0O ~NO O, WN -~

AR DD DOWOWWWWWWWWWNDNDNDNDNDNMNDNDNMNN=_2=22AA A A A A A
AP ON-_O0COO0ONOOODAPRPWON 0O O~NOLOOAOPPWON_~OCCOONOOOOOP,WOWN-~OO

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875542; this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Representation of semantic information in ventral areas during encoding is associated with
improved visual short-term memory

Bobby Stojanoski', Stephen M. Emrich? & Rhodri Cusack®

'The Brain and Mind Institute, Western University, London ON, N6A 5B7, Canada.
2The Department of Psychology, Brock University, St. Catharines, Ontario L2S 3A1, Canada

3 Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.

Corresponding author

Bobby Stojanoski

Email: bstojan@uwo.ca

The Brain and Mind Institute, Department of Psychology,



https://doi.org/10.1101/2019.12.13.875542
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875542; this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

45  The University of Western Ontario, London, Ontario, N6C 5B7, Canada
46


https://doi.org/10.1101/2019.12.13.875542
http://creativecommons.org/licenses/by-nc-nd/4.0/

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875542; this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Abstract

We rely upon visual short-term memory (VSTM) for continued access to perceptual information
that is no longer available. Despite the complexity of our visual environments, the majority of
research on VSTM has focused on memory for lower-level perceptual features. Using more
naturalistic stimuli, it has been found that recognizable objects are remembered better than
unrecognizable objects. What remains unclear, however, is how semantic information changes
brain representations in order to facilitate this improvement in VSTM for real-world objects. To
address this question, we used a continuous report paradigm to assess VSTM (precision and
guessing rate) while participants underwent functional magnetic resonance imaging (fMRI) to
measure the underlying neural representation of 96 objects from 4 animate and 4 inanimate
categories. To isolate semantic content, we used a novel image generation method that
parametrically warps images until they are no longer recognizable while preserving basic visual
properties. We found that intact objects were remembered with greater precision and a lower
guessing rate than unrecognizable objects (this also emerged when objects were grouped by
category and animacy). Representational similarity analysis of the ventral visual stream found
evidence of category and animacy information in anterior visual areas during encoding only, but
not during maintenance. These results suggest that the effect of semantic information during
encoding in ventral visual areas boosts visual short-term memory for real-world objects.
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70  Our visual environment, at any given moment, is overwhelmingly complex. To cope with the

71 abundance of available information, we rely on selective attention to focus upon one thing at a

72  time, and then visual short-term memory (VSTM) to hold and manipulate relevant information.

73  VSTMis therefore a critical for many everyday tasks. However, it is highly limited in capacity.

74  Only a small number of high-fidelity simple features (e.g., color, orientation) can be maintained

75 in VSTM (Luck & Vogel, 2013); and the number of objects that can be maintained in VSTM is

76  further reduced when trying to maintain more complex objects (Alvarez & Cavanagh, 2004).

77

78  The origin of this limited capacity has been debated. One theoretical position is that the key

79 limitation is on the amount of information that can be maintained. During the maintenance of

80 VSTM, there is a sustained, load-dependent activity, particularly in parietal regions (Linden et

81 al.,, 2003; Todd & Marois, 2004; Xu & Chun, 2006) that asymptotes with increasing memory

82 load. It has been proposed that this activity reflects the amount of information actively

83  maintained in VSTM; thus, it could be that the limit on information that can be stored in VSTM is

84  due to these limited storage resources (McNab & Klingberg, 2008; Todd & Marois, 2005).

85

86  Another theoretical position is that the primary bottleneck is the encoding of information into

87  VSTM. According to this view, the amount of information about a stimulus that can be

88  maintained is limited by the amount of information encoded by perceptual regions (Emrich,

89 Riggall, Larocque, & Postle, 2013). It is supported by evidence that encoding strategy has a

90 strong effect on individual differences in VSTM (Linke et al, 2011; Cusack et al, 2009), and on

91  the amount of stimulus-specific information recoverable from sensory regions, often without

92  measurable delay-period activity (Harrison & Tong, 2009; Riggall & Postle, 2012; Serences,

93 Ester, Vogel, & Awh, 2009). Increases in memory load can affect the signal-to-noise ratio in

94  populations of feature-specific neurons (Bays, 2014), resulting in decreased decoding from

95 patterns in sensory cortex (Emrich et al., 2013).

96

97  The amount of information that can be stored is also affected by factors other than the number

98  of stimuli to be encoded. For example, the amount of knowledge or familiarity an individual has

99  with a stimulus affects the precision and/or the capacity of stored representations. For example,
100 own-race faces are recalled with greater precision than other-race faces (Zhou, Mondloch, &
101 Emrich, 2018). Similarly, Xie and Zhang (2017) demonstrated that familiarity with Pokemon
102  sped up the rate with which objects were encoded into VSTM, as measured by event-related
103 potentials (ERPs; Xie & Zhang, 2018). Memory for colors is affected by the extent to which they
104  belong to the category labels (Bae, Olkkonen, Allred, & Flombaum, 2015; Hardman, Vergauwe,
105 & Ricker, 2017).
106
107 It remains unclear, however, what neural mechanisms support the increased ability to store
108 familiar objects in VSTM. Brady et al (Brady, Stérmer, & Alvarez, 2016) used the contralateral
109 delay activity (CDA), an ERP component associated with memory storage, to examine storage
110  for familiar objects compared to simple features, and found a greater CDA amplitude throughout
111 the delay period for familiar stimuli. This finding suggests that regions associated with delay-
112  period activity may be able to recruit additional resources for familiar stimuli (perhaps with the
113  recruitment of additional long-term memory regions). It is unclear, however, how familiarity,
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114  driven by semantic information, affects processing during encoding, particularly within sensory
115  regions associated with the maintenance and precision of feature-specific information.

116

117  One limitation of studies contrasting VSTM for simple features versus familiar objects is that it is
118  not possible to compare VSTM for familiar and unfamiliar stimuli without accounting for object
119  complexity (i.e., the number of perceptual features). That is, although familiar real-world objects
120  are remembered more accurately, they also tend to have greater complexity. Numerous studies
121 have demonstrated that object complexity tends to decrease memory performance, and

122  decreases the amount of storage-related delay-period activity in the superior intraparietal sulcus
123  and lateral occipital complex (LOC; Xu & Chun, 2006, 2009) reflecting increased storage

124  demands, which reach an asymptote at lower memory loads. Recently, Stojanoski & Cusack
125 (2014) developed a method of warping stimuli that, while reducing the available semantics

126  associated with an object, controlled the effect on the physical complexity of the stimulus as
127  processed by early visual areas. Using this warping method, Veldsman and colleagues

128  (Veldsman, Mitchell, & Cusack, 2017a) demonstrated that less-warped versions of objects

129  exhibited more varied activity, rather than changes in the amount of activity, in a number of

130 regions associated with VSTM, suggesting richer neural representations for the better-

131 remembered, intact objects. However, in the study by Veldsman and colleagues, participants
132  were required to compare different levels of warping within individual objects that were not

133  organized into superordinate classes (e.g., categories) across different levels of warping,

134  precluding the measurement of semantic representations. Without manipulating access to

135  semantic content both by grouping images into superordinate classes, while controlling the level
136  of warping across recognizable and unrecognizable objects, it remains unclear what role

137  semantics plays in improving VSTM and how that changes brain activity.

138

139  Consequently, the aim of the current experiment was to examine how semantics affected VSTM
140  precision and capacity and to assess neural representations during encoding and maintenance.
141 To do so, we probed VSTM performance by manipulating semantic information in two ways.
142  First, we used a set of objects that were organized at two levels: basic categories (e.g., cars,
143  food) and superordinate (e.g., animate and inanimate). Second, we controlled access to the
144  semantic content of the objects by maintaining the stimulus complexity (warping levels) constant
145  across objects. We hypothesized that access to semantic information will improve visual short-
146  term memory by increasing both precision and accuracy. This memory advantage for

147  recognizable objects could be driven by recruiting additional anterior regions along the visual
148  hierarchy (DiCarlo, Zoccolan, & Rust, 2012) by improving representations in early visual areas.
149  Storing additional semantic content may also reduce the maintenance load, resulting in changes
150 in the strength of parietal delay-period activity. However, Veldsman, Mitchell and Cusack (2017)
151  found no evidence for changes in the strength of neural activity across the visual hierarchy for
152  remembered recognizable objects. Another possible mechanism is that better memory for

153  recognizable objects is mediated by distinct patterns of neural representations of the semantic
154  information during encoding and maintenance. Moreover, if changes to the neural

155  representation of recognizable objects underlies improved VSTM, we expected these changes
156  to occur primarily in ventral visual areas, in line with an encoding model of VSTM.

157
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158 Methods
159  Participants

160 Twenty-two healthy adult volunteers (age 26+/- 4.72 years; 9 male, 13 female)

161  participated in two scanning sessions (at least 6 days apart). A total of forty-two scanning

162  sessions were acquired (two participant sessions were not acquired due to attrition). All

163  participants had normal or corrected-to-normal vision, with no history of neurological problems.
164  All participants provided written consent as required by the local ethics review board, and were
165  compensated $20/hour for scanning.

166 Stimuli and Procedure

167 We used a set of 96 images, taken from the Hemera image database (Hemera Images:
168  hitp://www.hemera.com/), divided in 8 categories: faces, birds, fruit, mammals, bikes, tools,

169  shoes, and clothes. The object categories could also be divided into two superordinate classes:
170  animate (living) and inanimate (non-living) objects, which has been shown to reflect human

171 semantic representations (Costanzo et al., 2013). To isolate perceptual features from semantic
172  content we created two sets of "warped" images using diffeomorphic transformations, a method
173  developed by Stojanoski and Cusack (2014), which create smooth, continuous, and invertible
174  images that maintain a one-to-one mapping between the source and transformed space (see
175  Stojanoski & Cusack, 2014, for information about the warping algorithm). Therefore, in this

176  context, "low" warped (recognizable) objects were matched in their basic perceptual properties
177  to "high" warped versions but were deemed to be unrecognizable, which was determined based
178  on perceptual and semantic ratings by 415 participants who completed over 15,600 trials on
179  Amazon's crowdsourcing platform, Mechanical Turk (Fig. 1). Mean warping levels at which all
180  objects per category were no longer recognizable was used to set the warping level threshold
181  for the "high" warp condition in the current neuroimaging experiment. Warping level for images
182  in the "low" warp condition was set to the maximum level that did not disrupt recognizability (see
183  Fig. 1 for sample images). In both the "high" and "low" warp conditions, 16 parametrically

184  varying versions of each item were created confined within the "high" and "low" warp space,
185 respectively. Distance between adjacent images in the set of 16 were mathematically equivalent
186  within and across warping conditions. That is, the distance between any two neighbouring

187  images in the high warp condition was the same as the distance between any two neighbouring
188 images in the low warp condition.

189
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Figure 1

Sample Images: e L " "
High” warp Low” warp

Inanimate \‘di/ %/

Animate

Fig 1. A) A sample stimulus, illustrating the 16 parametrically varying versions of the image, ranging from intact to
maximally warped using the diffeomorphic transformations. Images enclosed by the square reflect “low” and “high”
warp ratings. These were presented around a circle in the experiment. B) Sample animate and inanimate
representing “low” and high” warp conditions.

Participants completed a visual short-term memory task, using a whole report paradigm,
while undergoing fMRI. On each trial of a whole report paradigm, participants were required to
select the remembered item among a set of distractors presented along a continuous scale.
(Fig. 2). The continuous parameter space is modelled to gain an estimate of the precision (the
degree of deviation of the reported item from the probed item), and the probability that the item
was remembered at all (Wilken and Ma, 2004; Bays and Husain, 2008; Zhang and Luck, 2008).
Specifically, their task was to encode, and remember a single image, and identify the
remembered item among the set of 16 parametrically varying items positioned along the outline
of a response wheel. Target items were randomly selected from the set of 16 versions, with the
remaining 15 serving as distractors around the response wheel. At the beginning of each trial a
white fixation cross (~20°) was presented in the middle of a gray screen for 1, 6, or 11 seconds,
followed by the target item, presented in colour (500 x 500 pixels, 7.9°), which appeared
centrally on a gray background, for 3 seconds (Fig 1b). The offset of the target marked the start
of the delay phase, extending 1-11 seconds where participants were instructed to remember the
target in as much detail as possible. At the end of the delay period, participants were presented
with the response wheel that contained the set of 16 parametrically varying version of the
images (image size was reduced to 45 x 45 pixels and were positioned 22.5° apart). With the
onset of the response wheel, a black rectangle framed one of the 16 images, at a random
location. Participants were instructed to identify the target item by moving the black square
(using a MRI compatible button box) until it framed the item that matched with the one in their
memory. Participants were given 12 seconds to identify the target; the image inside the frame at
the end of the allotted time was taken as their response. Participants completed 96 trials,
divided into three runs (32 trials/run) over two scanning sessions, at least 6 days apart. In each
session, trials were divided into two types: on half the trials participants saw high warp images
and the other half they saw low warp images, with each image presented in both high and low
warp conditions, once per session (randomly assigned and counterbalanced across
participants). This was designed to avoid perceptual biases a result of initial exposure to low
warp images.
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225  Figure 2
Sample trial:
o gy

Target:i i + ‘i
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227 Fig 2. The timeline of two sample trials. At the start of the trial a target item appears in the middle of the screen for 3
228 seconds, followed by a maintenance period between 1 and 11 seconds. At the start of the response phase a black
229 square surrounds a random distractor, and participants have 12 seconds to move the square until it overlays the item
230  they thing matches the target.

231 All images were projected (Avotec SV-6011; at 60Hz) onto a screen and were viewed by
232  participants through a mirror mounted on the head coil. MATLAB (MathWorks) and the

233  Psychophysics Toolbox (http://psyctoolbox.org; Brainard, 1997; Pelli & Vision, 1997) were used
234  to deliver stimuli.

235
236  fMRI Acquisition

237 Participants were scanned with a Siemens Tim Trio 3T MRI scanner. At the start of each
238  scan, a whole brain T1-weighted high-resolution structural image was acquired with an

239 MPRAGE sequence (FOV =240 x 256, flip angle = 9°, TR = 2300 msec, TE = 2.98 msec,

240 resolution = 1 mm isotropic). Functional images were acquired using a highly accelerated

241  gradient-echo EPI sequence (Center for Magnetic Resonance Research, University of

242  Minnesota) with multiband acceleration factor 3 and GRAPPA iPat acceleration of 2. The

243  following parameters were used: 32 slices were acquired with a matrix size of 70x70 and a

244  voxel size of 3 x 3 x 3 mm (not inclusive of a 10% slice gap), flip angle = 55°, TE = 25 ms, and
245 TR =850 ms, and a bandwidth of 1587 Hz/Px. Each scanning session was divided into 3 runs,
246  for a total of 129 runs.
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247  Analysis
248  Behavioural Analysis
249 Behavioural performance on the working memory task was analyzed by first projecting

250 participant's responses onto a circular distribution ranging from -1r < x < 1 radians with the

251  target at zero, for each trial. Using that information, we calculated the difference between the
252  target position and the response position producing a measure of the degree of error

253  represented as a distribution. The distribution of errors were fit with a probabilistic mixture-

254  model using the MemToolbox Suchow, Brady, Fougnie, & Alvarez, (2013), to generate

255  maximum-likelihood estimates of precision and guessing rate (Zhang & Luck, 2011). Briefly, the
256  guessing rate is modeled as the height of a uniform distribution, reflecting random responses,
257  whereas precision is estimated as the inverse of the circular normal (Von Mises) distribution on
258 the remaining trials (i.e., those trials in which the target was correctly reported). Due to task-
259 related constraints there were too few trials to fit the model for each participant; instead, we
260  pooled errors across participants to estimate precision and guessing rates across both warping
261  conditions. We also computed the root-mean square (RMS) error, that is the difference between
262 the target and the selected item, for high and low warped objects grouped by category,

263 animacy, and all objects independent of category.

264  Imaging Analysis

265 Functional imaging data was analyzed with SPM8 (Wellcome Institute of Cognitive

266  Neurology; http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), by establishing an analysis pipeline
267  using the automatic analysis system, version 4

268  (www.github.com/rhodricusack/automaticanalysis). Preprocessing steps in the pipeline followed
269 these six steps: 1) all volumes were converted to Nifti format, 2) motion was corrected by

270  extracting six motion parameters: translation and rotation for three orthogonal axes, 3) brains
271 were normalized, using SPM8 segment-and-normalize procedure where the T1 (anatomical)
272  was segmented into gray and white matter and normalized to a pre-segmented volumetric

273  template in MNI space, 4) extracted normalization parameters were then applied to all function
274  (echo-planar) volumes, 5) data was smoothed using a Gaussian smoothing kernel of 10 mm
275 FWHM (for univariate analyses only; Peigneux et al., 2006), and 6) low frequency noise (e.g.,
276  drift) was removed by high-pass filtering the data with a threshold of 1/128 Hz. Four dummy
277  scans at the start of each session were discarded to allow for T1 relaxation.

278  Univariate Analyses

279 We used univariate analyses to identify activation in brain regions, either during the
280 encoding, or maintenance phase of visual short-term memory that varied with level of

281 recognizability (high warp vs. low warp images) in general, between object categories, or

282  animacy. We did this by fitting a general linear model (GLM) to the functional imaging data with
283  separate regressors for high and low warped images for each category during the encoding and
284  maintenance stages of visual short-term memory. Regressors comprised the onsets and

285  durations of each event: during the encoding phase, onsets were defined as the time when the
286  images appeared on the screen, and duration was set to the time the image remained on the
287  screen (3 sec). The onset of the maintenance phase was marked by a white plus sign in the
288 middle of the screen, and duration was the period of time participants were asked to hold the
289 targetitem in memory (1 - 11 seconds). These time courses were convolved with the canonical
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290 hemodynamic response function supplied by SPM. The random jitter ITls served as a baseline.
291  Contrasts were established to compare encoding and maintenance of high and low warp

292  images versus baseline, and to directly compare high versus low warp images during encoding
293  and maintenance. All results were corrected for multiple comparisons at p < 0.05 FWE.

294  Multivariate Analyses: Representational similarity analysis

295 In addition to examining whether the availability of semantic content (low warp images)
296 resulted in an increase of brain activity in certain brain regions, or recruited different brain

297  regions, we used multivoxel pattern analysis (MVPA) to determine whether representations in
298 visual and parietal regions differed during encoding and maintenance of high and low warped
299 images. We focused our multivariate analyses on four regions of interest (ROIs): bilateral

300 calcarine sulcus, superior parietal cortex, the fusiform area as defined in the AAL atlas (Tzourio-
301 Mazoyer et al, 2002) using the MarsBar ROI package Brett, Anton, Valabregue, & Poline,

302  (2002) as well as the lateral occipital cortex ROI (8 mm sphere around [43, -67, -5] on the right,
303 and [-41, -71, -1] on the left) used by Xu and Chun (2006). We selected these ROIs because
304 they have been shown to be involved in object category processing, and the a priori hypothesis
305 that semantic information would be represented in anterior visual areas during maintenance
306 (i.e., Lateral Occipital Cortex; Todd & Marois, 2004; Xu & Chun, 2006) and encoding (i.e.,

307  fusiform gyrus; Connolly et al., 2012; Huth, Nishimoto, Vu, & Gallant, 2012) but not in early

308 visual areas (i.e., bilateral calcarine sulcus) which is mainly linked to encoding and maintenance
309 of simple perceptual features (Christophel, Hebart, & Haynes, 2012). We included a "memory"
310 ROI that was extracted from the univariate analysis during maintenance period for use in the
311 MVPA analysis of the maintenance period. This way, we could assess both global signal

312  changes as well as potential representational differences in regions most sensitive during

313  maintenance. All ROIs remained in normalized space, and all data was gray matter masked for
314  the multivariate analysis. Within these specific ROls we used MVPA to examine the neural

315  representations of semantic content across our ROIs during the encoding and maintenance

316  phases of visual short-term memory. Specifically, we used representational similarity analysis
317  (RSA), a correlation-based approach that is insensitive to modulations in mean magnitude

318  activations. We fit the data with the same GLM with individual regressors for high and low warp
319  objects for all categories during encoding and maintenance as we used for the univariate

320 analysis. To mitigate the effects of comparisons across different temporal distributions, we

321  confined our comparisons across runs, and only during encoding and maintenance. Beta values
322  for each participant and all events were extracted for each voxel in our ROIs and were

323  Spearman correlated within and across runs. Correlations were normalized to ensure that each
324  run contributed equally. The result of averaging correlations across runs produced a 48 x 48 (12
325 conditions, 2 warping levels, 2 phases) similarity matrix which was contrasted by warping,

326  animacy, and category matrices (create figure for this) for both encoding and maintenance using
327  a GLM (figure for result).

328 For the warping contrast, images were grouped together based on level of warping. This
329  contrast tested whether the patterns of activity produced by the same warping level (high or low)
330  were more similar to one another than repetitions of the opposite warping level - is the pattern of
331 activity produced by low warp images distinct from the patterns produced by high warp images.
332  We grouped images according to animacy (defined by Kriegeskorte et al., 2008) to run the
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333  animacy contrast to test whether activity patterns within animate objects differed from activity
334  patterns produced by inanimate objects for both warping levels. Finally, we ran a category

335  contrast; images were collapsed into semantic categories and tested whether patterns of activity
336  were more similar within a category than activity across categories at both high and low warping
337 levels. Differences emerging in the latter two contrasts would suggest specific ROIs represent
338 either the lower-level properties of the image or their semantic properties. All results were

339  corrected for multiple comparisons using Bonferroni correction.

340

341  Results

342  Behavioural Results

343 As a first method to assess performance, we computed the root-mean square (RMS) error
344  between the target and selected item across each participant's responses. A two sample t-test
345  showed that for recognizable objects the errors were significantly less distant from the target
346  compared to unrecognizable objects (t(41) = 2.85; p = 0.007; Cohen's d = 0.44; BF10 = 5.61).
347  To test how memory was better, we fitted the response distributions using a probabilistic mixture
348  model, which gave separate estimates of guessing (i.e., item completely forgotten) and

349  precision (i.e., less accurate memory). The results are shown in Fig. 3. Participants guessed
350 more in the high warp condition, using the Kolmogorov-Smirnov test non-parametric test to

351  compare prior probability distributions (KS = 0.96, p<0.0001) and showed lower precision (KS =
352  0.49, p <0.0001).

353  We also compared memory performance (distance between target and response) for objects
354  grouped at the level of animacy and category. At the level of animacy, we ran a two-way

355  ANOVA (Recognizability [low warp, high warp] x Animacy [Animate, Inanimate]) and found only
356  a main effect of recognizability (F(1,41) = 9.66; p = 0.003; n2 = 0.19; BF10 = 6.46), and no
357  main effect of animacy or an interaction between recognizability and animacy. This result

358  suggests that memory performance was better for recognizable objects independently of

359  whether those objects were animate or inanimate. At the category level, we also ran a two-way
360 ANOVA (Recognizability [low warp, high warp] x Category [faces, birds, fruit, mammals, bikes,
361 tools, shoes, and clothes]), and found a main effect of Recognizability (F(1,41) =8.49; p =
362 0.0006; n2 =0.17; BF10 = 1.37), a main effect of category (F(1,41) =5.76; p =2.11e-5; n2 =
363 0.12; BF10 = 8503), and a Recognizability x Category interaction (F(1,41) =5.18; p = 5.88e-5;
364 n2=0.11; BF10 = 772.38). These results indicate that overall participants better remembered
365 recognizable objects relative to unrecognizable objects across all categories, but certain

366 recognizable categories were more memorable than others (Fig. 3). Together, we found that
367  semantic information helps in remembering objects in visual short-term memory, likely by

368 increasing both the number of visual features stored in visual short-term memory and the

369  precision of those memories.

370  Figure 3
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372 Fig 3. A) The marginal posterior probabilities of the standard mixture model (Suchow et la., 2013) for guessing rate
373 (g, left) and the variance of participants’ response around the target item (sd, right). Recognizable low warp items
374 have a lower guessing rate and are represented more accurately. B) The joint distribution of guessing rate (g) and
375 variance (sd). (C) The root-mean square error (RMS) of the target and selected item across each participant's

376 responses for high and low warped objects (left); animate and inanimate objects (middle); and each object category
377  (right).

378 fMRI results
379 Univariate: Whole brain results

380 Figure 4 shows the pattern of activity during the encoding and maintenance of the

381  various recognizable and unrecognizable objects in our image set. As seen in the top panel,
382  activity during encoding of recognizable objects was associated with fronto-parietal network
383 (Linke, Vicente-Grabovetsky, Mitchell, & Cusack, 2011), occipital and ventral stream regions,
384 including the fusiform area, replicating previous findings examining encoding of real-world

385  objects (Veldsman, Mitchell, & Cusack, 2017). A similar network of regions were activated

386  during the encoding phase of unrecognizable objects. During the maintenance period (in the
387  absence of visual stimulation), however, significant activity was largely limited to the early visual
388  cortex for both recognizable and unrecognizable objects. Reflecting their similarity, we found no
389 difference in the neural activity evoked by recognizable vs unrecognizable objects during either
390 the encoding or the maintenance period. This suggests that processing recognizable objects
391 relies on the same set of brain regions as processing unrecognizable objects, and provides no
392  support for the hypothesis that recognizable objects recruit additional brain areas.

393
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396 Fig 4. Activity during encoding (top) and maintenance (bottom) of low-warp objects (left) and high warp-objects (right).
397 No effect of the degree of warping on brain activity was found. Colour bars represent t-values. All contrasts are
398 relative to implicit baseline. FDR<0.05.

399  Representational Similarity Analysis: ROl results

400 Perhaps the memory advantage for recognizable objects was due to differences in the
401 pattern of neural activity, rather than in the overall strength or distribution of neural activity. In
402 other words, is semantic information associated with the recognizable objects represented in
403 distinct patterns of neural activity? To test this hypothesis, we ran a representational similarity
404 analysis (RSA) to compare the similarity of the patterns of neural activity (across repetitions)
405 organized across three levels of semantic information: recognizability (amount of warping),
406 category and animacy, within four ROls of interest during both encoding and maintenance.

407
408  Encoding

409 During encoding, we first compared whether patterns of neural activity are best fit by a model
410 representing recognizability irrespective of category (i.e., recognizable vs. unrecognizable

411  images). The results of the RSA revealed that the pattern of neural activity in response to

412  recognizable and unrecognizable objects did not differ in any of the of the ROlIs (t < 1.09; p >
413  0.05), nor did we find representations differ between ROIs [F(3,123) = 0.44; p <0.72; n2 = 0.11;
414 BF10=0.05]. That is, the brain did not produce a distinct pattern of activity that differentiated
415  recognizable from unrecognizable objects, across the various categories in the regions we

416  selected. This reflects the fact that the warping method we used (Stojanoski & Cusack, 2014)
417  successfully preserved the perceptual properties for both recognizable and unrecognizable

418  objects.
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419 However, we did find evidence for representation of semantic content in the form of

420 animacy and category membership. We examined whether patterns of neural activity in each of
421  the ROIs matched a model that represented animacy (i.e., recognizable animate vs. inanimate
422  objects), the results of the RSA revealed that the fusiform gyrus (t = 2.85; p = 0.007) and the
423 LOC (t=3.17; p = 0.003), but not the other ROls, produced distinct neural representations for
424  animate and inanimate objects. We also found that the representations of animacy for

425  recognizable objects was significantly stronger than that for unrecognizable objects within both
426  the fusiform gyrus (t = 2.07; p = 0.045; Cohen’s d = 0.32; BF10 = 1.15) and the LOC (t=2.42; p
427 =0.02; Cohen’s d = 0.37; BF10 = 2.21). We found a similar pattern of results for category

428 information. That is, the pattern of neural activity matched a model representing category

429  membership in the LOC (t=2.92; p = 0.006), but the model fit was not significant in the other
430 ROIs (after Bonferroni correction). This effect was also significantly stronger than patterns of
431 neural activity representing category information for unrecognizable objects in LOC (t = 2.35; p
432 =0.024; Cohen’s d = 0.37; BF10 = 1.94). Together these results suggest that semantic

433 information is extracted primarily in the fusiform gyrus and LOC, while this information cannot be
434  decoded in earlier visual areas or in the parietal cortex (Fig. 5).

435  Figure 5
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437 Fig 5. Top panel: The models used to conduct the representational similarity analysis. Lower panel: Beta values
438 produced by the general linear model used to summarize the representational similarity analysis. Results depict
439 differences between low and high warp in the Lateral Occipital Cortex, and the Fusiform Gyrus
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440
441 Maintenance

442  To assess whether semantic information about the objects is also present during maintenance
443  we conducted the same RSA analysis described above. Much like during encoding, we found
444  no evidence that patterns of neural activity differed between recognizable from unrecognizable
445  objects within any of the ROIS (tgonferroni correctedy< 2.27; p > 0.12). We also examined whether
446  neural representations for recognizable and unrecognizable objects differed between ROIs, but
447  we found no significant differences (F(4,164) = 1.06; p = 0.37; n2 < 0.03 ; BF10 = 0.07).

448  However, unlike during encoding, we found no evidence that semantic information was encoded
449  during maintenance. That is, we did not find distinct patterns of activity in any of the ROls that
450 represented animacy (t<1.99; p >0.053), or category membership (t <1.97; p >0.056) in any of
451 the ROls. A three-way repeated measures ANOVA (Recognizability [low warp, high warp] x
452  Identity [Category, Animacy] x ROI [Calc, LOC, FF, Par]) did not reveal any significant main
453  effects or interactions (F(1,41) <1.73; p > 0.2; n2 < 0.41; BF10 < 1.12), aside from a significant
454  Identity x ROl interaction (F(3.2,133.2) = 3.35; p = 0.014; n2 < 0.08; BF10 = 6.77), reflecting the
455  fact that animacy for both recognizable and unrecognizable objects was encoded more strongly
456 in parietal cortex (and no other ROI) relative to category membership. In sum, semantic

457 information was not represented during maintenance despite this information being encoded
458  during the perception stage of the visual short-term memory task.

459

460 Discussion

461

462  The aim of the current study was to examine the role of semantic information about real-world
463  objects on neural measures of visual short-term memory. We used a novel warping method
464  (Stojanoski & Cusack, 2014) that distorts intact objects in a manner that preserves perceptual
465 features of objects while making them unrecognizable. In this way, we could tease out the

466 influence on semantic content on visual short-term memory performance, as well as the

467  underlying neural mechanisms, without affecting the low-level properties associated with those
468  stimuli.

469

470  We found that low-warped images, with intact semantic content, were remembered better than
471 high-warped objects that could not be recognized. By calculating target selection using a

472  continuous report paradigm and a mixture model we found the memory benefit for recognizable
473  objects was reflected in both more precise memory and a lower guessing rate. Moreover, we
474  also found this memory benefit for objects grouped by both animacy and category: both

475  recognizable animate and inanimate objects were remembered better than unrecognizable
476 animate and inanimate objects. Similarly, recognizable objects clustered into basic-level

477  categories were remembered with more precision than clustering of the same categories of
478  unrecognizable objects. These findings suggest that various forms of semantic information are
479 incorporated in visual short-term memory representations that help boost memory performance.
480

481 What are the neural mechanisms that support semantically driven improvement to visual short-
482  term memory? To address this question, we examined changes in brain activity during the
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483 encoding and maintenance periods of visual short-term memory. The results of our whole-brain
484 univariate analyses revealed that the encoding period was associated with activity in fronto-
485  parietal network (Linke, Vicente-Grabovetsky, Mitchell, & Cusack, 2011; Stokes, 2015), occipital
486  and ventral stream regions, such as the fusiform gyrus, while activity was restricted primarily to
487  early visual cortex during maintenance. Importantly, this pattern of neural activity during

488 encoding and maintenance was the same for recognizable and unrecognizable images; we
489 found no differences in the strength of brain activity and no recruitment of distinct brain regions.
490

491  If no additional activity or regions were observed for recognizable compared to scrambled

492  objects, what can account for the behavioural improvements? An RSA analysis revealed that
493  during encoding, but not during maintenance, semantic content representing category and

494  animacy information could be decoded from patterns of activity in the fusiform gyrus and LOC.
495 However, the neural representations associated with category and animacy was not present
496  during the maintenance phase. This finding suggests that it is the extraction of semantic

497  information during encoding by higher ventral stream visual areas that allows these objects to
498 be encoded with greater detail. Importantly, this effect was not observed in early visual areas.
499  Thus, semantic information was restricted to those regions that process information about object
500 categories and identities (Barense, Gaffan, & Graham, 2007; Barense, Henson, Lee, & Graham,
501  2010; Tyler et al., 2013) and cannot be attributed to differences in low-level featural information.
502

503  Although we did not find evidence that semantic information was represented in sensory regions
504  during the delay period, past studies have found evidence for this effect. For example, Lewis-
505 Peacock and colleagues (Lewis-Peacock, Drysdale, & Postle, 2015) used multi-voxel pattern
506  analysis to decode the semantic dimensions of visual stimuli. However, this activity was

507  primarily evident when the semantic (as opposed to visual or verbal) content of the image was
508 task-relevant. Thus, it's possible that because the task did not require participants to use the
509 semantic content in the task, this activity was absent from the delay period, consistent with

510 findings that VSTM representations can change across tasks (Vicente-Grabovetsky, Carlin, &
511  Cusack, 2014). Nevertheless, the finding that performance was better for the low-warped

512  images suggests that the obligatory coding of semantic information during encoding confers a
513 memory advantage, even if semantic information is irrelevant to completing the task.

514

515 ltis also possible that information about semantics continues to exist in ventral visual areas
516  during the delay period, but in an “activity silent” state. That is, recent studies, have

517  demonstrated that stimulus and category specific representations can be recovered from

518  sensory areas, even when it is not immediately apparent in the delay activity (Rose et al., 2016;
519  Stokes, 2015). The recovery of these representations in the absence of ongoing activity

520 suggests that this information might be stored in a latent state, perhaps through synaptic

521  weights (but see Schneegans & Bays, 2017). Thus, it is possible that semantic information

522  continued to be represented but was not recoverable from the ongoing activity alone, perhaps
523  because that information was no longer in the focus of attention during the delay period.

524

525
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526  While the contribution of semantics has been studied extensively in other domains, such as
527  long-term memory (Hollingworth & Henderson, 1998) and attention (de Groot, Huettig, &

528  Olivers, 2016), understanding how semantics influences visual short-term memory is still at the
529 incipient stages. Our results indicate that semantic information about category and animacy
530 membership plays an important role in visual short-term memory for real-world objects

531  (something about categories and animacy). This is in-line with a growing body of evidence

532  supporting the notion that semantics can influence various aspects of working/short-term

533  memory. For instance, O’'Donnell, Clement, & Brockmole, (2018) argue that semantic

534 information increases the capacity of visual working memory, by showing improved memory for
535 image arrays containing semantically related interacting objects (i.e., a key and a lock).

536  Moreover, Veldsman, Mitchell, and Cusack, (2017) showed that the precision of visual short-
537  term memory improves when comparing memory performance for recognizable versus

538 unrecognizable objects. Extending their findings, we show that it is not only the semantics

539  associated with individual objects, but also semantic information about animacy and category
540 inclusion that increases visual short-term memory performance.

541

542  This introduces a potential paradox: real-world objects are more “complex” than simple features,
543  such as a colour patch, and complexity is typically associated with a decrease in working

544  memory capacity (Xu & Chun, 2006, 2009), yet, we found memory performance was better for
545  recognizable objects. The warping method used here allowed us to hold visual complexity

546  constant, while preserving semantic information only for the low-warp images. Thus, while real-
547  world objects may contain more visual complexity than simple features, access to semantic
548 information to similarly complex objects boosts memory performance. One way semantic

549 information may help to reduce memory load is by allowing for objects to be encoded at an

550 abstracted level (Christophel, Klink, Spitzer, Roelfsema, & Haynes, 2017), which provide a type
551  of schema that make changes between features more apparent. For example, both

552  neuroimaging studies and behavioural modelling have demonstrated a memory advantage for
553  colors that are easily put into color categories compared to those which require fine-scaled

554  discriminations (Bae, Olkkonen, Allred, & Flombaum, 2015; Hardman, Vergauwe, & Ricker,
555  2017; Lara & Wallis, 2014). This is consistent with past studies examining memory for up-right
556  versus inverted faces (Lorenc, Pratte, Angeloni, & Tong, 2014). Similarly, Zhou et al (2018)
557  have shown that with short exposures, VSTM for own-race faces was better than for other-races
558 faces, suggesting that stimulus familiarity sped the rate of encoding for familiar own-race faces.
559  This idea is consistent with a couple of mechanisms underlying a semantically driven boost in
560 memory that have recently been proposed. For instance, O’Donnell, Clement, & Brockmole
561 (2018) and Curby, Glazek, & Gauthier (2009) have suggested that access to the semantic

562  properties of objects limits processing resources, allowing them to be more efficiently

563 represented, and thereby increasing working memory capacity. Whereas, Veldsman and

564  colleagues (2017) showed that a richer and wider range of neural representations supports
565 improved visual short-term memory for real-world objects.

566

567 What is common between these proposed mechanisms is that benefits to visual short-term
568 memory arise at encoding and not during maintenance, which is consistent with an encoding
569  account of visual short-term memory. Importantly, our results are also consistent with an
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570 encoding mechanism, as no differences were observed during the maintenance period in either
571  the univariate analysis or the RSA analysis. In other words, although more information was

572  encoded about intact objects, maintaining that information did not require additional activity or
573  the recruitment of additional brain areas. This is in contrast to some past studies that have

574  demonstrated greater maintenance-related activity for real-word objects compared to simple
575 features (Brady et al., 2016; Galvez-Pol, Calvo-Merino, Capilla, & Forster, 2018; Wong,

576  Peterson, & Thompson, 2008). However, given that these past studies did not control for the
577  complexity of the stimuli, it is possible that it is the greater object complexity, rather than the
578  semantic information per se, that was driving this effect. Consequently, our finding underscores
579  the importance of having appropriately matched stimuli in order to properly dissociate the effects
580  of complexity from the contributions of semantic information to neural measures of VSTM.

581

582

583

584

585
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