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Abstract

Summary

A number of methods have been devised to address the need for targeted genomic resequencing.
One of these methods, Region-specific extraction (RSE) of DNA is characterized by the capture
of long DNA fragments (15-20 kb) by magnetic beads, after enzymatic extension of
oligonucleotides hybridized to selected genomic regions. Facilitating the selection of the most
optimal capture oligos targeting a region of interest, satisfying the properties of temperature
(Tm) and entropy (AG), while minimizing the formation of primer dimersin a pooled experiment
is therefore necessary. Manual design and selection of oligos becomes an extremely arduous task
complicated by factors such as length of the target region and number of targeted regions. Here

we describe, AnthOligo, a web-based application developed to optimally automate the process of
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generation of oligo sequences to be used for the targeting and capturing the continuum of large
and complex genomic regions. Apart from generating oligos for RSE, this program may have
wider applicationsin the design of customizable internal oligos to be used as baits for gene panel
analysis or even probes for large-scale comparative genomic hybridization (CGH) array

[processes.

I mplementation and Availability

The application written in Java8 and run on Tomcat9 is a lightweight Java Spring MVC
framework that provides the user with a simple interface to upload an input file in BED
format and customize parameters for each task. A Redislike MapReduce framework is
implemented to run sub-tasksin parallel to optimize time and system resources alongside a ‘ task-
gueuing’ system that runs submitted jobs as a server-side background daemon. The task of probe
design in AnthOligo commences when a user uploads an input file and concludes with the
generation of aresult-set containing an optimal set of region-specific oligos.

AnthOligo is currently available as a public web application with URL:

http://antholigo.chop.edu.

KEYWORDS: region-specific extraction, oligo, primer design, enrichment, next-generation

sequencing

| ntroduction

Massively paralel sequencing, in particular, short-read technologies such as Exome Sequencing

have become important milestones in genomic diagnosis. Newer technologies| 1-3], such as long-
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read sequencing using linked-read strategy from 10x genomics[4] and single-molecule real-time
(SMRT) sequencing approach from PacBio[5] focus on improving coverage over complex
genomic regions to achieve finer resolution over sequence and structural rearrangements.
Combining such a sequencing approach with a low-cost targeted enrichment methodology
provides significant benefits of economy, data management and analysis and generates a
resultant “capture” data that is further enriched for on€e's regions due to longer reads spanning
gaps and complex repeat regions.

Region-specific extraction (RSE) of DNA is a solution-based technique for enrichment of
defined genomic regions of interest. The method’'s cost-effective target-enrichment approach
allows longer sequence templates up to 20 kb and a uniform depth of coverage across a region of

interest.

Probe design for targeted enrichment is a requirement for any NGS test development. Although
there exist many stand-alone tools and web-applications to help address requirements for varied
target enrichment approaches, none can be implemented directly for the RSE method[8-17]. The
advantage of this specific oligonucleotide design method is the ability to “space” the oligos
evenly at a certain distance (thousands of bases) and thus achieve equivalent target specificity
with fewer probes required as compared to the tiling approach (1X or 2X tiling density) by many
custom “kit” provisions. Prior to automation of oligonucleotide design for capture/enrichment,
an anayst would have to painstakingly filter the oligonucleotides to create sets of oligos
manually by scanning a large matrix of dimer-dimer interactions. The task could exponentially
increase in complexity and time when factors such as target region, size or number of regions
increased. By streamlining the process of oligo design via an automated, statistically-motivated

downstream processing algorithm [9, 14, 16], we estimate the tool saves man-hours by at |east
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10-fold. Here, we present AnthOligo, an automated application to design evenly-spaced capture
oligos when provided with coordinates for genome-specific regions of interest. We have
successfully implemented AnthOligo to design optimal capture oligos for the Zebrafish
genomeq[ 7] and additionally targeted and captured 4 MB section of the highly complex, MHC
region in the human genome[6] in a solution-based capture. Most recently, additional sets of
oligos have been designed, enriching the MHC by including publicly available MHC reference
sequences from other cell lines that were either, partially known or fully completed [18]. The

newest set of oligos have been successfully used in our new study (Manuscript in preparation).

| mplementation

Step 1: A region in the input file can range from a single exon to multiple megabases. A sliding
window approach spanning 2kb overlapping every 100bp ensured thorough coverage of the
region (Figure 1). Primer3[19] was used to generate internal oligos within each window using a
repeat-masked reference sequence[20]. UCSC BLAT[21] was used to inspect sequence
specificity across the oligos at a percentage identity threshold customized at 95%. The
‘susceptibility’ to form hairpins and duplexes was estimated by measuring their Tm and AG
predictions by MFold[22] and UNAFold[23] for dimer stability based on the parameters of
Santal uciaet al.[8, 10, 24, 25].

Step 2: For each region of interest, oligos that passed applicable thresholds from Stepl were
considered “candidates’. The algorithm modeled the storage of oligos and specific properties
like ‘dimer interactions' and ‘association by distance’ in a directed acyclic graph(DAG)[16]
(Figure 1). For RSE method to be able to capture the entire region of interest (ROI), the first few

“seed” oligos must lie within a short window across the start of the region. The graph object
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92 consisted of seed oligos or ‘root nodes and associated oligos became *child nodes . Each ‘edge’
93  represented the user-defined distance between the root and child nodes. A depth-first-search
94 (DFS) was then carried out to walk through “completed paths’ in each graph. A path was
95 “complete” when the “leaf” oligo was found within the end of the target region. Each completed

96 pathformed a“set” of oligos for the given region.

97  Step 3: Design of optimal collection of oligos for target capture using multiplex PCR required
98 combinatorial optimization solutiong1l, 17] (Figure 1). The number of heterodimer

99 combinations C for n oligos for each input region could be calculated as:

num combinations = nC?

100 In order to get a resultant "combination of set of oligos' across all of the user-provided input
101 regions, region-specific oligo sets were cross-compared across the input regions to ensure that
102  oligos across regions did not dimerize with each other in solution. Every m, k, p number of oligos
103 across M, K, P additional input regions increased this number of combinations somewhat

104  exponentialy:

num combinations = mC? + kC? + pC? + nC?

105  With increasing region size and number of regions, this became computationally intensive akin
106  to the Np-complete ‘knapsack problem’. Heuristic optimization allowed for scalability without
107  sacrificing quality of the capture design by returning the first available combination of oligo sets

108 that satisfied our thresholds.

109 Resultsand Discussion

110 Besides the published work (6,7), oligos have been designed for capturing several genomic
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111  regions associated with Noonan Syndrome (8 genes), Type 1 Diabetes (9 genomic regions),
112  Crohn’s Disease (10 genomic regions) and retinitis pigmentosa (37 genomic regions) (available
113 upon request). In each case the oligonucleotides performed well as observed by uniformity,
114  sengitivity and average depth of coverage[6, 7]. To additionally validate the tool, the MHC of a
115 random sample was captured and sequenced on the lllumina MiSeg. Alignment was performed
116  using COX as reference, since the sample showed a closer match to COX than PGF reference.
117 The average depth of coverage was estimated at 100x with 98.4% of positions >20X
118 [Supplementary data Fig 1]. The reason we attempted another capture of the MHC region,
119  besides the one published earlier (6), is because we needed to assess the success of the design
120 using a random sample with unknown MHC sequence. The previously published capture (6)
121  involved the PGF cell line, which has a known MHC sequence and the oligos were designed
122 based on this known reference sequence. This time the Antholigo using a number of different
123  reference MHC sequences (18) was used to generate a new set of oligos that presumably can
124  target the MHC of any random DNA sample.

125  To capture sequence with acceptable range of accuracy and uniform representation across al the
126  regions in multiplexed reactions, oligonucleotides must meet certain specifications in terms of
127  sequence specificity, efficient oligo design with minimal interaction between the probes and
128  optimal process time[14, 16, 17, 26]. AnthOligo was implemented to satisfy these requirements
129  with the RSE method. It is well-understood that target capture design for multiplexed reactionsis
130 an NP-complete problem [14, 27]. Heuristic optimization was necessary to process large regions,
131  upwards of 1Mb while identifying sets of evenly spaced capture oligonucleotides throughout the

132  target region with target specificity[28]. Combinatorial approaches along with MapReduce
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133  framework helped multi-thread memory-intensive and data-intensive tasks to run within an
134  optimal time.

135  Sequence specificity is governed by multiple factors, the mgority of which are repeats in the
136 genome and the presence of pseudogenes [10, 11, 29-32]. AnthOligo's use of hard-masked
137 reference file for generating oligos resolves this by avoiding possible repeat regions in the

138  sequence. BLAT results were filtered by focusing on the specificity of the 3' subsequence[33].

139  Although AnthOligo was developed to support the RSE method, its current abilities and

140 flexibility for future enhancements may have wider applicationsin designing internal oligos that
141  can be used to target the MHC using CRISPR-Cas9, baits for gene panel analysis or even probes
142  for CgH array processes. AnthOligo is thus, a unique tool to an unaddressed domain and results
143  show that it achieves the desired objectives.

144
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