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Abstract  47 
 48 
We rely upon visual short-term memory (VSTM) for continued access to perceptual information 49 
that is no longer available. Despite the complexity of our visual environments, the majority of 50 
research on VSTM has focused on memory for lower-level perceptual features. Using more 51 
naturalistic stimuli, it has been found that recognizable objects are remembered better than 52 
unrecognizable objects. What remains unclear, however, is how semantic information changes 53 
brain representations in order to facilitate this improvement in VSTM for real-world objects. To 54 
address this question, we used a continuous report paradigm to assess VSTM (precision and 55 
guessing rate) while participants underwent functional magnetic resonance imaging (fMRI) to 56 
measure the underlying neural representation of 96 objects from 4 animate and 4 inanimate 57 
categories. To isolate semantic content, we used a novel image generation method that 58 
parametrically warps images until they are no longer recognizable while preserving basic visual 59 
properties. We found that intact objects were remembered with greater precision and a lower 60 
guessing rate than unrecognizable objects (this also emerged when objects were grouped by 61 
category and animacy). Representational similarity analysis of the ventral visual stream found 62 
evidence of category and animacy information in anterior visual areas during encoding only, but 63 
not during maintenance. These results suggest that the effect of semantic information during 64 
encoding in ventral visual areas boosts visual short-term memory for real-world objects.  65 
 66 
 67 
 68 
  69 
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Our visual environment, at any given moment, is overwhelmingly complex. To cope with the 70 
abundance of available information, we rely on selective attention to focus upon one thing at a 71 
time, and then visual short-term memory (VSTM) to hold and manipulate relevant information. 72 
VSTM is therefore a critical for many everyday tasks. However, it is highly limited in capacity. 73 
Only a small number of high-fidelity simple features (e.g., color, orientation) can be maintained 74 
in VSTM (Luck & Vogel, 2013); and the number of objects that can be maintained in VSTM is 75 
further reduced when trying to maintain more complex objects (Alvarez & Cavanagh, 2004).   76 
 77 
The origin of this limited capacity has been debated. One theoretical position is that the key 78 
limitation is on the amount of information that can be maintained. During the maintenance of 79 
VSTM, there is a sustained, load-dependent activity, particularly in parietal regions (Linden et 80 
al., 2003; Todd & Marois, 2004; Xu & Chun, 2006) that asymptotes with increasing memory 81 
load. It has been proposed that this activity reflects the amount of information actively 82 
maintained in VSTM; thus, it could be that the limit on information that can be stored in VSTM is 83 
due to these limited storage resources (McNab & Klingberg, 2008; Todd & Marois, 2005). 84 
 85 
Another theoretical position is that the primary bottleneck is the encoding of information into 86 
VSTM. According to this view, the amount of information about a stimulus that can be 87 
maintained is limited by the amount of information encoded by perceptual regions (Emrich, 88 
Riggall, Larocque, & Postle, 2013). It is supported by evidence that encoding strategy has a 89 
strong effect on individual differences in VSTM (Linke et al, 2011; Cusack et al, 2009), and on 90 
the amount of stimulus-specific information recoverable from sensory regions, often without 91 
measurable delay-period activity (Harrison & Tong, 2009; Riggall & Postle, 2012; Serences, 92 
Ester, Vogel, & Awh, 2009). Increases in memory load can affect the signal-to-noise ratio in 93 
populations of feature-specific neurons (Bays, 2014), resulting in decreased decoding from 94 
patterns in sensory cortex (Emrich et al., 2013). 95 
 96 
The amount of information that can be stored is also affected by factors other than the number 97 
of stimuli to be encoded. For example, the amount of knowledge or familiarity an individual has 98 
with a stimulus affects the precision and/or the capacity of stored representations. For example, 99 
own-race faces are recalled with greater precision than other-race faces (Zhou, Mondloch, & 100 
Emrich, 2018). Similarly, Xie and Zhang (2017) demonstrated that familiarity with Pokemon 101 
sped up the rate with which objects were encoded into VSTM, as measured by event-related 102 
potentials (ERPs; Xie & Zhang, 2018). Memory for colors is affected by the extent to which they 103 
belong to the category labels (Bae, Olkkonen, Allred, & Flombaum, 2015; Hardman, Vergauwe, 104 
& Ricker, 2017).   105 
 106 
It remains unclear, however, what neural mechanisms support the increased ability to store 107 
familiar objects in VSTM. Brady et al (Brady, Störmer, & Alvarez, 2016) used the contralateral 108 
delay activity (CDA), an ERP component associated with memory storage, to examine storage 109 
for familiar objects compared to simple features, and found a greater CDA amplitude throughout 110 
the delay period for familiar stimuli. This finding suggests that regions associated with delay-111 
period activity may be able to recruit additional resources for familiar stimuli (perhaps with the 112 
recruitment of additional long-term memory regions). It is unclear, however, how familiarity, 113 
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driven by semantic information, affects processing during encoding, particularly within sensory 114 
regions associated with the maintenance and precision of feature-specific information. 115 
 116 
One limitation of studies contrasting VSTM for simple features versus familiar objects is that it is 117 
not possible to compare VSTM for familiar and unfamiliar stimuli without accounting for object 118 
complexity (i.e., the number of perceptual features). That is, although familiar real-world objects 119 
are remembered more accurately, they also tend to have greater complexity. Numerous studies 120 
have demonstrated that object complexity tends to decrease memory performance, and 121 
decreases the amount of storage-related delay-period activity in the superior intraparietal sulcus 122 
and lateral occipital complex (LOC; Xu & Chun, 2006, 2009) reflecting increased storage 123 
demands, which reach an asymptote at lower memory loads. Recently, Stojanoski & Cusack 124 
(2014) developed a method of warping stimuli that, while reducing the available semantics 125 
associated with an object, controlled the effect on the physical complexity of the stimulus as 126 
processed by early visual areas. Using this warping method, Veldsman and colleagues 127 
(Veldsman, Mitchell, & Cusack, 2017a) demonstrated that less-warped versions of objects 128 
exhibited more varied activity, rather than changes in the amount of activity, in a number of 129 
regions associated with VSTM, suggesting richer neural representations for the better-130 
remembered, intact objects. However, in the study by Veldsman and colleagues, participants 131 
were required to compare different levels of warping within individual objects that were not 132 
organized into superordinate classes (e.g., categories) across different levels of warping, 133 
precluding the measurement of semantic representations. Without manipulating access to 134 
semantic content both by grouping images into superordinate classes, while controlling the level 135 
of warping across recognizable and unrecognizable objects, it remains unclear what role 136 
semantics plays in improving VSTM and how that changes brain activity.  137 
 138 
Consequently, the aim of the current experiment was to examine how semantics affected VSTM 139 
precision and capacity and to assess neural representations during encoding and maintenance.  140 
To do so, we probed VSTM performance by manipulating semantic information in two ways. 141 
First, we used a set of objects that were organized at two levels: basic categories (e.g., cars, 142 
food) and superordinate (e.g., animate and inanimate). Second, we controlled access to the 143 
semantic content of the objects by maintaining the stimulus complexity (warping levels) constant 144 
across objects. We hypothesized that access to semantic information will improve visual short-145 
term memory by increasing both precision and accuracy. This memory advantage for 146 
recognizable objects could be driven by recruiting additional anterior regions along the visual 147 
hierarchy (DiCarlo, Zoccolan, & Rust, 2012) by improving representations in early visual areas. 148 
Storing additional semantic content may also reduce the maintenance load, resulting in changes 149 
in the strength of parietal delay-period activity. However, Veldsman, Mitchell and Cusack (2017) 150 
found no evidence for changes in the strength of neural activity across the visual hierarchy for 151 
remembered recognizable objects. Another possible mechanism is that better memory for 152 
recognizable objects is mediated by distinct patterns of neural representations of the semantic 153 
information during encoding and maintenance. Moreover, if changes to the neural 154 
representation of recognizable objects underlies improved VSTM, we expected these changes 155 
to occur primarily in ventral visual areas, in line with an encoding model of VSTM.  156 
 157 
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Methods 158 
Participants 159 

  Twenty-two healthy adult volunteers (age 26+/- 4.72 years; 9 male, 13 female) 160 
participated in two scanning sessions (at least 6 days apart). A total of forty-two scanning 161 
sessions were acquired (two participant sessions were not acquired due to attrition). All 162 
participants had normal or corrected-to-normal vision, with no history of neurological problems. 163 
All participants provided written consent as required by the local ethics review board, and were 164 
compensated $20/hour for scanning.                       165 

Stimuli and Procedure 166 

We used a set of 96 images, taken from the Hemera image database (Hemera Images: 167 
http://www.hemera.com/), divided in 8 categories: faces, birds, fruit, mammals, bikes, tools, 168 
shoes, and clothes. The object categories could also be divided into two superordinate classes: 169 
animate (living) and inanimate (non-living) objects, which has been shown to reflect human 170 
semantic representations (Costanzo et al., 2013). To isolate perceptual features from semantic 171 
content we created two sets of "warped" images using diffeomorphic transformations, a method 172 
developed by Stojanoski and Cusack (2014), which create smooth, continuous, and invertible 173 
images that maintain a one-to-one mapping between the source and transformed space (see 174 
Stojanoski & Cusack, 2014, for information about the warping algorithm). Therefore, in this 175 
context, "low" warped (recognizable) objects were matched in their basic perceptual properties 176 
to "high" warped versions but were deemed to be unrecognizable, which was determined based 177 
on perceptual and semantic ratings by 415 participants who completed over 15,600 trials on 178 
Amazon's crowdsourcing platform, Mechanical Turk (Fig. 1). Mean warping levels at which all 179 
objects per category were no longer recognizable was used to set the warping level threshold 180 
for the "high" warp condition in the current neuroimaging experiment. Warping level for images 181 
in the "low" warp condition was set to the maximum level that did not disrupt recognizability (see 182 
Fig. 1 for sample images). In both the "high" and "low" warp conditions, 16 parametrically 183 
varying versions of each item were created confined within the "high" and "low" warp space, 184 
respectively. Distance between adjacent images in the set of 16 were mathematically equivalent 185 
within and across warping conditions. That is, the distance between any two neighbouring 186 
images in the high warp condition was the same as the distance between any two neighbouring 187 
images in the low warp condition. 188 

  189 
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Figure 1  190 

     191 
Fig 1. A) A sample stimulus, illustrating the 16 parametrically varying versions of the image, ranging from intact to 192 
maximally warped using the diffeomorphic transformations. Images enclosed by the square reflect “low” and “high” 193 
warp ratings. These were presented around a circle in the experiment. B) Sample animate and inanimate 194 
representing “low” and high” warp conditions.   195 
 196 

Participants completed a visual short-term memory task, using a whole report paradigm, 197 
while undergoing fMRI. On each trial of a whole report paradigm, participants were required to 198 
select the remembered item among a set of distractors presented along a continuous scale. 199 
(Fig. 2). The continuous parameter space is modelled to gain an estimate of the precision (the 200 
degree of deviation of the reported item from the probed item), and the probability that the item 201 
was remembered at all (Wilken and Ma, 2004; Bays and Husain, 2008; Zhang and Luck, 2008). 202 
Specifically, their task was to encode, and remember a single image, and identify the 203 
remembered item among the set of 16 parametrically varying items positioned along the outline 204 
of a response wheel. Target items were randomly selected from the set of 16 versions, with the 205 
remaining 15 serving as distractors around the response wheel. At the beginning of each trial a 206 
white fixation cross (~20°) was presented in the middle of a gray screen for 1, 6, or 11 seconds, 207 
followed by the target item, presented in colour (500 x 500 pixels, 7.9°), which appeared 208 
centrally on a gray background, for 3 seconds (Fig 1b). The offset of the target marked the start 209 
of the delay phase, extending 1-11 seconds where participants were instructed to remember the 210 
target in as much detail as possible. At the end of the delay period, participants were presented 211 
with the response wheel that contained the set of 16 parametrically varying version of the 212 
images (image size was reduced to 45 x 45 pixels and were positioned 22.5° apart).  With the 213 
onset of the response wheel, a black rectangle framed one of the 16 images, at a random 214 
location. Participants were instructed to identify the target item by moving the black square 215 
(using a MRI compatible button box) until it framed the item that matched with the one in their 216 
memory. Participants were given 12 seconds to identify the target; the image inside the frame at 217 
the end of the allotted time was taken as their response. Participants completed 96 trials, 218 
divided into three runs (32 trials/run) over two scanning sessions, at least 6 days apart. In each 219 
session, trials were divided into two types: on half the trials participants saw high warp images 220 
and the other half they saw low warp images, with each image presented in both high and low 221 
warp conditions, once per session (randomly assigned and counterbalanced across 222 
participants). This was designed to avoid perceptual biases a result of initial exposure to low 223 
warp images.  224 

Sample Images: 
“High” warp “Low” warp

Inanimate

Animate
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Figure 2 225 

  226 
Fig 2. The timeline of two sample trials. At the start of the trial a target item appears in the middle of the screen for 3 227 
seconds, followed by a maintenance period between 1 and 11 seconds. At the start of the response phase a black 228 
square surrounds a random distractor, and participants have 12 seconds to move the square until it overlays the item 229 
they thing matches the target. 230 

All images were projected (Avotec SV-6011; at 60Hz) onto a screen and were viewed by 231 
participants through a mirror mounted on the head coil. MATLAB (MathWorks) and the 232 
Psychophysics Toolbox (http://psyctoolbox.org; Brainard, 1997; Pelli & Vision, 1997) were used 233 
to deliver stimuli.  234 

 235 

fMRI Acquisition 236 

  Participants were scanned with a Siemens Tim Trio 3T MRI scanner. At the start of each 237 
scan, a whole brain T1-weighted high-resolution structural image was acquired with an 238 
MPRAGE sequence (FOV = 240 x 256, flip angle = 9°, TR = 2300 msec, TE = 2.98 msec, 239 
resolution = 1 mm isotropic). Functional images were acquired using a highly accelerated 240 
gradient-echo EPI sequence (Center for Magnetic Resonance Research, University of 241 
Minnesota) with multiband acceleration factor 3 and GRAPPA iPat acceleration of 2. The 242 
following parameters were used: 32 slices were acquired with a matrix size of 70x70 and a 243 
voxel size of 3 x 3 x 3 mm (not inclusive of a 10% slice gap), flip angle = 55°, TE = 25 ms, and 244 
TR = 850 ms, and a bandwidth of 1587 Hz/Px. Each scanning session was divided into 3 runs, 245 
for a total of 129 runs. 246 

“High” warp 
condition

 

+

“Low” warp 
condition

+

Sample trial:

Encoding Maintenance Response

3 sec 1-11 sec 12 sec

Target:

Target:
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Analysis 247 
Behavioural Analysis 248 

Behavioural performance on the working memory task was analyzed by first projecting 249 
participant's responses onto a circular distribution ranging from -π < x < π radians with the 250 
target at zero, for each trial. Using that information, we calculated the difference between the 251 
target position and the response position producing a measure of the degree of error 252 
represented as a distribution. The distribution of errors were fit with a probabilistic mixture-253 
model using the MemToolbox Suchow, Brady, Fougnie, & Alvarez, (2013), to generate 254 
maximum-likelihood estimates of precision and guessing rate (Zhang & Luck, 2011). Briefly, the 255 
guessing rate is modeled as the height of a uniform distribution, reflecting random responses, 256 
whereas precision is estimated as the inverse of the circular normal (Von Mises) distribution on 257 
the remaining trials (i.e., those trials in which the target was correctly reported). Due to task-258 
related constraints there were too few trials to fit the model for each participant; instead, we 259 
pooled errors across participants to estimate precision and guessing rates across both warping 260 
conditions. We also computed the root-mean square (RMS) error, that is the difference between 261 
the target and the selected item, for high and low warped objects grouped by category, 262 
animacy, and all objects independent of category.  263 

Imaging Analysis 264 

  Functional imaging data was analyzed with SPM8 (Wellcome Institute of Cognitive 265 
Neurology; http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), by establishing an analysis pipeline 266 
using the automatic analysis system, version 4 267 
(www.github.com/rhodricusack/automaticanalysis). Preprocessing steps in the pipeline followed 268 
these six steps: 1) all volumes were converted to Nifti format, 2) motion was corrected by 269 
extracting six motion parameters: translation and rotation for three orthogonal axes, 3) brains 270 
were normalized, using SPM8 segment-and-normalize procedure where the T1 (anatomical) 271 
was segmented into gray and white matter and normalized to a pre-segmented volumetric 272 
template in MNI space, 4) extracted normalization parameters were then applied to all function 273 
(echo-planar) volumes, 5) data was smoothed using a Gaussian smoothing kernel of 10 mm 274 
FWHM (for univariate analyses only; Peigneux et al., 2006), and 6) low frequency noise (e.g., 275 
drift) was removed by high-pass filtering the data with a threshold of 1/128 Hz. Four dummy 276 
scans at the start of each session were discarded to allow for T1 relaxation. 277 

Univariate Analyses 278 

  We used univariate analyses to identify activation in brain regions, either during the 279 
encoding, or maintenance phase of visual short-term memory that varied with level of 280 
recognizability (high warp vs. low warp images) in general, between object categories, or 281 
animacy. We did this by fitting a general linear model (GLM) to the functional imaging data with 282 
separate regressors for high and low warped images for each category during the encoding and 283 
maintenance stages of visual short-term memory. Regressors comprised the onsets and 284 
durations of each event: during the encoding phase, onsets were defined as the time when the 285 
images appeared on the screen, and duration was set to the time the image remained on the 286 
screen (3 sec). The onset of the maintenance phase was marked by a white plus sign in the 287 
middle of the screen, and duration was the period of time participants were asked to hold the 288 
target item in memory (1 - 11 seconds). These time courses were convolved with the canonical 289 
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hemodynamic response function supplied by SPM. The random jitter ITIs served as a baseline. 290 
Contrasts were established to compare encoding and maintenance of high and low warp 291 
images versus baseline, and to directly compare high versus low warp images during encoding 292 
and maintenance. All results were corrected for multiple comparisons at p < 0.05 FWE. 293 

Multivariate Analyses: Representational similarity analysis 294 

  In addition to examining whether the availability of semantic content (low warp images) 295 
resulted in an increase of brain activity in certain brain regions, or recruited different brain 296 
regions, we used multivoxel pattern analysis (MVPA) to determine whether representations in 297 
visual and parietal regions differed during encoding and maintenance of high and low warped 298 
images. We focused our multivariate analyses on four regions of interest (ROIs): bilateral 299 
calcarine sulcus, superior parietal cortex, the fusiform area as defined in the AAL atlas (Tzourio-300 
Mazoyer et al, 2002) using the MarsBar ROI package Brett, Anton, Valabregue, & Poline, 301 
(2002) as well as the lateral occipital cortex ROI (8 mm sphere around [43, -67, -5] on the right, 302 
and [-41, -71, -1] on the left) used by Xu and Chun (2006). We selected these ROIs because 303 
they have been shown to be involved in object category processing, and the a priori hypothesis 304 
that semantic information would be represented in anterior visual areas during maintenance 305 
(i.e., Lateral Occipital Cortex; Todd & Marois, 2004; Xu & Chun, 2006) and encoding (i.e., 306 
fusiform gyrus; Connolly et al., 2012; Huth, Nishimoto, Vu, & Gallant, 2012) but not in early 307 
visual areas (i.e., bilateral calcarine sulcus) which is mainly linked to encoding and maintenance 308 
of simple perceptual features (Christophel, Hebart, & Haynes, 2012). We included a "memory" 309 
ROI that was extracted from the univariate analysis during maintenance period for use in the 310 
MVPA analysis of the maintenance period. This way, we could assess both global signal 311 
changes as well as potential representational differences in regions most sensitive during 312 
maintenance. All ROIs remained in normalized space, and all data was gray matter masked for 313 
the multivariate analysis. Within these specific ROIs we used MVPA to examine the neural 314 
representations of semantic content across our ROIs during the encoding and maintenance 315 
phases of visual short-term memory. Specifically, we used representational similarity analysis 316 
(RSA), a correlation-based approach that is insensitive to modulations in mean magnitude 317 
activations. We fit the data with the same GLM with individual regressors for high and low warp 318 
objects for all categories during encoding and maintenance as we used for the univariate 319 
analysis. To mitigate the effects of comparisons across different temporal distributions, we 320 
confined our comparisons across runs, and only during encoding and maintenance. Beta values 321 
for each participant and all events were extracted for each voxel in our ROIs and were 322 
Spearman correlated within and across runs. Correlations were normalized to ensure that each 323 
run contributed equally. The result of averaging correlations across runs produced a 48 x 48 (12 324 
conditions, 2 warping levels, 2 phases) similarity matrix which was contrasted by warping, 325 
animacy, and category matrices (create figure for this) for both encoding and maintenance using 326 
a GLM (figure for result). 327 

For the warping contrast, images were grouped together based on level of warping. This 328 
contrast tested whether the patterns of activity produced by the same warping level (high or low) 329 
were more similar to one another than repetitions of the opposite warping level - is the pattern of 330 
activity produced by low warp images distinct from the patterns produced by high warp images. 331 
We grouped images according to animacy (defined by Kriegeskorte et al., 2008)  to run the 332 
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animacy contrast to test whether activity patterns within animate objects differed from activity 333 
patterns produced by inanimate objects for both warping levels. Finally, we ran a category 334 
contrast; images were collapsed into semantic categories and tested whether patterns of activity 335 
were more similar within a category than activity across categories at both high and low warping 336 
levels. Differences emerging in the latter two contrasts would suggest specific ROIs represent 337 
either the lower-level properties of the image or their semantic properties. All results were 338 
corrected for multiple comparisons using Bonferroni correction. 339 
 340 
Results 341 
Behavioural Results 342 

    As a first method to assess performance, we computed the root-mean square (RMS) error 343 
between the target and selected item across each participant's responses. A two sample t-test 344 
showed that for recognizable objects the errors were significantly less distant from the target 345 
compared to unrecognizable objects (t(41) = 2.85; p = 0.007; Cohen's d = 0.44; BF10 = 5.61). 346 
To test how memory was better, we fitted the response distributions using a probabilistic mixture 347 
model, which gave separate estimates of guessing (i.e., item completely forgotten) and 348 
precision (i.e., less accurate memory). The results are shown in Fig. 3. Participants guessed 349 
more in the high warp condition, using the Kolmogorov-Smirnov test non-parametric test to 350 
compare prior probability distributions (KS = 0.96, p<0.0001) and showed lower precision (KS = 351 
0.49, p < 0.0001).  352 

We also compared memory performance (distance between target and response) for objects 353 
grouped at the level of animacy and category. At the level of animacy, we ran a two-way 354 
ANOVA (Recognizability [low warp, high warp] x Animacy [Animate, Inanimate]) and found only 355 
a main effect of recognizability (F(1,41)  = 9.66; p = 0.003; n2 = 0.19; BF10 = 6.46), and no 356 
main effect of animacy or an interaction between recognizability and animacy. This result 357 
suggests that memory performance was better for recognizable objects independently of 358 
whether those objects were animate or inanimate. At the category level, we also ran a two-way 359 
ANOVA (Recognizability [low warp, high warp] x Category [faces, birds, fruit, mammals, bikes, 360 
tools, shoes, and clothes]), and found a main effect of Recognizability (F(1,41)  = 8.49; p = 361 
0.0006; n2 = 0.17; BF10 = 1.37), a main effect of category (F(1,41)  = 5.76; p = 2.11e-5; n2 = 362 
0.12; BF10 = 8503), and a Recognizability x Category interaction (F(1,41)  = 5.18; p = 5.88e-5; 363 
n2 = 0.11; BF10 = 772.38). These results indicate that overall participants better remembered 364 
recognizable objects relative to unrecognizable objects across all categories, but certain 365 
recognizable categories were more memorable than others (Fig. 3). Together, we found that 366 
semantic information helps in remembering objects in visual short-term memory, likely by 367 
increasing both the number of visual features stored in visual short-term memory and the 368 
precision of those memories. 369 

Figure 3 370 
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 371 
Fig 3. A) The marginal posterior probabilities of the standard mixture model (Suchow et la., 2013) for guessing rate 372 
(g, left) and the variance of participants’ response around the target item (sd, right). Recognizable low warp items 373 
have a lower guessing rate and are represented more accurately. B) The joint distribution of guessing rate (g) and 374 
variance (sd). (C) The root-mean square error (RMS) of the target and selected item across each participant's 375 
responses for high and low warped objects (left); animate and inanimate objects (middle); and each object category 376 
(right).  377 

fMRI results 378 

Univariate: Whole brain results 379 

  Figure 4 shows the pattern of activity during the encoding and maintenance of the 380 
various recognizable and unrecognizable objects in our image set. As seen in the top panel,  381 
activity during encoding of recognizable objects was associated with fronto-parietal network 382 
(Linke, Vicente-Grabovetsky, Mitchell, & Cusack, 2011), occipital and ventral stream regions, 383 
including the fusiform area, replicating previous findings examining encoding of real-world 384 
objects (Veldsman, Mitchell, & Cusack, 2017). A similar network of regions were activated 385 
during the encoding phase of unrecognizable objects. During the maintenance period (in the 386 
absence of visual stimulation), however, significant activity was largely limited to the early visual 387 
cortex for both recognizable and unrecognizable objects. Reflecting their similarity, we found no 388 
difference in the neural activity evoked by recognizable vs unrecognizable objects during either 389 
the encoding or the maintenance period. This suggests that processing recognizable objects 390 
relies on the same set of brain regions as processing unrecognizable objects, and provides no 391 
support for the hypothesis that recognizable objects recruit additional brain areas. 392 
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 Figure 4 394 

 395 
Fig 4. Activity during encoding (top) and maintenance (bottom) of low-warp objects (left) and high warp-objects (right).  396 
No effect of the degree of warping on brain activity was found. Colour bars represent t-values. All contrasts are 397 
relative to implicit baseline. FDR<0.05. 398 

Representational Similarity Analysis: ROI results 399 

  Perhaps the memory advantage for recognizable objects was due to differences in the 400 
pattern of neural activity, rather than in the overall strength or distribution of neural activity. In 401 
other words, is semantic information associated with the recognizable objects represented in 402 
distinct patterns of neural activity? To test this hypothesis, we ran a representational similarity 403 
analysis (RSA) to compare the similarity of the patterns of neural activity (across repetitions) 404 
organized across three levels of semantic information: recognizability (amount of warping), 405 
category and animacy, within four ROIs of interest during both encoding and maintenance. 406 

  407 

Encoding 408 

During encoding, we first compared whether patterns of neural activity are best fit by a model 409 
representing recognizability irrespective of category (i.e., recognizable vs. unrecognizable 410 
images). The results of the RSA revealed that the pattern of neural activity in response to 411 
recognizable and unrecognizable objects did not differ in any of the of the ROIs (t < 1.09; p > 412 
0.05), nor did we find representations differ between ROIs [F(3,123) = 0.44; p < 0.72; n2 = 0.11; 413 
BF10 = 0.05]. That is, the brain did not produce a distinct pattern of activity that differentiated 414 
recognizable from unrecognizable objects, across the various categories in the regions we 415 
selected. This reflects the fact that the warping method we used (Stojanoski & Cusack, 2014) 416 
successfully preserved the perceptual properties for both recognizable and unrecognizable 417 
objects.  418 
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However, we did find evidence for representation of semantic content in the form of 419 
animacy and category membership. We examined whether patterns of neural activity in each of 420 
the ROIs matched a model that represented animacy (i.e., recognizable animate vs. inanimate 421 
objects), the results of the RSA revealed that the fusiform gyrus (t = 2.85; p = 0.007) and the 422 
LOC (t = 3.17; p = 0.003), but not the other ROIs, produced distinct neural representations for 423 
animate and inanimate objects. We also found that the representations of animacy for 424 
recognizable objects was significantly stronger than that for unrecognizable objects within both 425 
the fusiform gyrus (t = 2.07; p = 0.045; Cohen’s d = 0.32; BF10 = 1.15) and the LOC (t = 2.42; p 426 
= 0.02; Cohen’s d = 0.37; BF10 = 2.21). We found a similar pattern of results for category 427 
information. That is, the pattern of neural activity matched a model representing category 428 
membership in the LOC (t = 2.92; p = 0.006), but the model fit was not significant in the other 429 
ROIs (after Bonferroni correction). This effect was also significantly stronger than patterns of 430 
neural activity representing category information for unrecognizable objects in LOC (t = 2.35; p 431 
= 0.024; Cohen’s d = 0.37; BF10 = 1.94). Together these results suggest that semantic 432 
information is extracted primarily in the fusiform gyrus and LOC, while this information cannot be 433 
decoded in earlier visual areas or in the parietal cortex (Fig. 5).  434 
Figure 5 435 

 436 
Fig 5. Top panel: The models used to conduct the representational similarity analysis. Lower panel: Beta values 437 
produced by the general linear model used to summarize the representational similarity analysis. Results depict 438 
differences between low and high warp in the Lateral Occipital Cortex, and the Fusiform Gyrus 439 
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 440 

Maintenance 441 

To assess whether semantic information about the objects is also present during maintenance 442 
we conducted the same RSA analysis described above. Much like during encoding, we found 443 
no evidence that patterns of neural activity differed between recognizable from unrecognizable 444 
objects within any of the ROIs (t(Bonferroni corrected)< 2.27; p  > 0.12). We also examined whether 445 
neural representations for recognizable and unrecognizable objects differed between ROIs, but 446 
we found no significant differences (F(4,164) = 1.06; p = 0.37; n2 < 0.03 ; BF10 = 0.07). 447 
However, unlike during encoding, we found no evidence that semantic information was encoded 448 
during maintenance. That is, we did not find distinct patterns of activity in any of the ROIs that 449 
represented animacy (t <1.99; p >0.053), or category membership (t <1.97; p >0.056) in any of 450 
the ROIs. A three-way repeated measures ANOVA (Recognizability [low warp, high warp] x 451 
Identity [Category, Animacy] x ROI [Calc, LOC, FF, Par]) did not reveal any significant main 452 
effects or interactions (F(1,41)  < 1.73; p > 0.2; n2 < 0.41; BF10 < 1.12), aside from a significant 453 
Identity x ROI interaction (F(3.2,133.2) = 3.35; p = 0.014; n2 < 0.08; BF10 = 6.77), reflecting the 454 
fact that animacy for both recognizable and unrecognizable objects was encoded more strongly 455 
in parietal cortex (and no other ROI) relative to category membership. In sum, semantic 456 
information was not represented during maintenance despite this information being encoded 457 
during the perception stage of the visual short-term memory task.  458 

 459 
Discussion  460 
 461 
The aim of the current study was to examine the role of semantic information about real-world 462 
objects on neural measures of visual short-term memory. We used a novel warping method 463 
(Stojanoski & Cusack, 2014) that distorts intact objects in a manner that preserves perceptual 464 
features of objects while making them unrecognizable. In this way, we could tease out the 465 
influence on semantic content on visual short-term memory performance, as well as the 466 
underlying neural mechanisms, without affecting the low-level properties associated with those 467 
stimuli.  468 
 469 
We found that low-warped images, with intact semantic content, were remembered better than 470 
high-warped objects that could not be recognized. By calculating target selection using a 471 
continuous report paradigm and a mixture model we found the memory benefit for recognizable 472 
objects was reflected in both more precise memory and a lower guessing rate. Moreover, we 473 
also found this memory benefit for objects grouped by both animacy and category: both 474 
recognizable animate and inanimate objects were remembered better than unrecognizable 475 
animate and inanimate objects. Similarly, recognizable objects clustered into basic-level 476 
categories were remembered with more precision than clustering of the same categories of 477 
unrecognizable objects. These findings suggest that various forms of semantic information are 478 
incorporated in visual short-term memory representations that help boost memory performance.  479 
 480 
What are the neural mechanisms that support semantically driven improvement to visual short-481 
term memory? To address this question, we examined changes in brain activity during the 482 
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encoding and maintenance periods of visual short-term memory. The results of our whole-brain 483 
univariate analyses revealed that the encoding period was associated with activity in fronto-484 
parietal network (Linke, Vicente-Grabovetsky, Mitchell, & Cusack, 2011; Stokes, 2015), occipital 485 
and ventral stream regions, such as the fusiform gyrus, while activity was restricted primarily to 486 
early visual cortex during maintenance. Importantly, this pattern of neural activity during 487 
encoding and maintenance was the same for recognizable and unrecognizable images; we 488 
found no differences in the strength of brain activity and no recruitment of distinct brain regions.   489 
 490 
If no additional activity or regions were observed for recognizable compared to scrambled 491 
objects, what can account for the behavioural improvements? An RSA analysis revealed that 492 
during encoding, but not during maintenance, semantic content representing category and 493 
animacy information could be decoded from patterns of activity in the fusiform gyrus and LOC. 494 
However, the neural representations associated with category and animacy was not present 495 
during the maintenance phase. This finding suggests that it is the extraction of semantic 496 
information during encoding by higher ventral stream visual areas that allows these objects to 497 
be encoded with greater detail. Importantly, this effect was not observed in early visual areas. 498 
Thus, semantic information was restricted to those regions that process information about object 499 
categories and identities (Barense, Gaffan, & Graham, 2007; Barense, Henson, Lee, & Graham, 500 
2010; Tyler et al., 2013) and cannot be attributed to differences in low-level featural information.   501 
 502 
Although we did not find evidence that semantic information was represented in sensory regions 503 
during the delay period, past studies have found evidence for this effect. For example, Lewis-504 
Peacock and colleagues (Lewis-Peacock, Drysdale, & Postle, 2015) used multi-voxel pattern 505 
analysis to decode the semantic dimensions of visual stimuli. However, this activity was 506 
primarily evident when the semantic (as opposed to visual or verbal) content of the image was 507 
task-relevant. Thus, it’s possible that because the task did not require participants to use the 508 
semantic content in the task, this activity was absent from the delay period, consistent with 509 
findings that VSTM representations can change across tasks (Vicente-Grabovetsky, Carlin, & 510 
Cusack, 2014). Nevertheless, the finding that performance was better for the low-warped 511 
images suggests that the obligatory coding of semantic information during encoding confers a 512 
memory advantage, even if semantic information is irrelevant to completing the task.  513 
 514 
It is also possible that information about semantics continues to exist in ventral visual areas 515 
during the delay period, but in an “activity silent” state. That is, recent studies, have 516 
demonstrated that stimulus and category specific representations can be recovered from 517 
sensory areas, even when it is not immediately apparent in the delay activity (Rose et al., 2016; 518 
Stokes, 2015). The recovery of these representations in the absence of ongoing activity 519 
suggests that this information might be stored in a latent state, perhaps through synaptic 520 
weights (but see Schneegans & Bays, 2017). Thus, it is possible that semantic information 521 
continued to be represented but was not recoverable from the ongoing activity alone, perhaps 522 
because that information was no longer in the focus of attention during the delay period.   523 
 524 
 525 
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While the contribution of semantics has been studied extensively in other domains, such as 526 
long-term memory (Hollingworth & Henderson, 1998) and attention (de Groot, Huettig, & 527 
Olivers, 2016), understanding how semantics influences visual short-term memory is still at the 528 
incipient stages. Our results indicate that semantic information about category and animacy 529 
membership plays an important role in visual short-term memory for real-world objects 530 
(something about categories and animacy). This is in-line with a growing body of evidence 531 
supporting the notion that semantics can influence various aspects of working/short-term 532 
memory. For instance, O’Donnell, Clement, & Brockmole, (2018) argue that semantic 533 
information increases the capacity of visual working memory, by showing improved memory for 534 
image arrays containing semantically related interacting objects (i.e., a key and a lock). 535 
Moreover, Veldsman, Mitchell, and Cusack, (2017) showed that the precision of visual short-536 
term memory improves when comparing memory performance for recognizable versus 537 
unrecognizable objects. Extending their findings, we show that it is not only the semantics 538 
associated with individual objects, but also semantic information about animacy and category 539 
inclusion that increases visual short-term memory performance.  540 
 541 
This introduces a potential paradox: real-world objects are more “complex” than simple features, 542 
such as a colour patch, and complexity is typically associated with a decrease in working 543 
memory capacity (Xu & Chun, 2006, 2009), yet, we found memory performance was better for 544 
recognizable objects. The warping method used here allowed us to hold visual complexity 545 
constant, while preserving semantic information only for the low-warp images. Thus, while real-546 
world objects may contain more visual complexity than simple features, access to semantic 547 
information to similarly complex objects boosts memory performance. One way semantic 548 
information may help to reduce memory load is by allowing for objects to be encoded at an 549 
abstracted level (Christophel, Klink, Spitzer, Roelfsema, & Haynes, 2017), which provide a type 550 
of schema that make changes between features more apparent. For example, both 551 
neuroimaging studies and behavioural modelling have demonstrated a memory advantage for 552 
colors that are easily put into color categories compared to those which require fine-scaled 553 
discriminations (Bae, Olkkonen, Allred, & Flombaum, 2015; Hardman, Vergauwe, & Ricker, 554 
2017; Lara & Wallis, 2014). This is consistent with past studies examining memory for up-right 555 
versus inverted faces (Lorenc, Pratte, Angeloni, & Tong, 2014). Similarly, Zhou et al (2018) 556 
have shown that with short exposures, VSTM for own-race faces was better than for other-races 557 
faces, suggesting that stimulus familiarity sped the rate of encoding for familiar own-race faces. 558 
This idea is consistent with a couple of mechanisms underlying a semantically driven boost in 559 
memory that have recently been proposed. For instance, O’Donnell, Clement, & Brockmole 560 
(2018) and Curby, Glazek, & Gauthier (2009) have suggested that access to the semantic 561 
properties of objects limits processing resources, allowing them to be more efficiently 562 
represented, and thereby increasing working memory capacity. Whereas, Veldsman and 563 
colleagues (2017) showed that a richer and wider range of neural representations supports 564 
improved visual short-term memory for real-world objects.  565 
 566 
What is common between these proposed mechanisms is that benefits to visual short-term 567 
memory arise at encoding and not during maintenance, which is consistent with an encoding 568 
account of visual short-term memory. Importantly, our results are also consistent with an 569 
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encoding mechanism, as no differences were observed during the maintenance period in either 570 
the univariate analysis or the RSA analysis. In other words, although more information was 571 
encoded about intact objects, maintaining that information did not require additional activity or 572 
the recruitment of additional brain areas. This is in contrast to some past studies that have 573 
demonstrated greater maintenance-related activity for real-word objects compared to simple 574 
features (Brady et al., 2016; Galvez-Pol, Calvo-Merino, Capilla, & Forster, 2018; Wong, 575 
Peterson, & Thompson, 2008). However, given that these past studies did not control for the 576 
complexity of the stimuli, it is possible that it is the greater object complexity, rather than the 577 
semantic information per se, that was driving this effect. Consequently, our finding underscores 578 
the importance of having appropriately matched stimuli in order to properly dissociate the effects 579 
of complexity from the contributions of semantic information to neural measures of VSTM.    580 
 581 
 582 
 583 
  584 
  585 
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