

1 **Anillin/Mid1p interacts with the ESCRT-associated protein Vps4p**
2 **and mitotic kinases to regulate cytokinesis in fission yeast**

3

4 Imane M. Rezig¹, Gwyn W. Gould^{1,3,4} and Christopher J. McInerny^{2,3}

5

6 ¹ Institute of Molecular, Cell and Systems Biology

7 ² School of Life Sciences

8

9 Henry Wellcome Laboratory of Cell Biology,
10 College of Medical, Veterinary and Life Sciences,
11 Davidson Building,
12 University of Glasgow,
13 Glasgow G12 8QQ,
14 Scotland, United Kingdom

15

16 ³ Email: Gwyn.Gould@strath.ac.uk, Chris.McInerny@glasgow.ac.uk

17

18 ⁴ Current address: Strathclyde Institute of Pharmacy and Biomedical Sciences,
19 University of Strathclyde,
20 161 Cathedral Street,
21 Glasgow G4 0RE,
22 Scotland, United Kingdom

23

24 Short title: Interactions of anillin, ESCRT-associated protein Vps4, aurora and polo
25 kinases

26 **Abstract**

27 Cytokinesis is the final stage of the cell cycle which separates cellular constituents to
28 produce two daughter cells. Using *Schizosaccharomyces pombe* we have
29 investigated the role of various classes of proteins involved in this process. Central to
30 these is anillin/Mid1p which forms a ring-like structure at the cell equator that predicts
31 the site of cell separation through septation in fission yeast. Here we demonstrate a
32 direct physical interaction between Mid1p and the endosomal sorting complex
33 required for transport (ESCRT)-associated protein Vps4p. The interaction is essential
34 for cell viability, and Vps4p is required for the correct cellular localization of Mid1p.
35 Furthermore, we show that Mid1p is phosphorylated by the aurora kinase Aurora A,
36 that the interaction of *mid1* and *ark1* genes is essential for cell viability, and that
37 Ark1p is also required for the correct cellular localization of Mid1p. We mapped the
38 sites of phosphorylation of Mid1p by Aurora A and the polo kinase Plk1 and
39 assessed their importance by mutational analysis. Mutational analysis revealed
40 S332, S523 and S531 to be required for Mid1p function and its interaction with
41 Vps4p, Ark1p and Plk1p. Combined our data suggest a physical interaction between
42 Mid1p and Vps4p important for cytokinesis, and identify phosphorylation of Mid1p by
43 aurora and polo kinases as being significant for this process.

44

45 **Author summary**

46 Replication is a property of all living cells, with cell separation, so-called cytokinesis,
47 the final step in the process. A large number of proteins have been identified that are
48 required for cytokinesis, but in many cases it is not understand how they interact and
49 regulate each other. In this research we have analysed two classes of proteins
50 found in all eukaryotic cells with central roles in cytokinesis: the endosomal sorting

51 complex required for transport (ESCRT) proteins and the anillin protein Mid1p. We
52 identify a direct physical interaction between the ESCRT protein Vps4 and
53 anillin/Mid1p, and explore how it regulates cytokinesis. Midp1 activity is shown to
54 controlled by the protein kinase Ark1p by direct phosphorylation, and this
55 phosphorylation is important for Mid1p function. These observations identify new
56 ways in which ESCRT and anillin/Mid1p control cell separation.

57

58 **Introduction**

59 Much is understood about the control and regulation of the cell division cycle, with
60 many critical cell cycle mechanisms identified being evolutionarily conserved, present
61 across the eukaryotic kingdom. One cell cycle stage that has been increasingly
62 studied is cytokinesis where DNA, organelles and cell constituents are partitioned
63 and allocated to two daughter cells during their physical separation. The fission yeast
64 *Schizosaccharomyces pombe* has proven to be an excellent model organism to
65 study the eukaryotic cell cycle [1]. It is especially useful for studying cytokinesis and
66 cell division as, explicit in its name, it divides by medial fission involving a contractile
67 actomyosin ring leading to the process of cell separation, which is similar to these
68 processes in mammalian cells [2].

69

70 A number of proteins have been identified that regulate cytokinesis in fission yeast,
71 including those in a signal transduction pathway named the Septation Initiation
72 Network (SIN) [3]. The SIN proteins form a pathway that facilitates contractile ring
73 constriction and promotes the formation of a medial cell wall-like structure between
74 the two daughter cells, called the septum. Furthermore, SIN components associate
75 with the spindle pole bodies and link mitotic exit with cytokinesis [4]. Sid2p is one
76 regulator of the SIN-cascade of signaling proteins [5]. It terminates the signaling

77 cascade leading to the transition from the spindle pole bodies to the cell division site
78 promoting the onset of cytokinesis [6]. A recent study identified anillin/Mid1p as a
79 substrate for Sid2p and indicated that the phosphorylation of Mid1p facilitates its
80 removal from the cell cortex during the actomyosin contractile ring constriction [7].

81
82 Mid1p forms a ring-like structure at the cell equator that predicts the site of cell
83 separation through the formation of a septum in fission yeast [8,9,10]. In cells
84 containing a chromosomal deletion of the *mid1* gene (*mid1Δ*), a misshaped
85 contractile ring is assembled during anaphase when the SIN pathway becomes
86 active; such observations confirm the important role of Mid1p in directing contractile
87 ring assembly to its correct location [11,12,13].

88
89 Many other groups of proteins have a role in septum formation in *S. pombe*. Amongst
90 these the various classes of ESCRT proteins, including the ESCRT-III regulator
91 Vps4p, were found to be required for septation, suggesting that they have a role in
92 cytokinesis in fission yeast [14,15]. Additional experiments suggested that the
93 ESCRT proteins interacted with established cell cycle regulators including the polo
94 kinase Plo1p, the aurora kinase Ark1p and the CDC14 phosphatase, Clp1p to control
95 these processes [14].

96
97 As a way to further understand the regulation of ESCRT proteins during cytokinesis
98 in fission yeast, we sought to identify other proteins that interact with anillin/Mid1p.
99 Here we describe a direct physical interaction between Vps4p and the anillin Mid1p
100 which is essential for cell viability and for the correct placement of Mid1p. We further
101 show an interaction between Mid1p and the aurora kinase Ark1p which is essential
102 for cell viability and identify phospho-acceptor sites in Mid1p and study their role

103 using mutagenesis. Collectively, our observations reveal novel mechanisms by which
104 cytokinesis is regulated by different classes of proteins acting through Mid1p.

105

106 **Results**

107 **Genetic and physical interactions between Mid1p and Vps4p in fission yeast**

108 Previously, we identified and characterised the requirement and role of ESCRT
109 proteins for cytokinesis in fission yeast [15]. These experiments also revealed the
110 interaction of ESCRT proteins with three cell cycle regulators, the Polo-like kinase
111 Plo1p, the aurora kinase Ark1p and the CDC14 phosphatase Clp1p. These
112 observations offered a framework by which ESCRT proteins are regulated to control
113 cytokinesis. To further explore ways in which the ESCRT proteins might integrate
114 with other cell cycle regulators to control cytokinesis, we examined their interaction
115 with the anillin Mid1p. Mid1p has a central structural role in cytokinesis, forming
116 equatorial nodes to create an annular shaped structure that determines the position
117 of the division plane [16,13].

118

119 We initiated this by searching for genetic interactions between the *mid1* gene and
120 genes encoding ESCRTs and ESCRT-associated proteins. Double mutant fission
121 yeast strains were created containing a chromosomal deletion of *mid1* (*mid1Δ*) and
122 individual chromosomal deletions of ESCRT genes from Classes E-0 to E-III and
123 *vps4* and searching for synthetic phenotypes. *mid1Δ* was combined with *sst4Δ* (E-0),
124 *sst6Δ* and *vps28Δ* (E-I), *vps36Δ* and *vps25Δ* (EII), *vps20Δ*, *vps32Δ* and *vps2Δ* (E III),
125 and *vps4Δ* [17,15]. In each case double mutants were created which were viable,
126 with no apparent synthetic phenotypes (data not shown). The exception was *mid1Δ*

127 *vps4Δ* which instead failed to form viable colonies and was synthetically lethal (Fig
128 1A).

129

130 This striking observation demonstrated a genetic interaction between the *mid1* and
131 *vps4* genes, with one explanation that the two encoded proteins interact to control an
132 essential cellular function. To test this hypothesis we expressed and purified a His-
133 tagged version of Vps4p protein from bacteria, using the same method to express
134 and purify three different GST-tagged domains of Mid1p. Full length Mid1p was not
135 purified as it is insoluble under such conditions [16,18].

136

137 Full length Mid1p is 920 amino acids in length; the three domains used in pull-down
138 experiments described here encompass the amino acids 1-453 (“N-term”), 452-579
139 (“Middle”) and 798-920 (“C-term”) [19,18]. Of these three domains, only the C-
140 terminus of amino acids 798-920 was pulled-down by recombinant Vps4p (Fig 1B).
141 This indicates a direct physical interaction between Vps4p and the C-terminus of
142 Mid1p, and that this interaction involved residues 798-920 of Mid1p.

143

144 **Vps4p is required for the correct cellular distribution of Mid1p**

145 To further understand the interaction between Vps4p and Mid1p we examined the
146 requirement for Vps4p to control the cellular distribution of GFP-tagged Mid1p during
147 the cell cycle. Mid1p distribution has been well characterised and shown to move
148 from the nucleus to the equatorial region to form nodes and a medial ring, that
149 predicts the site of cell cleavage during septation [8].

150

151 Wild-type cells showed three patterns of GFP-Mid1p: localization to the nucleus,

152 cytoplasmic, and equatorial nodes, as previously reported (Fig 2A; [8,5]). By contrast,
153 GFP-Mid1p in *vps4* Δ cells showed strikingly different patterns. Although cytoplasmic
154 GFP-Mid1p was similar to wild-type, additional plasma membrane localization was
155 observed (Fig 2B). In some cells, GFP-Mid1p localized to only one node and the
156 plasma membrane, or localized to three nodes in other cells. The frequencies of
157 these abnormal phenotypes in *vps4* Δ cells were compared with wild-type and
158 showed significant differences (quantified in Fig 2C). Overall, GFP-Mid1p localization
159 was significantly altered by the absence of *vps4* $^+$.

160

161 These results, in addition to the observation that the *mid1* and *vps4* genes interact
162 genetically, and further that the Mid1p and Vps4p physically interact *in vitro*, suggest
163 that Mid1p and Vps4p coordinate to regulate the *S. pombe* cell cycle.

164

165 **Genetic and physical interactions between Mid1p and Ark1p in fission yeast**

166 We hypothesized that *mid1* and *ark1* genes interact to accomplish *S. pombe*
167 cytokinesis, as we and others have shown that aurora kinases modulate ESCRT
168 protein function [20,15]. To test this, both genetic and biochemical approaches were
169 taken.

170

171 First, a *mid1* Δ strain was crossed with strains containing *ark1*-TS mutations to
172 generate double *mid1* Δ *ark1*-TS mutant strains. The *mid1* Δ *ark1*-TS double mutant
173 failed to form viable colonies (Fig 3A). Such a synthetic lethality indicates a genetic
174 interaction between the *mid1* and *ark1* genes.

175

176 As with *mid1* and *vps4* such a genetic interaction might be explained by a physical
177 interaction between Mid1p and Ark1p proteins. Since Ark1p is a protein kinase we
178 tested whether Mid1p can be phosphorylated by aurora kinase, using an *in vitro*
179 phosphorylation approach with recombinant Mid1p domains purified from *E. coli*.
180 These experiments were performed with the human aurora kinases Aurora A, Aurora
181 B, and the human polo kinase Plk1 (Fig 3B). Phosphorylation of both the "N-term"
182 and "Middle" Mid1p domains by Aurora A and Plk1 was detected, but not by Aurora
183 B (Fig 3B; Exp. B and Exp. C). In contrast, no phosphorylation was detected of the
184 "C-term" Mid1p domain by any of the three kinases Aurora A, Aurora B or Plk1 (Fig
185 3B; Exp. D). These results indicate that, at least *in vitro*, the "N-term" and "Middle"
186 domains of Mid1p interact with and are phosphorylated by both Aurora A and Plk1
187 kinases, while the "C-term" domain of Mid1p is not phosphorylated by Aurora A,
188 Aurora B or Plk1.

189

190 **Ark1p is required for the correct cellular distribution of Mid1p**

191 To further analyse the interaction of Ark1p and Mid1p we examined the effect of two
192 different temperature sensitive *ark1* mutants, *ark1*-T11 and *ark1*-T8, on Mid1p
193 distribution in cells (Fig 4).

194

195 In *ark1*-T11 cells GFP-Mid1p showed wild-type phenotypes (Fig 4A). But in addition,
196 new localization patterns were apparent, where GFP-Mid1p localization showed
197 nuclear exclusion and appeared to be encircling the nucleus. The frequencies of
198 these phenotypes were quantified and compared to wild-type cells revealing
199 significant differences (Figs 4B). In *ark1*-T8 cells GFP-Mid1p showed new additional
200 localization patterns (Fig 4D). Cells were observed to be round and shorter than the

201 rod-shaped wild-type cells and GFP-Mid1p localization presented nuclear exclusion
202 and encircled the nucleus. While some cells had one nucleus, others showed two,
203 three, or even four nuclei. The frequencies of these phenotypes were quantified and
204 compared to wild-type cells revealing significant differences (Figs 4E). These data
205 support the hypothesis that Mid1p and Ark1p coordinate to regulate the *S. pombe*
206 cell cycle.

207

208 **Identification of Mid1p amino acid residues phosphorylated by aurora and polo
209 kinases**

210 To further explore phosphorylation of Mid1p by aurora and polo kinases a mass
211 spectrophotometry approach was used to identify phospho-acceptor sites. The "N-
212 term" and "Middle" domains of Mid1p gel fragments from *in vitro* kinase assay
213 reactions identical to those shown Fig 3B, but with non-labelled ATP, were excised
214 and subjected to nano-scale liquid chromatographic tandem mass spectrometry
215 (nLC-MS/MS) to generate a Mid1p phospho-site map (Fig 5). This analysis identified
216 35 potential Mid1p residues phosphorylated by either Plk1 or Aurora A kinases (S2
217 Table). In parallel we examined other published databases on fission yeast phospho-
218 proteomes to refine and confirm the number of Mid1p phospho-sites. Most of these
219 studies used a stable isotope labeling by amino acid in cell culture approach. We
220 selected four studies which studied the *S. pombe* global proteome and identified
221 several Mid1p specific phospho-sites [21-24].

222

223 The Mid1p phosphorylation events identified by mass spectrophotometry are
224 summarized in S3 Table, alongside those described by the four published studies.
225 The red highlighted residues represent overlap with the residues identified reported

226 here. The phospho-sites map shows a total of six potential phospho-sites distributed
227 along the "N-term" and "Middle" Mid1p sequence, five of which were identified in this
228 work, and the sixth was added from the published studies (Fig 5B). These are the
229 serine residues S167, S328, S331, S332, S523 and S531.

230

231 To confirm the new phospho-sites identified in Mid1p, *in vitro* phosphorylation
232 experiments involving bacterially expressed phospho-resistant mutant (serine to
233 alanine) forms of the "N-term" and "Middle" domains of Mid1p with Aurora A and Plk1
234 kinases were completed (Fig 6). These experiments revealed markedly reduced
235 phosphorylation of the Mid1p phospho-resistant mutant S167A by both Aurora A and
236 Plk1 kinases, and S523A by Aurora A alone. These observations support the
237 suggestion that the S167 and S523 residues are phosphorylated by the Aurora A and
238 Plk1 kinases, at least *in vitro*.

239

240 **Biological relevance of amino acid residues phosphorylated by Ark1p and**
241 **Plo1p in Mid1p**

242 As another way to examine the role of the phospho-sites identified in Mid1p, we
243 analysed the effect of their mutation *in vivo*. *S. pombe* cells exhibit morphology
244 defects in the absence of Mid1p function. Therefore, we tested the effect of
245 mutations of Mid1p phospho-sites in fission yeast on cell morphology to assay their
246 relevance.

247

248 Versions of the *mid1* gene containing phospho-site mutations were generated and
249 integrated in single copy into chromosomal DNA of *S. pombe* *mid1* Δ cells. Each
250 version of the *mid1* gene had either a phospho-mimetic (S>D) or a phospho-resistant

251 (S>A) point mutation(s) of the residues S167, S328, S331, S332, S523 or S531 to
252 create a panel of mutant *S. pombe* strains (S1 Fig). Such *mid1* mutations were made
253 both singly and in combination. As a positive control we integrated the wild-type
254 *mid1*⁺ gene into *mid1* Δ cells to create *mid1* Δ pJK148:*mid1*⁺. This resulted in cells that
255 behaved identically to wild-type both on solid medium and in liquid culture (Fig 7 and
256 S1 Fig).

257

258 *Mid1p phospho-mutants in mid1* Δ cells

259 Initial experiments examined in *mid1* Δ cells the effect of Mid1p phospho-mimetic or
260 phospho-resistant mutations. Strains were grown on solid medium, with the formation
261 of colonies observed in all cases. In most strains where serine was changed to either
262 alanine or aspartic acid cell morphology appeared similar to wild-type (Fig 7, and
263 data not shown). However, interestingly, *mid1* S332A cells (but not *mid1* S332D) had
264 defects in morphology similar to those observed in *mid1* Δ cells, with slower growth at
265 25°C (Fig 7). These data indicate a requirement of S332 for Mid1p function.

266

267 Furthermore, other phenotypes were revealed when certain Mid1p phospho-mutants
268 were cultured in liquid medium. For example, *mid1* S523A and *mid1* S531A mutants
269 displayed morphology defects (S2 Fig). In contrast, the equivalent phospho-mimetic
270 mutants *mid1* S523D or *mid1* S531D did not.

271

272 *Mid1p phospho-mutants in ark1-T11 cells*

273 To examine the role of Mid1p phosphorylation in its interaction with Ark1p, we
274 crossed the strains containing phospho-mimetic/resistant versions of *mid1* with *ark1*-
275 T11 mutant cells and searched for synthetic phenotypes in double mutants. Viable

276 colonies were observed in all cases with no synthetic phenotypes detected in most
277 double mutants (data not shown). However, *mid1* S523A *ark1-T11* and *mid1* S531A
278 *ark1-T11* double mutants showed cell morphology defects when cells were grown in
279 liquid culture more severe than the single mutant strains (S3 Fig). These defects
280 were not observed in the equivalent *mid1* S523D *ark1-T11* or *mid1* S531D *ark1-T11*
281 double mutants. The cell morphology defects observed in *mid1* S523A *ark1-T11* and
282 *mid1* S531A *ark1-T11* double mutants were defined as loss of the rod-like shape of
283 cells. This suggests a role for these two phospho-sites in Mid1p function during the
284 *S. pombe* cell cycle to ensure medial division plane placement, and consequently
285 equal sized and rod-shaped daughter cells.

286

287 *Mid1p phospho-mutants in plo1-ts35 cells*

288 To examine the role of Mid1p phosphorylation in its interaction with Plo1p, we
289 crossed strains containing phospho-mimetic/resistant versions of *mid1* with *plo1-ts35*
290 mutant cells and searched for synthetic phenotypes in double mutants. Viable
291 colonies were observed in all cases with no synthetic phenotypes detected for the
292 majority of double mutants (data not shown). However, colony formation on solid
293 medium was slower for *mid1* S332A *plo1-ts35* double mutants, and more severe cell
294 morphology phenotypes were observed, compared to the single mutant strains (data
295 not shown). These defects were not observed in the equivalent *mid1* S332D *plo1-*
296 *ts35* double mutants. Such genetic interactions suggest a link between the regulation
297 of Mid1p and Plo1p.

298

299 *Mid1p phospho-mutants in vps4Δ cells*

300 To examine the role of Mid1p phosphorylation in its interaction with Vps4p, we
301 crossed strains containing phospho-mimetic/resistant versions of *mid1* with *vps4* Δ
302 mutant cells and searched for synthetic phenotypes in double mutants. Viable
303 colonies were observed in all cases with no synthetic phenotypes detected (data not
304 shown). However, colony formation on solid medium was slower for *mid1* S523D
305 S531D *vps4* Δ double mutants, and more severe cell morphology phenotypes were
306 observed, compared to the single mutant strains. Strikingly, cells had defects in
307 morphology similar to those observed in *mid1* Δ cells (Fig 8). The same serine
308 residues changed to alanine S523A or S531A had no such effect when combined
309 with *vps4* Δ (data not shown). These genetic interactions suggest a link between the
310 regulation of Mid1p by both Vps4p and Ark1p.

311

312 **Discussion**

313 In fission yeast the Mid1p protein has important roles during cytokinesis during the
314 cell cycle, with anillin homologues having similar roles in higher eukaryotes. These
315 roles centre around its structural role in predicting and controlling the site of cell
316 division in the equatorial region of the cell. Here we have identified new classes of
317 proteins with which Mid1p interacts, and explored the mechanism by which these
318 proteins cooperate and regulate each other and cell growth/morphology.

319

320 *Mid1p and Vps4p*

321 Genetic and biochemical approaches revealed a direct physical interaction of Mid1p
322 with the ESCRT-associated protein Vps4p. Furthermore, we demonstrated that a
323 chromosomal deletion of the *vps4* $^+$ gene caused defects in the cellular localization of
324 GFP-Mid1p. These defects included mis-localization of nodes whereby one node is

325 randomly positioned, or three nodes were present. This suggests a role of Vps4p in
326 the Mid1p-dependent node localization pathway, which led us to hypothesize that the
327 function of Mid1p is regulated by Vps4p during nodes attachment to the plasma
328 membrane (Fig 9).

329

330 Two types of nodes are involved in *S. pombe* actomyosin ring assembly and
331 contraction (Fig 9). Mid1p cortical anchorage first drives the recruitment of
332 cytokinesis proteins, then interactions with myosin filaments causes the
333 condensation of nodes into the actomyosin ring. Mid1p cortical anchorage depends
334 on the PH domain [13] and its potential interaction with Vps4p might stabilize this
335 interaction. Since Vps4p physically interacts with residues within the C-terminal
336 domain of Mid1p, which contains membrane binding motifs, we speculate that Vps4p
337 may facilitate Mid1p cortical anchorage to promote *S. pombe* medial division.

338

339 We suggest that a physical interaction between Vps4p and Mid1p regulates Mid1p-
340 dependent node attachment to the plasma membrane to determine the division plane
341 in *S. pombe*, and that this interaction directly or indirectly involves Mid1p PH domain
342 cell cortex anchorage (Fig 9). It is interesting to note that the domain of Mid1p that
343 interacts with Vps4p *in vitro* (Fig 1) contains the PH domain, suggesting that binding
344 of Vps4p to this region may regulate interaction with the cell cortex (Fig 9).

345

346 *Phosphorylation of Mid1p*

347 Genetic and biochemical approaches revealed a direct physical interaction of Mid1p with the
348 aurora kinase, Ark1p, with Aurora A phosphorylating Mid1p the "N-term" and "Middle"
349 domains. Mapping of the amino acids in Mid1p phosphorylated *in vitro* by Aurora A
350 and Plk1 revealed 35 potential phospho-sites, with some of these sites independently

351 identified in four *S. pombe* global proteomic studies (Fig 5). Such combined analysis
352 suggested six potential phospho-sites in Mid1p: S167, S328, S331, S332, S523 and
353 S531. Subsequent *in vitro* kinase assay experiments confirmed the *in vitro* phosphorylation
354 of S167, S331 and S523 phospho-sites of Mid1p by Aurora A and Plk1 kinases (Fig 6).

355

356 To complement these studies, we examined the effect of mutations of these
357 phospho-sites *in vivo* on cell morphology in wild-type, *ark1-T11*, *plo1-ts35* and *vps4Δ*
358 *S. pombe* cells. In wild-type cells defective cell morphology phenotypes were
359 observed for the phospho-mimetic mutants S332, S523 and S531 (Fig 7). These
360 were exacerbated when combined with mutations in *ark1*, *plo1* and *vps4* (Fig 8).
361 Therefore, we conclude that the phosphorylation of these amino acid residues is
362 important for Mid1p function and its interaction with these proteins to regulate cell
363 cycle events. It is tempting to speculate that the interaction of Mid1p and Vps4p is
364 regulated by the activity of Ark1p and/or Plo1p, but it is important to note that the
365 regions of Mid1p phosphorylated by these kinases do not include the binding region
366 for Vps4p. Clearly, phosphorylation in adjacent regions may modulate binding via
367 conformational changes in Mid1p, as regions containing the phospho-acceptor sites
368 have been shown to regulate the interaction of Mid1p with other proteins, including
369 Plo1p and Sid1p. Plo1p phosphorylates residues within the first 100 amino acids of
370 Mid1p to trigger Myosin II recruitment during contractile ring assembly [25]. Later at
371 contractile ring constriction Sid1p phosphorylates Mid1p to facilitate its export from
372 the cell cortex [7]. Future experiments will be aimed at unraveling how the Mid1p
373 interactome is modified both by association with Vps4p and by phosphorylation by
374 mitotic kinases.

375

376 **Materials and Methods**

377 *Yeast media and general techniques*

378 General molecular procedures were performed, with standard methodology and
379 media used for the manipulation of *S. pombe* [26,27]. The yeast strains used in this
380 study are shown in S1 Table. Cells were routinely cultured using liquid or solid
381 complete (YE) or minimal (EMM) medium, at 25°C or 30°C.

382

383 *DNA constructs*

384 The DNA constructs used in this study are listed in S2 Table. Some were
385 synthesized and cloned by either GenScript or Invitrogen. All constructs were
386 sequenced before use.

387

388 *Bacterial expression DNA constructs*

389 Four fragments of the *mid1*⁺ gene encoding the amino acids 1-453 "N-terminus",
390 452-579 "Middle", 578-799, 798-920 "C-term" [19] were synthesized and cloned into
391 *Bam* HI/*Xho* I of pGEX-4T-1. Full-length *vps4*⁺ was synthesized and cloned into *Nde*
392 I/*Bam* HI of pET-14b. The C-terminal domain of *myo2*⁺ was synthesized and cloned
393 into *Nde* I/*Bam* HI of pET-14b.

394

395 *mid1 phospho-mimetic/resistant mutants*

396 Eighteen versions of the *mid1* gene with different phospho-mimetic/resistant
397 mutations were synthesized, along with a wild-type *mid1*⁺ control. All had the wild-
398 type *mid1*⁺ promoter in ~1 kbp of DNA upstream of *mid1*⁺ open reading frame, and
399 were each cloned into *Kpn* I/*Sac* I of pJK148. Integration of the pJK148:*mid1* genes
400 (1-19) into *S. pombe* *mid1*^Δ cells was through homologous recombination after

401 linearization of pJK148:*mid1* with *Nde* I in the *leu1*⁺ gene. The resulting panel of
402 phospho-mimetic/resistant mutant strains is listed in S1 Table and S1 Fig.

403

404 *Recombinant protein purification*

405 GST-Mid1p, 6His-Vps4p or 6His-C-term Myo2p plasmids were grown in BL21 *E. coli*
406 until an OD of 0.6-0.8, with protein production induced by adding 1 mM IPTG. Mid1p
407 578-799 was not found to be expressed under these conditions, and so was not used
408 for further experiments.

409

410 Bacterial pellets were produced by centrifugation with cells re-suspended in 20 ml re-
411 suspension buffer with EDTA free protease inhibitors; for GST-Mid1p fusion proteins
412 PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄ and 1.8 mM KH₂PO₄, pH
413 7.4) was used, whereas for 6His-Vps4p, HEPES buffer (25 mM HEPES, 400 mM KCl
414 and 10% (v/v) glycerol, pH 7.4) was used. Cells were then lysed by sonication, where
415 a final concentration of 1 mg ml⁻¹ lysozyme was added for cell wall digestion followed
416 by sonication, with 0.1 % (v/v) Triton X-100 added prior to lysis. A clear lysate was
417 produced by centrifugation. GST-tagged fusion proteins were purified using 1 ml l⁻¹
418 glutathione beads in PBS buffer, while 6His-tagged Vps4p or C-term Myo2p were
419 purified using 500 µl l⁻¹ Ni-NTA beads in HEPES buffer, either for 2 h or overnight at
420 4°C. Mid1p was eluted from glutathione beads using Reduced glutathione buffer.
421 Vps4p or C-term Myo2p were washed and eluted from Ni-NTA beads using HEPES
422 buffers. Elution was carried out for 2 h at 4°C. Samples of proteins from each step
423 were subjected to SDS-PAGE to determine elution efficiency.

424

425 *Pull-down experiments*

426 Pull-down experiments utilized Ni-NTA beads-immobilized bait proteins (6His-Vps4p
427 or 6His- C-term Myo2p) and prey-eluted proteins (GST-Mid1p: "N-terminus", "Middle"
428 or "C-terminus") to investigate protein-protein interactions. Bait proteins xx ug were
429 loaded onto Ni-NTA beads by incubation in PBS containing 0.01% (v/v) Triton X-100
430 for 1 h (4°C). After loading, the mixture was washed with PBS containing 0.01% (v/v)
431 Triton X-100, and beads were blocked for non-specific binding by incubation in PBS
432 containing 0.2% fish-skin gelatin. The beads mixture was incubated with yy ug prey
433 protein in PBS with 0.01% (v/v) Triton X-100. Subsequently, beads were washed with
434 PBS containing 0.01% (v/v) Triton X-100 three times, 0.5% (v/v) glycerol and 0.2%
435 (w/v) fish skin gelatin three times, and with PBS alone four times. Proteins were
436 eluted from beads by boiling in Laemmli sample buffer (LSB) (75 mM Tris pH 6.8,
437 12% (w/v) SDS, 60% (v/v) glycerol, 600 mM DTT and 0.6% (w/v) Bromophenol Blue)
438 and samples were subjected to SDS-PAGE.

439

440 *In vitro kinase assays*

441 Assays combined either human Plk1 (0.023 µg/µl), Aurora A (0.01 µg/µl), Aurora B
442 (0.01 µg/µl) and myelin basic protein (MBP; 2.5 µg) (Sigma-Aldrich and Biaffin
443 GmbH) or one of the three Mid1p domains ("N-term", "Middle" or "C-term" 2.5 µg).
444 Kinase, substrate proteins, 1 µCi [γ -³²P] ATP, 10 mM ATP and kinase assay buffer
445 (25 mM MOPS, 25 mM MgCl₂, 1 mM EDTA and 0.25 mM DTT, pH 7.2) were mixed
446 in a total volume of 20 µl; the reaction was initiated by adding 5 µl ATP cocktail and
447 incubated at 30°C for 1 h and terminated by the addition of LSB; samples were
448 subjected to SDS-PAGE followed by autoradiography or phospho-imaging. Following
449 detection of *in vitro* phosphorylation signals, mass spectrometric analysis was carried

450 out by the Dundee FingerPrints Proteomics service

451 (<http://proteomics.lifesci.dundee.ac.uk/>).

452

453 *Confocal and light microscopy*

454 Septation and GFP studies were carried out by visualizing *S. pombe* using

455 calcofluor-white stain and fluorescence microscopy, respectively. *S. pombe* cells

456 were cultured in 50 ml YE shaking at 28°C (25°C for *ark1-TS* strains) for 18 hours.

457 Cell septa were visualized using bright field and DAPI filters of a Zeiss Axiovert 135

458 fluorescent microscope equipped with a Zeiss 63X Plan-APOCHROMAT oil-

459 immersion objective lens. GFP-tagged *mid1*⁺ [28] was examined by a He/Ne and Ag

460 laser system of Zeiss LSM microscope using 63X high NA objective lens. Cell

461 images were collected using Zeiss Pascal software and processed using ImageJ,

462 Microsoft PowerPoint and Keynote software. Numerical analysis was completed from

463 three independent experiments where 200-250 cells were counted. Yeast colonies

464 grown on solid medium were imaged using a Zeiss Axioscope microscope and a

465 Sony DSC-75 camera.

466

467 **Acknowledgements**

468 We thank Anne Paoletti, Tomoko Iwaki and Silke Hauf for sharing fission yeast

469 strains used in this study. We thank Ian Salt for his contribution to this project, both

470 with experimental and practical advice. We acknowledge the following for

471 contributions to experiments: Rianne Cort, Laura Downie, Bethany Hutton, Christina

472 Jack, Jack Goddard, Susan McGill, Mark McLean, Chiamaka Okoli, Elena Pescuma,

473 Liam Pollock, James Provan, John Riddell, Aizhan Shagadatova, Ellen Shercliff,

474 Haoying Wang, and Wandiahel Yaduma.

475

476 **References**

- 477 1. Hoffman C S, Wood V, Fantes P A. An ancient yeast for young geneticists: a
478 primer on the *Schizosaccharomyces pombe* model system. *Genetics* 2015; 201:
479 403-423.
- 480 2. Willet A H, McDonald N A, Gould K L. Regulation of contractile ring formation
481 and septation in *Schizosaccharomyces pombe*. *Curr Opin Microbiol.* 2015; 28:
482 46-52.
- 483 3. Simanis V. Pombe's thirteen - control of fission yeast cell division by the
484 septation initiation network. *J. Cell Sci.* 2015; 128: 1465-1474.
- 485 4. Tomlin G C, Morrell J L, Gould K L. The spindle pole body protein Cdc11p
486 links Sid4p to the fission yeast septation initiation network. *Mol. Biol. Cell.*
487 2002; 13: 1203-1214.
- 488 5. Akamatsu M, Berro J, Pu K M, Tebbs I R, Pollard T D. Cytokinetic nodes in
489 fission yeast arise from two distinct types of nodes that merge during
490 interphase. *J. Cell Biol.* 2014; 204: 977-988.
- 491 6. Sparks C A, Morphew M, McCollum D. Sid2p, a spindle pole body kinase that
492 regulates the onset of cytokinesis. *J. Cell. Biol.* 1999; 146: 777-790.
- 493 7. Willet A H, DeWitt A K, Beckley J R, Clifford D M, Gould K L. NDR kinase Sid2
494 drives Anillin-like Mid1 from the membrane to promote cytokinesis and medial
495 division site placement. *Curr. Biol.* 2019; 29: 1055-1063.e2.
- 496 8. Paoletti A, Chang F. Analysis of mid1p, a protein required for placement of the
497 cell division site, reveals a link between the nucleus and the cell surface in
498 fission yeast. *Mol. Biol. Cell.* 2000; 11: 2757-2773.

499 9. Hachet O, Simanis V. Mid1p/anillin and the septation initiation network
500 orchestrate contractile ring assembly for cytokinesis. *Genes Dev.* 2008; 22:
501 3205-3216.

502 10. Almonacid M, Moseley J B, Janvore J, Mayeux A, Fraisier V, Nurse P, Paoletti
503 A. Spatial control of cytokinesis by Cdr2 kinase and Mid1/Anillin nuclear
504 export. *Curr. Biol.* 2009; 19: 961-966.

505 11. Chang F, Woppard A, Nurse P. Isolation and characterization of fission yeast
506 mutants defective in the assembly and placement of the contractile actin ring.
507 *J. Cell Sci.* 1996; 109: 131-142.

508 12. Saha S, Pollard T D. Anillin-related protein Mid1p coordinates the assembly of
509 the cytokinetic contractile ring in fission yeast. *Mol. Biol. Cell.* 2012a; 23:
510 3982-3992.

511 13. Sun L, Guan R, Lee I J, Liu Y, Chen M, Wang J, et al. Mechanistic insights
512 into the anchorage of the contractile ring by Anillin and Mid1. *Dev. Cell.* 2015;
513 33: 413-426.

514 14. Bhutta M S, McInerny C J, Gould G W. ESCRT function in cytokinesis:
515 location, dynamics and regulation by mitotic kinases. *Int. J. Mol. Sci.*
516 2014a; 15: 21723-21739.

517 15. Bhutta M S, Roy B, Gould G W, McInerny C J. A complex network of
518 interactions between mitotic kinases, phosphatases and ESCRT proteins
519 regulates septation and membrane trafficking in *S. pombe*. *PLoS ONE* 2014b;
520 9: e111789.

521 16. Rincon S A, Paoletti A. Mid1/anillin and the spatial regulation of cytokinesis in
522 fission yeast. *Cytoskeleton* 2012; 69: 764-777.

523 17. Iwaki T, Onishi M, Ikeuchi M, Kita A, Sugiura R, Giga-Hama Y, et al. Essential
524 roles of class E Vps proteins for sorting into multivesicular bodies in
525 *Schizosaccharomyces pombe*. *Microbiology* 2007; 153: 2753-2764.

526 18. Chatterjee M, Pollard T D. The functionally important N-terminal half of fission
527 yeast Mid1p anillin is intrinsically disordered and undergoes phase separation.
528 *Biochemistry* 2019; 58: 3031-3041.

529 19. Saha S, Pollard T D. Characterization of structural and functional domains of
530 the anillin-related protein Mid1p that contribute to cytokinesis in fission yeast.
531 *Mol. Biol. Cell.* 2012b; 23: 3993-4007.

532 20. Carlton J G, Caballe A, Agromayor M, Kloc M, Martin-Serrano J. ESCRT-III
533 governs the Aurora B-mediated abscission checkpoint through CHMP4C.
534 *Science* 2012; 336: 220-225.

535 21. Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic substrates of the
536 kinase Aurora with roles in chromatin regulation identified through quantitative
537 phosphoproteomics of fission yeast. *Sci. Signal.* 2011; 4: rs6-rs6.

538 22. Carpy A, Krug K, Graf S, Koch A, Popic S, et al. Absolute proteome and
539 phosphoproteome dynamics during the cell cycle of *Schizosaccharomyces*
540 *pombe* (fission yeast). *Mol. Cell. Proteomics* 2014; 13: 1925-1936.

541 23. Kettenbach A N, Deng L, Wu Y, Baldissard S, Adamo M E, Gerber S A,
542 Moseley J B. Quantitative phosphoproteomics reveals pathways for
543 coordination of cell growth and division by the conserved fission yeast kinase
544 Pom1. *Mol. Cell. Proteom.* 2015; 14: 1275-1287.

545

546 24. Swaffer M P, Jones A W, Flynn H R, Snijders A P, Nurse P. Quantitative
547 phosphoproteomics reveals the signaling dynamics of cell-cycle kinases in the
548 fission yeast *Schizosaccharomyces pombe*. *Cell Rep.* 2018; 24: 503-514.

549 25. Almonacid M, Celton-Morizur S, Jakubowski J L, Dingli F, Loew D, Mayeux A,
550 et al. Temporal control of contractile ring assembly by Plo1 regulation of
551 Myosin II recruitment by Mid1/Anillin. *Curr. Biol.* 2011; 21: 473-479.

552 26. Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast
553 *Schizosaccharomyces pombe*. *Methods Enzymol.* 1991; 194: 795-823.

554 27. Rezig I M, Bremner S K, Bhutta M S, Salt I P, Gould G W, McInerny C J.
555 Genetic and cytological methods to study ESCRT cell cycle function in fission
556 yeast. *Methods Mol. Biol.* 2019; 1998: 239-250.

557 28. Bähler J, Steever A B, Wheatley S, Wang Y I, Pringle J R, Gould K L,
558 McCollum D. Role of polo kinase and Mid1p in determining the site of cell
559 division in fission yeast. *J. Cell Biol.* 1998; 143: 1603-1616.

560

561 **Figure legends**

562 **Fig 1. Genetic and physical interactions between *mid1* and *vps4* in fission**
563 **yeast. (A)** Synthetic lethality in *mid1Δ vps4Δ* double mutant cells indicates a genetic
564 interaction between the *mid1* and *vps4* genes. Tetrad analysis of *h⁻ vps4Δ*
565 (*vps4::ura4⁺*) mated with *h⁺ mid1Δ (dmf1::KanMX4)* to identify *vps4Δ mid1Δ* double
566 mutants that show a synthetic lethal growth phenotype. Tetrad created by mating
567 the two strains on solid ME medium, four spores dissected and allowed to grow on
568 solid YE medium until colonies formed. Colonies replicated to solid
569 YE+G418/KanMX4 and EMM-ura media and incubated to identify growth phenotypes
570 and double mutants. **(B)** Direct physical interaction between Vps4p and the "C-term"

571 domain of Mid1p. Recombinant GST-tagged (Mid1p domains: "N-term" (aa 1-453),
572 "Middle" (452-579) and "C-term" (793-920)) and 6 His-tagged (Vps4p and "C-term"
573 Myo2p) proteins were expressed in *E. coli* and purified using GST-sepharose beads
574 and Ni-NTA agarose beads, respectively. Exp. A, eluted prey Mid1p domains were
575 added to bait Vps4p bound to Ni-NTA agarose beads: (*) represents physical
576 interaction of Vps4p and Mid1p "C-term" domain. Exp. B, eluted prey Mid1p "N-term"
577 and "Middle" domains were added to bait Myo2p bound to Ni-NTA agarose beads as
578 a positive control: (**) represents physical interaction of Mid1p "N-term" and "Middle"
579 domains with "C-term" domain of Myo2p (left panel). The 14.5 kDa "C-term" Myo2p
580 was not detected in this gel; in a separate experiment (right panel) the detected 14.5
581 kDa "C-term" Myo2p is shown. Asterisks (**) indicate detected physical interactions
582 of Mid1p "N-term" and "Middle" domains with "C-term" domain of Myo2p. Coloured
583 boxes represent predicted proteins: Vps4p purple, Mid1p "N-term" red, Plk1 purple,
584 Mid1p "Middle" green and Mid1p "C-term" dark blue.

585

586 **Fig 2. GFP-Mid1p cellular localization is disrupted in *vps4* Δ cells.** Wild-type (W-
587 T) and *vps4* Δ (*vps4*::*ura* $^+$) *S. pombe* strains containing GFP-Mid1p grown at 25°C in
588 liquid YE medium to mid-exponential phase and visualized by confocal microscopy.
589 **(A)** Key to characterised GFP-Mid1p localization phenotypes. Scale bar, 5 μ m. Bright
590 and green fluorescent images of cells (left) and quantitative analysis (right) of GFP-
591 Mid1p localization phenotypes for wild-type (W-T) **(B)** and *vps4* Δ **(C)** cells. Scale bar,
592 10 μ m. **(D)** Two-way ANOVA analysis of frequencies of localization phenotypes in
593 *vps4* Δ compared to wild-type (W-T). Asterisks (****) denote p values <0.0001
594 indicating significant differences to wild-type. Error bars, SEM.

595

596 **Fig 3. Genetic and physical interactions between *mid1* and *ark1* in fission**
597 **yeast. (A)** Synthetic lethality in *mid1* Δ *ark1*-T11 double mutant cells indicates genetic
598 interaction between *mid1* $^+$ and *ark1* $^+$ genes. Tetrad analysis of h $^+$ *ark1*-T11 (*ark1*-
599 T11<<Kan R) crossed with h $^-$ *mid1* Δ (*mid1*::*ura* $^+$) to identify *mid1* Δ *ark1*-T11 double
600 mutants that show a synthetic lethal growth phenotype. Tetrads created by mating
601 the two strains on solid ME medium, four spores dissected and allowed to grow on
602 solid YE medium until colonies formed. Colonies replicated to solid
603 YE+G418/KanMX4 and EMM-ura media and incubated to identify growth phenotypes
604 and double mutants. **(B)** Plk1 and Aurora A kinases phosphorylate Mid1p "N-term"
605 and "Middle" domains. Recombinant GST-tagged Mid1p domain proteins "N-term"
606 (aa 1-453), "Middle" (452-579) and "C-term" (798-920) were purified and analysed by
607 *in vitro* phosphorylation assays. In "Exp. A" myelin basic protein (MBP) was a
608 positive control. In "Exp. B", "Exp. C" and "Exp. D" the "N-term", "Middle" and "C-
609 term" domains of Mid1p were substrates with the kinases Plk1, Aurora A or Aurora B,
610 respectively. Asterisks (*) indicate detected *in vitro* phosphorylation signals. Coloured
611 boxes represent predicted proteins: MBP yellow, Mid1p "N-term" species red, and
612 Mid1p "Middle" species green.

613
614 **Fig 4. GFP-Mid1p cellular localization is disrupted in *ark1*-T11 and *ark1*-T8**
615 **cells.** Wild-type (W-T), *ark1*-T11 and *ark1*-T8 *S. pombe* strains containing GFP-
616 Mid1p were grown at 25°C in liquid YE medium to mid-exponential phase and
617 visualized by confocal microscopy. **(A)** Key to characterised GFP-Mid1p localization
618 phenotypes. Scale bar, 5 μ m. Bright and green fluorescent images of cells (left) and
619 quantitative analysis of GFP-Mid1p localisation phenotypes (right) for *ark1*-T11 **(B)**
620 and *ark1*-T8 **(D)**. Scale bar, 10 μ m. **(C, E)** Two-way ANOVA analysis of frequencies

621 of localization phenotypes in *ark1*-T11 and *ark1*-T8 compared to wild-type (W-T).
622 Asterisks (****) denote *p* values <0.0001 indicating a significant difference to wild-
623 type. Error bars = SEM.

624

625 **Fig 5. Identification of Mid1p phospho-sites by mass-spectrometry analysis**
626 **(MSA) and published studies.** **(A)** Mid1p full-length amino acid sequence with "N-
627 term" and "Middle" domains indicated in red and green. Highlighted peptides show
628 35 phosphorylated amino acid residues identified by MSA of *in vitro* phosphorylation
629 reactions for the kinases Plk1 (bold), Aurora A (underlined) or both (bold and
630 underlined). **(B)** Five Mid1p phospho-sites generated from comparison of the 35
631 MSA amino acids with Mid1p phosphorylated amino acids identified in four published
632 proteomic studies [21-24]. Amino acids identified by MSA and four independent
633 studies (pink), MSA and three studies (light blue), and MSA and two studies (dark
634 blue and orange). Asterisk (*) indicates a sixth serine phospho-site at position 531
635 derived from [23] and [24].

636

637 **Fig 6. Reduced *in vitro* phosphorylation of Mid1p "N-term and "Middle"**
638 **phospho-resistant mutants by Plk1 and Aurora A kinases.** Recombinant GST-
639 tagged Mid1p "N-term" **(A)** and "Middle" **(B)** domains phospho-resistant mutants
640 were expressed and purified in *E. coli*. Proteins subjected to *in vitro* phosphorylation
641 experiments with Aurora A (Exp. A) or Plk1 (Exp. B) kinases. Asterisks (*) and **)
642 indicate wild-type Mid1p "N-term" and Mid1p "Middle" recombinant proteins used as
643 positive controls. Coloured boxes represent predicted proteins: MBP yellow, Mid1p
644 "N-term" species red, Plk1 purple, and all Mid1p "Middle"-related species green.
645 "Multiple" indicates mutations in all four phospho-sites.

646

647 **Fig 7. The S332 phospho-site is required for Mid1p function.** Three phospho-
648 resistant *mid1* mutant strains *mid1* S332A, *mid1* S167A S328A S331A S332A, and
649 *mid1* S167A S328A S331A S332A S523A S531A, and the three phospho-mimetic
650 mutants *mid1* mutant strains S332D, *mid1* S167D S328D S331D S332D, and *mid1*
651 S167D S328D S331D S332D S523D S531D streaked to single colonies on solid YE
652 at 25°C to compare growth rates (**A**) and colony morphology (**B**). Controls: *mid1*Δ
653 and wild-type (W-T) cells. Scale bar, 10 μm.

654

655 **Fig 8. The Mid1p S523 and S531 phospho-sites regulate its interaction with**
656 **Vps4p.** Strains streaked to single colonies on solid YE medium and grown at 25° to
657 compare growth rates and colony morphology. Controls: *vps4*Δ and wild-type (W-T)
658 cells. Scale bar, 10 μm.

659

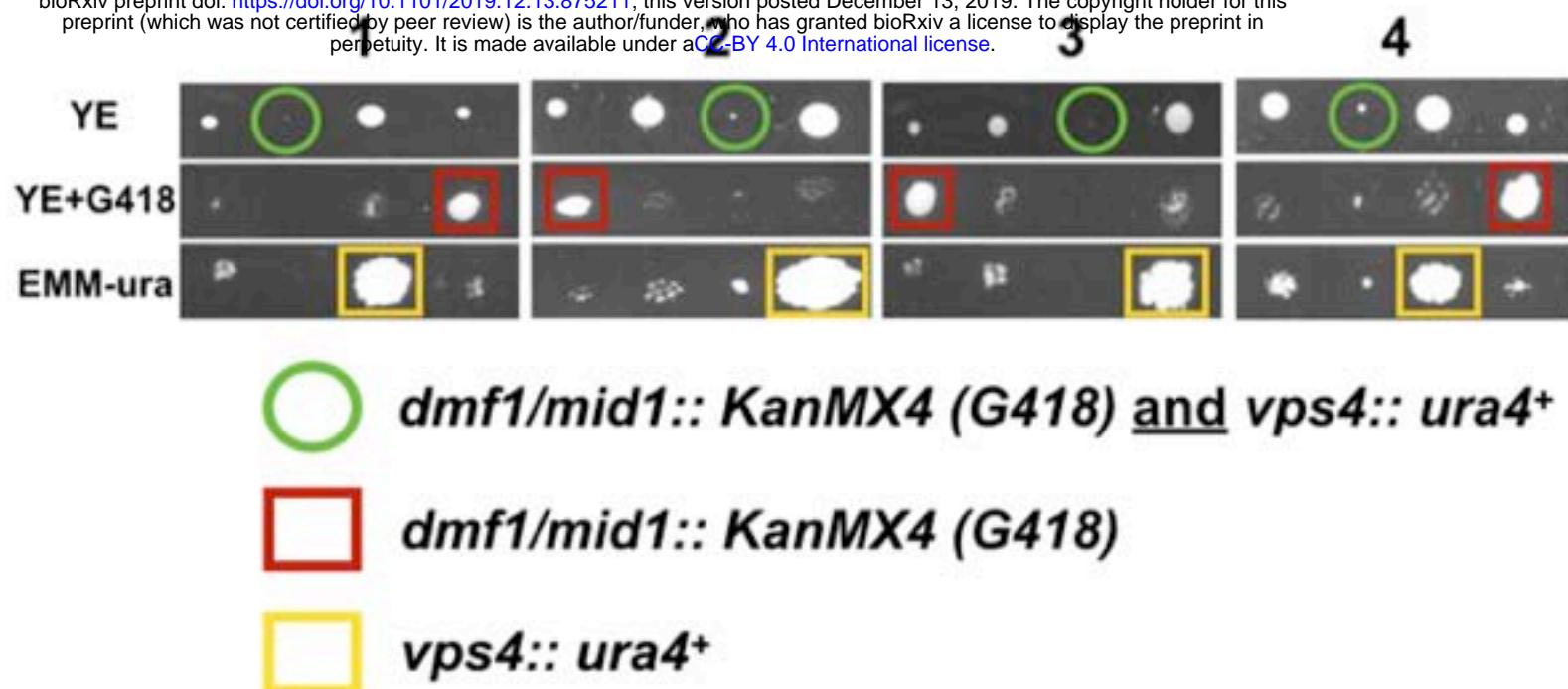
660 **Fig 9. Interaction of Mid1p and Vps4p to regulate *S. pombe* septation. (A)**
661 Schematic representation of Mid1p localization during *S. pombe* cell cycle stages.
662 CR = contractile ring. (**B**) Mid1p is phosphorylated by Plo1p to promote mitotic entry,
663 during which Rng2p and other proteins interact with the N-terminal domain of Mid1p.
664 (**C**) In mitosis, Mid1p forms nodes which are attached to the plasma membrane via
665 the lipid binding motifs present within the Mid1p C-terminal domain. Green box
666 represent the overall structure of Mid1p C-terminal region (aa 579-920) containing:
667 the C2 domain (cyan), the connector domain (red) and the PH domain (yellow);
668 dotted lines represent the lipid binding loop. Structure adapted from [13]. The Vps4p
669 interaction with the C-terminal domain of Mid1p potentially regulates this process.

670

671 **S1 Fig. Summary of Mid1p phospho-mimetic/resistant fission yeast mutant**
672 **strains used in this study.** Top Panel: full length Mid1p with S167, S328, S331,
673 S332, S523 and S531 phospho-sites indicated. Lower Panel: summary of single or
674 combinatorial ("Multi") phospho-mimetic or phospho-resistant mutations of the *mid1*
675 gene, to generate eighteen versions integrated into *mid1* Δ cells, with each yeast
676 strain given a "GG" lab collection number.

677

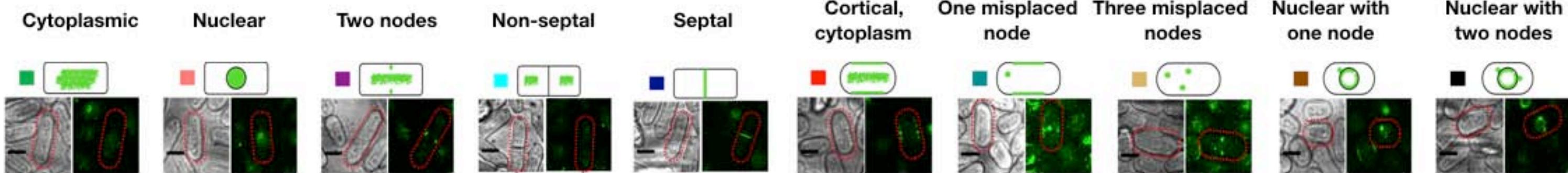
678 **S2 Fig. *mid1* phospho-resistant/mimetic mutants reveal cell division**
679 **phenotypes.** Wild-type (W-T), *mid1* Δ , *mid1* Δ pJK148:*mid1* $^+$, *mid1* Δ
680 pJK148:*mid1*S523A, *mid1* Δ pJK148:*mid1*S523D, *mid1* Δ pJK148:*mid1*S531A, *mid1* Δ
681 pJK148:*mid1*S531D, *mid1* Δ pJK148:*mid1*S523A S531A and *mid1* Δ
682 pJK148:*mid1*S523D S531D strains grown at 25°C in liquid YE medium to mid-
683 exponential phase. Cells visualized by confocal microscopy under bright field. Scale
684 bar, 10 μ m. Characterised cell morphology phenotypes indicated by red arrows. **(A)**
685 Two-way ANOVA analysis of frequencies of localization phenotypes in wild-type (W-
686 T), *mid1* Δ and *mid1* Δ pJK148:*mid1* $^+$ cells. **(B)** Key to characterised cell morphology
687 phenotypes. Scale bar, 5 μ m. **(C-E)** Two-way ANOVA analysis of frequencies of
688 localization phenotypes of *mid1* phospho-resistant/mimetic mutants. Asterisks (****)
689 denote *p* values <0.0001 indicating significant difference to wild-type. Error bars =
690 SEM.


691

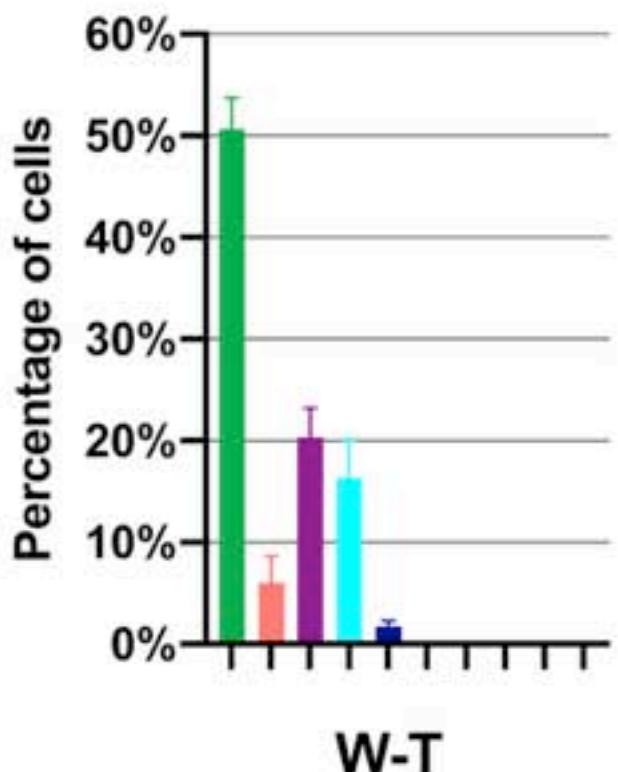
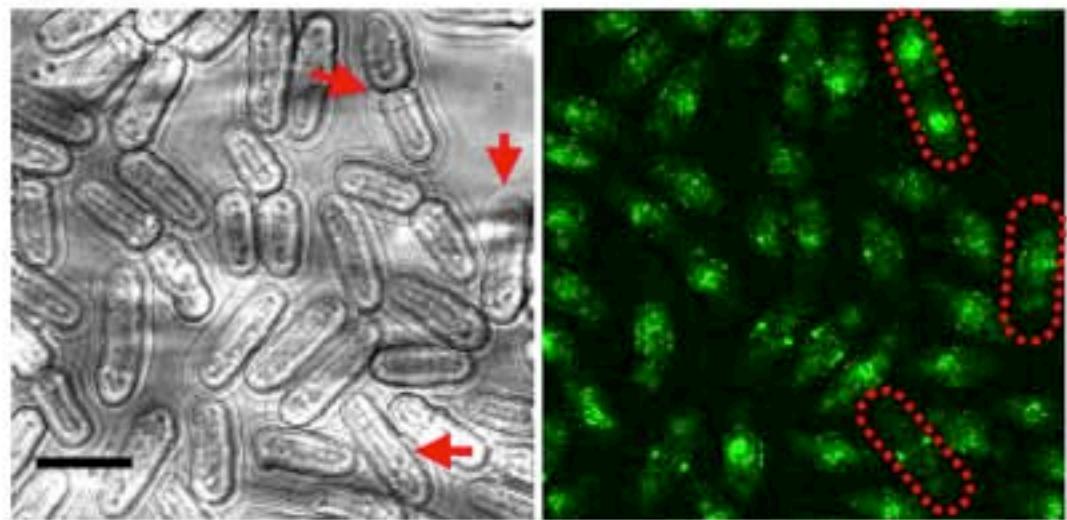
692 **S3 Fig. *mid1* phospho-resistant/mimetic *ark1*-T11 double mutants reveal cell**
693 **division phenotypes.** *ark1*-T11, *mid1* Δ *ark1*-T11 pJK148:*mid1* $^+$, *mid1* Δ *ark1*-T11
694 pJK148:*mid1*S523A, *mid1* Δ *ark1*-T11 pJK148:*mid1*S523D, *mid1* Δ *ark1*-T11
695 pJK148:*mid1*S531A, *mid1* Δ *ark1*-T11 pJK148:*mid1*S531D, *mid1* Δ *ark1*-T11

696 pJK148:*mid1*S523A S531A and *mid1* Δ *ark1*-T11 pJK148:*mid1*S523D S531D strains
697 grown at 25°C in liquid YE medium to mid-exponential phase. Cells visualized by
698 confocal microscopy under bright field. Scale bar, 10 μ m. Characterised cell
699 morphology phenotypes indicated by red arrows. **(A)** Two-way ANOVA analysis of
700 frequencies of localization phenotypes in wild-type (W-T), *ark1*-T11 and *mid1* Δ
701 pJK148:*mid1* $^+$ *ark1*-T11 cells. **(B)** Key to characterised cell morphology phenotypes.
702 Scale bar, 5 μ m. **(C-E)** Two-way ANOVA analysis of frequencies of localization
703 phenotypes in wild-type (W-T), *mid1* phospho-resistant/mimetic and *ark1*-T11 cells.
704 Asterisks (****) denote *p* values <0.0001 indicating significant difference to wild-type.
705 Error bars = SEM.

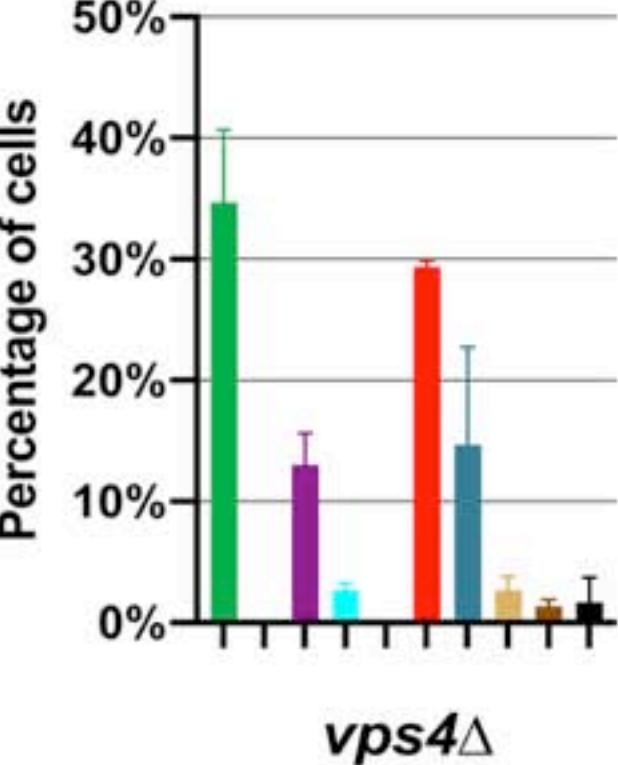
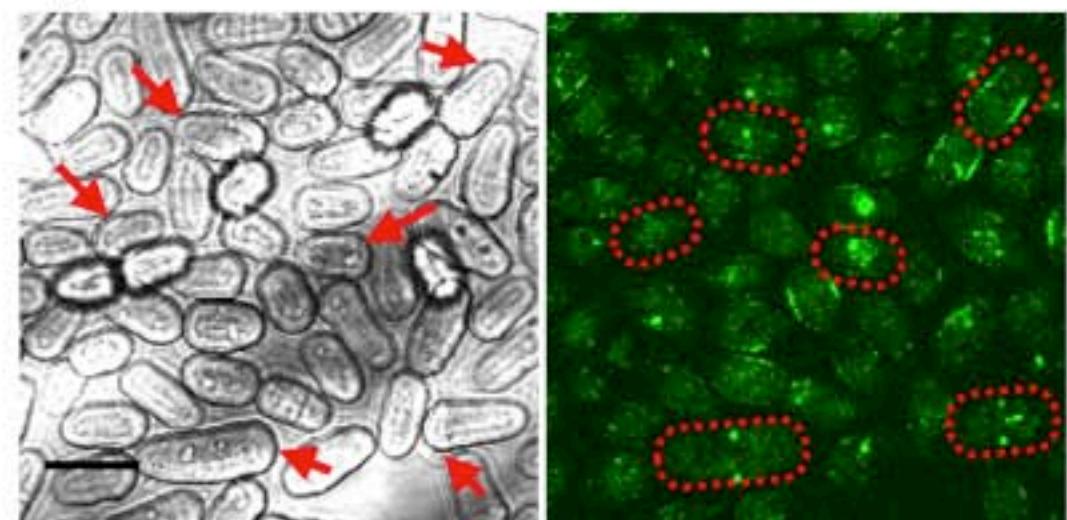
mid1 Δ X vps4 Δ Tetrads


bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.13.875211>; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

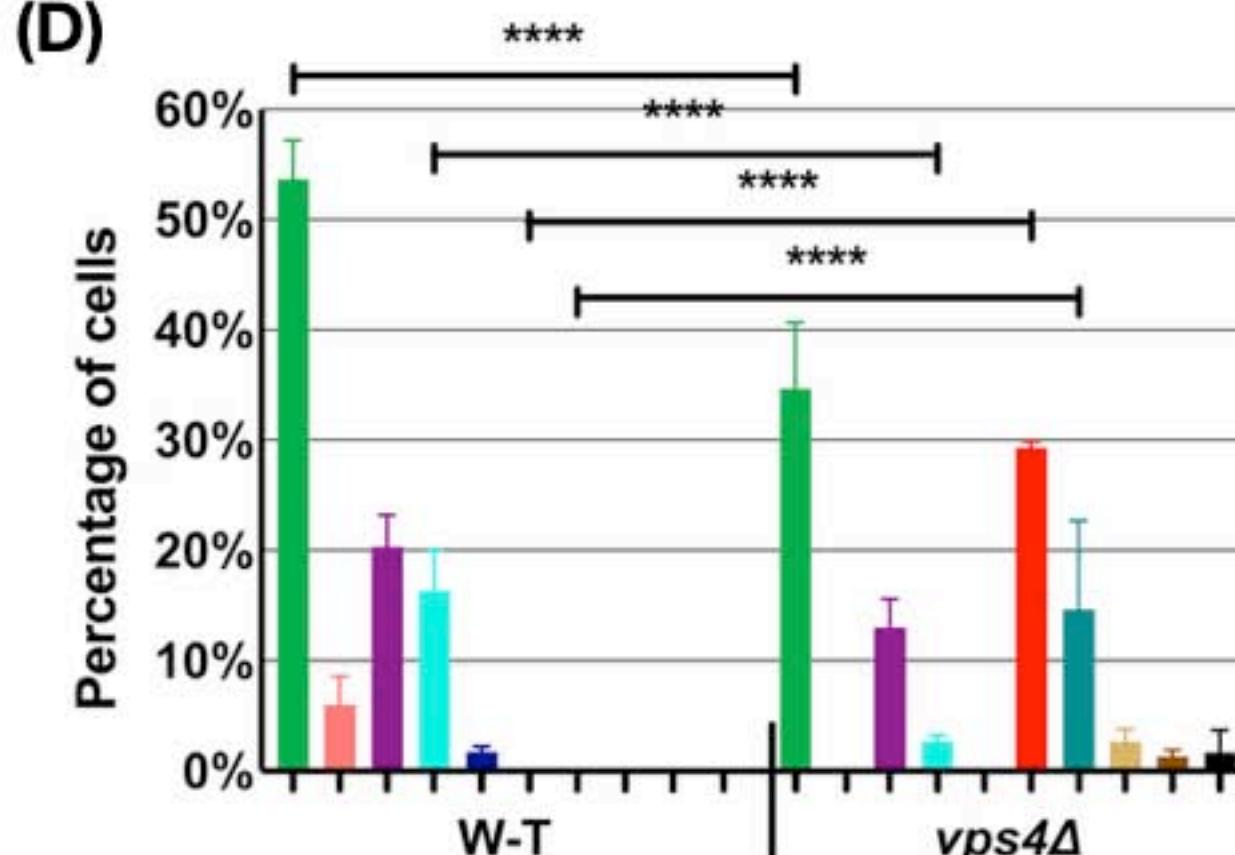
(B)

(A)

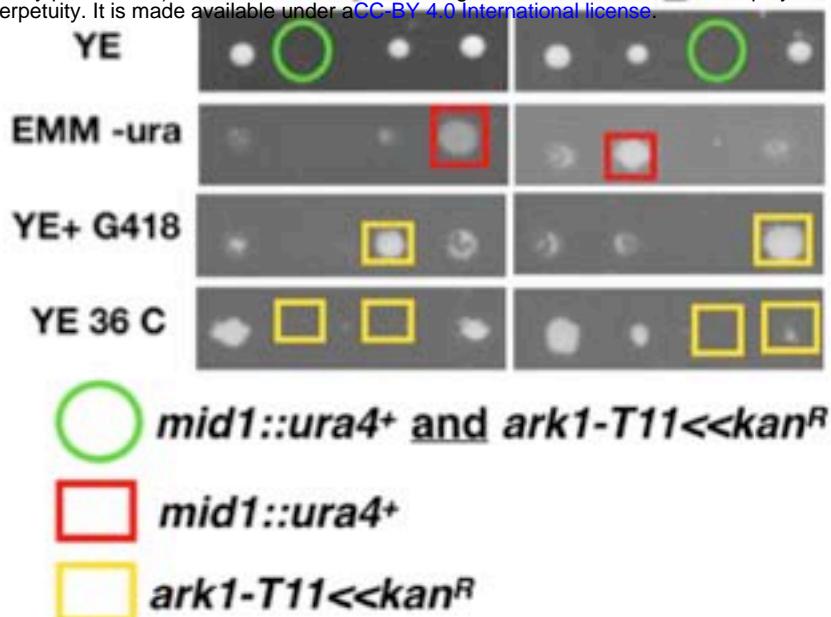


(B)

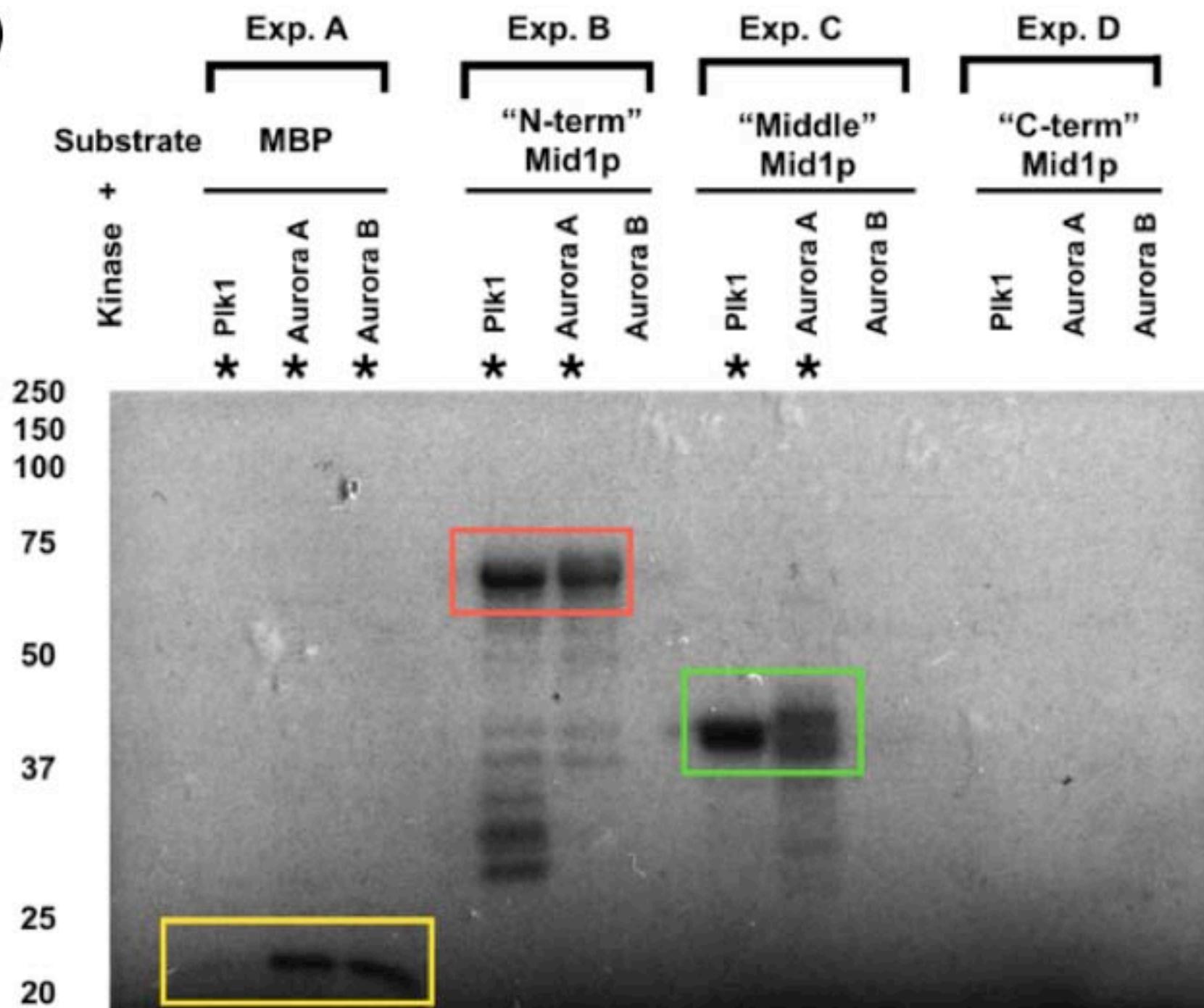
W-T

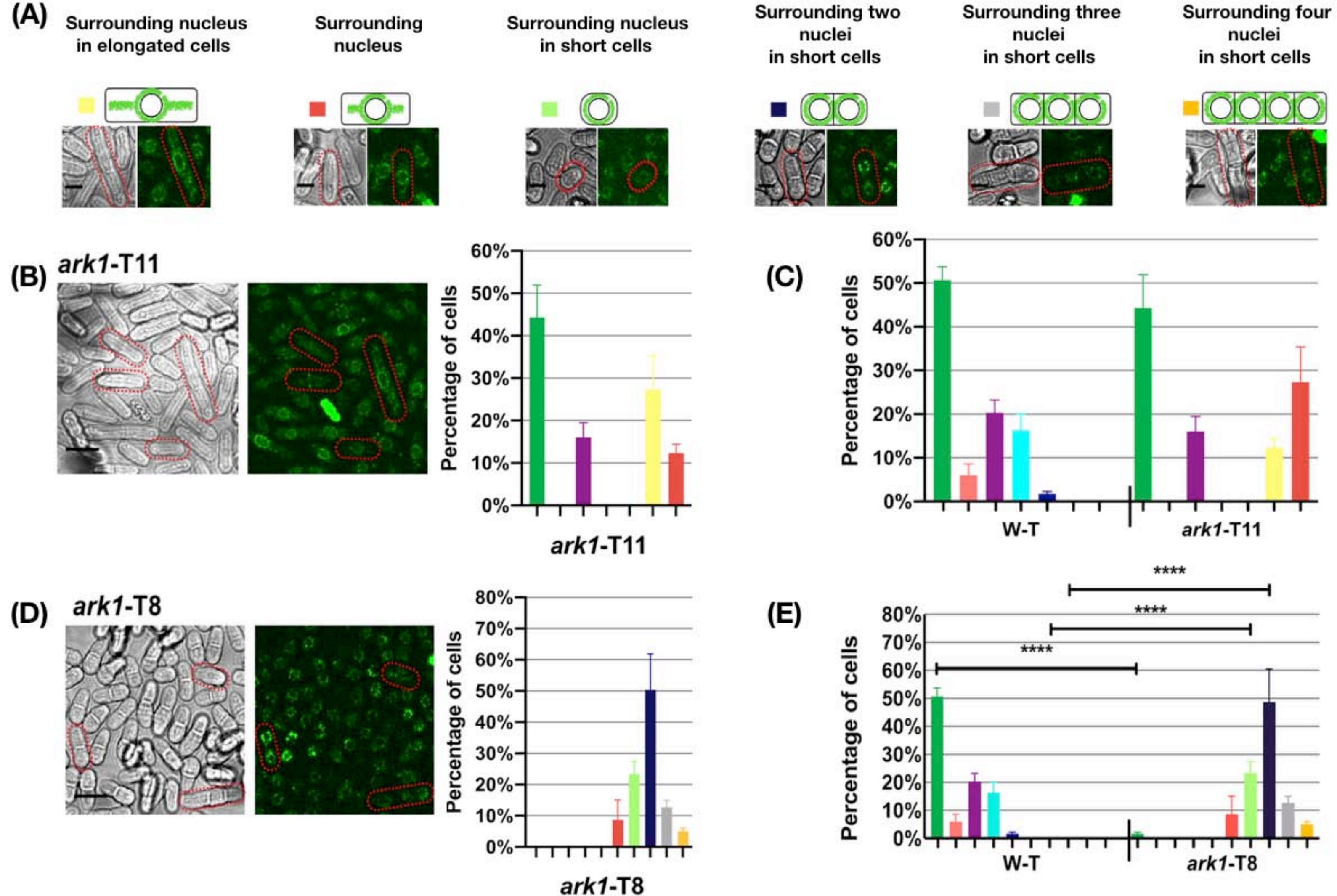


(C)

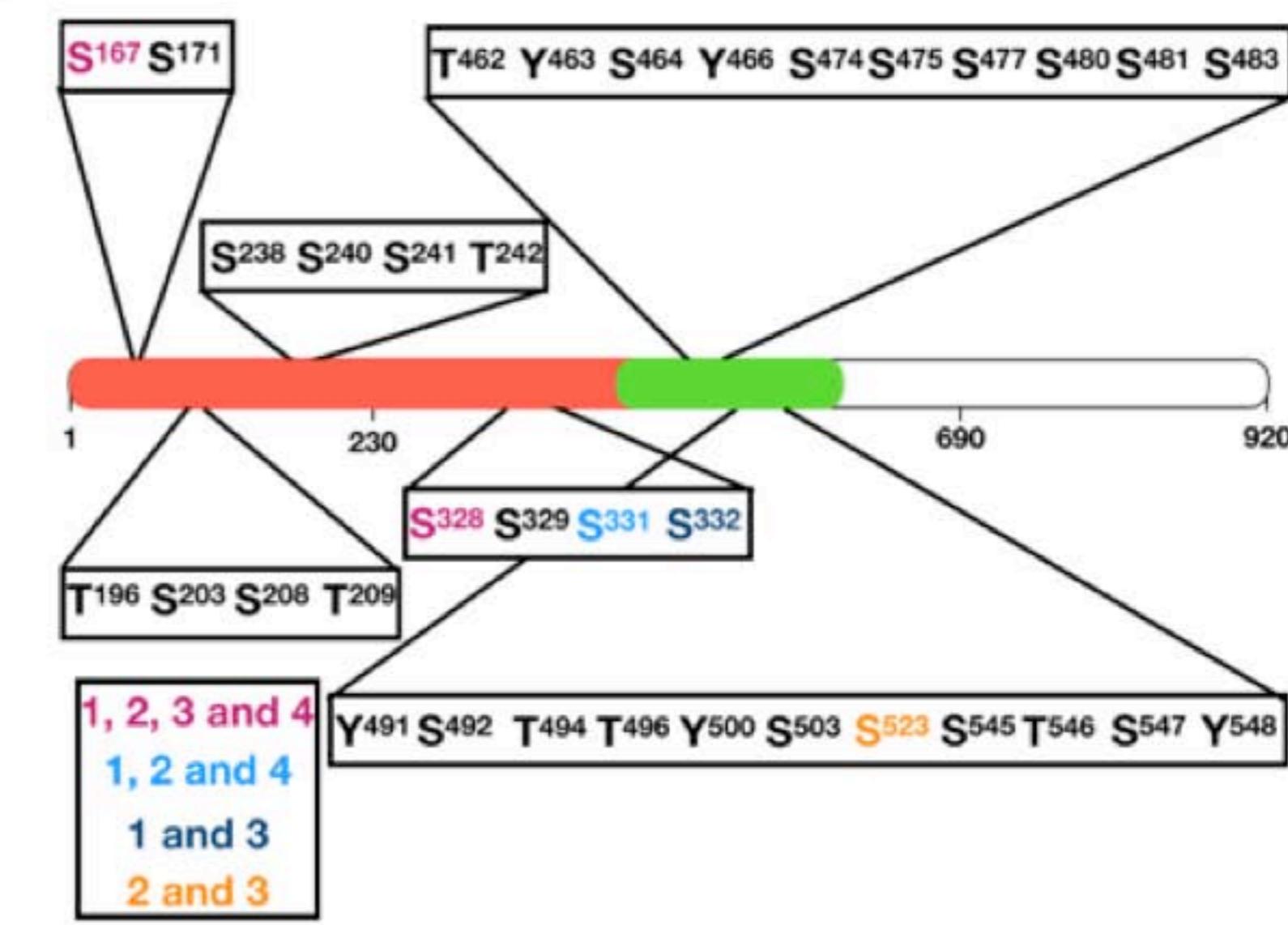
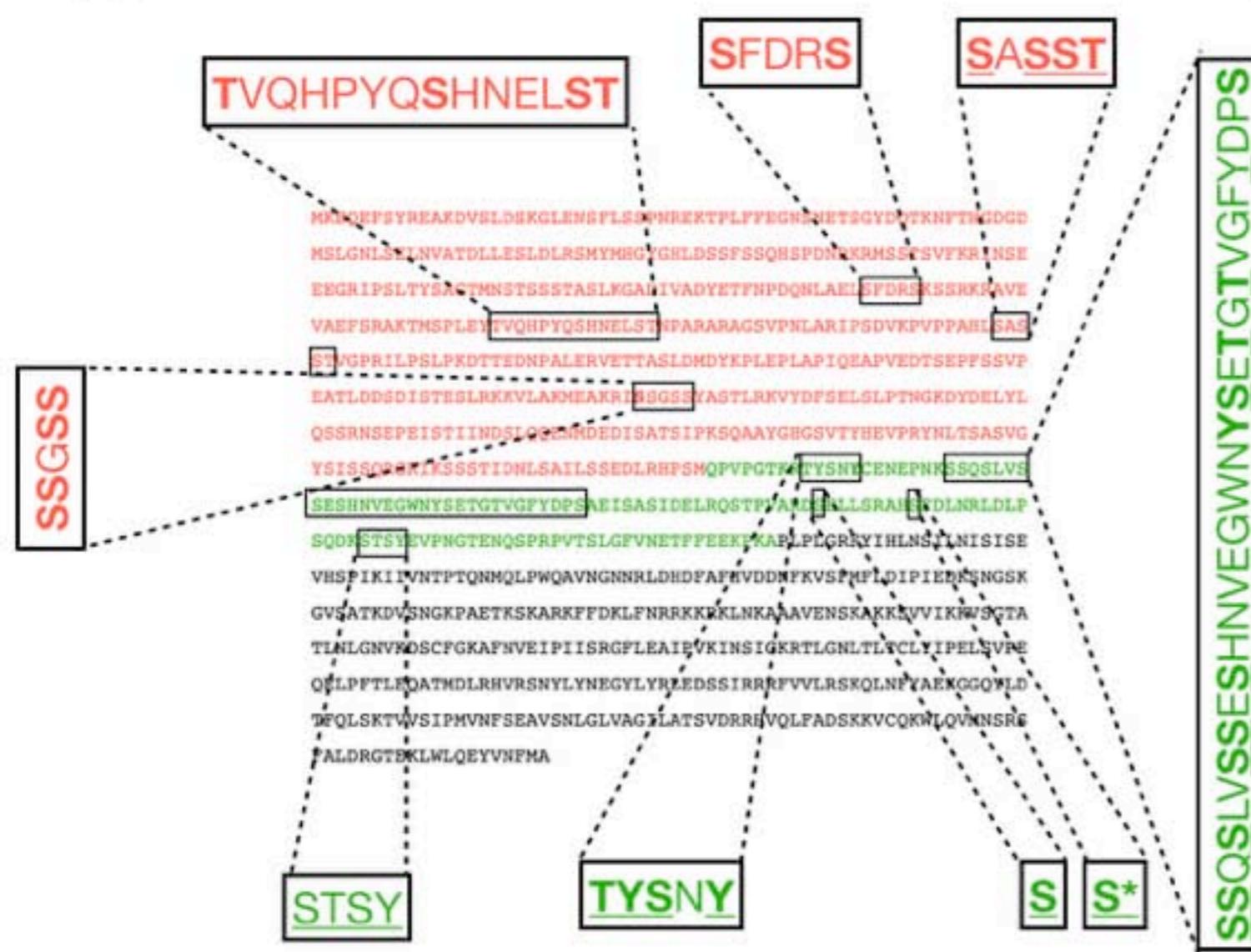
vps4 Δ

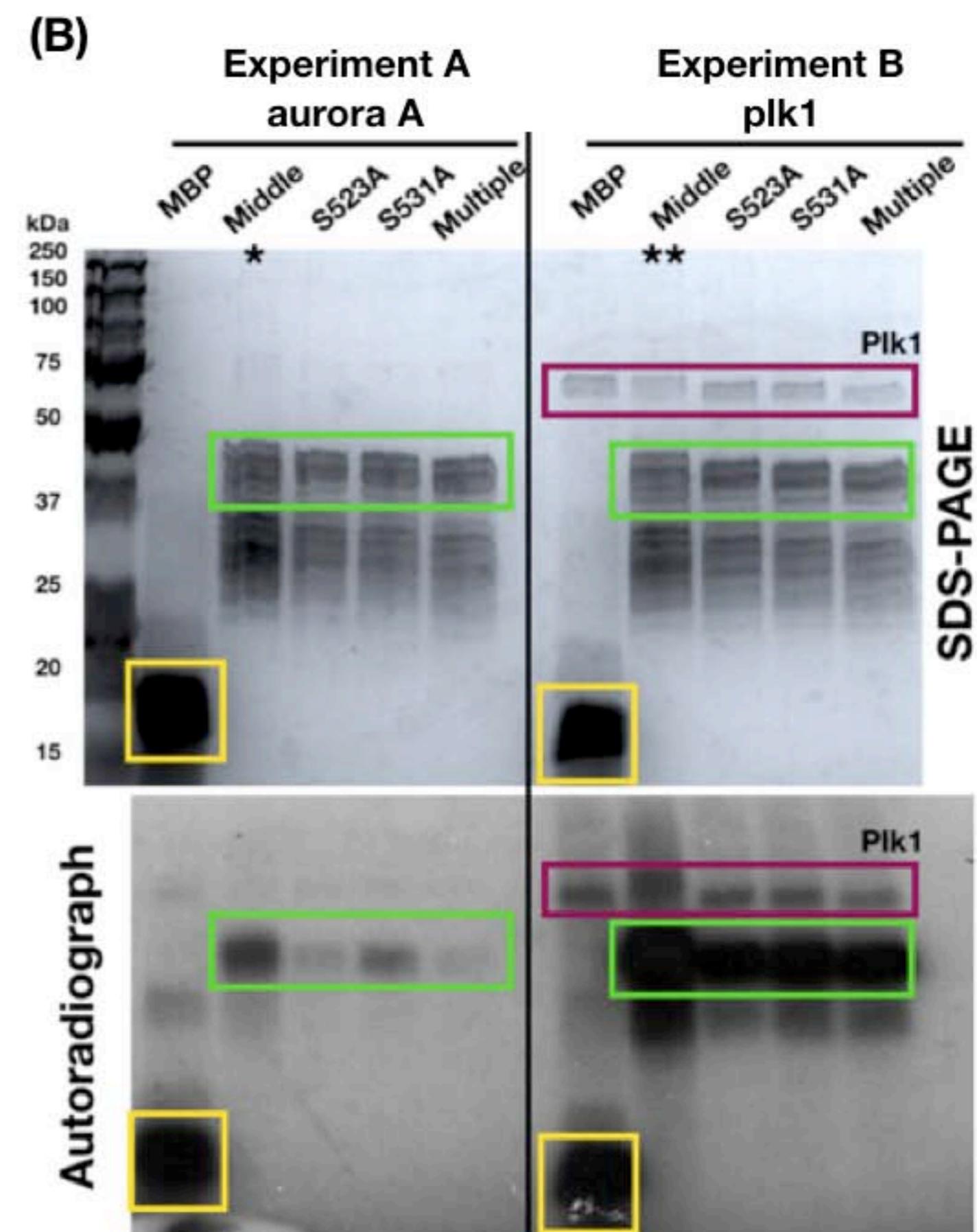
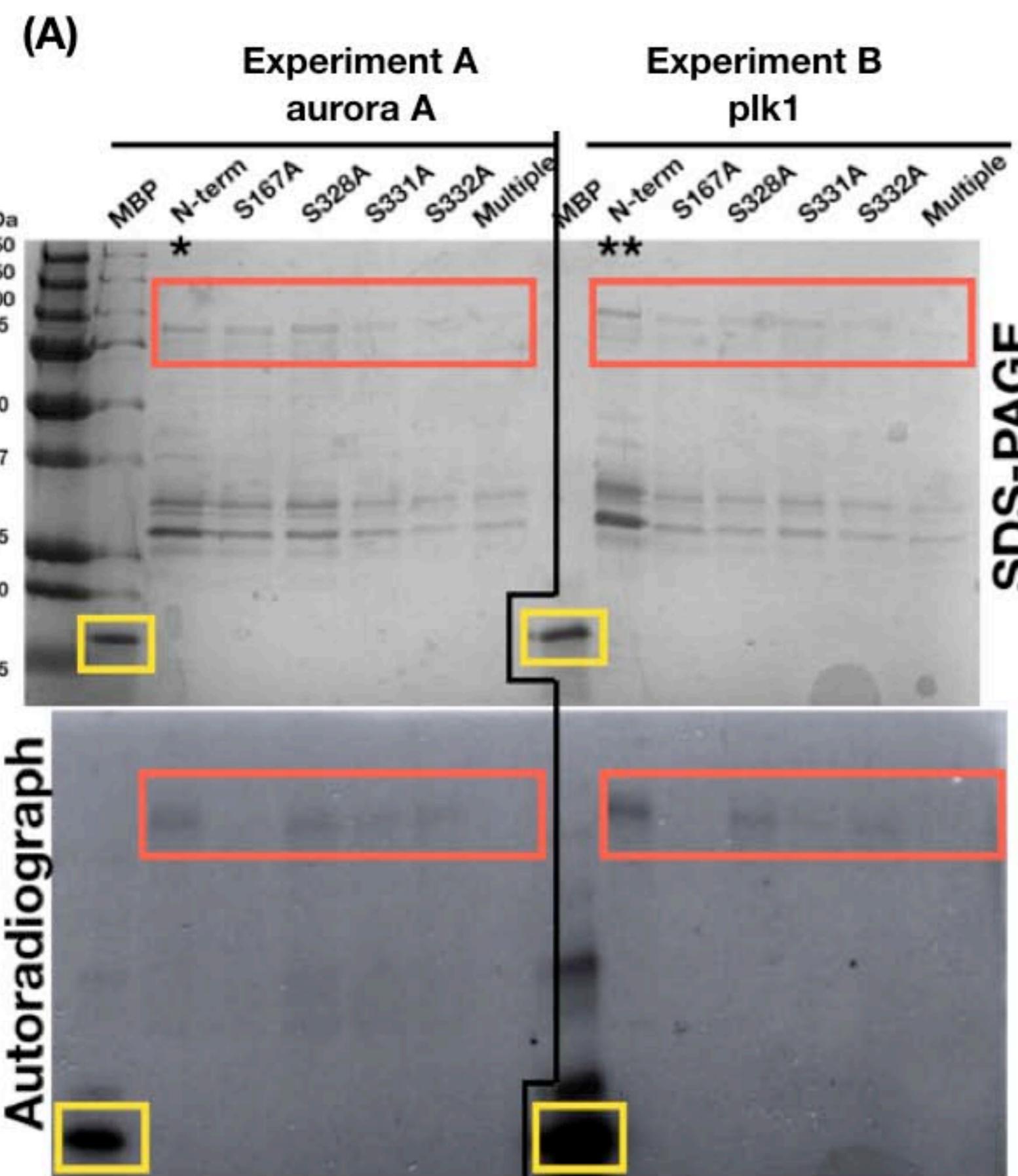

(D)


(A)

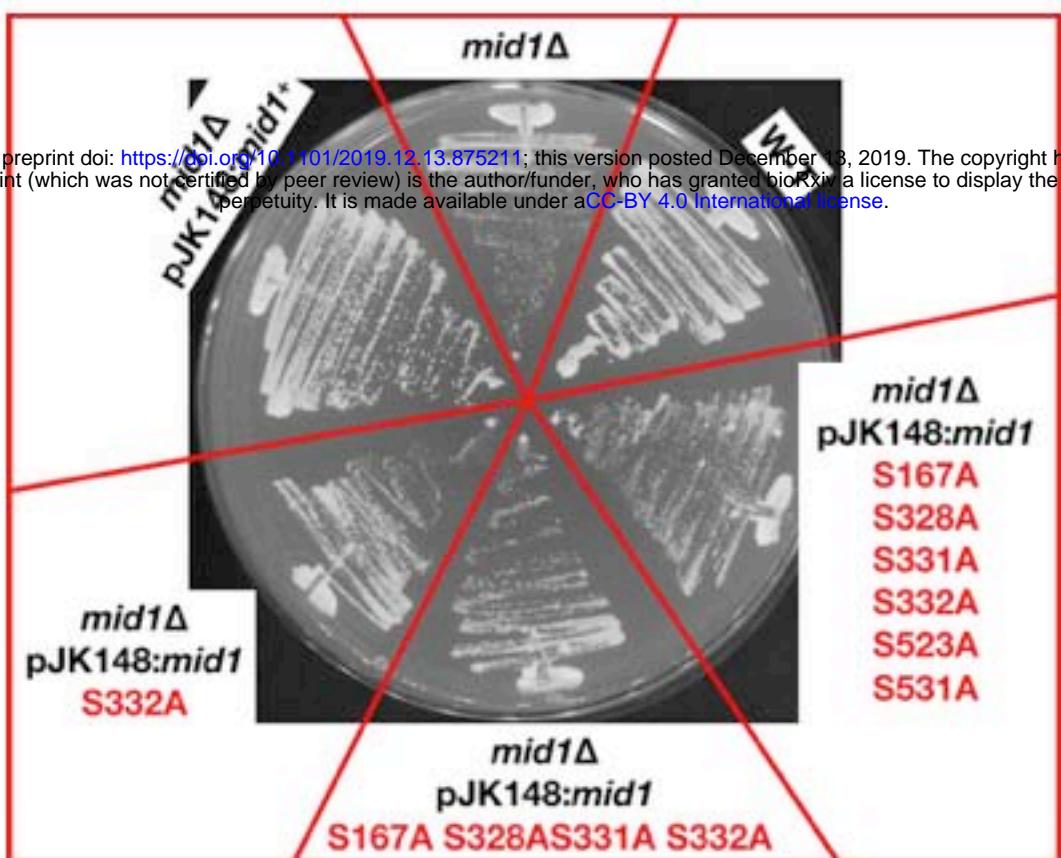

mid1Δ X ark1-T11 Tetrad

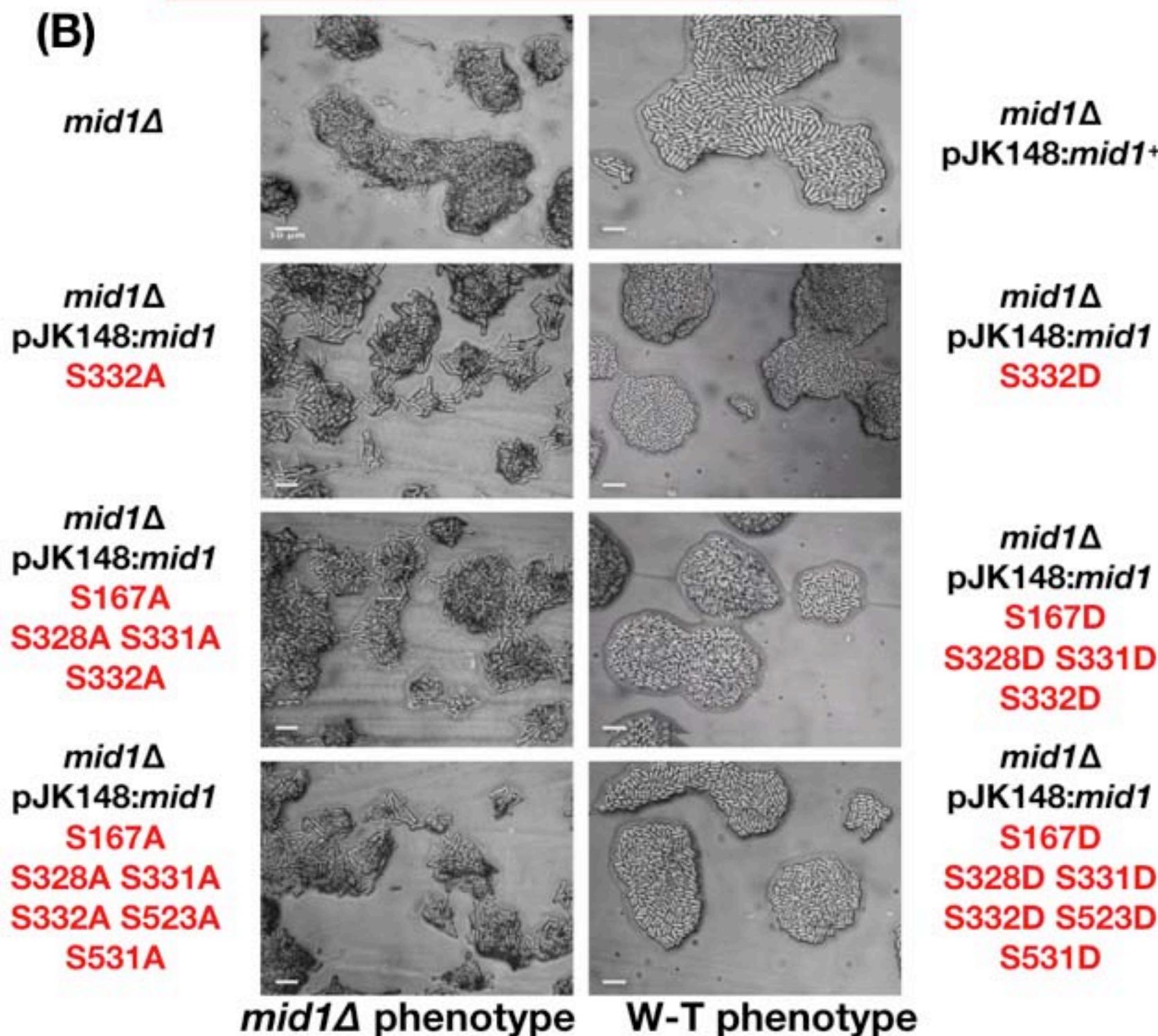
bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.13.875211>; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



(B)

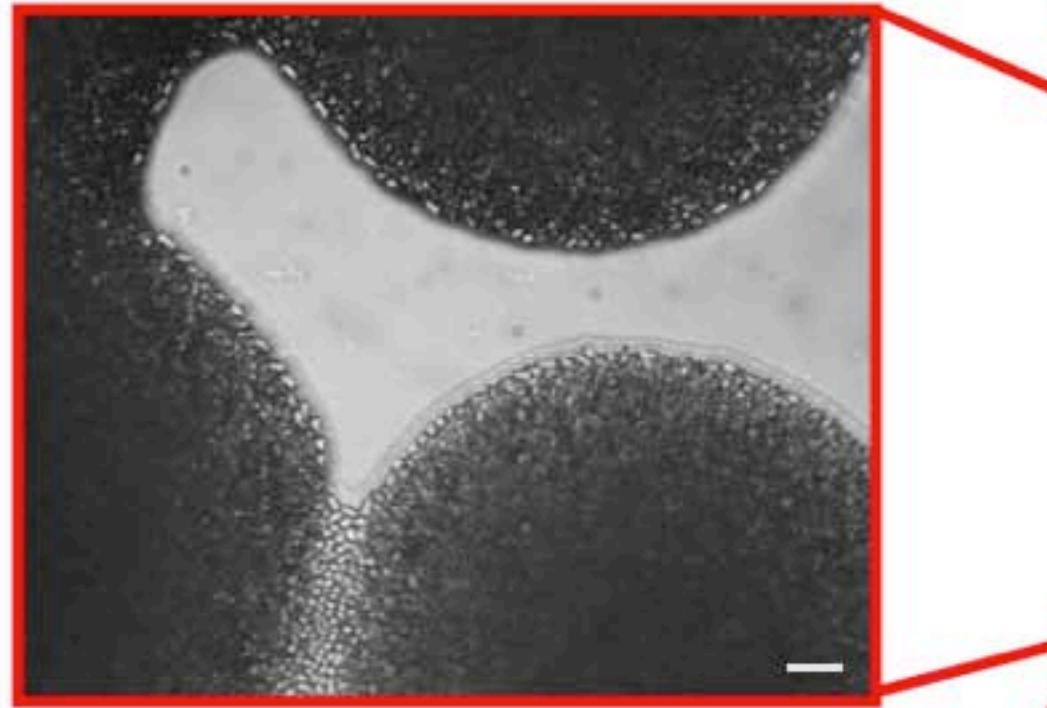
(A)

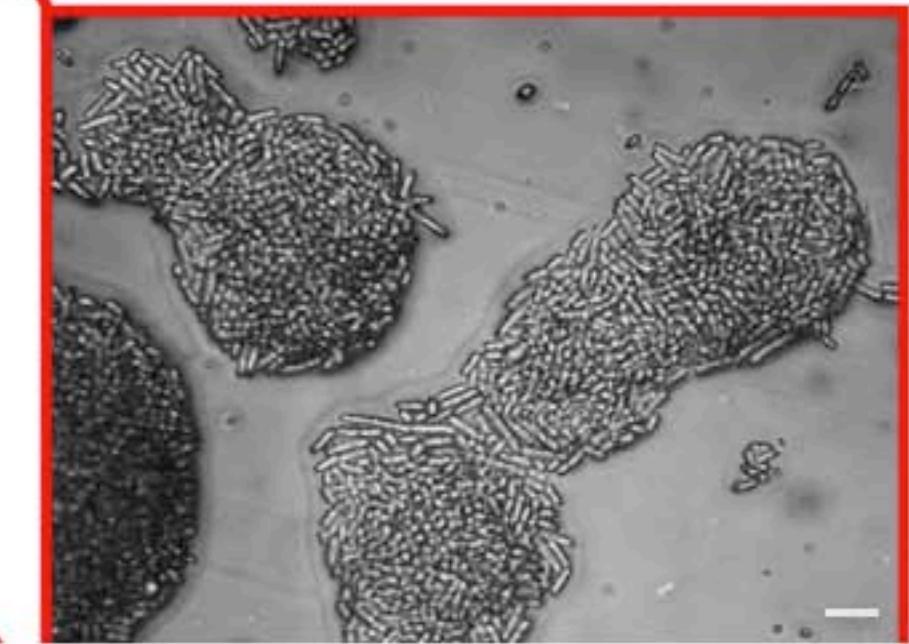
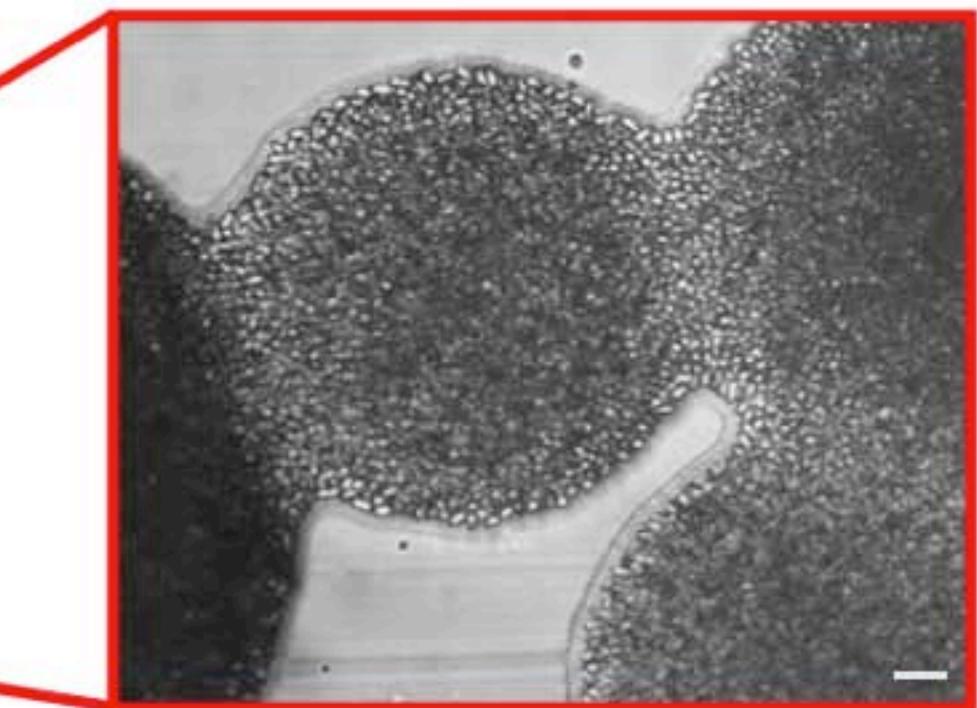

(B)



(A)

bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.13.875211>; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


(B)



W-T

bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.13.875211>; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

***vps4* Δ**

***mid1* Δ**
pJK148:*mid1* $S523D$ $S531D$

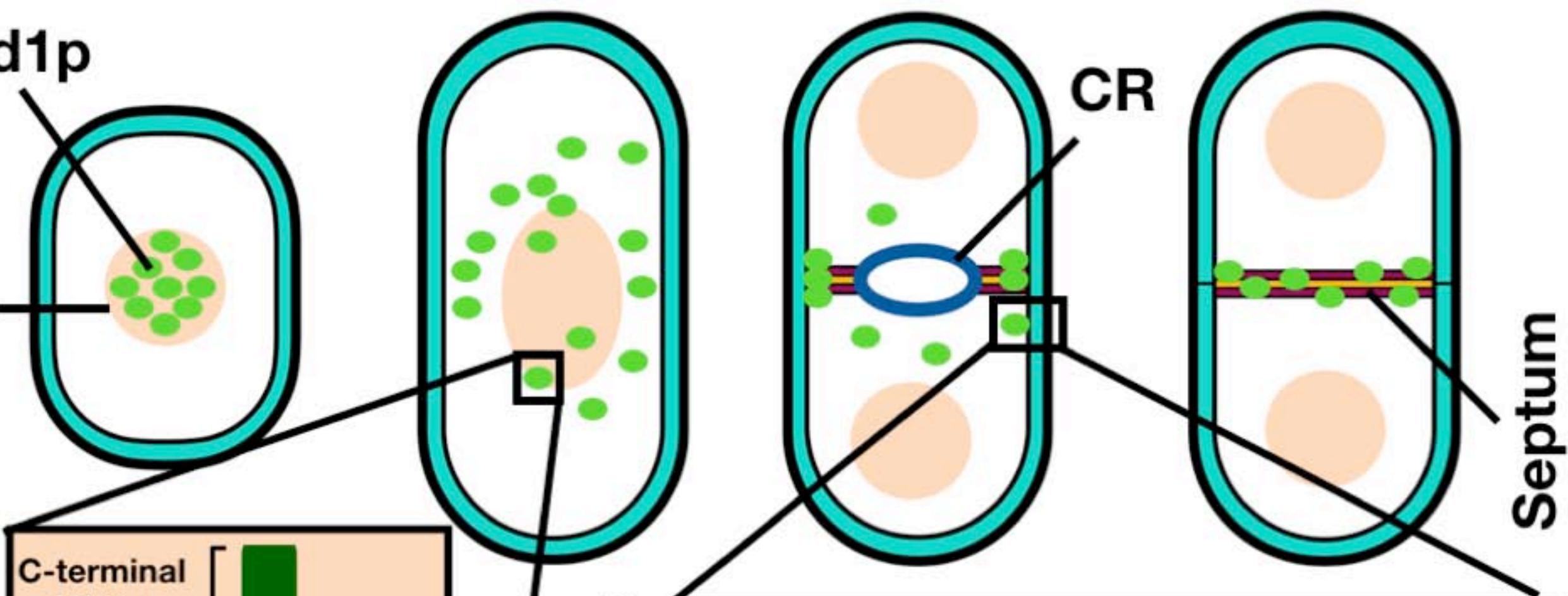
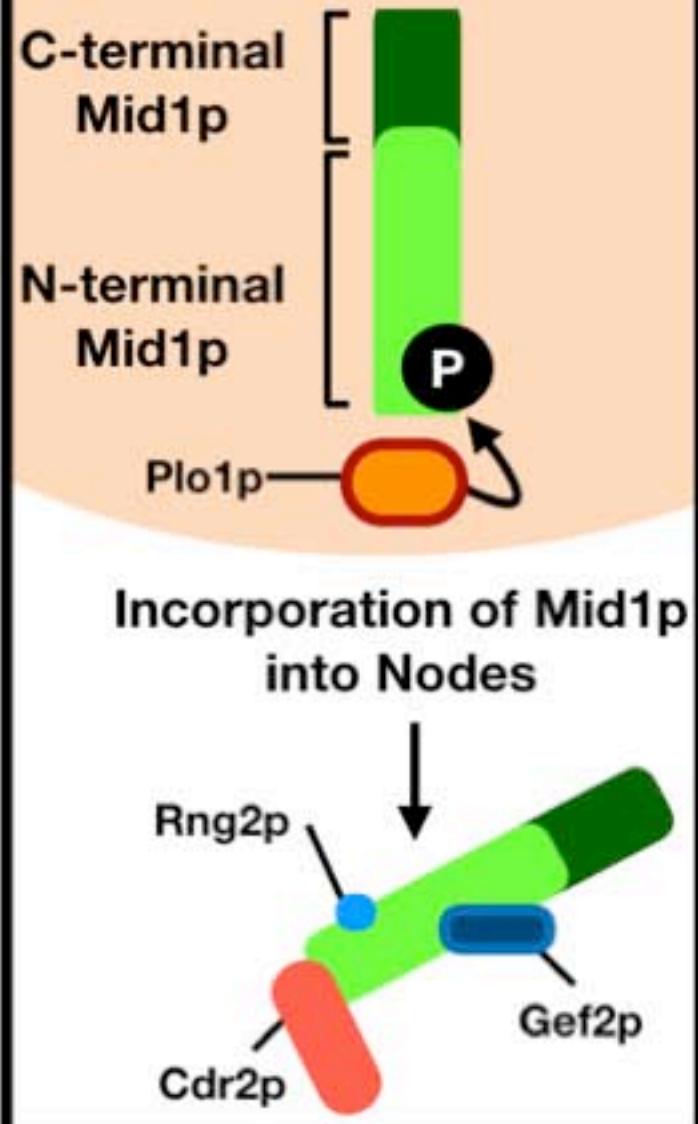
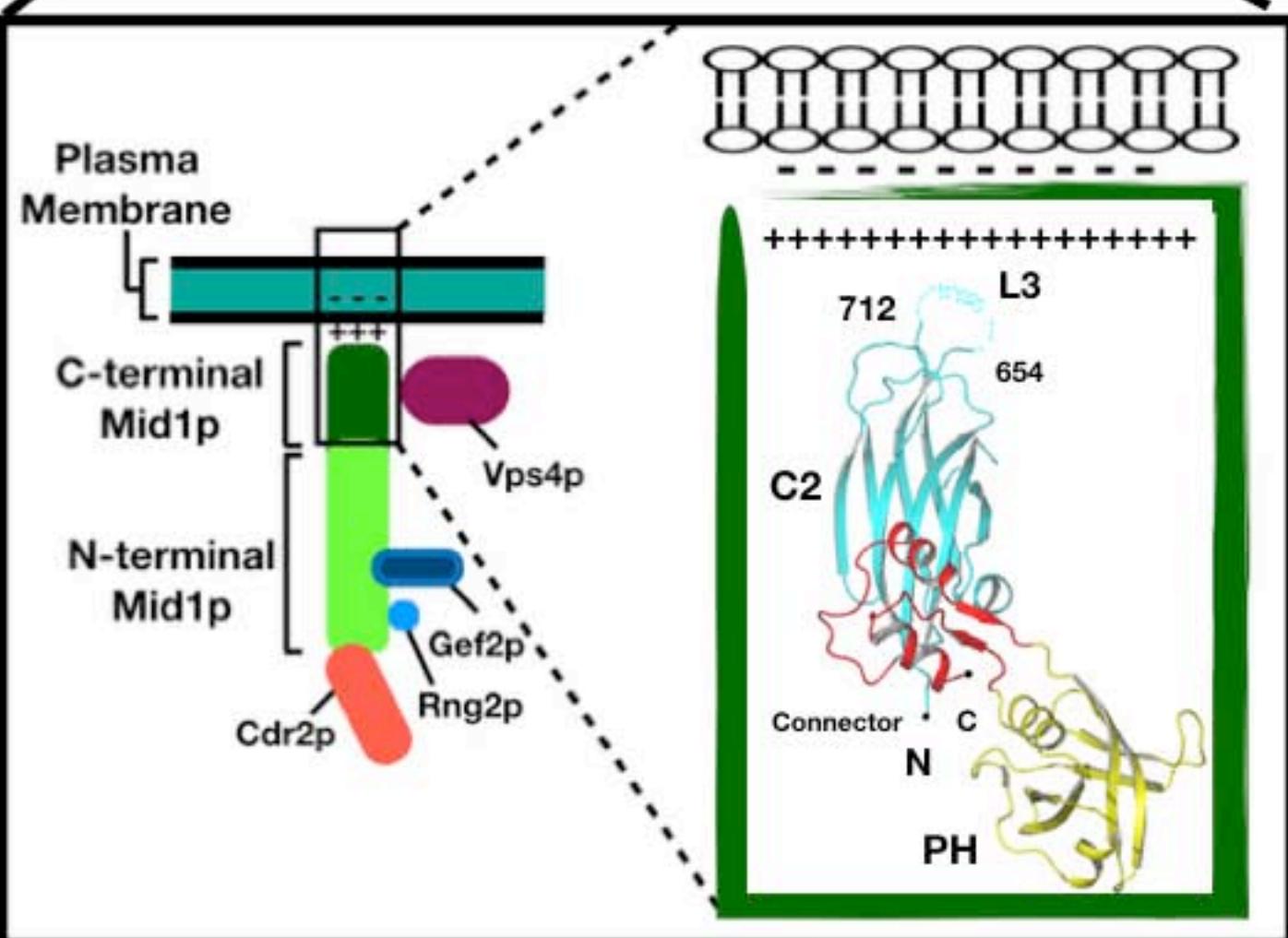
***mid1* Δ**
pJK148:*mid1* $S523D$ $S531D$ *vps4* Δ

***mid1* Δ**
pJK148:*mid1* $S523D$ $S531D$ *vps4* Δ

A

bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.13.875211>; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Early interphase **Late interphase**




Mid1p

Nucleus

Metaphase

Anaphase

Septation

B**C**

1 **S1 Table. *S. pombe* strains used in this study. "GG" number refers to the**
 2 **laboratory reference collection.** All strains *ade*⁻, unless indicated.

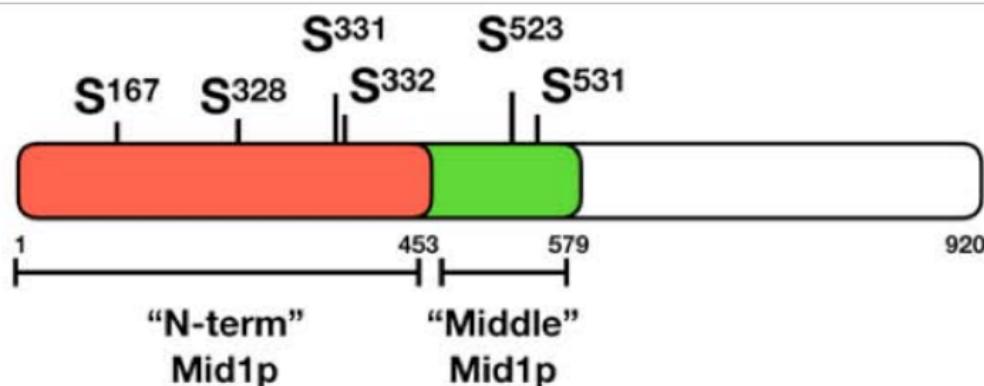
GG No.	Genotype	Annotation
1	<i>h</i> ⁻ 972	wild-type (W-T)
397	<i>h</i> ⁺ <i>ade6-210 leu1-32 ura4-D18</i>	
400	<i>h</i> ⁻ <i>ade6-216 leu1-32 ura4-D18</i>	
1129	<i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	<i>mid1Δ</i>
1347	<i>pmid-mid1-4GFP</i> (integrated; pAP221; <i>leu1⁺</i>) <i>h</i> ⁻ <i>dmf1::ura4⁺ ura4-D18 leu1-32</i>	Mid1p-GFP
1349	<i>pmid-NLS*-mid1-GFP</i> (integrated; pAP167#2; <i>leu1⁺</i>) <i>h</i> ⁻ <i>dmf1::ura4⁺ ura4-D18 leu1-32</i>	
1384	<i>pAM19</i> (D450-506 <i>mid1:12myc:leu1⁺</i>) <i>h</i> ⁻ <i>dmf1::ura4⁺ ura4-D18 leu1-32</i>	
1388	<i>pAM23</i> (NLS*- <i>mid1:12myc:leu1⁺</i>) <i>h</i> ⁻ <i>dmf1::ura4⁺ ura4-D18 leu1-32</i>	
1554	<i>h</i> ⁺ <i>dmf1::kanMX4 ura4-D18 leu1-32 ade⁺</i>	<i>mid1Δ</i>
1622	<i>h</i> ⁻ <i>vps4::ura4⁺ leu1-32 ura4-D18 ade⁺</i>	<i>vps4Δ</i>
2417	<i>h</i> ⁺ <i>ark1-T11<<kanR leu1-32 ade⁺</i>	<i>ark1-T11</i>
2432	<i>h</i> ⁺ <i>ark1-T8<<kanR leu1-32 ade⁺</i>	<i>ark1-T8</i>
2673	<i>h</i> ⁺ <i>vps4::ura4⁺ leu1-32 ura4-D18 ade⁺</i>	<i>vps4Δ</i>
2674	<i>pmid-mid1-4GFP</i> (integrated; pAP221; <i>leu1⁺</i>) <i>h</i> ⁻ <i>dmf1::ura4⁺ ura4-D18? leu1-32 vps4::ura4⁺</i>	<i>vps4Δ Mid1p-GFP</i>
2709	<i>pmid-mid1-4GFP</i> (integrated; pAP221; <i>leu1⁺</i>) <i>h</i> ⁻ <i>dmf1::ura4⁺ ura4-D18? leu1-32 vps4::ura4⁺</i>	<i>vps4Δ Mid1p-GFP</i>
2886	<i>pmid-mid1-4GFP</i> (integrated; pAP221; <i>leu1⁺</i>) <i>h</i> ⁻ <i>dmf1::ura4⁺ ura4-D18? leu1-32 ark1-T11<<kanR</i>	<i>ark1-T11 Mid1p-GFP</i>
2922	<i>pmid-mid1-4GFP</i> (integrated; pAP221; <i>leu1⁺</i>) <i>h</i> ⁺ <i>dmf1::ura4⁺ ura4-D18 leu1-32 ark1-T8<<kanR</i>	<i>ark1-T8 Mid1p-GFP</i>
3100	NLS* <i>mid1:12myc:leu1⁺</i> <i>h</i> ⁻ <i>dmf1::ura4⁺ vps4::ura4⁺ ura4-D18 leu1-32</i>	
3107	D450-506 <i>mid1:12myc:leu1⁺</i> <i>h</i> ⁻ <i>dmf1::ura4⁺ vps4::ura4⁺ ura4-D18 leu1-32</i>	
3181	pJK148: <i>mid1⁺</i> (wild-type) <i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	<i>mid1Δ pJK148:mid1⁺</i>
3185	pJK148: <i>mid1</i> S523 to A523 <i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	
3189	pJK148: <i>mid1</i> S523 to D523 <i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	
3193	pJK148: <i>mid1</i> S531 to A531 <i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	
3197	pJK148: <i>mid1</i> S531 to D531 <i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	
3201	pJK148: <i>mid1</i> S523+S531 to A523+A531 <i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	
3205	pJK148: <i>mid1</i> S523+S531 to D523+D531 <i>h</i> ⁻ <i>mid1::ura4⁺ ura4-D18 leu1-32</i>	
3218	pJK148: <i>mid1</i> S523 to A523 <i>h</i> [?] <i>mid1::ura4⁺ ark1-T11<<kanR ade⁺</i>	
3224	pJK148: <i>mid1</i> S523 to A523 <i>h</i> [?] <i>mid1::ura4⁺ vps4::ura4+ura4-D18 leu1-32</i>	
3230	pJK148: <i>mid1</i> S523 to D523 <i>h</i> [?] <i>mid1::ura4⁺ ark1-T11<<kanR ura4-C190T leu1-32</i>	

3235	pJK148: <i>mid1</i> S531 to A531 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3239	pJK148: <i>mid1</i> S531 to D531 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3242	pJK148: <i>mid1</i> S523 to A523+S531 to A531 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3246	pJK148: <i>mid1</i> S523+S531 to D523+D531 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3250	pJK148: <i>mid1</i> (wild-type) h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	<i>mid1Δ</i> pJK148: <i>mid1⁺</i> <i>ark1-T11</i>
3257	pJK148: <i>mid1</i> S523+S531 to D523+D531 h [?] <i>mid1::ura4⁺</i> <i>vps4::ura4+ ura4-D18 leu1-32</i>	
3258	pJK148: <i>mid1</i> S523+S531 to D523+D531 h [?] <i>mid1::ura4⁺</i> <i>vps4::ura4+ ura4-D18 leu1-32</i>	
3260	pJK148: <i>mid1</i> S523+S531 to A523+A531 h [?] <i>mid1::ura4⁺</i> <i>vps4::ura4+ ura4-D18 leu1-32</i>	
3264	pJK148: <i>mid1</i> S531 to D531 h [?] <i>mid1::ura4⁺</i> <i>vps4::ura4+ ura4-D18 leu1-32</i>	
3267	pJK148: <i>mid1</i> S167 to A167 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3271	pJK148: <i>mid1</i> S167 to D167 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3275	pJK148: <i>mid1</i> S328 to A328 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3280	pJK148: <i>mid1</i> S328 to D328 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3283	pJK148: <i>mid1</i> S331 to A331 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3290	pJK148: <i>mid1</i> S331 to D331 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3291	pJK148: <i>mid1</i> S332 to A332 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3295	pJK148: <i>mid1</i> S332 to D332 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3299	pJK148: <i>mid1</i> S167+S328+S331+S332 to A167+A328+A331+A332 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3305	pJK148: <i>mid1</i> S167+S328+S331+S332 to D167+D328+D331+D332 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3307	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3311	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to D167+D328+D331+D332+D523+D531 h [?] <i>mid1::ura4⁺</i> <i>ura4-D18 leu1-32</i>	
3315	pJK148: <i>mid1</i> S523 to D523 h [?] <i>mid1::ura4⁺</i> <i>vps4::ura4+ ura4-D18 leu1-32</i>	
3318	pJK148: <i>mid1</i> S531 to A531 h [?] <i>mid1::ura4⁺</i> <i>vps4::ura4+ ura4-D18 leu1-32</i>	
3321	pJK148: <i>mid1</i> S167 to A167 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3324	JK148: <i>mid1</i> S167 to D167 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3327	pJK148: <i>mid1</i> S328 to A328 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3330	pJK148: <i>mid1</i> S328 to D328 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	
3333	pJK148: <i>mid1</i> S331 to A331 h [?] <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>	

3336	pJK148: <i>mid1</i> S331 to D331 h ⁺ <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>
3339	pJK148: <i>mid1</i> S332 to A332 h ⁺ <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>
3342	pJK148: <i>mid1</i> S332 to D332 h ⁺ <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>
3345	pJK148: <i>mid1</i> S167+S328+S331+S332 to A167+A328+A331+A332 h ⁺ <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>
3349	pJK148: <i>mid1</i> S167+S328+S331+S332 to D167+D328+D331+D332 h ⁺ <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>
3352	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 h ⁺ <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>
3355	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to D167+D328+D331+D332+D523+D531 h ⁺ <i>mid1::ura4⁺</i> <i>ark1-T11<<kanR ura4-C190T leu1-32</i>
3375	pJK148: <i>mid1</i> S167 to A167 h ⁺ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3377	pJK148: <i>mid1</i> S167 to D167 h ⁺ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3383	pJK148: <i>mid1</i> S167 to A167 h ⁺ <i>mid1::ura4⁺</i> <i>vps4::ura4⁺ ura4-D18 leu1-32</i>
3392	pJK148: <i>mid1</i> S328 to A328 h ⁺ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3386	pJK148: <i>mid1</i> S328 to D328 h ⁺ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3392	pJK148: <i>mid1</i> S328 to A328 h ⁺ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3397	pJK148: <i>mid1</i> S331 to A331 h ⁺ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3400	pJK148: <i>mid1</i> S332 to A332 h ⁺ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3403	pJK148: <i>mid1</i> S523 to D523 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3407	pJK148: <i>mid1</i> S523 to A523 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3411	pJK148: <i>mid1</i> S332 to D332 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3415	pJK148: <i>mid1</i> S531 to A531 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3419	pJK148: <i>mid1</i> S167+S328+S331+S332 to A167+A328+A331+A332 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3422	pJK148: <i>mid1</i> S167+S328+S331+S332 to D167+D328+D331+D332 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3425	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3428	pJK148: <i>mid1</i> S531 to D531 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3437	pJK148: <i>mid1⁺</i> (wild-type) mid1^Δ pJK148:<i>mid1⁺</i> <i>plo1-ts35</i> h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3441	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to D167+D328+D331+D332+D523+D531 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3444	pJK148: <i>mid1</i> S523 to A523 + S531 to A531 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>
3447	pJK148: <i>mid1</i> S523 to D523 + S531 to D531 h ⁻ <i>mid1::ura4⁺</i> <i>plo1-ts35 ura4-D18 leu1-32</i>

3450	pJK148: <i>mid1</i> S167 to A167 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3456	pJK148: <i>mid1</i> S328 to A328 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3461	pJK148: <i>mid1</i> S167+S328+S331+S332 to D167+D328+D331+D332 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3463	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to D167+D328+D331+D332+D523+D531 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3467	pJK148: <i>mid1</i> S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3469	pJK148: <i>mid1</i> S332 to D332 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3473	pJK148: <i>mid1</i> S332 to A332 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3481	pJK148: <i>mid1</i> S328 to D328 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3485	pJK148: <i>mid1</i> S331 to A331 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	
3486	pJK148: <i>mid1⁺</i> (wild-type) h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	mid1Δ pJK148: <i>mid1⁺ vps4Δ</i>
3488	pJK148: <i>mid1⁺</i> S167+S328+S331+S332 to A167+A328+A331+A332 h [?] <i>mid1::ura4⁺ vps4::ura4+ ura4-D18 leu1-32</i>	

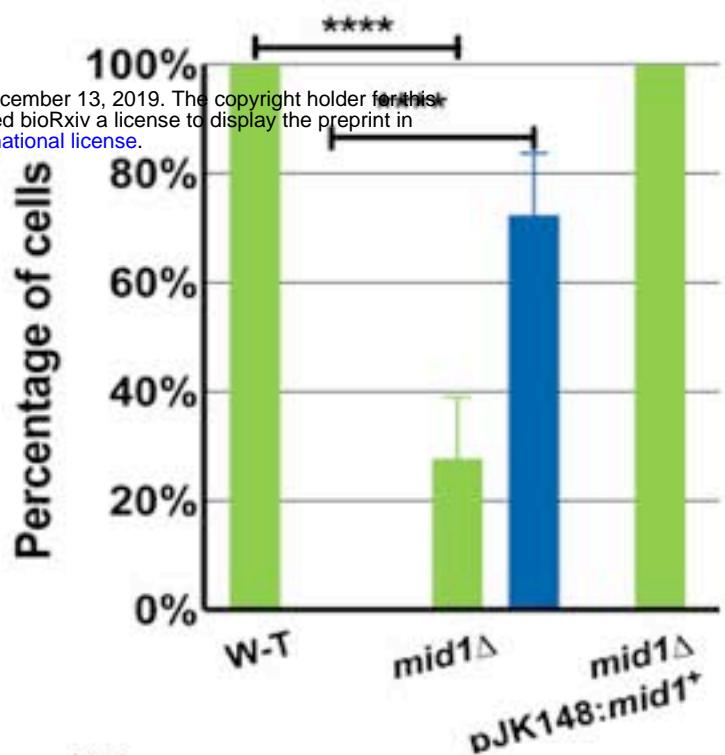
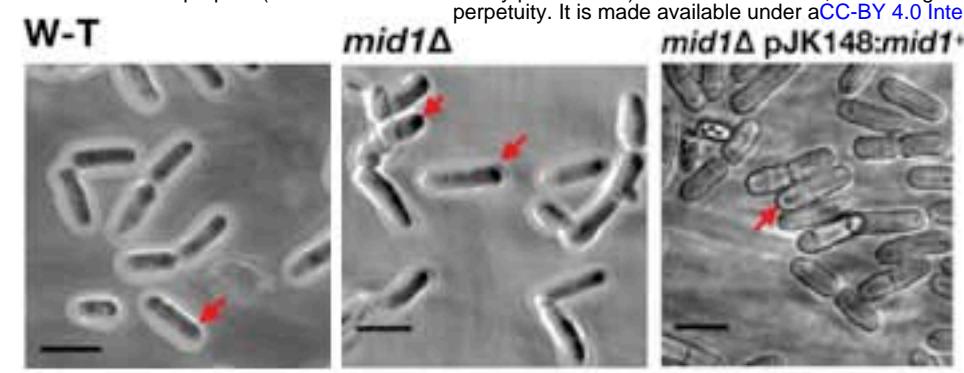
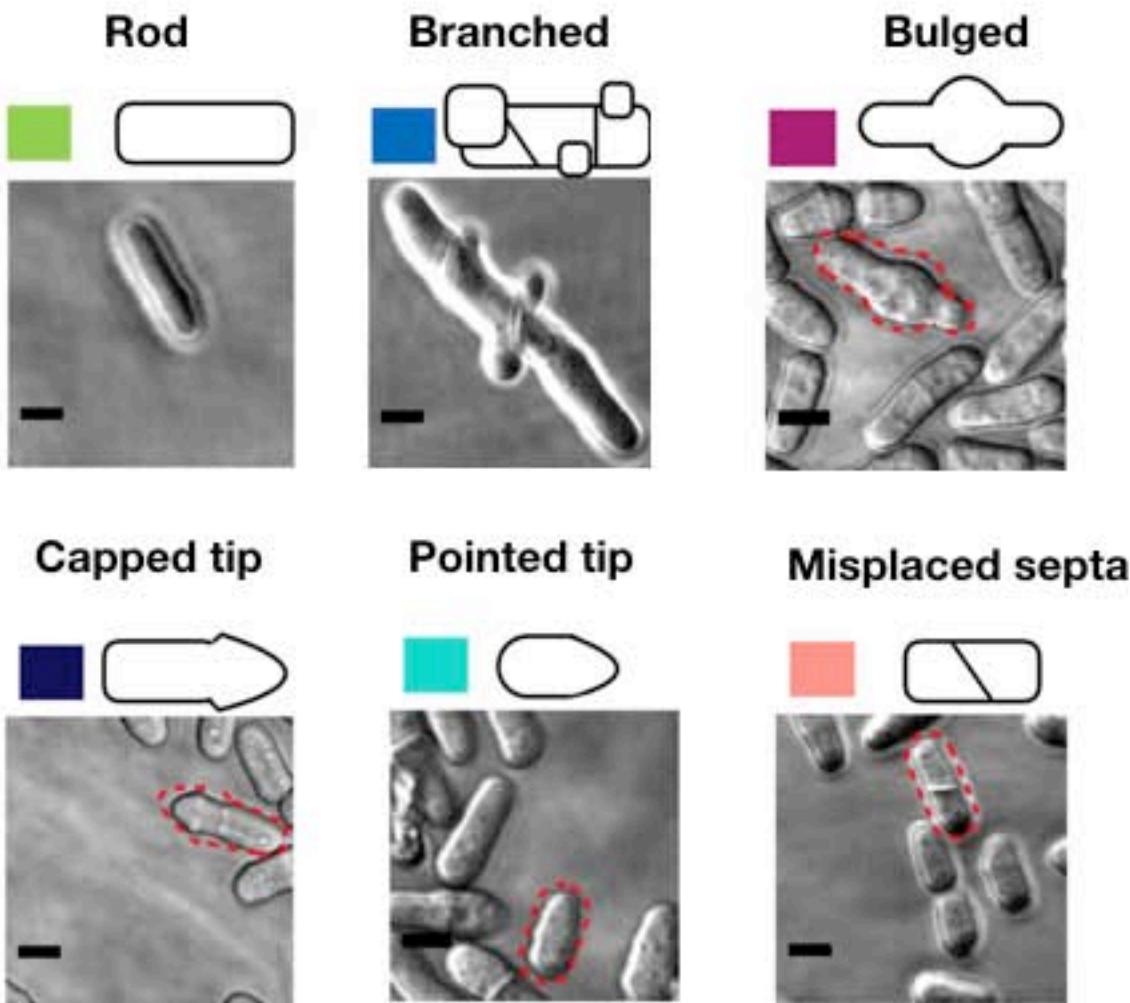
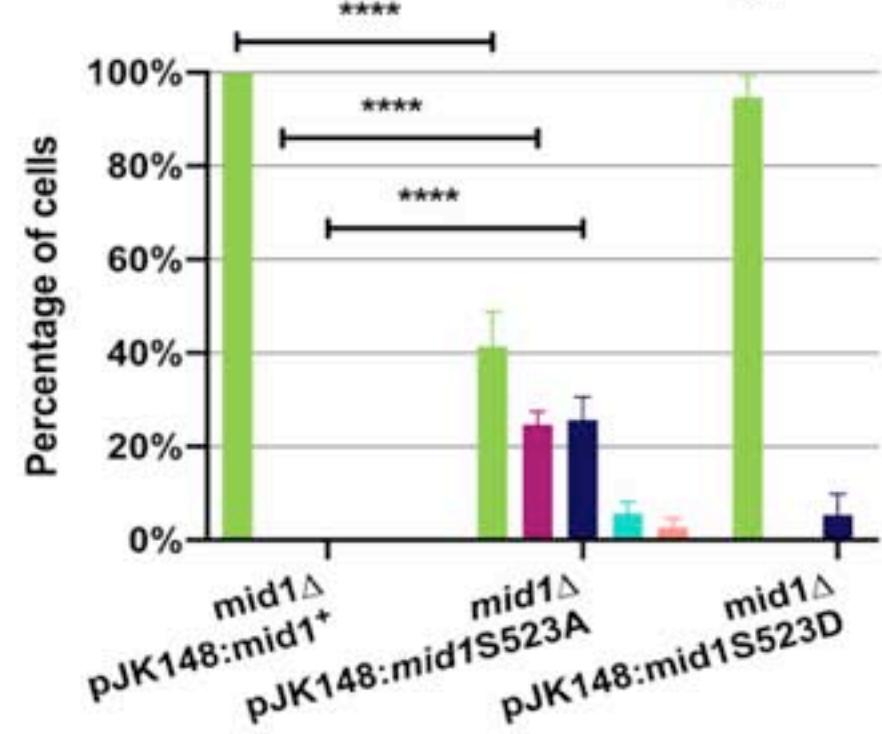
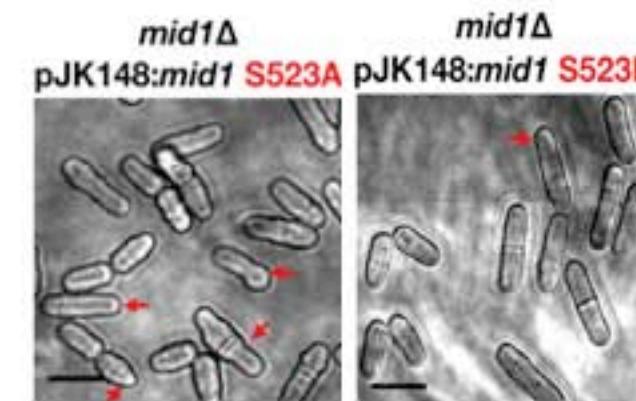
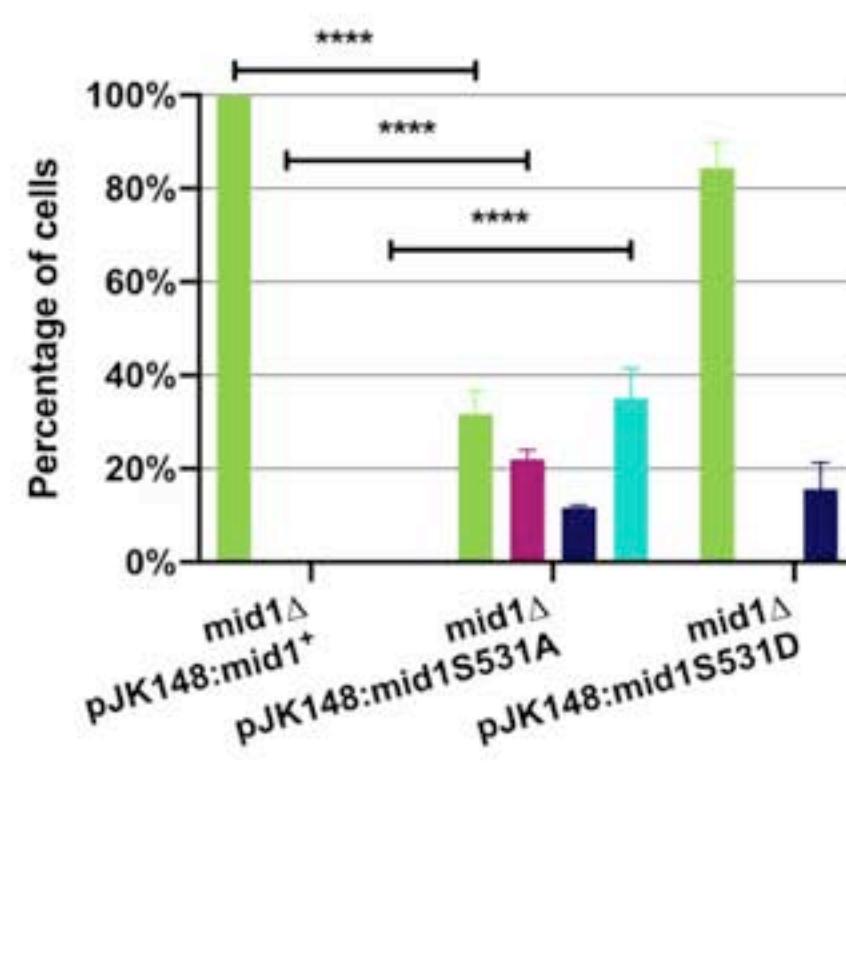
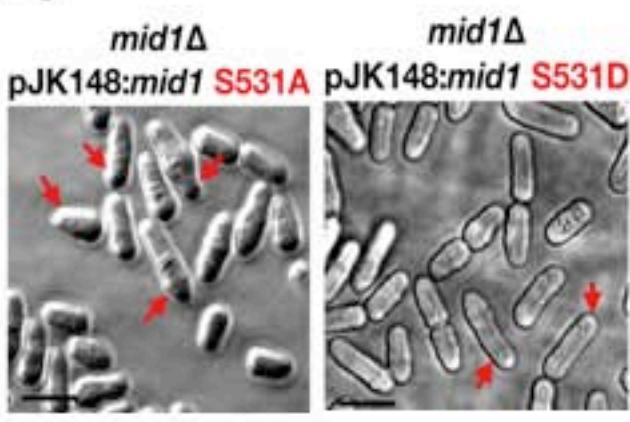
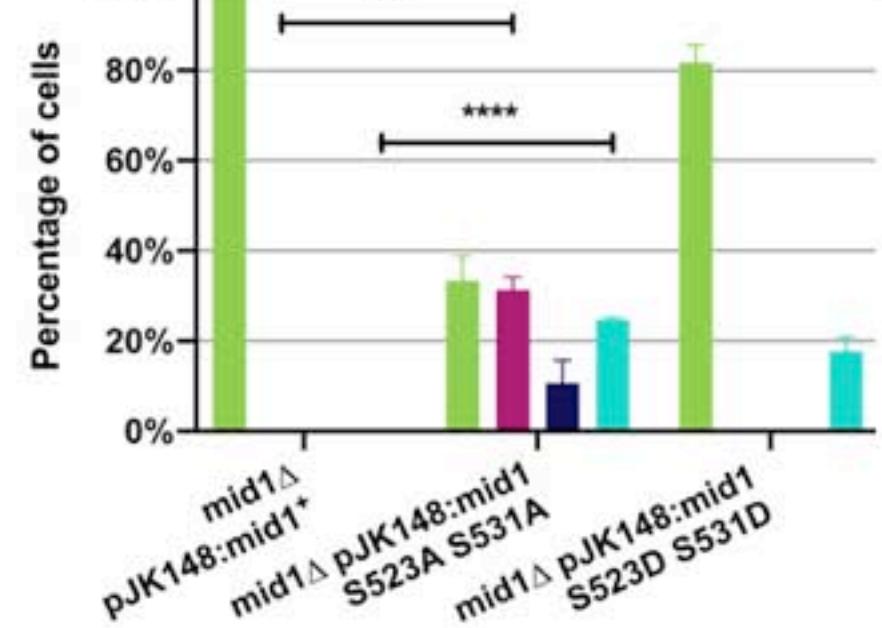
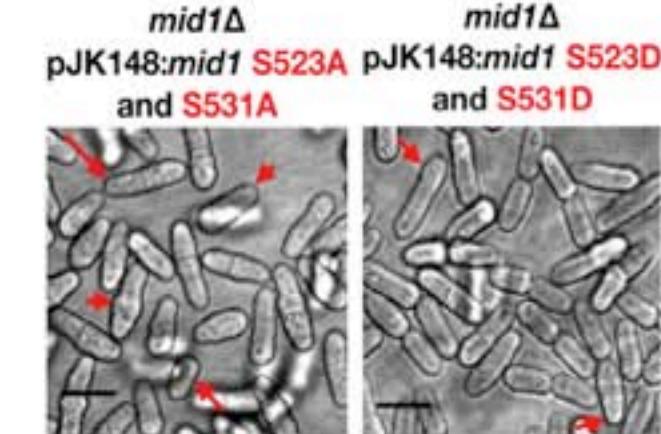
3


4

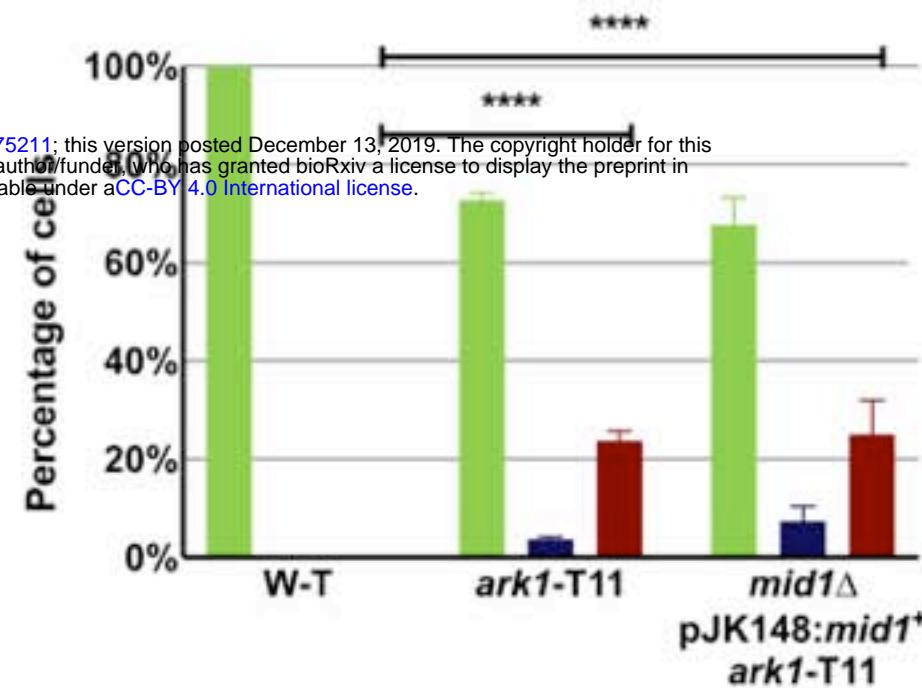
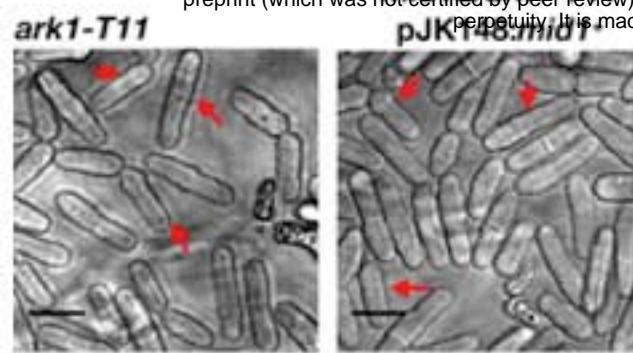
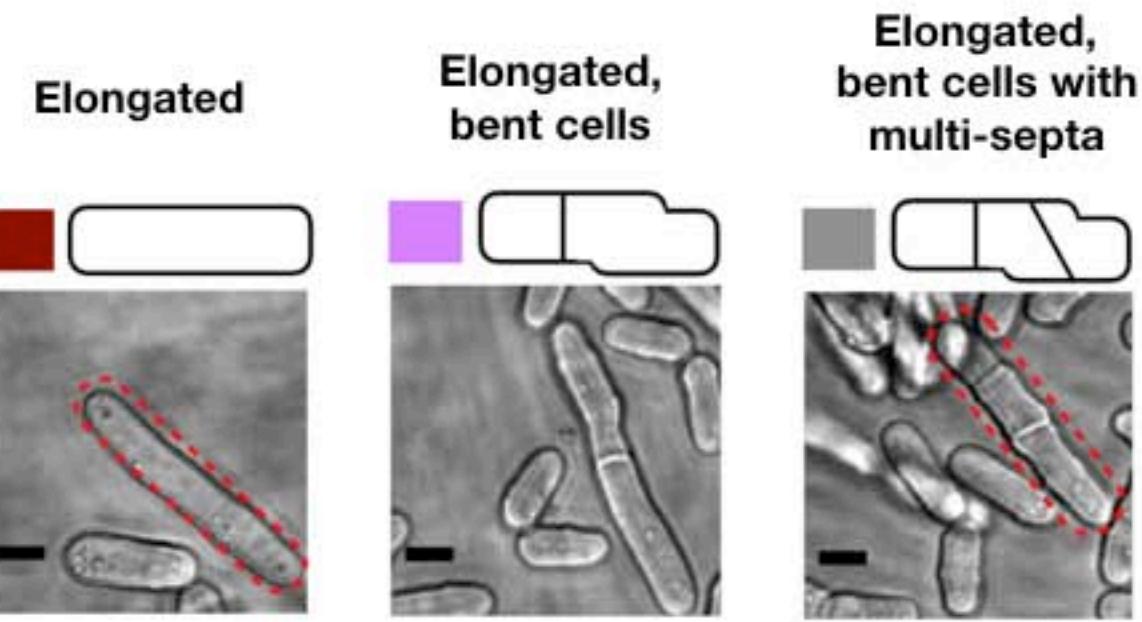
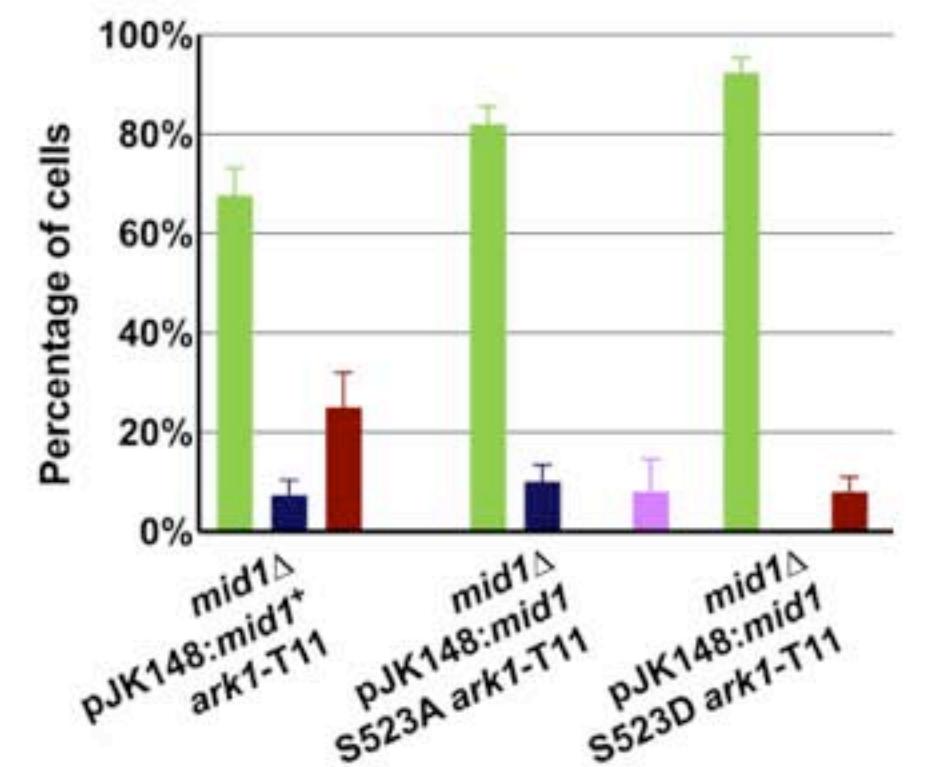
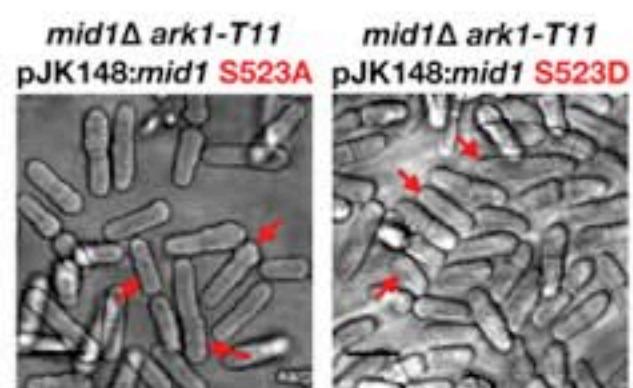
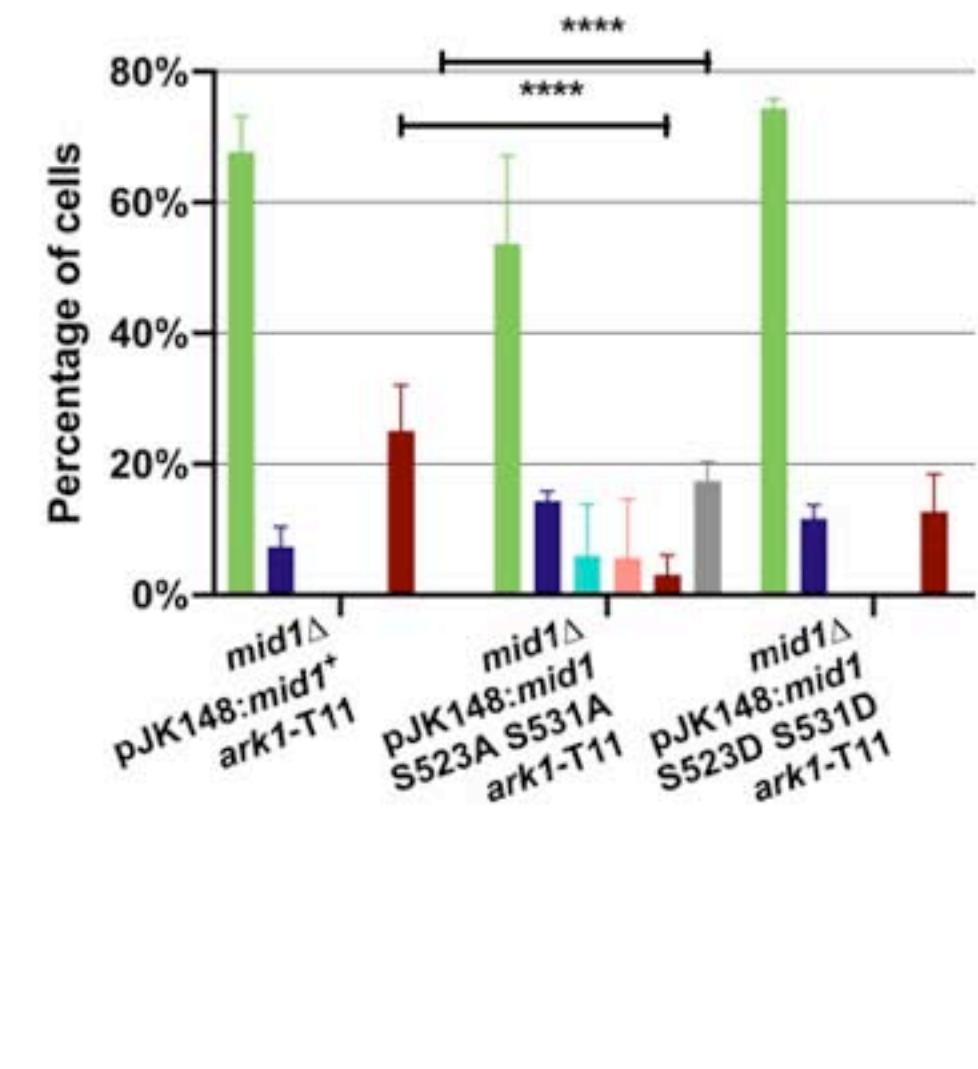
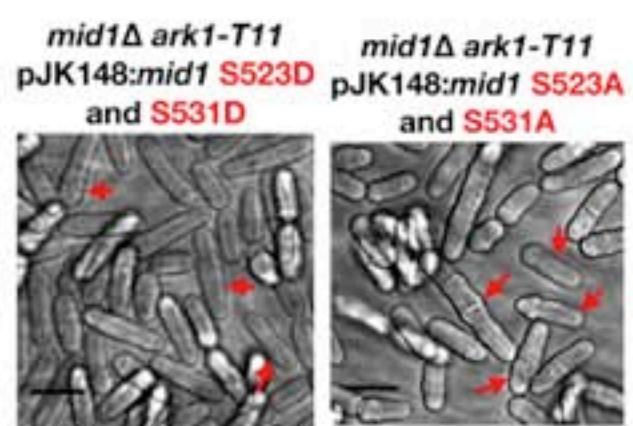
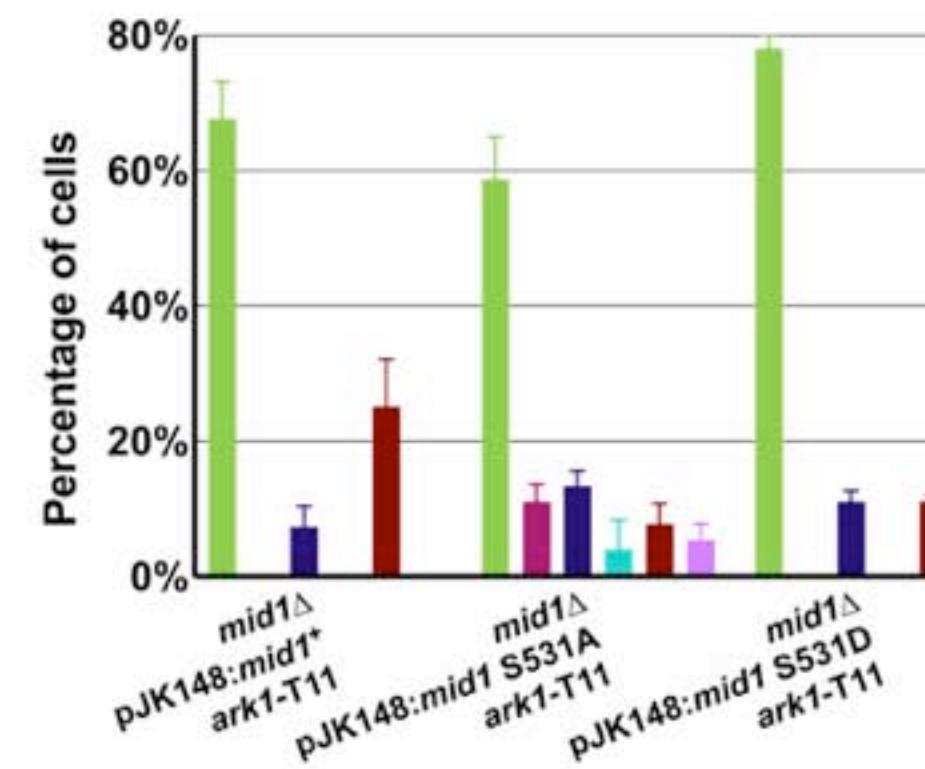
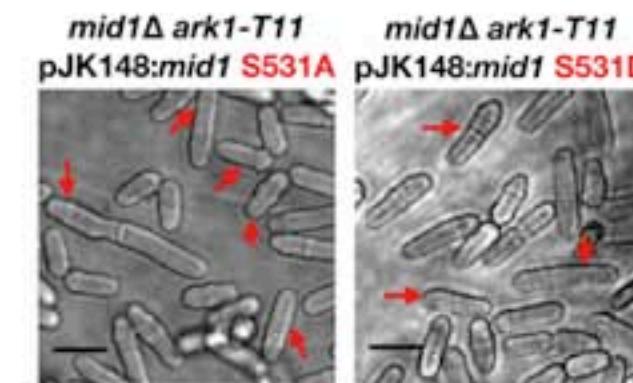
1 **S2 Table. Vector DNA constructs used in this study. "GB" number refers to the**
2 **laboratory reference collection.**

GB No.	Abbreviated plasmid vector description
880	pET-14b - His tagged, Vps4p full length, <i>Nde</i> I/ <i>Bam</i> HI Invitrogen order 13AB6ZFP
881	pGEX4T1 - GST tagged, Mid1p 1-453, <i>Bam</i> HI/ <i>Xho</i> I - "N-term" GenScript order U2640BJ110
882	pGEX4T1 - GST tagged, Mid1p 452-579, <i>Bam</i> HI/ <i>Xho</i> I - "Middle"
883	pGEX4T1 - GST tagged, Mid1p 578-799, <i>Bam</i> HI/ <i>Xho</i> I
884	pGEX4T1 - GST tagged, Mid1p 798-920, <i>Bam</i> HI/ <i>Xho</i> I - "C-term"
889	pET-14b - His tagged, Myo2p C-terminus amino acids 1394-1526, <i>Nde</i> I/ <i>Bam</i> HI GenScript order U9540CD270_2
907	<i>mid1</i> ⁺ wild-type + 1 kb upstream of ORF - 3,853 base pairs in total <i>Kpn</i> I/ <i>Sac</i> I fragment cloned into pJK148 GenScript order U2002DH100
909	<i>mid1</i> mutant (1) S523 to A523 in pJK148
911	<i>mid1</i> mutant (1) S523 to D523 in pJK148
913	<i>mid1</i> mutant (1) S531 to A531 in pJK148
915	<i>mid1</i> mutant (1) S531 to D531 in pJK148
917	<i>mid1</i> mutant (2) S523 to A523 + S531 to A531 in pJK148
919	<i>mid1</i> mutant (2) S523 to D523 + S531 to D531 in pJK148
923	<i>mid1</i> mutant (1) S167 to A167 in pJK148 GenScript order U894VEB050
924	<i>mid1</i> mutant (1) S167 to D167 in pJK148
925	<i>mid1</i> mutant (1) S328 to A328 in pJK148
926	<i>mid1</i> mutant (1) S328 to D328 in pJK148
927	<i>mid1</i> mutant (1) S331 to A331 in pJK148
928	<i>mid1</i> mutant (1) S331 to D331 in pJK148
929	<i>mid1</i> mutant (1) S332 to A332 in pJK148
930	<i>mid1</i> mutant (1) S332 to D332 in pJK148
931	<i>mid1</i> mutant (4) S167 to A167 + S328 to A328 + S331 to A331+ S332 to A332 in pJK148
932	<i>mid1</i> mutant (4) S167 to D167 + S328 to D328 + S331 to D331+ S332 to D332 in pJK148
933	<i>mid1</i> mutant (6) S167 to A167 + S328 to A328 + S331 to A331+ S332 to A332 + S523 to A523 + S531 to A531 in pJK148
934	<i>mid1</i> mutant (6) S167 to D167 + S328 to D328 + S331 to D331+ S332 to D332 + S523 to D523 + S531 to D531 in pJK148
935	pGEX4T1 - GST tagged, Mid1p 1-453, <i>Bam</i> HI/ <i>Xho</i> I - "N-term" S167 to A167 GenScript order U8198EF120
936	pGEX4T1 - GST tagged, Mid1p 1-453, <i>Bam</i> HI/ <i>Xho</i> I - "N-term" S328 to A328
937	pGEX4T1 - GST tagged, Mid1p 1-453, <i>Bam</i> HI/ <i>Xho</i> I - "N-term" S331 to A331
938	pGEX4T1 - GST tagged, Mid1p 1-453, <i>Bam</i> HI/ <i>Xho</i> I - "N-term" S332 to A332
939	pGEX4T1 - GST tagged, Mid1p 1-453, <i>Bam</i> HI/ <i>Xho</i> I - "N-term" S167 to A167 + S328 to A328 + S331 to A331 + S332 to A332
940	pGEX4T1 - GST tagged, Mid1p 452-579, <i>Bam</i> HI/ <i>Xho</i> I - "Middle" S523 to A523
941	pGEX4T1 - GST tagged, Mid1p 452-579, <i>Bam</i> HI/ <i>Xho</i> I - "Middle" S531 to A531
942	pGEX4T1 - GST tagged, Mid1p 452-579, <i>Bam</i> HI/ <i>Xho</i> I - "Middle" S523 to A523 + S531 to A531

1 **S3 Table. Summary of *S. pombe* global proteomic studies of identified Mid1p**
 2 **phospho-sites.**










Study	Total number of phosphorylation events	Mid1p phospho-sites				Reference
		Ref. No.	Mid1p Residue position	Ref. No.	Mid1p Residue position	
1	8000	7140	S15	7150	S335	[21]
		7141	S18	7151	S110	
		7142	S167	7152	S112	
		7144	S24	7153	S344	
		7145	S27	7154	S347	
		7146	S328	9637	T336	
		7148	S331	9638	T111	
		7149	S332	10,040	Y333	
		3150	S7	3156	S328	
2	3682	3151	S167	3157	S331	[22]
		3153	S24	3158	S109	
		3154	S27	3159	S344	
		3155	28	3160	S347	
				20,982	S523	
3	12,524	10,736	S218	10,749	S434	[23]
		10,738	S24	10,750	T435	
		5831	S167	10,755	S440	
		10,742	S331	10,756	S444	
		10,743	S328	10,757	S445	
		10,744	S332	10,758	S532	
		10,745	T336	10,759	S527	
		10,746	S403	10,760	S531	
		10,747	S432	10,764	T34	
		10,748	S433	10,765	S42	
				10,767	S335	
4	7298	5835	S167	5844	S403	[24]
		5836	S218	5845	S434	
		5837	S24	5846	S444	
		5838	S27	5847	S531	
		5839	S28	5848	S541	
		5840	S328	5849	S7	
		5842	S331	5850	T34	
		5843	S395	5851	T405	

Amino acid	167	328	331	332	523	531	GG No.
<i>mid1</i> W-T	S	S	S	S	S	S	3181
S167A	A	-	-	-	-	-	3267
S167D	D	-	-	-	-	-	3271
S328A	-	A	-	-	-	-	3275
S328D	-	D	-	-	-	-	3279
S331A	-	-	A	-	-	-	3283
S331D	-	-	D	-	-	-	3287
S332A	-	-	-	A	-	-	3291
S332D	-	-	-	D	-	-	3295
S523A	-	-	-	-	A	-	3185
S523D	-	-	-	-	D	-	3189
S531A	-	-	-	-	-	A	3193
S531D	-	-	-	-	-	D	3197
Multi	A	A	A	A	-	-	3299
Multi	D	D	D	D	-	-	3303
Multi	-	-	-	-	A	A	3201
Multi	-	-	-	-	D	D	3205
Multi	A	A	A	A	A	A	3307
Multi	D	D	D	D	D	D	3311










(A)

bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.13.875211>; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

(B)**(C)****(D)****(E)**

(A)

bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.13.875211>; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

(B)**(C)****(E)****(D)**