preprocessing and analysis pipeline is available at 

http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf. FoV-reduced T1-weighted volumes from 

the first release of UKB MRI data were used to reconstruct and segment the cortical mantle using 

default parameters in FreeSurfer v5.359 (http://surfer.nmr.mgh.harvard.edu/). Reconstruction and 

segmentation were based on the Desikan-Killiany atlas36. Automated anatomical segmentation of 

subcortical structures (accumbens area, amygdala, caudate, hippocampus, pallidum, putamen, 

thalamus, ventral diencephalon, and brainstem) was also conducted in FreeSurfer using default 
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settings and atlas60. Each output underwent visual assessment and subjects were excluded if 

major errors in tissue identification or skull stripping were identified (which were not analyzed 

further). 

Lothian Birth Cohort 1936. MRI data for all participants was collected at Wave 2 on 

the same GE Signa Horizon HDx 1.5T clinical scanner (General Electric, Milwaukee, WI) 

equipped with a self-shielding gradient set (33 mT/m maximum gradient strength) and 

manufacturer supplied eight-channel phased-array head coil (see Wardlaw et al.56 for full 

details). High-resolution T1-weighted volumes were acquired in the coronal plane using a 3D 

fast-spoiled gradient echo (FSPGR) and subsequently processed in FreeSurfer v5.1. As with the 

UK Biobank data, reconstruction and segmentation were based on the Desikan-Killiany atlas36,60. 

Segmentation and parcellation errors were corrected manually after visual inspection of each 

image.  

Tractography. Probabilistic tractography pipelines were identical across both datasets, 

though acquisition procedures differed slightly. For UKB, dMRI acquisitions are publicly 

available from the UKB website in the form of a Protocol 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367), Brain Imaging Documentation (and in 

Miller et al.57)). The dMRI data were acquired using a spin-echo echo-planar imaging sequence 

(50 b = 1000 s/mm2, 50 b = 2000 s/mm2 and 10 b = 0 s/mm2) resulting in 100 distinct diffusion-

encoding directions. The field of view was 104 × 104 mm with imaging matrix 52 × 52 and 72 

slices with slice thickness of 2 mm resulting in 2 × 2 × 2 mm voxels. For LBC1936, dMRI data 

was acquired from both T2-weighted and sets of diffusion-weighted (b = 1000 s/mm2) axial 

single-shot spin-echo echo-planar (EP) volumes acquired with diffusion gradients applied in 64 

noncolllinear directions56. Both datasets were corrected for head motion and eddy currents, and 

processed using BEDPOSTx, with within-voxel modeling of multi-fibre tract orientation 
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structure. Probabilistic tractography with crossing fiber modeling was carried out using 

PROBTRACKx61. Streamlines were seeded from all white matter voxels using 100 Markov 

Chain Monte Carlo iterations with a fixed step size of 0.5 mm between successive points. 

Connectome Construction. Our treatment of the structural brain data from both UKB 

and LBC1936 is based on an automated connectivity mapping pipeline62,63, wherein T1-weighted 

volumes are decomposed into 85 distinct cortical and subcortical nodes based on the Desikan-

Killiany atlas. Such segmentations are used to model the brain as a structural network (i.e., 

connectome) comprised of nodes, or variables in the network, and edges, or the connections 

between nodes. As such, we constructed connectomes for each participant in UKB and 

LBC1936, where nodes represented grey matter regional volumes and white matter edge weights 

were the mean fractional anisotropy averaged along the length of all streamlines identified 

between each pair of nodes (k = 3,570 possible edges). Fractional anisotropy is a diffusion tensor 

MRI-derived measure of white matter organization that describes the directional coherence of 

water molecule diffusion. Six edges were estimated as zero across all participants (i.e., 

probabilistic tractography found no route between the nodes involved). Network data were not 

thresholded. For graph-theory analyses, we used the igraph64 package in R to compute network 

parameters.  

Networks-of-Interest. In order to develop greater specificity of the neuroanatomical 

correlates of cognitive aging, we decomposed each participant’s whole-brain connectome into 

ten prespecified NOIs (see Fig. 1; Table S1). NOIs were largely representative of previous, 

intrinsically-defined networks in the human brain24,25, several of which have been previously 

implicated in cognitive ability (Table S1). A null network was created from regions that were not 

included in any of the prespecified NOIs.  
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Cognitive Testing 

Members of the LBC1936 have completed a range of cognitive tests at every wave of testing. 

For the present study, we focused on tests from the domains of processing speed, visuospatial 

ability, and memory, which have been characterized within this cohort in our previous research65. 

Visuospatial ability was measured using tests of Matrix Reasoning and Block Design from the 

Wechsler Adult Intelligence Test, 3rd UK Edition (WAIS-IIIUK)66, and the Spatial Span test 

(forwards and backwards) from the Wechsler Memory Scale, 3rd UK Edition (WMS-IIIUK)67. 

Processing speed was measured using the Digit-Symbol Substitution and Symbol Search tests 

from the WAIS-IIIUK, a test of 4-choice reaction time administered on a dedicated button-box 

instrument68, and a psychophysical test of inspection time administered on a computer monitor 

with a fast refresh rate69. Memory was measured using the Logical Memory and Verbal Paired 

Associates subtests of the WMS-IIIUK and the Digit Span Backward subtest of the WAIS-IIIUK. 

All cognitive domains were modeled as latent variables. Fit indices, factor model parameter 

estimates, and descriptive statistics for the cognitive tests are reported in Table S8. 

 

Statistical software 

All analyses were run in R70. Graphics were created using the ggplot2 package71. Anatomical 

network plots were created using BrainNet Viewer72. Factor modeling and structural regression 

models were estimated using the lavaan package73. LASSO model fitting and associated cross-

validation was conducted within the cv.glmnet package74, with wrapper functions from the caret 

package75 in R (see Supplementary Method for details). 

 

Code availability 
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Sample code to run analyses presented here, including discovery of age correlations and 

principal component loadings in UKB, creation of weighted composite scores in LBC1936, and 

latent variable associations with cognitive function in LBC1936 will be made available upon 

publication. 
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