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Abstract

Despite its isolation and extreme climate, Antarctica is home to diverse fauna and associated
microorganisms. It has been proposed that the most iconic Antarctic animal, the penguin,
experiences low pathogen pressure, accounting for their disease susceptibility in foreign
environments. However, there is a limited understanding of virome diversity in Antarctic
species, the extent of in situ virus evolution, or how it relates to that in other geographic
regions. To test the idea that penguins have limited microbial diversity we determined the
viromes of three species of penguins and their ticks sampled on the Antarctic peninsula.
Using total RNA-Sequencing we identified 107 viral species, comprising likely penguin
associated viruses (n = 13), penguin diet and microbiome associated viruses (n = 82) and tick
viruses (n = 8), two of which may have the potential to infect penguins. Notably, the level of
virome diversity revealed in penguins is comparable to that seen in Australian waterbirds,
including many of the same viral families. These data therefore reject the theory that
penguins are subject to lower pathogen pressure. The repeated detection of specific viruses in
Antarctic penguins also suggests that rather than being simply spill-over hosts, these animals

may act as key virus reservoirs.
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Introduction

Geographical separation and extreme climates have resulted in the long isolation of
Antarctica and the subantarctic islands. The result is a unique assemblage of animals, some
relying entirely on the frozen continent, with others utilizing the fringes. Such geographic
isolation has been proposed to explain why Antarctic fauna supposedly harbour a paucity of
viruses, and supported by the observation that captive Antarctic penguins are highly
susceptible to infectious diseases (1). It has therefore been hypothesized that Antarctic fauna
have evolved in a setting of low “pathogen pressure”, reflected in limited microbial diversity
and abundance (1, 2). As a consequence, the potential for climate driven and human mediated
movement of microorganisms makes the expansion of infectious diseases to the Antarctic a

matter of considerable concern (1, 3-5).

To date, a small number of viral species have been described in Antarctic fauna (6).
Serological studies have revealed that Antarctic penguins are reservoirs for influenza A virus
(IAV), avian avulaviruses (formerly avian paramyxoviruses), birnaviruses, herpesviruses, and
flaviviruses (7-13). Despite improvements in the molecular tools for virus detection, it is only
in recent years that full viral genomes have been characterized (6). For example,
adenoviruses, astroviruses, paramyxoviruses, orthomyxoviruses, polyomaviruses and
papillomavirus have been identified in Adélie penguins (Pygoscelis adeliae), Chinstrap
penguins (Pygoscelis antarctica) and Gentoo penguins (Pygoscelis papua) (6, 14-22).
However, sampling is limited and genomic data sparse, such that we have a fragmented

understanding of virus diversity in penguins and in Antarctica in general.

Antarctic penguins may also be infected by viruses spread by ectoparasites, particularly the
seabird tick Ixodes uriae (White) (23). For example, seven different arthropod-borne viruses
(arboviruses) were identified in /. uriae ticks collected from King penguin colonies on
Macquarie Island in the subantarctic (25): Nugget virus, Taggert virus, Fish Creek virus,
Precarious Point virus, and Catch me-cave virus, all of which belong to the order
Bunyavirales (Nairoviridae and Phleboviridae), a member of the Reoviridae (Sandy Bay
virus, genus Orbivurus), and a member of the Flaviviridae (Gadgets Gulls virus) (23-25).
Notably, 1. uriae is the only species of tick with a circumpolar distribution and is found
across the Antarctic peninsula (26, 27). I. uriae are mainly associated with nesting seabirds
and feed on penguins in the summer months, using off-host aggregation sites for the reminder

of the year (28-30).
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Despite concern over virus emergence in Antarctica there remains little understanding of
virus diversity in Antarctic species, nor how virome diversity in Antarctic species relates to
that seen in other geographic regions. Herein, we determined the viromes of three species of
penguins (Gentoo, Chinstrap and Adelie) on the Antarctic peninsula, as well as . uriae ticks
that parasitise these birds. With these data in hand we addressed the drivers of virus ecology

and evolution in this remote and unique locality.

Methods
Ethics statement

Approvals to conduct sampling in Antarctica were provided by the Universidad de
Concepcion, Facultad de Ciencias Veterinarias, Chillan, Chile (application CBE-48-2013),
and the Instituto Antartico Chileno, Chile (application 654).

Sample collection

Samples were collected as previously described (15, 16). Briefly, samples were collected
from the South Shetland Islands and the Antarctic peninsula from Gentoo, Chinstrap, and
Adelie penguins in 2014, 2015 and 2016, respectively (Table S1). A cloacal swab was

collected from each penguin a using a sterile-tipped swab, placed in viral transport media,

and stored at -80 °C within 4-8 hours of collection.

Gentoo, Chinstrap and Adelie penguins were sampled on Kopaitik Island, Rada Covadonga,
1 km west of Base General Bernardo O’Higgins (63°19°5”’S, 57°53°55”W). Kopaitik Island
is a mixed colony containing these three penguin species, although no survey has been
performed since 1996 (31). Gentoo penguins were also sampled adjacent to Gonzalez Videla
Base, Paradise Bay (64°49'26"S 62°51'25"W): this colony is comprised of almost only
Gentoo penguins (3915 nests) and a single Chinstrap penguin nest reported in 2017 (31).
Chinstrap penguins were sampled at Punta Narebski, King George Island (62°14'00"S
58°46'00"W) and Adelie penguins were sampled at Arctowski Station, Admiralty Bay, King
George Island (62°9°35”S, 58°28”17”°W). A census at the penguin colony at Punta Narebski
in 2013 reported 3157 Chinstrap and 2378 Gentoo penguin nests. The penguin colony
adjacent to Arctowski Station comprises both Adelie and Chinstrap penguins, with a 2013

census reporting 3246 and 6123 nests and 3627 and 6595 chicks, respectively (31) (Fig 1).
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In 2017, the common seabird tick /. uriae at various life stages (adult male, adult female and
nymphs) were collected from Paradise Bay (Fig 1). Ticks were collected under rocks within
and directly adjacent to penguin colonies and placed in RNAlater (Ambion) and stored at -

80°C within 4-8 hours of collection.
RNA library construction and sequencing

RNA library construction, sequencing and RNA virus discovery was carried out as described
previously (32). Briefly, cloacal swab samples from penguins were extracted using the
MagMax mirVana™ Total RNA isolation Kit (ThermoFisher Scientific) on the KingFisher™
Flex Purification System (ThermoFisher Scientific). Extracted samples were assessed for
RNA quality using the TapeStation 2200 and High Sensitivity RNA reagents (Aligent

Genomics, Integrated Sciences).

RNA was extracted from ticks as described previously (33). Briefly, ticks were washed in
ethanol and homogenised in lysis buffer using a TissueRuptor (Qiagen) and RNA was
extracted using the RNeasy plus mini kit (Qiagen). The quality and concentration of extracted
RNA was assessed using the Agilent 4200 TapeStation. The 10 penguin and 5 tick samples
with the highest concentration corresponding to species/location/age were then pooled using
equal concentrations and concentrated using the RNeasy MinElute Cleanup Kit (Qiagen)

(Table S1).

Libraries were constructed using the TruSeq total RNA library preparation protocol
(Illumina) and host rRNA was removed using the Ribo-Zero-Gold kit (Illumina) for penguin
libraries and the Ribo-Zero Gold rRNA Removal (Epidemiology) kit (I1lumina) for the tick
libraries. Paired-end sequencing (100bp) of the RNA library was performed on the Illumina
HiSeq 2500 platform at the Australian Genome Research Facility (Melbourne). All sequence
reads have been deposited in the Sequence Read Archive (XXXX). Virus consensus

sequences have been deposited on GenBank (XXXX-XXX)
RNA virus discovery

Sequence reads were demultiplexed and trimmed with Trimmomatic followed by de novo
assembly using Trinity (34). No filtering of host/bacterial reads was performed before
assembly. All assembled contigs were compared to the entire non-redundant nucleotide (nt)
and protein (nr) database using blastn and diamond blast (35), respectively, setting an e-value

threshold of 1x107'? to remove false-positives.
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Abundance estimates for all contigs were determined using the RSEM algorithm (34). All
contigs that returned blast hits with paired abundance estimates were filtered to remove plant,
invertebrate fungal, bacterial and host sequences. Viruses detected in the penguin libraries
were divided into those likely to infect birds and those likely associated other hosts (36)(37).
This division was performed using a combination of phylogenetic analysis and information

on virus associations available at the Virus-Host database

(http://www.genome.jp/virushostdb/). The list was cross-referenced with known laboratory
reagent contaminants (38). Novel viral species were identified as those that had <90% RdRp
protein identity, or <80% genome identity to previously described viruses. Novel viruses
were named using the surnames of figures in the history of Antarctic exploration. Contigs
returning blast hits to the RSP13 host reference gene in penguin libraries and the COX1
reference gene in tick libraries were included to compare viral abundance with host marker

genes.

To determine whether any viruses identified in ticks were present in the penguin libraries we
used Bowtie2 (39) to assemble the raw reads from each penguin library to the novel virus

contigs identified in the tick libraries, and vice versa.
Virus genome annotation and phylogenetic analysis

Viruses were annotated as previously described (32, 33).Viruses with full-length genomes, or
incomplete genomes possessing the full-length RNA-dependant RNA polymerase (RdRp)
gene, were used for phylogenetic analysis. Amino acid sequences were aligned using MAFFT
(40), with poorly aligned sites removed using trimAL (41). The most appropriate model of
amino acid substitution was determined for each data set using IQ-TREE (42) or PhyML 3.0
(43), and maximum likelihood (ML) trees were then estimated using PhyML. For initial
family and clade level trees, SH-like branch support was used to determine the topological
support for individual nodes. Virus clusters providing the most relevant background
information to the novel viruses identified in here were then extracted and phylogenetic
analysis repeated using PhyML with 1000 bootstrap replicates. In the case of previously

described viruses, phylogenies were also estimated using nucleotide sequences.
Viral diversity and abundance across libraries

Relative virus abundance was estimated as the proportion of the total number of viral reads in
each library (excluding rRNA). All ecological measures in the penguin libraries were

calculated only using viruses likely associated with birds. Host-association is less complex in
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tick samples, and in this case we used the full tick data set, only excluding the Leviviridae
that are associated with bacterial hosts. Analyses were performed using R v 3.4.0 integrated

into RStudio v 1.0.143, and plotted using ggplot2.

Both the observed virome richness and Shannon effective [alpha] diversity were calculated
for each library at the virus family and genus levels using the Rhea script sets (44), and
compared between avian orders using the Kruskal-Wallis rank sum test. Beta diversity was
calculated using the Bray Curtis dissimilarity matrix and virome structure was plotted as a
function of nonmetric multidimensional scaling (NMDS) ordination and tested using Adonis

tests using the vegan (45) and phyloseq packages (46).

Results
Diversity and composition of Antarctic penguin and tick viromes

We characterized the transcriptomes of six libraries comprising 10 individuals each,
corresponding to three Antarctic penguin species in three locations and four tick libraries
comprising a total of 20 ticks (Table S1, Fig 1). RNA sequencing of rRNA depleted libraries
resulted in 42,382,642 - 55,930,902 reads assembled into 189,464 - 530,470 contigs for each
of the penguin libraries. The tick libraries contained 51,498,136 - 55,930,902 reads
assembled into 55,611 - 223,554 contigs (Table S1). There was a large range in the total viral
abundance in both the penguin (0.07-0.7 % total viral reads; 0-0.15 % avian viral reads) and
tick libraries (0.03-2.4%) (Table S1, Fig 2). In addition to likely avian viruses, the penguin
libraries contained numerous reads matching insect, plant, or bacterial viruses and
retroviruses (Fig 2A, Fig 3). Retroviruses were excluded from later analyses due to the
challenges associated with differentiating exogenous from endogenous sequences using meta-

transcriptomic data alone.

The abundance of RSP13, a stably expressed host reference gene in the avian colon (47), was
similar across all penguin libraries, yet with lower abundance in the Adelie penguins (Fig
2C). The abundance of COX1 in tick libraries was consistent with the body size of the ticks
included in each library, with the highest abundance in the large adult female ticks and the

lowest abundance in the first of two nymph libraries (Fig 2D-F).

The abundance of avian viral reads was the highest in Chinstrap penguins sampled on

Kopaitik Island (0.152% of total reads), and the lowest in Gentoo penguins sampled at the
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GGV Base for which no avian viral reads were detected. Because this colony is comprised
solely of Gentoo penguins only this species was sampled (31). Alpha diversity (the diversity
within each library) was highest in the Adelie and Chinstrap penguins at both the viral family
and genus levels, and was lower in Gentoo penguins, even when only considering viromes
from Kopaitik Island where all three penguin species were sampled (Fig S1, S2). Hence, the
reason we detected no viral reads at the most southern sampling site (the GGV Base) may be

due to a combination of location and species choice (Gentoo penguins).

Although there was variation in virus composition among libraries, members of the
Picornaviridae were the most abundant in the Chinstrap and Adelie penguin libraries,
comprising 99%, 32%, 83% and 71% of all the avian viral reads in these four libraries. In
marked contrast, the Picornaviridae comprised only 0.25% of avian viral reads from Gentoo
penguins on Kopaitik Island (and no avian viruses were found in the Gentoo penguins from
GGV). Beta diversity demonstrated connectivity in the viromes from the Adelie penguins,
driven by a number of shared viral species across the Kopaitik Island and King George Island

sampling locations that are 130 km apart (Fig 3, Fig S3).

Within the tick libraries, the greatest virus abundance was seen in the adult female ticks,
while the lowest virus abundance was observed in the adult male ticks. Alpha diversity was
similar across all libraries. Interestingly, while virus richness was highest in the adult female
ticks, Shannon diversity was lower than the other libraries (Fig S4), although without
replicates it is not possible to draw clear conclusions. Given the high virus richness in female
ticks, it is not surprising that the largest number of viral species were also described in this
library. The tick libraries were also highly connected, with 5/8 species shared among them,
although the beta diversity calculations are confounded because of limited sample size (Fig

S3).

Substantial RNA virus diversity in Antarctic penguins and their ticks

Overall, 22 viral families, in addition to four viruses that fell outside well defined viral
families but clustered with other unclassified ‘picorna-like’ viruses (Treshnikov virus,
Luncke virus, Dralkin virus and Tolstivok virus), were identified in the penguin and tick
libraries (Fig 3). Of these, the likely bird associated viruses were members of the
Astroviridae, Caliciviridae, Coronaviridae, Herpesviridae, Orthomyxoviridae,
Paramyxoviridae, Picorbirnaviridae, Picornaviridae and Reoviridae (Fig 2B, Fig 3) (see

below). Ten of the 13 avian associated viruses identified in the penguins likely represent
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231  novel avian viral species (Table S2, Fig 4), and two virus species (Avian avulavirus 17 and
232 Shirase virus) were shared among Adelie penguins from different locations. There was no
233 virus sharing among species at individual locations (i.e. no viruses were shared across

234 penguin species at either Kopaitik Island or on King George Island) (Fig 4), although this is
235  likely because species were sampled in different years. All viruses in the tick libraries, with
236  the exception of Taggert virus, represented novel virus species with amino acid sequence

237  similarity to reference virus sequences from 31% to 81%. Five of the nine virus species

238  described in ticks were shared across libraries, which is unsurprising given that the ticks were
239  collected from the same population. Notably, the nymph libraries contained a higher

240  percentage of viral RNA than both the large nymphs and adult male ticks.

241  Strikingly, we identified 82 divergent novel virus species in the penguin libraries that

242 clustered phylogenetically within 11 defined families, as well as three viruses that clustered
243 with a group of unclassified viruses. These unclassified viruses likely associated with

244  penguin diet or their microbiome: fish, invertebrates, plants, fungi and bacteria (Fig 2A,
245  Table S3, Fig 3). The largest diversity was found in the "Narna-Levi", "Noda-Tombus" and
246  "Picorbirna-Pariti" viral groups (36). A number of viruses were highly divergent, including
247  clusters of novel viruses that fell within the Narnaviridae and Leviviridae (Table S3, Fig 3).
248  Overall, 56 different species of Narna-Levi viruses were identified in Adelie penguins,

249  comprising approximately half of the Narna-like viruses and 21/25 of the Leviviridae: these
250  were likely associated with bird diet or microbiome. All invertebrate associated

251  Picobirnaviridae were found in Chinstrap penguin libraries, while a single picobirnavirus
252 identified in an Adelie penguin library was most closely related to other bird associated

253  viruses (see below). As these 82 viruses are unlikely to be associated with penguins or their

254 ticks, they are not described further.
255  Novel avian viruses

256  The novel Wilkes virus was identified in an Adelie penguin on Kopaitik Island, and belongs
257  to the genus Nacovirus (Caliciviridae) - a group dominated by avian viruses (Fig S5). This
258  virus is closely related to Goose calicivirus and caliciviruses sampled from waterbirds in
259  Australia (i.e. Red-necked Avocet and Pink-eared Duck) (32, 48). All the picornaviruses
260 identified in this study likely belong to novel or unassigned genera (Fig S6). Three different
261  variants of Shirase virus were identified in Adelie penguins, two from King George Island

262  and one from Kopaitik Island. Interestingly, Shirase virus falls as a sister lineage to viruses of
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the genus Gallivirus. Similarly, two variants of Wedell virus were identified in Chinstrap
penguins. Wedell virus falls in an unassigned lineage of picornaviruses that other avian
viruses identified in metagenomic studies (32, 48). Three additional picornaviruses were
identified in Chinstrap penguins - Ross virus, Scott virus and Amundsen virus - that fall basal

to members of the genus Tremovirus.

Rotaviruses were identified in both Gentoo (Shackleton virus) and Adelie (Mawson virus)
penguins. Shackleton virus falls as an outgroup to a clade of rotaviruses recently described in
wild birds, which are themselves divergent from Rotavirus G virus, while Mawson virus is a
sister group to rotavirus D (Fig SA). Hilary virus, a picobirnavirus, was found in a clade that
contains both avian and mammalian hosts. Interestingly, this virus is most closely related to a
human picorbirnavirus, albeit with low amino acid similarity and long branch lengths (Fig
S7). Although there certainty as to whether these viruses are bacterial rather than vertebrate

associated (49), they are retained here for comparative purposes.

Finally, although most of the novel viruses documented here had RNA genomes, we also
identified a novel alphaherpesvirus, Oates virus, that falls as a sister group to Gallid and
Psittacid hepervirus 1. Notably, this virus was distantly related to an alphaherpesvirus

previously described in penguins (Sphencid alphaherpesvirus) (Fig 5SB).
Avian RNA viruses previously detected in penguins

Previous studies of Antarctic penguins have detected avian influenza A viruses and avian
avulaviruses (15, 16, 21). Similarly, we detected an HSN5 influenza A virus in Chinstrap
penguins identical in sequence to that reported previously. This is not surprising as the virus
described in Hurt ef al. (2016) was isolated in the same set of samples (Fig S8). In addition,
we identified Avian avulavirus 17 (AAvV-17) in Adelie penguins from both sampling
locations (Fig 6A, Fig S9). This virus was previously isolated in Adelie penguins in 2013
(21) and Gentoo penguins in 2014-2016 (50). Analysis of the F gene of AAvV-17 indicates
that the virus detected in Adelie penguins on both King George Island and Kopaitik Island
was more closely related to that from Gentoo penguins sampled between 2014-2016 (50) than
to the Adelie penguins sampled in 2013 (21) (Fig 6A). Although AAvV-17 was detected in
penguins sampled at two locations (Kopaitik Island and King George Island) only two weeks
apart, they shared only 98.6% identity. Blastx results also indicated the presence of Avian

avulavirus 2, although we were unable to assemble the virus genome.

10
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We also identified a deltacoronavirus and an avastrovirus (Fig 6B, Fig S10- S11). The
deltacoronavirus was similar to those reported in birds in the United Arab Emirates,
Australia, Niger, and Finland, with ~95% identity. A lack of sampling makes it challenging to
determine how deltacoronaviruses in Antarctica and other continents may be shared (Fig
S10). The astrovirus detected was similar (88.3% identity) to a short fragment (1000 bp)
previously reported in Adelie penguins on the Ross ice shelf of Antarctica (22) (Table S2), a
pattern confirmed by phylogenetic analysis (Fig 6B). Phylogenetic analysis also reveals that
this virus falls in an outgroup to Group 2 viruses, including Avian Nephritis virus (Fig 6B,
Fig S11). Although we were unable to determine the epidemiology of these viruses in
Antarctica, repeated detection on opposite ends of the Antarctic continent makes it possible

that this is a penguin specific virus.

Tick associated viruses

The most abundant virus identified within the /. uriae ticks sampled here was a variant of
Taggert virus, a nairovirus (order Bunyavirales) previously identified in penguin associated
ticks on Macquarie Island: the contigs identified in our data showed 81.6% nucleotide
sequence similarity in the RdRp region to Taggert virus (24) (Fig 7). This Taggert virus
variant accounted for 2.0% of total reads (87% of viral reads) in the adult female library and
was found in all tick libraries. Because the nucleotide sequences of Taggert virus differed
between libraries it is unlikely that they represent cross-library contamination. In addition, we
identified 75 reads of Taggert virus in the library containing samples from Chinstrap
penguins on Kopaitik Island. Importantly, the tick and penguin libraries were not sequenced
on the same lane, or even in the same time frame, thereby excluding contamination. Two
other members of the order Bunyavirales were also discovered - Ronne virus and Barre virus
- both members of the Phenuiviridae (Fig S12) that exhibited 80% amino acid sequence
similarity across the RdRp segment. Ronne virus was identified in three of the tick libraries
(adult male, adult female and nymph libraryl) but Barre virus was identified only in a single

library (nymph library 2) (Fig 4).

The six other novel virus species identified in the tick libraries comprised five viral families:
Iflaviridae-like, Alphatetraviridae, Reoviridae, Rhabdoviridae, and Levivirdae. A novel Ifla-
like virus, Gerbovich virus, was identified within both nymph libraries. This virus clustered
with a group of tick associated ifla-like viruses, including Ixodes holocyclus iflavirus and
Ixodes scapularis iflavirus (Fig S12). Two sister species of virus were identified within the

Alphatetraviridae - Bulatov virus and Vovk virus - that showed 76.1% amino acid sequence
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327  similarity across the RdRp region. These two viruses are highly divergent from all other

328  RdRp sequences currently available, exhibiting just 35.7% amino acid sequence similarity to

329  the divergent tick-borne tetravirus-like virus (Fig S12). A novel colti-like virus (Reoviridae),

330  Fennes virus, was identified in the adult male, female and nymph libraries, although we were

331 only able to assemble four segments. Notably, Fennes virus falls basal to the existing

332 coltivirus group, exhibiting just 30% amino acid sequence similarity to Shelly headland virus,
333 recently identified in Ixodes holocyclus ticks from Australia (Fig 7). The partial genome of a

334 Rhabdovirus, Messner virus, was identified in the adult female library. However, this

335  fragment was of low abundance, and only the RdRp segment (Fig S12).

336  Finally, Mackintosh virus, identified in all four tick libraries, was not associated with any
337  other tick viruses. Instead, this virus clustered with viruses from the Leviviridae indicating

338  thatitis likely a bacteriophage (Table S2).

339
340  Discussion

341  The advent of metagenomic sequencing and improved sampling has rapidly accelerated the
342 rate of microbial discovery in the Antarctic. Indeed, viruses have now been identified both in
343 the environment (e.g. Antarctic lakes), and in wildlife. We aimed to test the hypothesis that
344  Antarctic penguin colonies experience low pathogen pressure as a result of their geographic
345  and climatic isolation, employing meta-transcriptomic virus discovery from three penguin
346  species and their ticks. Critically, we demonstrate the presence of 13 viral species in these
347  penguins and nine in ticks associated with penguin nesting sites. These data counter the idea
348  that animals in the Antarctic harbour less microbial diversity than animals from other

349  geographic regions. Indeed, the penguins sampled show similar levels of virome diversity as
350  Australian wild birds (32, 48). Recent virome studies of Australian birds revealed an alpha
351  diversity (observed richness) of 5.37 and 5.8 per library, with an average of 2.87 and 3.1 viral
352 genomes and 60% and 80% of viruses being novel (32, 48). In comparison, in the penguins
353  studied here we observed an average richness of 4.6 and 2.8 viral genomes per library, with a
354  virus discovery rate of 76%. There was also an impressive level of viral diversity in the tick
355  libraries considering the small sample size: eight novel virus species and a single previously
356  identified species were identified in 20 ticks, compared to 19 novel viruses in 146 ticks from
357  Australia (33). Finally, in both the penguin and tick associated viruses revealed we identified

358  similar viral families to those documented previously (32, 33, 48). This strongly suggests that
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these families and genera are associated with a huge diversity of birds and ticks across the

globe, providing a viral connectivity between geographically distinct localities.

Notably, as all the penguins sampled appeared healthy, the disease-causing capacity of these
viruses is uncertain. Ten Chinstrap penguins sampled on King George Island harboured five
different viral species, mostly from the Picornaviridae, at very high abundance (0.15% of
total reads). Adelie penguins also had high viral diversity, with apparently healthy birds
carrying three or four viral species. Perhaps more striking was that Adelie penguins on King
George Island and the Antarctic peninsula shared viruses, despite the greater than 100 km
distance between these colonies. A similar trend was observed by Wille ef al. (2019a) who
found that Adelie penguins sampled in 2013 shared avian avulavirus 17 and 19 across these
two locations, thereby revealing a connectivity between penguin colonies. Whether this is due
to overlapping foraging grounds, prospecting birds visiting different colonies, viral vectors in
the form of predatory and scavenging birds such as Southern Giant Petrels (Macronectes
gigantes), Kelp Gulls (Larus dominicanus) or Skuas (Stercorarius spp.) (51, 52), or another
unimagined route is unclear. Penguins sampled on King George Island and Kopaitik Island
had similar alpha diversity at the virus family and genus levels. Interestingly, no avian viral
reads or genomes were detected in the samples from Gentoo penguins at GGV. Whether this
is due to geographic structuring of avian viruses in Antarctica, the species sampled at this
location (i.e. Gentoo penguins tended to have lower diversity than either Adelie or Chinstrap

penguins) or another process merits further investigation.

Combined, these data strongly suggest that penguins are not merely spill-over hosts, but may
be central reservoir hosts for a diverse range of viruses. This is apparent in two observations.
The first is the repeated detection of specific virus species, such as avian avulaviruses, and
that these viruses comprise distinct clusters of related variants. Antarctic penguins have been
sampled since the 1970’s, and avian avulaviruses have repeatedly been detected, both by
serology and PCR. The detection of phylogenetically related avian avulavirus 17 in 2013 in
Adelie penguins (21), in 2014-2016 in Gentoo penguins (50), and again in 2016 in Adelie
penguins as shown here, strongly suggests that these animals are an important reservoir for
these viruses. Although the influenza A virus we detected was the same virus as described
previously (15), the long branch lengths in the phylogenetic trees suggest long-term

undetected circulation in Antarctica (15).
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The second key observation that indicates that penguins are potential virus reservoirs was the
presence of likely arboviruses, which is why we paired our analysis of the penguin virome
with that of the ticks that parasitise them. Of the nine species of viruses identified within the
ticks in this study, two clustered phylogenetically with other arboviruses: the previously
detected Taggert virus fell within the Nairoviridae, while Fennes virus was a member of the
Reoviridae. Taggert virus was originally identified in /. uriae collected from penguin
colonies, and is one of seven /. uriae associated virus species identified in ticks collected
from penguin colonies on Macquarie Island (24). Taggert virus groups phylogenetically
within the genus Orthonairovirus, and closely to the pathogenic arbovirus, Crimean-Congo
Haemorrhagic fever virus. Interestingly, we not only identified Taggert virus in all four tick
libraries, but also in Chinstrap penguins on Kopaitik Island. This strongly supports the idea
that penguins acted as a reservoir host for Taggert virus (24). In this context it is important to
note that as all penguin and tick samples were processed in separate laboratories and

sequenced separately, thereby eliminating cross-library contamination.

Also of note was Fennes virus that clustered phylogenetically within the genus Coltivirus that
includes the pathogenic tick-borne virus Colorado tick fever virus as well as a number of tick
associated viruses and a species identified in African bats (33, 53-55). Notably, Fennes virus
fell in a basal position and was relatively divergent from the other coltiviruses. The vertebrate
reservoirs of coltiviruses have been only confirmed for Colorado tick fever virus and Tai
forest reovirus - rodents and free tailed bats, respectively - although other members of the
genus are suspected to infect rodent species. Interestingly, the viruses identified in /. uriae
from Macquarie Island in a series of three studies between the 1970s and 2009 belonged to
just four families - Reoviridae, Narioviridae, Phenuiviridae and Flaviviridae (23-25) - three
of which were present here. Our phylogenetic analysis suggested that six of the remaining
seven virus species identified within the tick data were likely associated with invertebrates,

with one other virus (Mackintosh virus) likely a bacteriophage from the family Leviviridae.

There was extensive diversity of viruses identified in the penguin samples that were likely to
be associated with hosts other than birds, including entire clades of novel viruses within
phylogenetic trees of the Narnaviridae and Leviviridae. Given their phylogenetic position
these viruses are likely associated with the fish, crustacean and plant species ingested by the
penguins as part of their diet, as well as infecting unicellular parasites, fungi and bacteria. A
number of these viruses may also be associated with penguin gut flora: indeed, cloacal swabs

are used extensively in studies of bird gut microbiomes (56, 57). Due to the nature of the
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cloacal swabs, it is impossible to accurately determine the host for these viruses, although
some information can be gleaned from the families in which these virus fall. For example, the
Narnaviridae are known to infect fungi and protists, while the related Leviviridae infect
bacteria (58-61). Other novel viruses fell within invertebrate associated clades of the
Nodaviridae and Tombusviridae, associated with both vertebrate and invertebrate infecting
viruses in the Picornavirales (36). There were also a number of novel viruses identified that
clustered within the Picobirnaviridae/Partitiviridae group. While the Partitiviridae are
recognised as invertebrate associated viruses, the host association of the Picobirnaviridae is
currently uncertain (49). Overall, this demonstrates remarkable undescribed viral richness in

those organisms that comprise the diet of Antarctic penguins.

In sum, we reveal substantial viral diversity in Antarctic penguins, their diet and their ticks.
We therefore expect that additional viruses will be identified with increased sampling,
reflecting what it is in reality a relatively high diversity of unique fauna and flora on the
Antarctic continent. Clearly, additional sampling of penguins and other species in Antarctica
is critical to elucidate the epidemiological connection between Antarctica and the rest of the

globe, and from this better understand the mechanisms of viral introduction and circulation.
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613  Figure 1. Map of Antarctic peninsula and locations where Antarctic penguins samples and
614  ticks were collected.
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616  Figure 2. Abundance of viruses found in penguins and their ticks. (A) Abundance of all viral
617  reads found in penguin libraries. (B) Abundance and diversity of avian viruses in each of the
618  penguin libraries. (C) Abundance of the host reference gene RSP13 in penguin libraries. (D)
619  Abundance of all viral reads found in the tick libraries. (E) Abundance and diversity of

620  viruses in each of the tick libraries. (F) Abundance of the host reference gene COX1 in the
621  tick libraries.
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623  Figure 3. Phylogenetic overview of the viruses found in penguins and ticks. Viruses found in
624  penguins were divided into two groups — those that infect birds and those that likely to other

625  hosts.
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627  Figure 4. Bipartite network illustrating biologically relevant virus species for which

628  viral genomes were found in each library. Each library is represented as a central node,

629  with a pictogram of the species, surrounded by each viral species. Where two libraries share a
630  virus species, the networks between the two libraries are linked. Virus colour corresponds to
631  virus taxonomy. Viruses identified in penguin libraries that are unlikely to be bird associated
632  are not shown. A list of viruses from each libraries is presented in Table S3, and phylogenetic
633 trees for each virus family can be found in Figs 5-8, S5-S12).
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635  Figure 5. Phylogenies of select novel viruses found in penguins. (A) Phylogenetic tree of
636  the VPI, containing the RdRp, of rotaviruses. The tree is midpoint rooted for clarity only. (B)
637  Phylogeny of the concatenated major capsid gene and glycoprotein B gene of the

638  Alphaherpesvirinae. Two betaherpesviruses were used as outgroup to root the tree. The

639  viruses identified in this study are denoted with a filled circle and in bold. Bootstrap values
640  >70% are shown for key nodes. The scale bar represents the number of amino acid

641  substitutions per site.
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643  Figure 6. Phylogeny of two previously described viruses in penguins. (A). Phylogeny of
644  the F gene of Avian avulavirus-17. Detection location for viruses identified in this study and
645  Wille et al. (2019) are denoted by either a green filled circle (King George Island) or blue
646  filled triangle (Kopaitik Island). It is unclear in which year this virus (AAvV-17/Gentoo

647  Penguin) was isolated (50), although it is sometime between 2014-2016 and therefore has
648  been denoted as 201x. Avian avulavirus 18 was used as outgroup to root the tree. The scale
649  bar represents the number of nucleotide substitutions per site. (B). Phylogenetic tree of the
650  ORFlab, including the RdRp, of avastroviruses. The tree is mid-point rooted for clarity only.
651  The scale bar represents the number of amino acid substitutions per site. Bootstrap values
652 >70% are shown for key nodes. Viruses identified in this study are denoted in bold.
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653

654  Figure 7. Phylogenies of tick arboviruses. (A) The RdRp segment of select members of the
655  Reoviridae, including the genus Coltivirus. (B). The RdRp of select members of the

656  Bunyavirales including the family Nairoviridae. The novel tick viruses identified in this

657  study are denoted with a filled circle and in bold. The tree has been mid-point rooted for

658 clarity only. Bootstrap values >70% are shown for key nodes. The scale bar represents the
659  number of amino acid substitutions per site.
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