

1 Global drivers of diversification in a marine species complex

2

3 Catarina N.S. Silva¹, Nicholas P. Murphy², James J. Bell³, Bridget S. Green⁴, Guy Duhamel⁵, Andrew C.
4 Cockcroft⁶, Cristián E. Hernández⁷, Jan M. Strugnell^{1,2}

5

6

7 ¹Centre of Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Qld 4810,
8 Australia

9 ²Department of Ecology, Environment & Evolution, La Trobe University, Melbourne, Vic 3086, Australia

10 ³School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand

11 ⁴Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia

12 ⁵Département Adaptations du Vivant, BOREA, MNHN, Paris, 75005, France

13 ⁶Department of Agriculture, Forestry and Fisheries, Cape Town, 8012, South Africa

14 ⁷Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción,
15 Casilla 160C, Concepción, Chile

16

17

18 Abstract

19 Investigating historical gene flow in species complexes can indicate how environmental and reproductive
20 barriers shape genome divergence before speciation. The processes influencing species diversification under
21 environmental change remain one of the central focal points of evolutionary biology, particularly for marine
22 organisms with high dispersal potential. We investigated genome-wide divergence, introgression patterns and
23 inferred demographic history between species pairs of all extant rock lobster species (*Jasus* spp.), a complex
24 with long larval duration, that has populated continental shelf and seamount habitats around the globe at
25 approximately 40°S. Genetic differentiation patterns revealed the effects of the environment and geographic
26 isolation. Species associated with the same habitat structure (either continental shelf or seamount/island)
27 shared a common ancestry, even though the habitats were not adjacent. Differences in benthic temperature
28 explained a significant proportion (41.3%) of the genetic differentiation. The Eastern Pacific species pair of *J.*
29 *caveorum* and *J. frontalis* retained a signal of strict isolation following ancient migration, whereas species pairs
30 from Australia and Africa and seamounts in the Indian and Atlantic oceans included events of introgression
31 after secondary contact. Parameters estimated for time in isolation and gene flow were congruent with
32 genetic differentiation metrics suggesting that the observed differentiation patterns are the product of
33 migration and genetic drift. Our results reveal important effects of habitat and demographic processes on the
34 divergence of species within the genus *Jasus* providing the first empirical study of genome-wide drivers of
35 diversification that incorporates all extant species in a marine genus with long pelagic larval duration.

36

37 **Introduction**

38

39 The discrete categorization of speciation modes as sympatric, allopatric or parapatric is now
40 considered to be overly simplistic (Butlin et al. 2008). Several events (or modes of speciation) can influence
41 the biogeographic states of populations at different time periods during divergence, and as a result, the
42 speciation process is now generally considered to be gradual and reticulated (Smadja & Butlin 2011; Feder *et*
43 *al.* 2012). However, the processes responsible for influencing species diversification are still poorly understood
44 and remain one of the central focal points of ecology and evolutionary biology (Arendt *et al.* 2016).

45 Reconstructing the diversification history for species complexes can be challenging for non-model
46 marine organisms (e.g. Palero *et al.* 2009; Momigliano *et al.* 2017) as many have large population sizes and
47 the potential for long distance dispersal, which frequently result in weak genetic differentiation (Ovenden
48 2013). For these species, it is often difficult to determine whether weak genetic differentiation is actually
49 present or masked by the large population sizes (Lowe & Allendorf 2010). In addition, marine species with
50 long distance dispersal can quickly fill available niches, leaving fewer opportunities for *in situ* cladogenesis
51 (Pinheiro *et al.* 2017). As a result, only a few studies have reconstructed the history of diversification in marine
52 species (e.g. Crow *et al.* 2010; Le Moan *et al.* 2016; Momigliano *et al.* 2017; Souissi *et al.* 2018; Titus *et al.*
53 2019).

54 Changes in the distribution of marine species resulting from historical climatic variation have been an
55 important driver of diversification across taxa (Davis *et al.* 2016). Climatic fluctuations during the late
56 Pleistocene, in particular, resulted in periods of isolation intercalated by contact and gene flow between
57 lineages (Hewitt 2000). These events dramatically transformed available habitat causing major shifts in species
58 distribution ranges and shaping the genetic structure of many marine species worldwide (Benardine Jeffrey *et*
59 *al.* 2007; Kenchington *et al.* 2009; Van Oppen *et al.* 2011; Strugnell *et al.* 2012). Sequential glacial and
60 interglacial periods have then further shaped the divergence history of species as a result of periods of
61 isolation intercalated by gene flow (Weigelt *et al.* 2016). A better understanding of the species-specific
62 historical context of divergence is therefore needed to estimate the actual timing and role of gene flow during
63 speciation. Understanding how historical climatic fluctuations shaped species divergence provides clues on
64 how species might respond to future environmental changes, which is vital for effective conservation and
65 management plans (Olivieri *et al.* 2016).

66 Advances in next-generation sequencing (NGS) now provide the opportunity to investigate genome-
67 wide patterns of differentiation along the speciation continuum, allowing the better detection of changes as
68 two lineages diverge from one another on the path to reproductive isolation (Feder *et al.* 2012). In particular,
69 these methods provide effective tools solutions for species with no reference genomes (Catchen *et al.* 2017),
70 which is the case for many marine species including rock lobsters. This technology has also allowed the

71 integration of genomic and environmental data which can be used for testing the hypothesis that selection is
72 more efficient than drift in opposing the homogenizing effects of migration (Manel & Holderegger 2013). In
73 addition, this approach can also detect candidate markers underlying adaptation to local environments for
74 species with moderate to long distance dispersal potential (e.g. Benestan *et al.* 2016; Sandoval-Castillo *et al.*
75 2018). This robust approach is particularly useful in the marine environment where isolation and speciation is
76 increasingly found to be associated with selection/local adaptation (Rocha *et al.* 2005; Momigliano *et al.* 2017).
77 Improvements in methodology have further enabled the use of genome-wide polymorphism data to infer
78 complex demographic histories and the relative influence of gene flow and historical processes on the genomic
79 landscape. For example, in the marine environment this approach has been used in the European anchovy
80 *Engraulis encrasicolus* (Le Moan *et al.* 2016), the Atlantic Salmon *Salmo salar* (Rougemont & Bernatchez 2018)
81 and the corkscrew sea anemone *Bartholomea annulate* (Titus *et al.* 2019). One increasingly popular approach
82 is demographic inference based on the computation of a joint allele frequency spectrum (JAFS) from genetic
83 polymorphism data (Gutenkunst *et al.* 2009; Excoffier *et al.* 2013). This approach allows an estimation of
84 several demographic parameters such as population sizes, migration rates and time intervals since specific
85 events using a composite likelihood. Therefore, the role of historical events in the diversification and
86 speciation of marine species can now be more accurately determined.

87 Rock lobsters (*Jasus* spp.) are a useful model to study the role of historical climatic variations and gene
88 flow on divergence. The six extant *Jasus* lobster species (*J. caveorum*, *J. edwardsii*, *J. frontalis*, *J. lalandii*, *J.*
89 *paulensis* and *J. tristani*) are distributed in a narrow latitudinal band (~25° to 47°; Fig. 1) in the Southern
90 Hemisphere (Booth 2006) up to 200 m (Holthuis 1991) and possibly up to 600 m depth (Duhamel personal
91 communication). These animals have a long pelagic larval duration (PLD; up to two years for *J. edwardsii*), with
92 the potential for extensive dispersal (Bradford *et al.* 2015). Despite such a long PLD, all species have a
93 restricted latitudinal distribution; for example, *J. caveorum* is only known from a single seamount in the
94 eastern South Pacific Ocean (Webber & Booth 1995). Phylogenetic relationships between *Jasus* species have
95 been investigated with a limited number of mtDNA markers (Brasher *et al.* 1992; Ovenden *et al.* 1997).
96 Ovenden *et al.* (1997) identified a clade containing *J. edwardsii*, *J. lalandii* and *J. frontalis*, however, the relative
97 branching order was not resolved by analysis of sequence variation in the cytochrome c oxidase subunit I (COI)
98 and the 16S ribosomal RNA sequences. In addition, the species *J. tristani* and *J. paulensis*, which occur in islands
99 and seamounts off the southern Atlantic and Indian Oceans, respectively, were hypothesized to have come
100 into secondary contact during past glacial periods, resulting in low levels of mtDNA differentiation (Ovenden
101 *et al.* 1997; Groeneveld *et al.* 2012). At the species level, population genetic studies have demonstrated a
102 general pattern of low, yet often significant, differentiation (Ovenden *et al.* 1992; Matthee *et al.* 2007; Porobić
103 *et al.* 2013; Thomas & Bell 2013; Villacorta-Rath *et al.* 2016). Post-settlement selection and chaotic genetic
104 patchiness, also described as a shifting, ephemeral genetic pattern, has also been observed in *J. edwardsii*,

105 highlighting the uncertainties in predicting connectivity between populations of highly dispersive marine
106 organisms (Villacorta-Rath *et al.* 2018).

107 Although a few studies suggest a recent divergence between *Jasus* lineages (Pollock 1990; Ovenden
108 *et al.* 1997), relatively little attention has focused on investigating diversification processes in *Jasus* lobsters.
109 Here we investigate speciation processes in all the extant lobster species of the genus *Jasus*. This study aims
110 to test for evidence of admixture/introgression between species, investigating the genetic patterns associated
111 with habitat structure (continental shelf or seamount/island) and inferring the demographic history of *Jasus*
112 spp. using genome-wide single nucleotide polymorphisms (SNP).

113

114

115 **Methods**

116 *Sampling, DNA extractions and sequencing*

117

118 Tissue samples of *Jasus* spp. were collected between 1995 and 2017 from 17 locations throughout the
119 entire genus' range (Fig. 1). A total of 375 samples were collected (11 *Jasus caveorum*, 53 *J. frontalis*, 41 *J.*
120 *tristani*, 129 *J. lalandii*, 49 *J. paulensis* and 92 *J. edwardsii*). Tissue was stored in 70% ethanol before processing.
121 Total genomic DNA of *J. caveorum* museum samples was extracted using the QIAamp DNA Micro Kit (Qiagen)
122 according to the manufacturer's instruction. The remaining tissue samples were extracted using NucleoMag®
123 Tissue (Macherey-Nagel) following to the manufacturer's instructions.

124 Library preparation and sequencing was conducted by Diversity Arrays Technology, Canberra,
125 Australia and followed standard protocols of DArTseq™ genotyping technology (Kilian *et al.* 2012). Briefly,
126 approximately 100 ng (2 µL) of each sample was digested with the restriction enzymes PstI and SphI, and
127 unique barcode sequences simultaneously ligated onto the ends of each resulting fragment as per Kilian *et al.*
128 2012. The PstI-compatible adapter included an Illumina flow-cell attachment sequence, a primer sequence
129 and unique barcode, with the reverse SphI-compatible adaptor contained in the flow-cell attachment region.
130 A minimum of 15% random technical replicates were included for downstream quality control. Each sample
131 with fragments containing both PstI and SphI cut sites was amplified in PCR reactions using the following
132 conditions: 94 °C for 1 min then 30 cycles of 94 °C for 20 s, 58 °C for 30 s, 72 °C for 45 s, and 72 °C for 7 min.
133 Samples were checked visually on an agarose gel to ensure complete digestion and uniform range of fragment
134 sizes. Using approximately 10 µL of each sample, samples were sequenced on a single flow-cell lane on the
135 Illumina HiSeq2500 for 77 cycles.

136

137

138

139 De novo assembly and variant calling

140

141 Libraries were demultiplexed and reads were filtered for overall quality ($-c$, $-q$ and $-r$ options) using
142 *process_radtags* in STACKS v.2.0b9 (Catchen *et al.* 2013). The Stacks pipeline *denovo_map.pl* was executed to
143 run each of the Stacks modules individually (*ustacks*, *cstacks*, *sstacks* and *populations*). The formation of loci
144 was allowed with a maximum of two nucleotides between stacks ($M = 2$) and a minimum stack depth of three
145 ($m = 3$) among reads for accurate calling (*ustacks* module). Reads were aligned *de novo* with each other, and
146 a catalogue of putative RAD tags was created (*cstacks* module). Putative loci were searched against the catalog
147 (*sstacks* module) and further filtering was then conducted in the *populations* module.

148 Retained reads were present in at least 70% of samples within each species, were detected in all
149 species, had a rare allele frequency of at least 2% and had no more than 2 alleles detected. Potential paralogs
150 were excluded by removing markers with heterozygosity > 0.50 within samples and analyses were restricted
151 to one random SNP per locus (using *--write_random_snp*). These filtering steps aimed to exclude as many SNPs
152 as was possible with genotyping errors and missing data.

153

154 *Genetic diversity and population structure*

155

156 Allelic richness, pairwise F_{ST} values and respective p-values were estimated using *hierfstat* package in
157 R (Goudet 2005). The R package *adegenet* was used to estimate observed and expected heterozygosity,
158 inbreeding coefficients and for discriminant analyses of principal components (DAPC) and membership
159 probability plots (Jombart 2008). Outlier analyses were conducted in BayeScan to look for signatures of
160 selection. Prior odds were set to 100 to minimize chances of false positives with 5,000 pilot runs, followed by
161 100,000 iterations (5,000 samples, a thinning interval of 10, and a burn-in of 50,000).

162

163 *Environmental data collection and analyses*

164

165 Initially, 13 environmental variables were obtained from Bio-Oracle (Assis *et al.* 2018; Table S1). Only
166 uncorrelated variables ($r < 0.6$) were retained resulting in seven layers (surface and benthic temperature mean,
167 surface salinity, surface and benthic current velocity, benthic iron and surface phytoplankton). Multiple
168 regression of distance matrices (MRDM; Legendre *et al.*, 2014) was used to examine the association of
169 geographic distance (estimated as the shortest path distance in the ocean) with patterns of genetic
170 differentiation (measured as pairwise F_{ST} values), using the R package *ecodist* (Goslee & Urban 2007).
171 Redundancy analysis (RDA; Forester *et al.* 2018) was used to investigate genotype-environment associations

172 using the R package vegan (Oksanen *et al.* 2019). Significance was assessed using a permutation test (999
173 permutations) for redundancy analysis using the function *anova.cca()*.

174

175 *Relationships among lineages*

176

177 The program TREEMIX v1.12 (Pickrell & Pritchard 2012) was used to further investigate historical
178 relationships among lineages. A maximum-likelihood (ML) phylogeny was first inferred and then single
179 migration events between branches were sequentially added to determine whether migration/admixture
180 events improve the likelihood fit. To formally test for admixture between *Jasus* spp., the three-population test
181 (Reich *et al.* 2009) included with TREEMIX was used. In this test, the f_3 (X; A,B) statistic is negative when a
182 population X does not form a simple tree with populations A and B, but rather may be a mixture of A and B.

183

184 *Demographic modelling*

185

186 Previous analysis suggests evidence of admixture between species pairs, and so we tested several
187 hypothesis of divergence modes, aiming to identify speciation events through time, for each closely related
188 pair of species: *J. caveorum* - *J. frontalis*, *J. edwardsii* - *J. lalandii* and *J. tristani* - *J. paulensis*. The species pairs
189 were selected based on their genetic and morphological relationships (Holthuis & Sivertsen 1967; George &
190 Kensler 1970; Brasher *et al.* 1992; Ovenden *et al.* 1997; Groeneveld *et al.* 2012; this study). For each pair, six
191 models were built representing alternative modes of divergence considering possible scenarios: (SI) Strict
192 Isolation, where the environment (e.g. sea level change and ocean currents) promoted allopatry; (IM)
193 Isolation-with-Migration, with continuous gene flow through the speciation process; (AM) Ancient Migration,
194 with an ancient gene flow event but recent isolation; (SC) Secondary Contact, with a recent gene flow event
195 after past isolation; (PAM) Ancient Migration with two periods of gene flow, with two ancient gene flow events
196 but recent isolation; and (PSC) Secondary Contact with two periods of contact, two recent gene flow events
197 after past isolation. Six additional models were built to include expansion/contraction events in the initial
198 models (suffix 'ex'). All models were implemented allowing for asymmetric migration rates (m12, m21).

199 Demographic inference was performed using the diffusion approximation method implemented in the
200 software *dadì* (Gutenkunst *et al.* 2009). The function *vcf2dadi* in the R package *radiator* (Gosselin 2017) was
201 used to create *dadì* SNP input files. We used the folded joint site frequency spectrum (JSFS) for model selection
202 because the closest out-group (*Sagmariasus verreauxi*) was too distant (diverged around 11 Mya; Ovenden *et*
203 *al.* 1997), which resulted in a highly reduced number of orientable polymorphisms.

204 In total, 12 models were tested per species pair, fitted with the observed joint site frequency spectrum
205 (SFS) using 20 replicate runs per model and the best model was retained (Fig. S4). The Akaike information
206 criterion (AIC) was used to perform comparisons among models (Sakamoto *et al.* 1986).

207 To compare among nested models of increasing complexity and address over-parametrization issues
208 we used the comparative framework of Tine *et al.* (2014) by penalizing models which contain more
209 parameters. For each species pair, a score was estimated for each model using:

210

211
$$\text{Score} = \frac{(\Delta_{\max} - \Delta\text{AIC}_i)}{\Delta_{\max}} \quad (1)$$

212

213 where, Δ_{\max} corresponds to the difference in AIC between the worst and the best performing model ($\Delta_{\max} =$
214 $\text{AIC}_{\max} - \text{AIC}_{\min}$) and $\Delta\text{AIC}_i = \text{AIC}_i - \text{AIC}_{\min}$. Therefore, the worst model has a score of 0 and the best model has a
215 score of 1. To evaluate the relative probabilities of the different models within each species pair, Akaike
216 weights (W_{AIC}) were also calculated following:

217

218
$$W_{\text{AIC}} = \frac{e^{\frac{-(\Delta\text{AIC}_i)}{2}}}{\sum_{i=1}^R e^{\frac{-(\Delta\text{AIC}_i)}{2}}} \quad (2)$$

219

220 where R corresponds to the total number of models considered (R=12).

221 Demographic parameters were converted into indicative biologically units, given the missing crucial
222 information about mutation rate per generation in *Jasus* spp. The ancestral effective population size (N_{ref})
223 before split for each species pair was estimated following:

224

225
$$N_{\text{ref}} = \frac{\theta}{4L\mu} \quad (3)$$

226

227 with θ being the optimal multiplicative scaling factor, μ the mutation rate (fixed at 8×10^{-8} mutations per site
228 per generation; Obbard *et al.* 2012) and L the effective length of the genome explored:

229

230
$$L = \frac{zy73}{x} \quad (4)$$

231

232 where x is the number of SNPs originally detected from y RAD-tags of 73 bp present in the initial data set, and
233 z the number of SNPs retained, following Rougeux *et al.* (2017). Estimated units in $2N_{\text{ref}}$ were converted to
234 years assuming a generation time of 10 years (Pecl *et al.* 2009). Estimated migration rates were divided by
235 $2N_{\text{ref}}$ to obtain the proportion of migrants in every generation.

236 **Results**

237 *Genetic diversity and population structure*

238

239 Sequencing yielded a total of 1,501,921,855 quality-trimmed sequencing reads, providing an average
240 depth of coverage per individual over all SNPs of 58.9x. After applying the different filtering steps, 2,596 SNPs
241 common to all species were retained for subsequent analyses. The lowest values of observed heterozygosity,
242 expected heterozygosity, and allelic richness were observed for *J. caveorum*. While *J. frontalis* had the highest
243 inbreeding coefficients (0.502), all species had very similar values. The highest values of allelic richness were
244 observed for *J. lalandii* (Table 1). The highest pairwise F_{ST} values were observed for *J. tristani* – *J. caveorum*
245 and *J. paulensis* – *J. caveorum* ($F_{ST} = 0.463$ and $F_{ST} = 0.436$, respectively, $p < 0.05$), while the lowest values were
246 observed for *J. tristani* – *J. paulensis* ($F_{ST} = 0.022$, $p < 0.01$; Table 2).

247

248 **Table 1** Summary statistics of genetic diversity per species using 2,596 SNPs. H_o : observed heterozygosity, H_e :
249 expected heterozygosity, F_{IS} : inbreeding coefficient, A_R : allelic richness

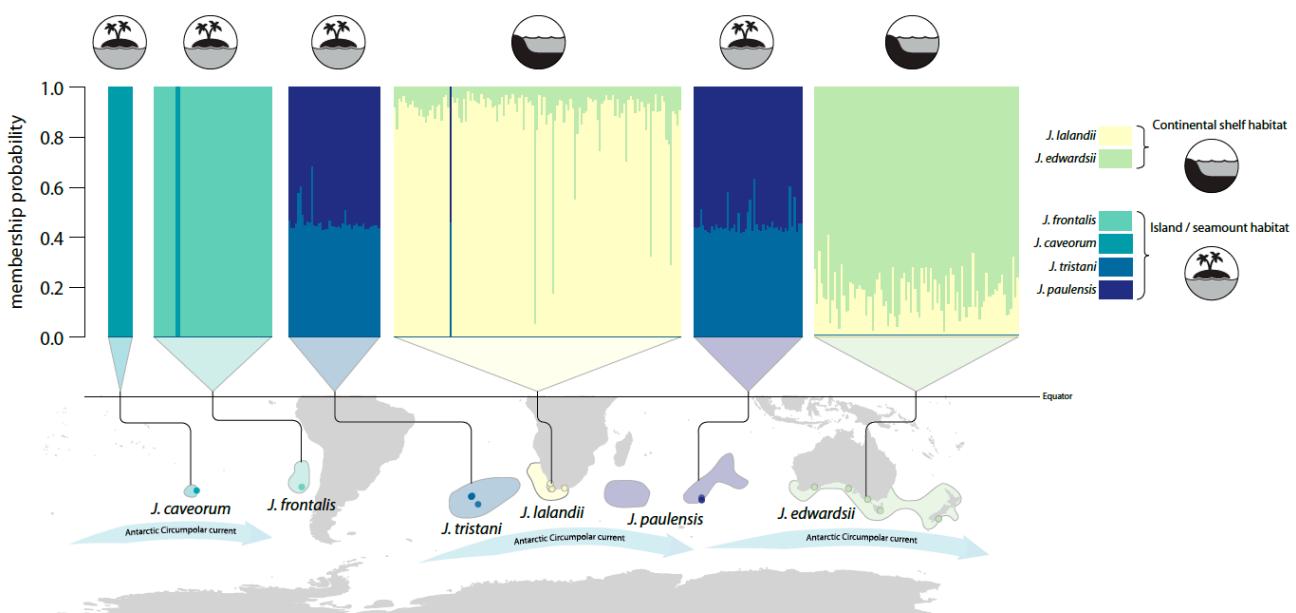
Species	Sample size	H_o	H_e	F_{IS}	A_R
<i>J. caveorum</i>	11	0.012	0.012	0.499	1.04
<i>J. frontalis</i>	53	0.064	0.065	0.502	1.32
<i>J. tristani</i>	41	0.092	0.104	0.500	1.31
<i>J. lalandii</i>	129	0.086	0.104	0.499	1.60
<i>J. paulensis</i>	49	0.087	0.103	0.498	1.31
<i>J. edwardsii</i>	92	0.084	0.100	0.501	1.34

375

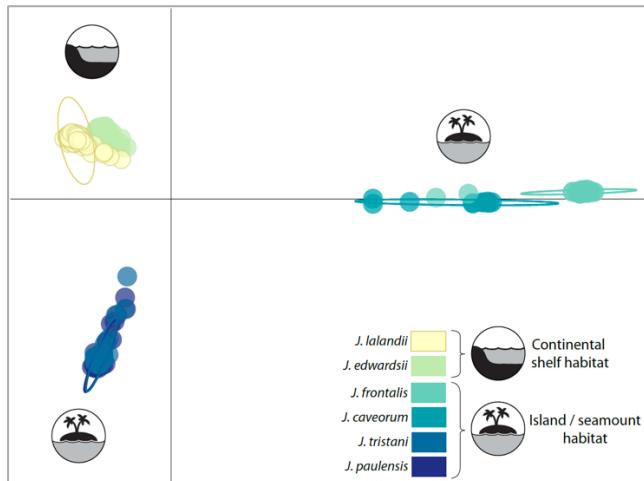
250

251

252 **Table 2** Pairwise F_{ST} values (below diagonal) and corresponding p-values (above diagonal) estimated using
253 *hierfstat* package in R.


	<i>J. caveorum</i>	<i>J. frontalis</i>	<i>J. tristani</i>	<i>J. lalandii</i>	<i>J. paulensis</i>	<i>J. edwardsii</i>
<i>J. caveorum</i>	0	0.010	0.013	0.010	0.011	0.012
<i>J. frontalis</i>	0.081	0	0.007	0.005	0.006	0.007
<i>J. tristani</i>	0.463	0.206	0	0.007	0.008	0.009
<i>J. lalandii</i>	0.305	0.137	0.387	0	0.006	0.007
<i>J. paulensis</i>	0.436	0.229	0.022	0.408	0	0.007
<i>J. edwardsii</i>	0.413	0.106	0.441	0.230	0.452	0

254


255

256 No signatures of selection were detected by the outlier detection analyses (Fig. S1). Lobster species
257 were grouped into three main clusters by discriminant analyses of principal components when using 2 PCs
258 (52.3% variation) (Fig. 2). There was evidence of admixture, in particular between *J. paulensis* - *J. tristani* in
259 the membership probability plot and the DAPC results, and pairwise F_{ST} values (Fig. 1 and 2). The first DAPC
260 axis (LD1) explained 29.9% of the variation and highlighted the divergence between habitat structure (i.e. *J.*
261 *edwardsii* and *J. lalandii* vs. remaining species; Fig. S2a), while the second DAPC axis (LD2), which explained
262 22.4% of the variation, showed three main clusters and highlighted the differences between *J. paulensis* and
263 *J. tristani* and the remaining species (Fig. S2b).

264

266 **Fig. 1.** Sample locations, approximate distribution range of *Jasus* spp. (adapted from Booth, 2006) and
267 membership probability plot using 2 principal components.

269 **Fig. 2.** Discriminant analyses of principal components (DAPC) of *Jasus* spp. using 2 principal components
270 (explaining 52.3% variation).

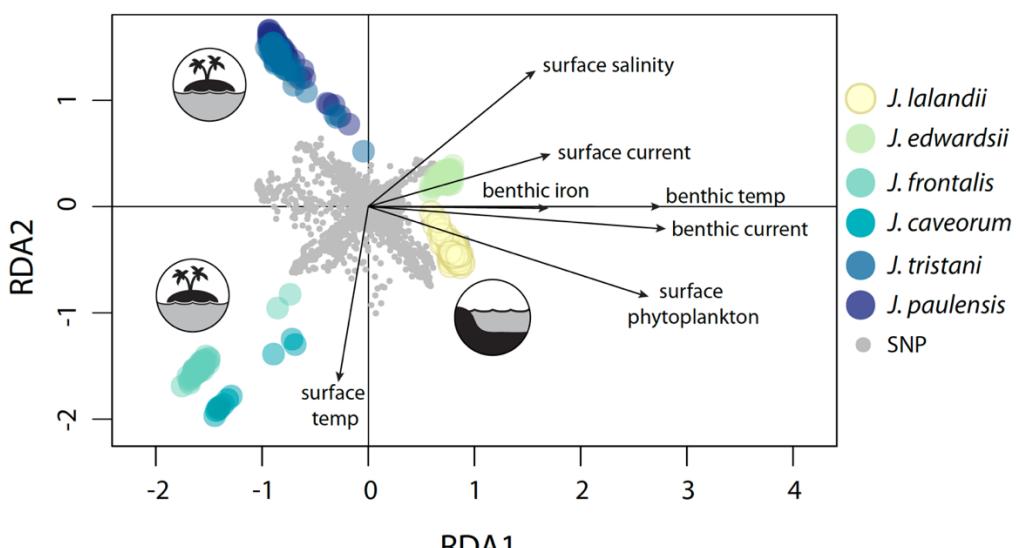
271 *Genotype-environment associations*

272

273 Geographic distance explained 23.3% of the total genetic variation (F_{ST}) between rock lobster species
274 ($p<0.01$), using multiple regression of distance matrices (MRDM). The model with all seven environmental
275 variables explained 52.9% of the total genetic variation between lobster species ($p<0.001$), while the model
276 with the four most important environmental variables explained 51.4% of the total genetic variation
277 ($p<0.001$). Benthic mean temperature was the single environmental variable that explained most of the
278 genetic differentiation while controlling for the effects of geographic distance (41.3%; $p<0.001$; Table 3).

279 All seven environmental variables explained 18% of the variation in rock lobster species ($p<0.001$)
280 when using the constrained ordination in RDA analyses. All values of the variance inflation factors were below
281 five, indicating that multicollinearity among the predictor variables is not inflating the model. The first five
282 constrained axes were significant in explaining the genetic variation between species (each explaining 53.3%,
283 25.3%, 12%, 5.2% and 2.2%, respectively; $p<0.001$; Fig. 3). Genetic variation of *J. caveorum* and *J. frontalis* was
284 associated with higher surface temperature, while *J. paulensis* and *J. tristani* were associated with lower
285 surface temperature. *J. edwardsii* and *J. lalandii* were associated with higher benthic temperature, benthic
286 current velocity and benthic iron. Finally, *J. lalandii* was associated with higher surface phytoplankton, while
287 *J. edwardsii* was associated with higher surface current velocity (Fig. 3).

288


289 **Table 3** Summary of the models for the multiple regression of distance matrices (MRDM) analyses using F_{ST} as
290 a measure of genetic differentiation. GeoDist: geographic distance (km); SurfTemp and BenTemp: Surface and
291 benthic temperature ($^{\circ}$ C); SurfSal: Surface salinity (PSS); SurfCurren and BenCurren: Surface and benthic
292 current velocity ($m.s^{-1}$); BenIron: Benthic dissolved iron ($mmol.m^{-3}$); SurfPhyto: surface phytoplankton
293 ($mmol.m^{-3}$).

Factors	r^2	p-value
GeoDist	0.233	<0.01
GeoDist + SurfTemp	0.235	<0.001
GeoDist + BenTemp	0.413	<0.001
GeoDist + SurfSal	0.233	<0.001
GeoDist + SurfCurren	0.238	<0.01
GeoDist + BenCurren	0.298	<0.001
GeoDist + BenIron	0.237	<0.001
GeoDist + SurfPhyto	0.290	<0.001
GeoDist + SurfTemp + BenTemp + SurfSal + SurfCurren + BenCurren + BenIron + SurfPhyto	0.529	<0.001
GeoDist + SurfTemp + BenTemp + BenCurren + SurfPhyto	0.514	<0.001

294

295

296

297

298 **Fig. 3.** Ordination plot of redundancy analysis (RDA) of *Jasus* spp. The vectors are the environmental predictors
299 (see Table 3 for a detailed description).

300

301

302 Relationships among lineages

303

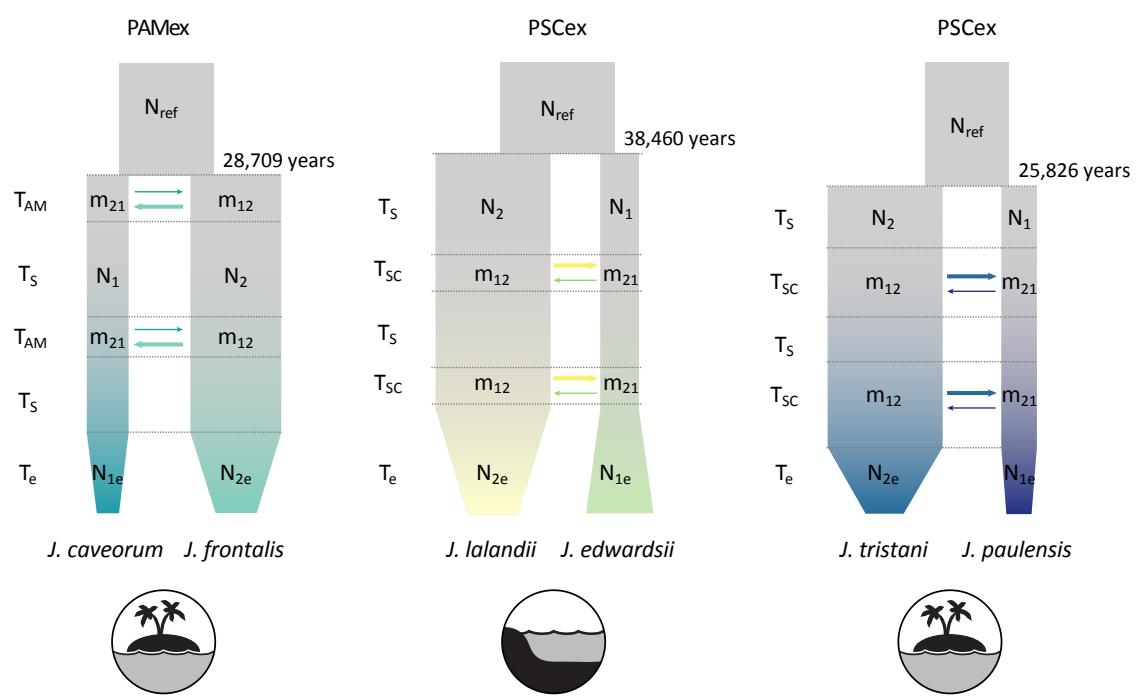
304 Results from TREEMIX identified three ancestral events of admixture (Fig. S3). However, from the
305 three-population test of admixture, only two f_3 values were negative with associated Z-scores < -0.6 , indicating
306 evidence that *J. tristani* does not form a simple tree with *J. paulensis*, *J. lalandii* and *J. edwardsii*, but rather
307 may be a mixture of these (Table S2, Supporting information). Therefore, the three-population test supported
308 the ancestral event of admixture detected by TREEMIX from the most recent common ancestor (MRCA) of *J.*
309 *lalandii* and *J. edwardsii* to *J. tristani*. The genetic relationships among species inferred by TREEMIX revealed
310 similar patterns to the genetic differentiation analyses, clearly separating species pairs *J. lalandii* – *J. edwardsii*,
311 *J. paulensis* – *J. tristani* and *J. caveorum* – *J. frontalis* (Fig. S3).

312

313

314 Demographic modelling

315


316 In general, SC and PSC models provided better fits to the data with good predictions of the joint site
317 frequency spectrum (JSFS) asymmetry for the *J. paulensis* – *J. tristani* and *J. edwardsii* – *J. lalandii* pairs while
318 AM, PAM and SI had better support for the *J. caveorum* – *J. frontalis* pair (Table S3, Fig. S4). Incorporating
319 population expansion events (suffix 'ex') improved the fit of PSC models for all species pairs but there was not
320 a clear pattern for PAM models. In contrast, the strict isolation (SI) and ancient migration (AM, PAM) models
321 were weakly supported for the *J. paulensis* – *J. tristani* and *J. edwardsii* – *J. lalandii* pairs while the secondary
322 contact models (SC, PSC) were weakly supported for the *J. caveorum* – *J. frontalis* pair (Table S3, Fig. S4).

323 Asymmetries in gene flow with ratios of m_{21}/m_{12} indicated a stronger migration from population two
324 to population one in all species pairs, and the lower proportion of migrants was observed for the *J. edwardsii*
325 – *J. lalandii* pair (Fig. 4, Table 4). Detailed results for demographic inferences are provided in Table S3, Fig. 4,
326 Table 4, Fig. S4 and Fig. S5 (supporting information).

327 The best supported model for the *J. paulensis* – *J. tristani* pair was PSCex (Table S3). Within this model,
328 total divergence time between species was approximately $25,826 \pm 6,286$ years ago (Table 4). The period
329 without contact was approximately 5.4 times longer than the period with secondary contact. The best
330 supported model for the *J. edwardsii* – *J. lalandii* pair was PSCex (Table S3). Total divergence time between *J.*
331 *edwardsii* and *J. lalandii* was approximately $38,460 \pm 12,242$ years ago (Table 4). The period without contact
332 was approximately 38.8 times longer than the period with secondary contact. Finally, the best supported
333 model for the *J. caveorum* – *J. frontalis* pair was PAMex (Table S3). Within this model, total divergence time
334 between species was approximately $28,709 \pm 12,674$ years (Table 4) and the period without contact was
335 approximately 8.1 times longer than the period with ancient migration. Therefore, divergence times with
336 errors overlap across the three species pairs and was estimated to be between 19,540 and 32,112 years for *J.*
337 *paulensis* – *J. tristani*, 26,218 and 50,702 years for *J. edwardsii* – *J. lalandii* and 16,035 and 41,383 years for *J.*
338 *caveorum* – *J. frontalis*.

339

340

341

342 **Fig. 4.** Representation of the best demographic model for each species pair; *J. caveorum* – *J. frontalis*: ancient
343 migration with two periods of ancient gene flow and recent population contraction (PAMex); *J. lalandii* – *J.
344 edwardsii* and *J. tristani* – *J. paulensis*: secondary contact with two periods of contact and recent population
345 expansion (PSCex). Asymmetric migration rates (m_{21} and m_{12}) are represented by the arrows with higher rates
346 of migration from population two to population one for all species pairs (thicker lines in arrows). Width of the
347 boxes represent sizes of the ancestral population (N_{ref}), population sizes before expansion/contraction (N_1 , N_2)
348 and population sizes after expansion/contraction (N_{1e} , N_{2e}). T_s is the time of divergence in strict isolation, $T_{SC/AM}$
349 the time of secondary contact or ancient migration and T_e the time of expansion.

350

351

352 **Table 4.** Parameters estimates for the best model of each species pair with standard deviation. *J. paulensis* –
 353 *J. tristani*: secondary contact with two periods of contact and recent population expansion (PSCex); *J. edwardsii*
 354 – *J. lalandii*: secondary contact and recent population expansion (SCex); *J. caveorum* – *J. frontalis*: ancient
 355 migration with two periods of ancient gene flow and recent population contraction (PAMex).

Species group	1: <i>J. paulensis</i> , 2: <i>J. tristani</i>	1: <i>J. edwardsii</i> , 2: <i>J. lalandii</i>	1: <i>J. caveorum</i> , 2: <i>J. frontalis</i>
Best Model	PSCex	PSCex	PAMex
K	9	9	9
N_{ref}	43.96	85.64	64.19
N₁	3.50 ± 0.84	1.50 ± 0.25	1.30 ± 0.35
N₂	49.67 ± 19.38	41.01 ± 15.61	19.19 ± 9.09
N_{1e}	0.67 ± 0.16	2.44 ± 0.41	0.05 ± 0.24
N_{2e}	2.52 ± 0.53	1.28 ± 0.34	0.20 ± 0.23
m₁₂	11.00 ± 3.77	1.77 ± 0.23	7.71 ± 2.33
m₂₁	2.59 ± 2.22	0.09 ± 0.16	1.99 ± 0.36
T_s	11.94 ± 2.67	10.66 ± 3.37	9.74 ± 4.48
T_{sc/AM}	2.20 ± 0.70	0.27 ± 0.10	1.20 ± 0.19
T_e	0.51 ± 0.20	0.29 ± 0.11	0.24 ± 0.27
T_{total}	29.29 ± 7.15	22.46 ± 7.15	22.36 ± 9.87
*m₁₂	0.12 ± 0.04	0.01 ± 0.001	0.06 ± 0.02
*m₂₁	0.03 ± 0.03	0.00 ± 0.00	0.01 ± 0.00
*T_s	$10,524 \pm 2,346$	$18,258 \pm 5,769$	$12,507 \pm 5,746$
*T_{sc/AM}	$1,941 \pm 618$	470 ± 167	$1,541 \pm 239$
*T_e	447 ± 179	503 ± 185	306 ± 352
*T_{total}	$25,826 \pm 6,286$	$38,460 \pm 12,242$	$28,709 \pm 12,674$

K: The number of free parameters in the model

N_{ref}: The effective size of the ancestral population before the split

N₁: The effective size of population 1 before expansion

N₂: The effective size of population 2 before expansion

N_{1e}: The effective size of population 1 after expansion

N_{2e}: The effective size of population 2 after expansion

m₁₂: The neutral movement of genes from population 2 to population 1 in units of 2N_{ref} generations

m₂₁: The neutral movement of genes from population 1 to population 2 in units of 2N_{ref} generations

T_s: The time of divergence in strict isolation in units of 2N_{ref} generations

T_{sc/AM}: The time of secondary contact/ancient migration in units of 2N_{ref} generations

T_e: The time of expansion in units of 2N_{ref} generations

T_{total}: The total time since the split in units of 2N_{ref} generations

*m₁₂: The proportion of migrants per generation from population 2 to population 1

*m₂₁: The proportion of migrants per generation from population 1 to population 1

*T_s: The time of divergence in strict isolation in units of numbers of years

*T_{sc/AM}: The time of secondary contact/ancient migration in units of numbers of years

*T_e: The time of expansion in units of numbers of years

*T_{total}: The total time since the split in units of numbers of years

356

357

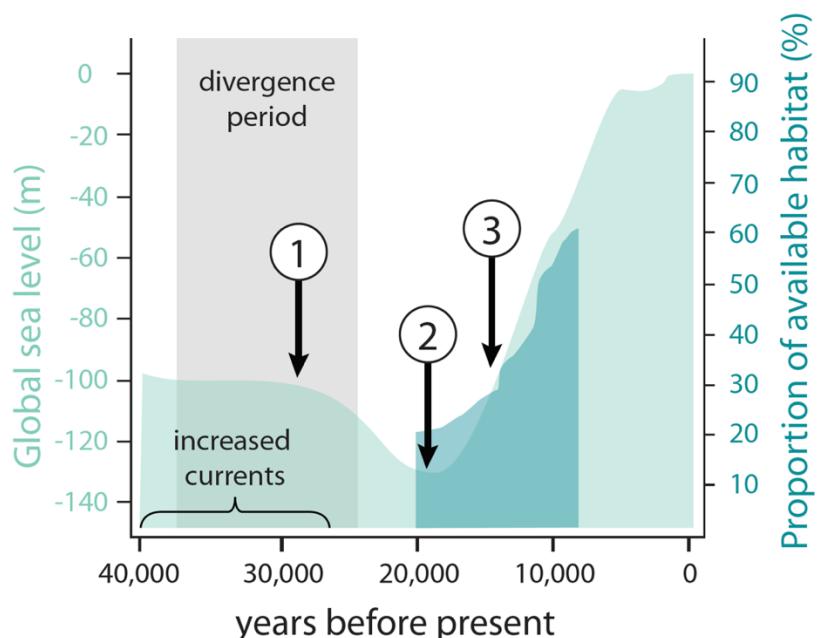
358

359

360

361

362 **Discussion**


363 Here we investigated genome-wide divergence and introgression patterns in all extant species of rock
364 lobsters (*Jasus* spp.) for the first time. Genetic differentiation patterns revealed the effects of the environment
365 and geographical isolation. Species that were associated with the same habitat structure (continental shelf or
366 seamount/island) were more closely related to each other than with species from a different habitat structure.
367 Benthic temperature was the single environmental variable that explained most of the genetic differentiation
368 (F_{ST}) while controlling for the effects of geographic distance (41.3%), and *J. edwardsii* and *J. lalandii* were
369 associated with higher mean benthic temperatures. We also detected multiple introgression events (gene
370 flow) since the first divergence in all species pairs.

371

372 *Divergence during Pleistocene*

373 Divergence times between species pairs estimated by demographic modelling overlap across all
374 species comparisons and suggest that global/widespread processes might have driven initial divergence across
375 all species. During the divergence period estimated for *Jasus* spp. (from 38,460 to 25,826 years ago) global
376 temperature and sea levels were decreasing (Clark *et al.* 2009). Sea level was 65 to 125 metres lower than
377 today possibly creating more shallow benthic habitat for lobsters in the open ocean in contrast with a
378 reduction in the available continental shelf habitat (Schaaf 1996). A significant increase in the Southern Ocean
379 barotropic stream function occurred between 49,000 and 28,500 years ago (Fogwill *et al.* 2015), which may
380 have increased the dispersal potential of larvae. Also, a large increase in subantarctic productivity occurred
381 35–65,000 years ago during Heinrich events H4–H6 (Sachs & Anderson 2005), which may have enabled
382 planktotrophic larvae to survive for longer periods of time. These processes may have facilitated worldwide
383 dispersal and colonization of circumpolar habitats by the *Jasus* spp. ancestor during this period (Fig. 5).

384 During the last glacial maximum (LGM) about 19,000–22,000 years ago, temperature and sea levels
385 reached minimum values (Clark *et al.* 2009). New ecological zones could have appeared, favouring species
386 associated with seamount and island habitats, which could explain the ancient secondary contact events for
387 *J. caveorum* and *J. frontalis* (Schaaf 1996). On the other hand, there was a shrinkage of the shallow continental
388 margins habitat and species therein (Schaaf 1996; Holland 2012). Species associated with continental shelf
389 habitat could also have shifted northwards while tracking their thermal optima. These changes in habitat may
390 have resulted in longer periods of isolation between the continental shelf associated species *J. lalandii* and *J.*
391 *edwardsii*.

392

393 **Fig. 5.** Changes in global sea level (adapted from Huybrechts 2002) and proportion of available habitat in the
394 photic zone (Schaaf 1996) relative to present day. 1) Antarctic sea ice expands around 28,500 years ago
395 (Fogwill *et al.* 2015); 2) Ocean currents reduction (around 22,000 years ago; Alloway *et al.* 2007); 3) West
396 Antarctic Ice Sheet deglaciation (around 14,500 years ago; Clark *et al.* 2009).

397

398 Transition from the LGM to the Holocene precipitated further changes in the available shallow benthic
399 habitat for lobsters with the increase in sea levels and temperature (Clark *et al.* 2009). There were two major
400 expansions of available shallow benthic habitat at 14,000 and 11,500 years (Schaaf 1996) which, for example,
401 could have increased the suitable habitat for *J. frontalis*, having a positive effect on the population size and
402 the effective population size (Porobić *et al.* 2013). However, the variation of the photic sea-bottom area was
403 not linear nor directly correlated with the sea-level oscillations, but reflected topography patterns (Schaaf
404 1996). These fluctuations in available habitat resulted in alternating periods of isolation and gene flow that
405 have shaped the present genetic signatures of *Jasus* lobsters (Fig. 5).

406

407 *Are species genetically isolated?*

408 The present study suggests that global processes might have driven initial divergence across all *Jasus*
409 species. However, current genetic signatures highlight the complexities exclusive to each species evolution.
410 For example, *J. edwardsii* and *J. lalandii* were the most genetically differentiated species pair ($F_{ST}=0.230$),
411 followed by *J. caveorum* – *J. frontalis* ($F_{ST}=0.081$) and *J. tristani* – *J. paulensis* ($F_{ST}=0.022$). This was in agreement
412 with the parameters estimated from demographic modelling, in particular the period of gene flow estimated
413 for each species pair (approximately 470 ± 167 years, $1,541 \pm 239$ years and $1,941 \pm 618$ years, respectively).

414 Our study provides genome-wide evidence of admixture between *J. paulensis* - *J. tristani* that also
415 showed great genetic similarity. Although George & Kensler (1970) have noted that *J. tristani* and *J. paulensis*
416 possess a significant difference in the abdominal sculpture index, genetic evidence suggests that these species
417 can be synonymized as *J. paulensis*, which was also proposed by Groeneveld *et al.* (2012) using the
418 mitochondrial cytochrome oxidase I gene. As a comparison, since initial divergence, *J. tristani* and *J. paulensis*
419 spent 4.1 times longer in secondary contact than *J. edwardsii* – *J. lalandii* and 1.2 times longer than *J. caveorum*
420 and *J. frontalis*. The Tristan da Cunha and Gough Islands (current distribution of *J. tristani*) and the Amsterdam
421 and St. Paul Islands (current distribution of *J. paulensis*) have been grouped in the same zoogeographic
422 province (called the West Wind Drift Islands Province) based on endemic fish fauna distribution (Collette &
423 Parin 1991). Therefore, the distribution of marine species with a pelagic larvae stage may be influenced by the
424 currents of the West Wind Drift and the long periods of gene flow may explain the close relationship between
425 *J. tristani* and *J. paulensis*.

426 Species associated with continental shelf habitat *J. edwardsii* and *J. lalandii* were genetically more
427 closely related to each other than to *J. tristani* and *J. paulensis* (island/seamount habitat) despite their
428 geographic locations (i.e. *J. lalandii* is geographically closer to *J. tristani* and *J. paulensis* than to *J. edwardsii*;
429 Fig. 1). Although connectivity would be possible between these species groups given the dispersal potential
430 (indeed, *J. lalandii* larvae have been found in the southwest Indian Ocean as far east as Amsterdam Island,
431 adjacent to the *J. paulensis* habitat (Booth & Ovenden 2000)), species appear to be adapted to local
432 environmental conditions. Our results show that benthic temperature might be a limiting factor affecting gene
433 flow between species from island/seamount and continental shelf habitat. Temperature is important for
434 regulating the rate of embryological development in lobsters (Phillips 2013) and could limit reproduction of
435 species adapted to local benthic temperatures.

436 It has been shown that during the post-larval or puerulus stage, *J. edwardsii* are able to recognize
437 environmental cues such as chemical, acoustic and substrate cues and increase settlement success in suitable
438 habitats (Stanley *et al.* 2015; Hinojosa *et al.* 2016, 2018). Magnetism is also an important cue for adult Western
439 Rock Lobster, *Panulirus cygnus* (Lestang 2014) and adults and postlarvae of spiny lobster *Panulirus argus* (Boles
440 & Lohmann 2003; Kough *et al.* 2014; Ernst & Lohmann 2016). Our results show that genetic diversity of *J.*
441 *lalandii* and *J. edwardsii* is associated with benthic iron. Therefore, it is possible that *Jasus* larvae are able to
442 use environmental cues such as magnetism for orientation and different species have adapted to recognize
443 local ecotypes and settle on habitats with contrasting structure. Ovenden *et al.* (1997) also suggested that the
444 common ancestor of *J. tristani* and *J. paulensis* may have been able to recognize environmental cues from
445 island and seamount habitats that allowed them to colonize mid-ocean habitats during glacial periods.

446

447 In highly dispersive marine taxa, interglacial recolonization of high-latitude habitats can occur rapidly
448 (Hewitt 2000). Such patterns have been established for a range of Northern Hemisphere marine species (e.g.
449 Marko 2004; Ledoux *et al.* 2018), but relatively little is known about the genetic effects of recent glaciations
450 in the Southern Hemisphere (but see e.g. Fraser *et al.* 2009; Strugnell *et al.* 2012; Porobić *et al.* 2013). This
451 study revealed genome-wide patterns of divergence and introgression in all extant species of a highly
452 dispersive marine taxa for the first time. While results point to the important role of demographic and neutral
453 processes of differentiation between species pairs, it also suggests a possible effect of selection in promoting
454 genetic divergence between habitats. Future studies should address the role of adaptive processes to
455 elucidate their relative contribution in shaping genome divergence and speciation of *Jasus* lobsters and to
456 better understand how future environmental change will impact species distribution.

457

458 **Data availability**

459 Raw demultiplexed sequencing data will be available at Dryad. Pipelines for *de novo* assembly, genetic
460 structure, environmental association and demographic inference analyses will be available at github after
461 publication.

462

463 **Acknowledgments**

464

465 Funding for this research was provided by an Australian Research Council Discovery Project grant (Project No.
466 DP150101491) awarded to J.M.S., J.J.B., B.S.G. and N.P.M. We would like to thank Gary Carlos (University of
467 Tasmania), Colin Fry (University of Tasmania), Daniel Ierodiaconou (Deakin University), Kent Way, Andrew
468 Kent, Geoff Liggins, Marcus Miller, Giles Ballinger, Darrel Sykes (DAFF), Rick Webber (Te Papa Museum), Jason
469 How (Department of Fisheries, Western Australia) and Sadie Mills (NIWA) for field assistance and sample
470 collection; T.A.A.F. (Terres Australes et Antarctiques Françaises), for their French fisheries observer service
471 "COPEC", the fishery observer Sophie Cascade on board the F.V. "AUSTRAL" and Charlotte Chazeau to have
472 made available biological scientific samples and data of *Jasus paulensis* from catches in the Saint-
473 Paul/Amsterdam French EEZ; the help of crew has also been appreciated. C.E.H was supported by FONDECYT
474 grants #1170815.

475

476 **Author contributions**

477

478 All authors contributed insights about data analysis, interpretation of results and edited the final drafts of
479 the manuscript. C.N.S.S. analysed the data. C.N.S.S., J.M.S and N.P.M. conceived the study.

480

481

482 **References**

483 Alloway B V, Lowe DJ, Barrell DJA, Newnham RM, Almond PC, Al E (2007) Towards a climate event
484 stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). *Journal of Quaternary*
485 *Science*, **22**, 9–35.

486 Arendt D, King N, Carroll SB, Wittopp P, Koonin E, Kruglyak L (2016) Big Questions in Evolution. *Cell*, **166**,
487 528–529.

488 Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O (2018) Bio-ORACLE v2.0: Extending
489 marine data layers for bioclimatic modelling. *Global Ecology and Biogeography*, **27**, 277–284.

490 Benardine Jeffrey I, Hale P, Degnan BM, Degnan SM (2007) Pleistocene isolation and recent gene flow in
491 *Haliotis asinina*, an Indo-Pacific vetigastropod with limited dispersal capacity. *Molecular Ecology*, **16**,
492 289–304.

493 Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, Rochette R, Bernatchez L (2016)
494 Seascape genomics provides evidence for thermal adaptation and current-mediated population
495 structure in American lobster (*Homarus americanus*). *Molecular Ecology*, **25**, 5073–5092.

496 Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. *Nature*, **421**, 60–63.

497 Booth JD (2006) *Jasus species*. In 'Lobsters: Biology, Management, Aquaculture and Fisheries'. (Ed. B. F.
498 Phillips.). Blackwell Scientific Publications: Oxford.

499 Booth JD, Ovenden JR (2000) Distribution of *Jasus* spp. (Decapoda: Palinuridae) phyllosomas in southern
500 waters: Implications for larval recruitment. *Marine Ecology Progress Series*, **200**, 241–255.

501 Bradford RW, Griffin D, Bruce BD (2015) Estimating the duration of the pelagic phyllosoma phase of the
502 southern rock lobster, *Jasus edwardsii* (Hutton). *Marine and Freshwater Research*, **66**, 213–219.

503 Brasher D, Ovenden J, White R (1992) Mitochondrial DNA variation and phylogenetic relationships of *Jasus*
504 spp. (Decapoda: Palinuridae). *Journal of Zoology*, **227**, 1–16.

505 Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: The most important way to
506 classify speciation? *Philosophical Transactions of the Royal Society B: Biological Sciences*, **363**, 2997–
507 3007.

508 Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: An analysis tool set for population
509 genomics. *Molecular Ecology*, **22**, 3124–3140.

510 Catchen JM, Hohenlohe PA, Bernatchez L, Funk WC, Andrews KR, Allendorf FW (2017) Unbroken: RADseq
511 remains a powerful tool for understanding the genetics of adaptation in natural populations. *Molecular*
512 *Ecology Resources*, **17**, 362–365.

513 Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM
514 (2009) The Last Glacial Maximum. *Science*, **325**, 710–714.

515 Collette BB, Parin N V (1991) Shallow-Water Fishes of Walters Shoals, Madagascar Ridge. *Bulletin of Marine*

516 *Science*, **48**, 1–22.

517 Crow KD, Munehara H, Bernardi G (2010) Sympatric speciation in a genus of marine reef fishes. *Molecular*
518 *Ecology*, **19**, 2089–2105.

519 Davis KE, Hill J, Astrop TI, Wills MA (2016) Global cooling as a driver of diversification in a major marine
520 clade. *Nature Communications*, **7**, 1–8.

521 Ernst DA, Lohmann KJ (2016) Effect of magnetic pulses on Caribbean spiny lobsters: Implications for
522 magnetoreception. *Journal of Experimental Biology*, **219**, 1827–1832.

523 Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M (2013) Robust Demographic Inference from
524 Genomic and SNP Data. *PLoS Genetics*, **9**.

525 Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with- gene-flow. *Trends in Genetics*, **28**, 342–
526 350.

527 Fogwill CJ, Turney CSM, Hutchinson DK, Taschetto AS, England MH (2015) Obliquity Control On Southern
528 Hemisphere Climate During The Last Glacial. *Scientific Reports*, **5**, 1–10.

529 Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation
530 with multivariate genotype-environment associations. *Molecular Ecology*, 2215–2233.

531 Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during
532 the Last Glacial Maximum. *Proceedings of the National Academy of Sciences of the United States of*
533 *America*, **106**, 3249–3253.

534 George RW, Kensler CB (1970) Recognition of marine spiny lobsters of the *Jasus lalandii* group (crustacea:
535 Decapoda: Palinuridae). *New Zealand Journal of Marine and Freshwater Research*, **4**, 292–311.

536 Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. *Journal Of*
537 *Statistical Software*, **22**, 1–19.

538 Gosselin T (2017) radiator: RADseq Data Exploration, Manipulation and Visualization using R. R package
539 version 0.0.5.

540 Goudet J (2005) HIERFSTAT, a package for r to compute and test hierarchical F-statistics. *Molecular Ecology*
541 *Notes*, **5**, 184–186.

542 Groeneveld JC, Von der Heyden S, Matthee CA (2012) High connectivity and lack of mtDNA differentiation
543 among two previously recognized spiny lobster species in the southern Atlantic and Indian Oceans.
544 *Marine Biology Research*, **8**, 764–770.

545 Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demographic
546 history of multiple populations from multidimensional SNP frequency data. *PLoS Genetics*, **5**.

547 Hewitt G (2000) The genetic legacy of the Quaternary ice ages. *Nature*, **405**, 907–913.

548 Hinojosa I, Gardner C, Green B, Jeffs A (2018) Coastal chemical cues for settlement of the southern rock
549 lobster, *Jasus edwardsii*. *Bulletin of Marine Science*, 1–16.

550 Hinojosa IA, Green BS, Gardner C, Hesse J, Stanley JA, Jeffs AG (2016) Reef sound as an orientation cue for
551 shoreward migration by pueruli of the rock lobster, *Jasus edwardsii*. *PLoS ONE*, **11**, 1–15.

552 Holland SM (2012) Sea level change and the area of shallow-marine habitat: implications for marine
553 biodiversity. *Paleobiology*, **38**, 205–217.

554 Holthuis LB (1991) *Marine lobsters of the world. An annotated and illustrated catalogue of species of interest*
555 *to fisheries known to date. FAO Fisheries Synopsis. No. 125, Vol. 13. Rome, FAO.*

556 Holthuis LB, Sivertsen E (1967) *The Crustacea Decapoda, Mysidacea and Cirripedia of the Tristan da Cunha*
557 *Archipelago, with a revision of the “frontalis” subgroup of the genus Jasus. Res. Norv. Scient. Exp.*
558 *Tristan da Cunha 1937-1938*, **52**, 1–55.

559 Huybrechts P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and
560 Antarctic ice sheets during the glacial cycles. *Quaternary Science Reviews*, **21**, 203–231.

561 Jombart T (2008) Adegenet: A R package for the multivariate analysis of genetic markers. *Bioinformatics*, **24**,
562 1403–1405.

563 Kenchington EL, Harding GC, Jones MW, Prodöhl P a (2009) Pleistocene glaciation events shape genetic
564 structure across the range of the American lobster, *Homarus americanus*. *Molecular Ecology*, **18**, 1654–
565 67.

566 Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C,
567 Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G (2012) Diversity Arrays
568 Technology: A Generic Genome Profiling Technology on Open Platforms. In: *Data Production and*
569 *Analysis in Population Genomics. Methods in Molecular Biology, vol 888*. (eds Pompanon F, Bonin A),
570 pp. 67–89. Humana Press, Totowa.

571 Kough AS, Paris CB, Staaterman E (2014) In situ swimming and orientation behavior of spiny lobster
572 (*Panulirus argus*) postlarvae. *Marine Ecology Progress Series*, **504**, 207–219.

573 Ledoux JB, Frleta-Valić M, Kipson S, Antunes A, Cebrian E, Linares C, Sánchez P, Leblois R, Garrabou J (2018)
574 Postglacial range expansion shaped the spatial genetic structure in a marine habitat-forming species:
575 Implications for conservation plans in the Eastern Adriatic Sea. *Journal of Biogeography*, **45**, 2645–
576 2657.

577 Legendre P, Lapointe F-J, Casgrain P (1994) Modeling Brain Evolution from Behavior: A Permutational
578 Regression Approach. *Evolution*, **48**, 1487–1499.

579 Lestang S (2014) The orientation and migratory dynamics of the western rock lobster, *Panulirus cygnus*, in
580 Western Australia. *ICES Journal of Marine Science*, **71**, 1052–1063.

581 Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? *Molecular ecology*,
582 **19**, 3038–51.

583 Manel S, Holderegger R (2013) Ten years of landscape genetics. *Trends in Ecology and Evolution*, **28**, 614–

584 621.

585 Marko PB (2004) "What's larvae got to do with it?" Disparate patterns of post-glacial population structure in
586 two benthic marine gastropods with identical dispersal potential. *Molecular Ecology*, **13**, 597–611.

587 Matthee CA, Cockcroft AC, Gopal K, Von Der Heyden S (2007) Mitochondrial DNA variation of the west-coast
588 rock lobster, *Jasus lalandii*: Marked genetic diversity differences among sampling sites. *Marine and*
589 *Freshwater Research*, **58**, 1130–1135.

590 Le Moan A, Gagnaire PA, Bonhomme F (2016) Parallel genetic divergence among coastal-marine ecotype
591 pairs of European anchovy explained by differential introgression after secondary contact. *Molecular*
592 *Ecology*, **25**, 3187–3202.

593 Momigliano P, Jokinen H, Fraimout A, Florin A-B, Norkko A, Merilä J (2017) Extraordinarily rapid speciation in
594 a marine fish. *Proceedings of the National Academy of Sciences*, 201615109.

595 Obbard DJ, MacLennan J, Kim KW, Rambaut A, O'Grady PM, Jiggins FM (2012) Estimating divergence dates
596 and substitution rates in the drosophila phylogeny. *Molecular Biology and Evolution*, **29**, 3459–3473.

597 Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL,
598 Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. R package
599 version 2.5-6.

600 Olivieri I, Tonnabel J, Ronce O, Mignot A (2016) Why evolution matters for species conservation:
601 Perspectives from three case studies of plant metapopulations. *Evolutionary Applications*, **9**, 196–211.

602 Van Oppen MJH, Peplow LM, Kininmonth S, Berkelmans R (2011) Historical and contemporary factors shape
603 the population genetic structure of the broadcast spawning coral, *Acropora millepora*, on the Great
604 Barrier Reef. *Molecular Ecology*, no-no.

605 Ovenden JR (2013) Crinkles in connectivity: combining genetics and other types of biological data to
606 estimate movement and interbreeding between populations. *Marine and Freshwater Research*, **64**,
607 201.

608 Ovenden JR, Booth JD, Smolenski AJ (1997) Mitochondrial DNA phylogeny of red and green rock lobsters
609 (genus *Jasus*). *Marine and Freshwater Research*, **48**, 1131–1136.

610 Ovenden JR, Brasher DJ, White RWG (1992) Mitochondrial DNA analyses of the red rock lobster *Jasus*
611 *edwardsii* supports an apparent absence of population subdivision throughout Australasia. *Marine*
612 *Biology*, **112**, 319–326.

613 Palero F, Lopes J, Abelló P, Macpherson E, Pascual M, Beaumont MA (2009) Rapid radiation in spiny lobsters
614 (*Palinurus* spp) as revealed by classic and ABC methods using mtDNA and microsatellite data. *BMC*
615 *Evolutionary Biology*, **9**, 263.

616 Pecl G, Frusher S, Gardner C, Haward M, Hobday A, Jennings S, Nursey-Bray M, Punt A, Revill H, van Putten I
617 (2009) *The east coast Tasmanian rock lobster fishery – vulnerability to climate change impacts and*

618 *adaptation response options. Report to the Department of Climate Change, Australia.*

619 Phillips BF (2013) *Lobsters: Biology, Management, Aquaculture and Fisheries* (BF Phillips, Ed.). Department of

620 Environment & Agriculture, Curtin University, Western Australia.

621 Pickrell JK, Pritchard JK (2012) Inference of Population Splits and Mixtures from Genome-Wide Allele

622 Frequency Data. *PLoS Genetics*, **8**, e1002967.

623 Pinheiro HT, Bernardi G, Thorrold, Simon R, Joyeux J-C, Macieira RM, Gasparini JL, Rocha C, Rocha LA (2017)

624 Island biogeography of marine organisms. *Nature*, **549**, 82–85.

625 Pollock DE (1990) Palaeoceanography and Speciation in the Spiny Lobster Genus *Jasus*. *Bulletin of Marine*

626 *Science*, **46**, 387–405.

627 Porobić J, Canales-Aguirre CB, Ernst B, Galleguillos R, Hernández CE (2013) Biogeography and historical

628 demography of the Juan Fernández rock lobster, *Jasus frontalis* (Milne Edwards, 1837). *Journal of*

629 *Heredity*, **104**, 223–233.

630 Reich D, Thangaraj K, Patterson N, Price AL, Singh L (2009) Reconstructing Indian population history. *Nature*,

631 **461**, 489–494.

632 Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. *Proceedings*

633 *of the Royal Society B: Biological Sciences*, **272**, 573–579.

634 Rougemont Q, Bernatchez L (2018) The demographic history of Atlantic salmon (*Salmo salar*) across its

635 distribution range reconstructed from approximate Bayesian computations*. *Evolution*, **72**, 1261–1277.

636 Rougeux C, Bernatchez L, Gagnaire PA (2017) Modeling the multiple facets of speciation-with-gene-flow

637 toward inferring the divergence history of lake whitefish species pairs (*Coregonus clupeaformis*).
Genome Biology and Evolution, **9**, 2057–2074.

638 Sachs JP, Anderson RF (2005) Increased productivity in the subantarctic ocean during Heinrich events.

639 *Nature*, **434**.

640 Sakamoto Y, Ishiguro M, Kitagawa G (1986) *Akaike Information Criterion Statistics*. D. Reidel.

641 Sandoval-Castillo J, Robinson NA, Hart AM, Strain LWS, Beheregaray LB (2018) Seascape genomics reveals

642 adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (*Haliotis*

643 *laevigata*), along a longitudinal environmental gradient. *Molecular Ecology*, 1603–1620.

644 Schaaf A (1996) Sea level changes, continental shelf morphology, and global paleoecological constraints in

645 the shallow benthic realm: a theoretical approach. *Palaeogeography, Palaeoclimatology,*

646 *Palaeoecology*, **121**, 259–271.

647 Smadja CM, Butlin RK (2011) A framework for comparing processes of speciation in the presence of gene

648 flow. *Molecular Ecology*, **20**, 5123–5140.

649 Souissi A, Bonhomme F, Manchado M, Bahri-Sfar L, Gagnaire P-A (2018) Genomic and geographic footprints

650 of differential introgression between two divergent fish species (*Solea* spp.). *Heredity*, **121**, 579–593.

652 Stanley JA, Hesse J, Hinojosa IA, Jeffs AG (2015) Inducers of settlement and moulting in post-larval spiny
653 lobster. *Oecologia*, **178**, 685–697.

654 Strugnell JM, Watts PC, Smith PJ, Allcock AL (2012) Persistent genetic signatures of historic climatic events in
655 an Antarctic octopus. *Molecular Ecology*, **21**, 2775–2787.

656 Thomas L, Bell JJ (2013) Testing the consistency of connectivity patterns for a widely dispersing marine
657 species. *Heredity*, **111**, 345–54.

658 Tine M, Kuhl H, Gagnaire P, Louro B, Desmarais E, Martins RST, Hecht J, Knaust F, Belkhir K, Klages S,
659 Dieterich R, Stueber K, Piferrer F, Guinand B, Bierne N, Volckaert FAM, Bargelloni L, Power DM,
660 Bonhomme F *et al.* (2014) European sea bass genome and its variation provide insights into adaptation
661 to euryhalinity and speciation. *Nature Communications*, **5**, 5770.

662 Titus BM, Blischak PD, Daly M (2019) Genomic signatures of sympatric speciation with historical and
663 contemporary gene flow in a tropical anthozoan (Hexacorallia: Actiniaria). *Molecular Ecology*, 3572–
664 3586.

665 Villacorta-Rath C, Ilyushkina I, Strugnell JM, Green BS, Murphy NP, Doyle SR, Hall NE, Robinson AJ, Bell JJ
666 (2016) Outlier SNPs enable food traceability of the southern rock lobster, *Jasus edwardsii*. *Marine
667 Biology*, **163**, 1–11.

668 Villacorta-Rath C, Souza CA, Murphy NP, Green BS, Gardner C, Strugnell JM (2018) Temporal genetic patterns
669 of diversity and structure evidence chaotic genetic patchiness in a spiny lobster. *Molecular Ecology*, **27**,
670 54–65.

671 Webber WR, Booth JD (1995) A new species of *Jasus* (Crustacea: Decapoda: Palinuridae) from the eastern
672 South Pacific Ocean. *New Zealand Journal of Marine and Freshwater Research*, **29**, 613–622.

673 Weigelt P, Steinbauer MJ, Cabral JS, Kreft H (2016) Late Quaternary climate change shapes island
674 biodiversity. *Nature*, **532**, 99–102.

675