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Using procedures optimized to explore network organization within the individual, the topography of a
candidate language network was characterized and situated within the broader context of adjacent net-
works. The candidate network was first identified using functional connectivity and replicated across
individuals, datasets, acquisition tasks, and analytic methods. In addition to classical language regions
near to perisylvian cortex and temporal pole, additional regions were observed in dorsal posterior cin-
gulate, midcingulate, anterior superior frontal and inferior temporal cortex. The candidate network was
selectively activated when processing meaningful (as contrast to non-word) sentences, while spatially
adjacent networks showed minimal or even decreased activity. Examined in relation to adjacent net-
works, the topography of the language network was found to parallel the motif of other association net-
works including the transmodal association networks linked to theory of mind and episodic remember-
ing (often collectively called the default network). The several networks contained juxtaposed regions
in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a
distinct frontotemporal network situated between language regions and a frontal orofacial motor region
and a temporal auditory region. A possibility is that these functionally-related sensorimotor regions
might anchor specialization of neighboring association regions that develop into the language network.
What is most striking is that the canonical language network appears to be just one of multiple similarly
organized, differentially specialized distributed networks that populate the evolutionarily expanded
zones of human association cortex.

Introduction placed specifically on the canonical distributed net-
work specialized for language, leaving open the ques-
tions of i) whether the language network possesses
features similar to other distributed association net-
works, and ii) how the language network fits within
the spatial macroscale organization of the cerebral
cortex. Thus, there is a gap in our understanding of
how to situate language-responsive regions within
the broad mosaic of networks that populate associa-
tion cortex.

The gap is particularly notable given that the de-
scription of interconnected anterior and posterior
language regions inspires much of the contemporary
study of human brain networks. The classic perisyl-
vian language system, initially identified through case
studies of patients with aphasia, included an extended
region encompassing inferior frontal gyrus (IFG) just

The association cortex comprises a mosaic of dis-
tributed networks that each interconnect regions in
prefrontal, parietal, temporal and midline cortices
(Goldman-Rakic 1988; see also Mesulam 1981; 1990).
The distributed spatial motif is shared across neigh-
boring regions, leading to a parallel organization of
networks (Yeo et al. 2011; Power et al. 2011; Margu-
lies et al. 2016; Braga and Buckner 2017). One hy-
pothesis is that the broad organization of higher-or-
der association cortex is established early in develop-
ment, with subsequent specialization of cortical zones
into distinct networks by activity-dependent pro-
cesses (Buckner and DiNicola 2019). While much
work has previously estimated the spatial relations
between multiple higher-order association networks
(e.g., Margulies et al. 2016), less emphasis has been
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rostral to motor cortex (i.e., Broca’s area) and the pos-
terior superior temporal cortex (pSTC; i.e., Wernicke’s
area; Geschwind 1970). Quantitative lesion mapping
(Bates et al. 2003; Mirman et al. 2015) and study of
progressive aphasia (Mesulam et al. 2013) have high-
lighted the importance of rostral regions of temporal
association cortex extending to the temporal pole
(TP), and additional regions at and around tradition-
ally defined Broca’s area. Taken together, classical
and contemporary findings on the anatomy of lan-
guage function support a specialized, left-lateralized
network that involves multiple distributed anterior
and posterior association regions.

Task-activation studies of language based on
group-averages yield an estimate of regions involved
in language function that is in many ways consistent
with the clinical literature (e.g., Petersen et al. 1988;
Wise et al. 1991; Blank et al. 2002; Hickok and Poep-
pel 2007; Ferstl et al. 2008). Findings converge on a
left-lateralized network active during speech recep-
tion and production, with regions distributed in ante-
rior and posterior zones that include pSTC often ex-
tending rostrally to the temporal pole, and prefrontal
regions prominently including the IFG. It is intriguing
that this canonical set of language regions broadly ad-
heres to the general motif of other association net-
works (Goldman-Rakic 1988; Yeo et al. 2011; Power
et al. 2011; Margulies et al. 2016). Further, the prox-
imity of language regions in the IFG and temporal as-
sociation cortex to orofacial motor and auditory cor-
tices (Geschwind 1970; Krubitzer 2007) may have
relevance to the development of language pathways
(see also Hickok and Poeppel 2007). A core goal of the
present work is to use within-individual neuroimag-
ing approaches to characterize the detailed spatial or-
ganization of the language network in relation to
other nearby functional regions.

A further motivation for exploring the detailed or-
ganization of the language network is that group-
based studies frequently reveal that the same (or
nearby) IFG regions are activated by both linguistic
and non-linguistic task demands. This observation led
to suggestions that certain parts of the estimated lan-
guage system act as domain-flexible resources sup-
porting controlled processing (e.g., Thompson-Schill
et al. 1997; Poldrack et al. 1999; Gold and Buckner
2002; Burianova and Grady 2007; Hein and Knight
2008; see Blumstein and Amso 2013 for relevant dis-
cussion). One possibility is that distinct regions are

blurred together in group-averaged data. Of critical
importance, when functional zones are defined within
individuals, distinct language-specific regions can be
defined within IFG that lay in close proximity to, and
are surrounded by, less domain-specialized regions
(Fedorenko et al. 2010; 2012) that are typically con-
sidered part of a separate system called the ‘multiple-
demand’ or ‘frontoparietal control network’ (FPN;
Duncan et al. 2010; Vincent et al. 2008). The implica-
tion is that individual-focused analyses can resolve
details of regional specialization, particularly in asso-
ciation regions like the IFG, that may have densely
packed functional zones that vary in location across
individuals (Mueller et al. 2013).

The close juxtaposition of multiple functionally
distinct regions near to language regions may also
have complicated group-based functional connectiv-
ity estimates of network organization. Using data-
driven algorithms that ‘parcellate’ the cortex into dis-
crete networks, group-averaged analyses indicate the
association cortices typically comprise around 5 ma-
jor networks (Yeo et al. 2011; Power et al. 2011;
Doucet et al. 2011), none of which is an unequivocal
candidate for a language system (see Ji et al. 2019 for
a discussion). Instead, other known distributed net-
works like the default (Buckner et al. 2008; see also
Binder et al. 2009), frontoparietal control (Vincent et
al. 2008) and salience networks (Seeley et al. 2007)
have typically been identified within the vicinity of
classical perisylvian language areas (e.g., see Fig. 11 in
Yeo etal. 2011). The juxtaposition of language regions
near to other major, dominant association networks
may have obscured their identification in low-dimen-
sional, low-resolution estimates of network organiza-
tion. More recently, using network parcellation ap-
proaches, Gordon and colleagues (Fig. 3 in Gordon et
al. 2017b; 2017a; Laumann et al. 2015) and Kong and
colleagues (Fig. 2 in Kong et al. 2019) each delineated
a network that matches the expected distribution of
the language network. In these schemes, the network
nearest to what might be a candidate language net-
work was given the labels ‘ventral attention network’
and ‘temporal parietal’ network, respectively, high-
lighting the uncertainty over its function.

Analyses that assume a left-lateralized language
network will be present yield clear positive evidence.
For example, using a clustering approach that built in
priors to nudge the algorithms to identify a distinct
network anchored in the left superior temporal gyrus,
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Lee and colleagues identified a candidate language
network (see LAN1 in Fig. 7 of Lee et al. 2012) that
exhibited the hallmarks of the classic language system
(i-e., containing regions in IFG, pSTC and TP). Interest-
ingly, this network was found to also include smaller
regions distributed along the midline in dorsal poster-
omedial cortex (dPMC), midcingulate cortex (MCC),
ventromedial prefrontal cortex, and anterior superior
frontal gyrus (aSFG). This ‘extended’ language net-
work was recapitulated by Hacker and colleagues
(2013), who used regions of activation from a meta-
analysis of various cognitive domains to guide net-
work definition (see Figs. 5 and 7 in Hacker et al.
2013; see also Hampson et al. 2002). Reinforcing the
role of this extended network in language, Glasser et
al. (2016; and see Ji et al. 2019) demonstrated that a
similar network, defined through a multimodal ap-
proach, reveals task response during story listening.
The identified regions fall at or near regions im-
portant to less domain-restricted aspects of cognitive
control.

Thus, the complex literature on the network or-
ganization near to the frontal language regions almost
certainly arises, in part, because there exist multiple
distinct juxtaposed networks that are simply difficult
to disambiguate in group-based studies. Fedorenko
and colleagues’ (2010; 2012) findings within individ-
uals of spatial separation of prefrontal language re-
gions from adjacent domain-flexible processing re-
gions provides a compelling demonstration that a
more complete description of organization may be
possible when fine anatomical details are preserved.

Motivated by the ambiguity of the prior literature
and the opportunity to examine network organization
fully within the individual, we sought to revisit and ex-
pand examination of the human language network.
Specifically, we aimed to explore the detailed anat-
omy of the language network and contextualize it
alongside other neighboring functional networks in-
cluding the default, frontoparietal control and sali-
ence networks. What emerged is evidence that the
language network is spatially distinct from but simi-
larly organized to other differentially specialized as-
sociation networks. Moreover, while sharing the same
organizational motif as the other higher-order associ-
ation networks, regions within the language network
have particularly close spatial adjacencies to a net-
work hierarchy involving motor and sensory regions
important for speech and hearing.

Methods

Overview

The functional architecture of the language net-
work of the cerebral cortex was explored using func-
tional connectivity within individuals based on two
approaches: manually selected seed-based connectiv-
ity and data-driven clustering. In all individuals
tested, a clear candidate language network was ob-
served that occupied regions juxtaposed but distinct
from other distributed association networks includ-
ing the default, frontoparietal control and salience
networks. Next, data collected during a language lo-
calizer task were used to reveal language-responsive
regions of the cortex. The candidate language network
defined by functional connectivity overlapped in de-
tail with regions activated by the task (Fedorenko et
al. 2010). The analyses provided evidence that the ex-
tended language network, including smaller and pre-
viously underemphasized regions, responds to lan-
guage task demands, supporting the idea that the dis-
tributed network is specialized for language. Data col-
lected during a motor localizer task were used to de-
fine motor regions activating during tongue move-
ments (n = 2 subjects) to explore the relationship be-
tween language network regions and sensorimotor
cortices.

Participants

Seven healthy adults (6 right-handed) were re-
cruited from the greater Boston community and
screened to exclude a history of neurological or psy-
chiatric illness. Participants provided written in-
formed consent using procedures approved by the In-
stitutional Review Board of Harvard University. Data
were collected as part of two separate studies. In
Study 1, two subjects (2 females; ages 23 and 24)
were each scanned across 24 separate MR sessions
collected over approximately 16 weeks that included
a language-localization task (resting-state data previ-
ously reported in Braga and Buckner 2017). Two ad-
ditional potential subjects were excluded because of
missing language task data and the absence of a field-
map. In Study 2, five subjects (3 females; ages 20-25)
were each scanned across 4 MR sessions collected
over two weeks (portions of data previously reported
in DiNicola et al. 2019). A sixth potential subject was
excluded due to missed task trials during periods
when the subject also had her eyes closed.
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MRI Data Acquisition

The detailed data acquisition protocol was previ-
ously reported in Braga and Buckner (2017) and DiNi-
cola et al. (2019). Procedures are briefly summarized
here. Data were acquired at the Harvard Center for
Brain Science on a Siemens Prisma-fit 3T MRI scanner
using the vendor’s 64-channel phased-array head-
neck coil (Siemens, Erlangen, Germany). Subjects pro-
vided behavioral responses during the language local-
izer task using a custom button box. Eyes were moni-
tored and video-recorded using an Eyelink 1000 Core
Plus with Long-Range Mount (SR Research, Ottawa,
Ontario, Canada). A 4-point scale was used to record
participant’s level of arousal during each run based on
the frequency and duration of eye closures. The eye
video was also visually checked to flag prolonged eye
closures occurring during task trials.

Blood oxygenation level-dependent (BOLD) fMRI
(Kwong et al. 1992; Ogawa et al. 1992) data were ac-
quired using a multi-band gradient-echo echo-planar
pulse sequence (Setsompop et al. 2012) implemented
as part of the Human Connectome Project (HCP; Van
Essenetal. 2013; Xuetal. 2012): TR 1000 ms, TE 32.6
ms, flip-angle 64°, 2.4 mm isotropic voxels, matrix 88
x 88 x 65, multi-slice 5x acceleration. Minimization of
signal dropout was achieved by automatically (van
der Kouwe et al. 2005) selecting a slice plane 25° from
the anterior-posterior commissural plane towards
the coronal plane (Weiskopf et al. 2006; Mennes et al.
2014). A rapid T1-weighted anatomical scan was ac-
quired in each session using a multi-echo MPRAGE
three-dimensional sequence (van der Kouwe et al.
2008): TR 2200 ms, TE 1.57, 3.39, 5.21, 7.03 ms, TI
1100ms, flip angle 7°, 1.2 mm isotropic voxels, matrix
192 x 192 x 144, in-plane GRAPPA acceleration 4. A
dual-gradient-echo B0 fieldmap was acquired to cor-
rect for spatial distortions: TE 4.45, 6.91 ms with
matched slice prescription/spatial resolution to the
BOLD sequence.

Functional runs were flagged for exclusion if 1)
maximum absolute motion exceeded 2mm, 2) slice-
based temporal signal-to-noise ratio was less than or
equal to 135, or 3) the value for maximum absolute
motion or signal-to-noise ratio represented an outlier
when values from all runs were plotted together. The
raw data from flagged runs were visually checked for
motion artifacts and excluded if these were deemed to
be severe. All exclusions were determined prior to
analysis of the task data. Following this procedure,

one language-localizer run was excluded for S6 due to
high motion and low SNR. Furthermore, 4 out of 24
fixation runs and 1 out of 8 language localizer runs
were excluded for S2 after detection of signal instabil-
ity (higher mean signal compared to other runs) that
was later determined to arise from the gradient coil.

In-Scanner Tasks

All 7 participants provided data collected during
multiple runs of a passive visual fixation task and a
language localizer task (Fedorenko et al. 2010). Study
1 also included multiple runs of a motor localizer task.
Table 1 outlines the number of BOLD runs collected
and included from each participant for each task. For
all tasks, stimuli were projected onto a screen located
behind the participants’ head and viewed through a
mirror. Participants were instructed to remain still,
stay awake, and stay engaged for the duration of each
run. Both studies included additional tasks that were
not analyzed here.

Fixation Task. The fixation data were used for
functional connectivity definition of networks. Partic-
ipants fixated a black ‘+’ symbol presented at the cen-
ter of a light gray screen. Each run lasted 7m 2s. In
Study 1, data were collected over 24 MR sessions each
of which included one fixation run (total 168m 48s of
fixation data per individual). In Study 2, data were col-
lected over 4 MR sessions, each of which included two
fixation runs (total 56m 16s of fixation data per indi-
vidual). Fixation data from Study 1 participants (S1
and S2) were previously reported in Braga and Buck-
ner (2017; referred to as ‘S4’ and ‘S3’, respectively, in
that study) but were preprocessed differently here
using updated strategies to minimize spatial distor-
tion and blurring (employed in Braga et al. 2019)

Language Task Contrast. Participants performed 8
runs of the language localizer task developed by Fe-
dorenko et al. (2010). This task contrasted reading
meaningful sentences versus lists of pronounceable
non-words. Basic task requirements were matched
between conditions (e.g., engaging with visual stimuli
with the same visual features, performing button
presses, and phonological processing), while preserv-
ing lexico-semantic and syntactic processing in the
sentence condition (Fedorenko et al. 2010). The lan-
guage localizer task contrast reveals activation in
classical language regions of the IFG, pSTC and TP, as
well as the cerebellum. Furthermore, the regions
show spatial specificity in relation to juxtaposed re-
gions as well as functional specificity in relation to
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Table 1. Number of runs included/collected from each subject.

Subject Study Fixation Language Localizer Motor Localizer
S1 1 24/24 8/8 8/8
S2 1 20/24 7/8 8/8
S3 2 8/8 8/8 -
S4 2 8/8 8/8 -
S5 2 8/8 8/8 -
S6 2 8/8 7/8 -
S7 2 8/8 8/8 -

Notes: Study 1 included a fixation, a language localizer and a motor localizer task. The numbers below
each task label indicate the number of runs included / collected. Study 2 included a fixation and a lan-
guage localizer task only. Individual runs were excluded based on criteria that included head motion
and signal-to-noise ratio thresholds, as well as sleepiness in the scanner.

non-linguistic task demands (see Fig. 2 in Fedorenko
etal. 2011; Fedorenko et al. 2010; 2012). Both visual
and auditory versions of the task identify a similar set
of regions (Braze et al. 2011; Scott et al. 2016), sup-
porting that the regions are responsive to language in-
dependent of input modality.

Participants fixated a black ‘+’ symbol on a light
gray background and read sentences (S; e.g, ‘TOM
GOT MARRIED TO A LAWYER LAST YEAR AND
SEEMED VERY HAPPY’) and lists of pronounceable
non-words (N; e.g., ‘CRE ENFENTLY SILE U ALGOW
OLP LENSIS ZOLLER NALD LIRM U LAS’). Sentences
were presented centrally on the screen one word at a
time. Each sentence was composed of 12 words, with
each word presented for approximately 0.45 s. Each
sentence was followed by a cue (an image of a finger
pressing a button) lasting 0.50 s that instructed par-
ticipants to press a button with their right index fin-
ger. The button response was included to keep partic-
ipants engaged. Each sentence lasted ~6.2 s.

The task began with an 18 s fixation period (+). A
blocked design was used, where each condition (S or
N) was presented as a block containing three consec-
utive trials. Four alternating blocks were presented
sequentially, followed by a fixation period lasting
~15.6 s. Twelve blocks were presented in each run.
The condition order was counterbalanced across two
different designs that were each performed 4 times by
each participant, leading to 8 runs collected from each
participant. The designs were: 1; +,S,N,S,N, +,N, S, N,
S+, S,N,S,N,+;and 2; +,N,S§,N, S, +,S,N,S,N, + N, S,
N, S, +. For the targeted contrast, the sentence

conditions were contrasted with the non-words con-
dition (S > N; see Task Activation Analyses). The total
task duration was 300 s for each run (total: 40m of
language localizer data per individual). Every sen-
tence across all sessions within an individual was
unique.

Motor Task Contrasts. To estimate regions active
during tongue movements, participants performed a
series of subtle controlled movements in the scanner
(adapted from Buckner et al. 2011). Participants were
trained prior to scanning on three types of move-
ments: finger taps (sequentially touching the index
and middle fingers to the thumb), foot taps (subtle
dorsiflexion and plantar flexion), and tongue move-
ments (touching the canines on the left and right side
with the tip of the tongue with lips closed). Move-
ments were made in a way that minimized muscle
tension and movement of other body parts. A blocked
design was employed with 5 active task conditions:
left hand (LH), right hand (RH), left foot (LF), right
foot (RF), and tongue (T) movements. Passive fixation
(+) occurred between active conditions and also be-
gan and ended the run.

Each condition lasted 18s, during which a cue
stimulus (an illustration of the relevant body part)
and words describing the condition (e.g., ‘LEFT
HAND’) were shown. The cue flickered on and off on a
1-Hz cycle, and participants were cued to make the
movements to the timing of the flicker. An index and a
pointer finger movement were performed per cycle in
the hand condition, one foot tap (dorsiflexion and
plantar flexion) was performed per cycle in the foot
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condition, and a left and right movement were per-
formed per cycle in the tongue condition. Participants
were visually monitored while they performed these
movements by the scanner operators to ensure com-
pliance. The condition order was counterbalanced
across two different designs that were each per-
formed 4 times, leading to 8 runs per participant. The
two designs were: 1; +, LH, RH, T, LF, RF, +, RF, LF, T,
RH, LH, +; and 2; +, LF, RF, T, LH, RH, +, RH, LH, T, RF,
LF, +. The targeted contrast was intended to isolate
the orofacial motor region, hence the tongue move-
ment condition was contrasted with all other condi-
tions (i.e.,, T > LH + RH + LF + RF; see Task Activation
Analyses). The total task duration was 234 s for each
run (total: 31m 12s motor localizer data per subject).

MRI Data Processing

Within-Subject Data Alignment. Data processing
procedures were previously described in detail in
Braga et al. (2019) and are summarized here. An in-
house pipeline (‘iProc’) optimized alignment of
within-subject data collected across different scan-
ning sessions, preserving anatomical detail as much
as possible by minimizing spatial blurring and multi-
ple interpolations (expanding on Braga and Buckner
2017; Yeo et al. 2011; Poldrack et al. 2015). Each sub-
ject’s data were processed separately. To optimize
alignment, two subject-specific registration templates
were created: a mean BOLD template and a T1 native-
space template. BOLD data from every run contrib-
uted to the subject’s mean BOLD template, minimizing
bias towards any run or session. The T1 native-space
template was created by selecting a T1-weighted
structural image (upsampled to 1mm isotropic space)
that was visually deemed to have good pial and white
matter boundary surface estimates (see Projection to
Cortical Surface).

For each BOLD volume, three transforms were
calculated to 1) correct for head motion, 2) correct for
geometric distortions caused by susceptibility differ-
ences using a BO fieldmap, and 3) register the BOLD
volume to the within-subject mean BOLD template. A
further transform was calculated once for each sub-
ject and applied to all registered volumes which pro-
jected data from the mean BOLD template to the T1
native-space template. The four transformation ma-
trices were composed into a single matrix that was ap-
plied to each original BOLD volume to project all data
to the T1 native space-template in a single interpola-
tion. The iProc pipeline yielded data aligned to a

6

subject-specific template at 1-mm isotropic resolu-
tion, with minimal interpolation and signal loss.

Additional Processing for Functional Connectivity.
For functional connectivity analyses, additional pro-
cessing steps included regression of nuisance varia-
bles and bandpass filtering. Nuisance variables in-
cluded 6 motion parameters plus whole-brain, ven-
tricular and deep white matter signal, and their tem-
poral derivatives. These signals were regressed out of
native-space-projected BOLD data (using 3dTproject;
AFNI v2016.09.04.1341; Cox 1996; 2012). This was
followed by bandpass filtering at 0.01-0.1 Hz (using
3dBandpass; AFNI v2016.09.04.1341; Cox 1996;
2012).

Projection to Cortical Surface. Pial and white mat-
ter boundaries were calculated automatically using
FreeSurfer’s recon-all (Fischl et al. 1999). Data were
resampled from the native space to the fsaverage6
standardized cortical surface mesh (containing
40,962 vertices per hemisphere; using mri_vol2surf;
Fischl et al. 1999) and then surface-smoothed using a
2mm FWHM kernel. Data were sampled from the gray
matter at a position halfway between the white and
pial surfaces using trilinear interpolation. For task-
based analyses, BOLD data prior to nuisance regres-
sion and bandpass filtering were projected.

Functional Connectivity Analyses

Functional connectivity analyses were performed
on the surface using both seed-based and unbiased
data-driven parcellation techniques. For the seed-
based approach, pair-wise Pearson’s product-mo-
ment correlations between the fMRI timeseries at
each vertex were computed, yielding an 81,924 x
81,924 correlation matrix (40,962 vertices per hemi-
sphere) for each run of BOLD data. These matrices
were Fisher-transformed and averaged together
yielding a within-subject across-run mean correlation
matrix with high stability for each subject. This aver-
age matrix was then inverse-Fisher-transformed back
to correlation values and assigned to the vertices of a
cortical template created in-house (as described in
Braga and Buckner 2017). This template allowed in-
dividual vertices to be selected for real-time visualiza-
tion of the resulting correlation maps using the Con-
nectome Workbench’s wb_view software (Marcus et
al. 2011). For final visualization of seed-based connec-
tivity maps, correlation values were converted back to
z(r) using the Fisher-transform.
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Initial Observation and Hypothesis. The observa-
tion that a candidate language network may be detect-
able within individuals was made during a previous
exploration of the functional anatomy of the default
network in S1 (referred to as ‘S4’ in Braga and Buck-
ner 2017). While manually selecting seeds, a distinct
network was observed that followed the distributed
motif of other association networks, but occupied sep-
arate regions of the cortex. Notably the network con-
tained large regions in the left lateral temporal and
left inferior frontal cortices, near classical language
areas. The hypotheses were formed that i) the ana-
tomical details of this candidate language network
could be reproducibly defined in additional subjects,
and ii) the network would show increased activity
during a task targeting linguistic processes. We tar-
geted these hypotheses using network mapping tech-
niques and by comparing the network maps with re-
gions activated during a language localizer task (Fe-
dorenko et al. 2010). Critically, while the initial dis-
covery was made using manual procedures, the ob-
servations were converged upon by automated classi-
fication.

Manual Targeting of Candidate Language Net-
work. To identify the candidate language network in
additional subjects, seed regions were manually se-
lected from the left prefrontal cortex, at or near to
where the precentral sulcus meets the posterior mid-
dle frontal gyrus (i.e.,, pMFG; Fig. 1). This region was
targeted because it contained a prominent region of
the candidate language network in the initial explora-
tion of S1 (see also Glasser et al. 2016; Fedorenko et
al. 2010; Lee et al. 2012). An iterative process was
used for seed selection, similar to that described in
Braga and Buckner (2017) and Braga et al. (2019). A
seed vertex was identified in each individual that re-
vealed a robust network with a spatial distribution
that resembled the candidate language network as in-
itially observed in S1. Correlation maps were
thresolded at z(r) > 0.2 for visualization and displayed
with the Jet look-up-table (colorbar) set to a range be-
tween 0.2-0.6. A network was deemed robust if it gen-
erally revealed high correlation values (z(r) = 0.6), but
also if the network regions displayed sharp bounda-
ries (surrounded by areas of low correlation). Specif-
ically, to assure that the candidate language network
was being detected selectively, the observer’s
knowledge of spatial features from other networks
was also used in seed selection. For example,

candidate seed vertices were not selected if they re-
vealed prominent connectivity to the posterior mid-
line at or near the cingulate and retrosplenial cortices,
which are hallmark features of the default network.
Similarly, candidate seed vertices revealing patterns
resembling the frontoparietal control network were
not selected. In other words, the seed-selection pro-
cess targeted specific features of the initially observed
candidate language network and excluded features of
other known networks.

Confirmation of the Network from Distributed Cor-
tical Zones. To determine if the network was spatially
selective and similar if defined outside of prefrontal
cortex, additional seed regions were examined in two
subjects (S1 and S2). The approximate locations of re-
gions revealed by the original pMFG seeds were tar-
geted in the anterior and posterior IFG, the pSTC, and
the posterior superior frontal gyrus (pSFG; Fig. 2). In
each zone, for each subject, the iterative seed selec-
tion process was again followed, resulting in a single
seed that targeted the candidate language network in
each cortical zone and subject. A similar network was
detectable from seeds in all zones.

Generalization of the Candidate Language Network
Across Acquisition Task States. To explore whether the
detection of the candidate language network was de-
pendent on the behavioral state of participants during
data acquisition, functional connectivity was per-
formed using data acquired during three different
tasks. Data from the fixation, language localizer and
motor localizer tasks were analyzed separately for
two subjects (S1 and S2). For each task, in each sub-
ject, initially the same seed vertex as previously se-
lected from the fixation data (see Manual Targeting of
Candidate Language Network) was used. If this seed
failed to produce a robust map in the other two task
datasets, another seed was selected at or near the
pMFG following the iterative process described
above. A similar network was detectable using data
from all three tasks (Fig. 3).

Data-driven Parcellation. Although seed-based
correlation is able to reveal the topography of the in-
trinsic networks, it relies heavily on observer input,
which could result in bias. To confirm that the defini-
tion of the candidate language network was not a con-
sequence of observer bias, a data-driven parcellation
analysis was performed for each subject using k-
means clustering. Preprocessed BOLD data from the
fixation task were concatenated in time and
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MATLAB’s kmeans function (v2015b; MathWorks, Na-
tick, MA) was used to cluster the timeseries into net-
works. Default settings were used (1 random initiali-
zation, 100 iterations, squared Euclidean distance
metric). As the results will reveal (Fig. 4), similar net-
work estimates were found for both the seed-based
and parcellation approaches suggesting that the iden-
tification of the candidate language network is robust
to different network discovery methods. K-means
clustering was performed in each individual at k= 17
(asin Yeo et al. 2011). It is important to note that the
clustering and seed-based approaches yield similar
but not identical network estimates, and that the net-
work topography is influenced by the number of clus-
ters defined. In the present analyses, k = 17 was used
because it produced a network that was found to cor-
respond to the candidate language network as defined
by seed-based connectivity, and it recapitulated other
previously observed distinctions between distributed
networks (Braga and Buckner 2017), in all individu-
als.

A Priori Selection of Networks. In order to explore
language-driven task responses in relation to the spa-
tial distributions of multiple closely juxtaposed asso-
ciation networks, 5 networks, in addition to the can-
didate language (LANG) network, were selected for
further analysis from the 17-network parcellation.
The selected networks included: the two networks
previously identified within the canonical default net-
work (DN-A and DN-B), two networks that are posi-
tioned near to the canonical frontoparietal control
network (FPN-A and FPN-B; see Braga and Buckner
2017), and the salience network (SAL; Seeley et al.
2007; Dosenbach et al. 2007). The networks were
identified and labeled according to previously de-
scribed anatomical features (Braga and Buckner
2017; Dosenbach et al. 2007). Anatomical details of
FPN-A and FPN-B were previously reported for two
subjects (including subject S1, labeled ‘S4’ in Braga
and Buckner 2017).

As can be seen in Fig. 4, the networks differed in
their detailed anatomy across subjects. Specific spa-
tial relationships served as useful anchoring points
but, given the complex relationships of the networks,
any assignment must be considered a hypothesis
awaiting independent functional confirmation to
build confidence (such as provided for DN-A and DN-
B in DiNicola et al. 2019 and sought here for the LANG
network). That said, certain features and patterns are

largely consistent across subjects. FPN-A and FPN-B
both occupy regions of the lateral inferior frontal cor-
tex and parietal regions at or near the intraparietal
sulcus. Within the inferior parietal lobule, FPN-A typ-
ically occupies a region more ventral to FPN-B, and
more anterior to DN-B. Even so, these regions are het-
erogeneous and difficult to match across subjects.
Perhaps the most reliable identifying feature is that
the DN-A, DN-B, FPN-A and FPN-B networks follow a
stereotyped anterior-posterior sequence along the in-
ferior lateral temporal cortex. The relative position in
this portion of the brain of FPN-A (anterior) and FPN-
B (posterior) served as a useful guide for labeling
those networks. In all subjects, one of the 17 networks
defined by clustering was deemed to correspond with
each of the DN-A, DN-B, FPN-A and FPN-B networks
based on these previously reported anatomical fea-
tures.

The SAL network was identified by the presence
ofregions in the anterior inferior parietal lobule or su-
pramarginal gyrus, in the inferior frontal cortex and
insula, and a region or set of regions along the dorsal
midline, sometimes circling the medial somatomotor
cortex in a ‘U’ shape (Fig. 4). The similar large-scale
distribution of the SAL network regions across sub-
jects offers some confidence that the same broad net-
work was being targeted. For example, note that the
parietal region of the SAL network was located in the
supramarginal gyrus, anterior to FPN-A, in all sub-
jects. However, the correspondence was not perfect,
with gaps evident between the SAL network parietal
region and the other network regions in some sub-
jects. In each subject, the network that most closely
followed the anatomy of the canonical SAL network
was chosen.

In this way, 5 additional distributed association
networks were identified a priori that were all near to
the LANG network regions. These networks were
each tested for task-driven response during the lan-
guage localizer task contrasts.

Task Activation Analyses

Data were analyzed for task-driven response us-
ing the general linear model as implemented by FSL'’s
FEAT (Woolrich et al. 2001). Preprocessed and
smoothed data from each BOLD run were entered into
a first-level analysis. Surface-projected data from the
left and right hemispheres were analyzed separately,
and the results were combined after for visualization
and a priori-defined network activation analysis. The
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data and model were highpass filtered using a cut-off
of 100s to reduce the influence of low frequency noise.
Alinear term was included in the model to account for
linear drifts in the data. Each task condition was mod-
elled as a separate explanatory variable using a block
design (see In-Scanner Tasks). The explanatory varia-
bles were convolved with a double-gamma haemody-
namic response function. Temporal derivatives were
included in the model to account for variations in the
haemodynamic response. In the language localizer
task, for the targeted contrast of sentences > non-
words conditions, at each vertex the beta value for the
non-word condition was subtracted from the beta
value for the sentences condition. In the motor local-
izer task, for the contrast of tongue movements >
other movements, at each vertex the beta value for the
tongue condition was multiplied by 4, and the sum of
the beta values for the right hand, left hand, right foot
and left foot conditions were subtracted. For both
contrasts, the resulting values at each vertex were
converted to t statistics by dividing by their standard
error, and then converted to a z-statistic. Within each
subject and task, the z-statistic maps from all runs
were averaged together using fsimaths (Smith et al.
2004).

For visualization, z thresholds were selected to
best demonstrate the task activation patterns for each
subject (thresholds: S1, 3.0-8.0; S2, 3.5-8.0; S3, 3.5-
8.0; S4, 5.0-14.0; S5, 3.5-10.0; S6, 3.0-7.0; S7, 2.0-6.0;
Fig. 5). A lower threshold was picked just above that
needed to remove low-confidence activations (i.e.,
small, randomly dispersed spots or speckles showing
low z values), and an upper threshold was picked that
allowed vertices of low and high correlation within
the contiguous regions to be discerned.

A key question was whether the topography of the
task contrast map for the language localizer task cor-
responded to the topography of the intrinsic connec-
tivity LANG network. To address this question, two
approaches were used. First, the maps were visually
compared: the spatial map from the parcellation anal-
ysis was overlaid onto the cross-run average task ac-
tivation map (Fig. 5). Second, a network-of interest
approach was used using the 6 a priori selected net-
works defined in each subject (see A Priori Selection of
Networks). The average beta value for the contrast of
sentences > non-words was calculated for all vertices
falling within each network. Values from both the left
and right hemispheres were included. Average beta

values were calculated for each run of the language lo-
calizer task, leading to 8 estimates of the network’s re-
cruitment during the task for each network and sub-
ject (except for S2 and S6 who each provided 7 runs;
Table 1). The cross-run average beta value for each
network was then plotted in a bar graph, along with
the standard error of the mean (Fig. 6). This latter
analysis has the benefit that there are no thresholds
or subjective steps - the magnitude and variance of
the response in each data-driven a priori-defined net-
work is obtained and quantified in each individual.

Experimental Design and Statistical Analysis

This study includes n = 7 participants, two of
which were scanned over 24 brief MRI sessions and
five of which were scanned across 4 extended ses-
sions. All analyses focused on within-individual quan-
tities. In all analyses, data were averaged over all usa-
ble runs that were collected from each individual (see
Table 1). Functional connectivity between brain re-
gions was calculated in MATLAB (version 2015b;
http://www.mathworks.com; MathWorks, Natick,
MA) using Pearson’s product moment correlations
and Fisher’s r-to-z transformation prior to averaging
across runs. Network parcellation was performed us-
ing MATLAB’s kmeans function (version R2015b).
Task data were analyzed using the general linear
model as implemented using FSL’s first-level FEAT
(Woolrich et al. 2001). The cross-run average task ac-
tivation map was created by taking beta maps from
each run, z-normalizing and then averaging together
using fsimaths (Smith et al. 2004).

Results

A Candidate Language Network is Identified by
Functional Connectivity Within the Individual.

The language network (LANG) was defined in all
7 individuals tested (Fig. 1) using seeds manually
placed in the pMFG. In all cases a distributed network
was observed that contained regions within the IFG,
the pSTC, the TP, and the pSFG. The pSTC region
sometimes extended into the inferior parietal lobule
near to the supramarginal gyrus, but a clear and ro-
bust region in angular gyrus was not observed (see
Figs. 1, 2 and 4). The LANG network contained further
regions, extending to upwards of 9 cortical zones in
the left hemisphere (highlighted in Fig. 1) replicating
the extended language network defined by Lee et al.
(2012) and Hacker et al. (2013; see also Glasser et al.


https://doi.org/10.1101/2019.12.11.873174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.11.873174; this version posted December 12, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 1: Within-individual intrinsic functional connectivity
identifies a candidate distributed language network. Seven
subjects (§1-S7) each reveal a candidate language network. Seed
regions (small white circles) are displayed at or near the posterior
middle frontal gyrus (pMFG). Correlation patterns are shown on an
inflated cortical surface representation of the left hemisphere. In
each subject, the correlation patterns (colorbar) show a network
that included regions located near to classical language regions of
the inferior frontal gyrus (IFG; Broca’s area) and posterior superior
temporal cortex (pSTC; Wernicke’s area). The network also re-
vealed regions distributed across multiple cortical zones (see
dashed boxes in top panel) including the posterior superior frontal
gyrus (pSEG), the anterior superior frontal gyrus (aSFG; appearing
in medial and/or lateral portions in different subjects), and the
temporal pole (TP). Smaller regions observed consistently in 5 or
more subjects included the dorsal posterior medial cortex (dPMC),
the middle cingulate cortex (MCC), and the anterior inferior tem-
poral cortex (alTC). Lateral (left column) and medial (right col-
umn) views are shown. z(r), Fisher’s r-to-z transformed Pearson’s
product-moment correlations.

2016). A distinct region in the left anterior superior
frontal gyrus (aSFG; appearing in medial and/or lat-
eral portions in different subjects) was observed in all
subjects. Regions in the dorsal posteromedial cortex
(dPMC; at or near the posterior cingulate and precu-
neus), the middle cingulate cortex (MCC), and the an-
terior inferior temporal cortex (alTC) were observed
in 5 subjects. In 4 subjects (S1, S4, S5 and S7), sugges-
tion of a further region was observed at or near the
ventromedial prefrontal cortex, despite this region
suffering from signal dropout. The presence of a net-
work region in each of the 9 highlighted zones in Fig.
1, replicated across a majority of individuals, suggests
that the candidate language network is widely distrib-
uted and extends beyond regions that define the clas-
sical language system.

The Candidate Language Network Generalizes
Across Datasets and Analysis Methods.

To support that the identified regions formed a
distributed interconnected network, seeds were
placed in 4 of the other large regions of the LANG net-
work. In each case, the seeds produced correlation
maps that were similar to that defined by the original
pMFG seed (Fig. 2), suggesting definition of the LANG
network was not dependent on a single seed location
or vertex.

A further analysis tested whether the definition of
the LANG network was dependent on the specific task
that was performed during data acquisition. To ad-
dress this question, data were analyzed from the same
individuals during the performance of two additional
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tasks: the language and motor localizer tasks. In both
cases, intrinsic connectivity from a seed in the pMFG
revealed a similar distribution of regions as that iden-
tified using the visual fixation task data (Fig. 3). Subtle
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Figure 2: Distributed organization of the candidate language network is confirmed using seed regions in multiple cortical loca-
tions. In two subjects (51 and S2), seed regions (small white circles) were selected from different portions of the network identified in Fig.
1. In each panel, the candidate language network defined by data-driven parcellation (see Fig. 4) is shown in black outline, to provide
landmarks for comparing across panels. In each subject, seed regions were placed in the inferior frontal gyrus at an anterior (second row
from top) and posterior site (third row), as well as in the posterior superior temporal sulcus (fourth row) and posterior superior frontal
gyrus (last row). Although the maps differ in their details, the large-scale distribution and location of the network regions are appreciably
similar across seed regions, with regions of high correlation falling generally within the parcellation-defined boundaries. z(r), Fisher’s r-to-

z transformed Pearson’s product-moment correlations.

differences were observed. For instance, the correla-
tions were generally higher, and the defined regions
slightly larger, during the language task in S2. Simi-
larly, in S1, the LANG region in the TP was emphasized
in the language task data compared to the other tasks,
and the pSTC region extended further into the angular
gyrus. These differences could be a consequence of
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larger signal fluctuations being driven by the lan-
guage task. Despite these differences, the same gen-
eral distribution of regions was revealed across the
three task contexts, including the active motor tasks.
The final analysis ensured that the definition of
the LANG network was not a result of observer bias in
the selection of seed regions. A data-driven
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Figure 3: The connectivity-defined candidate language network generalizes across data acquired in different task states. Func-
tional connectivity reliably defined the candidate language network across three distinct tasks, showing that the presence of the network
is not dependent on a specific cognitive context (see text for task descriptions). Note that the location of the seed region (small white circles)
was optimized for each data set to show that the topography of the network is stable despite minor differences in functional shifts that
might occur due to task context. Note that the optimal seed location also varies across data sets even when collected during the same task
context (see Supplementary Figure S3 in Braga and Buckner 2017, and Figure 3 in Braga et al. 2019). z(r), Fisher’s r-to-z transformed

Pearson’s product-moment correlations.

parcellation approach to defining the networks (k-
means clustering) was performed. In all participants,
parcellation revealed a candidate language network
(Fig. 4) with near complete overlap with the network
as defined by seed-based connectivity (see black out-
lines in Fig. 1) including smaller distributed regions
(Figs. 1-3, see especially S1, S3 and S7 in Fig. 1).

An interesting difference was that in the temporal
pole the clustering approach revealed a large region
that was diminished or absent in the thresholded
seed-based maps. The temporal pole suffers from sig-
nal dropout in MRI due to magnetic susceptibility dif-
ferences with the nearby sinuses. It is possible that
the parcellation approach is able to detect networks
in regions of low signal because it clusters all vertices
based on their relative pattern of correlations, rather
than using an absolute correlation threshold.

The Candidate Language Network is Bilateral but
Left-Lateralized.

In addition to the left-hemisphere regions de-
tailed above, the LANG network also displayed
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multiple distinct regions in the right hemisphere (Fig.
4). The locations of these regions were roughly ho-
mologous to the zones observed in the left hemi-
sphere, with a similar distributed organization includ-
ing the right pMFG, IFG, pSTC, pSFG and TP in all sub-
jects. Both hemispheres contained a large region
spanning almost the length of the superior temporal
sulcus. However, for other regions the right hemi-
sphere homologs were visibly smaller in surface area
(Fig. 4). In zones where evidence was found for small
regions in the left hemisphere (pPMC, MCC, aITC), the
homologous right-hemisphere regions were some-
times not observed.

It is important to note that the parcellation ap-
proach simultaneously clusters all surface vertices
across both hemispheres. Hence the apparent left-
right asymmetry in size observed in the clustering so-
lution likely reflects actual differences in the network
topology, as opposed to a spatial bias that can occur in
seed-based approaches by selecting seeds from the
left hemisphere. As a confirmation that the observed
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Figure 4: Close juxtaposition of the candidate language network with neighboring distributed networks revealed by data-driven
parcellation. K-means clustering was used to parcellate the cortex into 17 discrete networks. The candidate language network (LANG;
yellow and black outline) was observed in all participants (S1-S7). Network regions were recapitulated in all of the nine zones highlighted
in Fig. 1, including a region in the temporal pole that extended rostrally. Further regions can also be observed in the right hemisphere. From
the parcellation solutions, five additional networks were selected for further analysis due to their spatial proximity to the language network
and their identification within classic language regions in prior data-driven network analyses (e.g., Yeo et al. 2011). These networks were
the salience network (SAL; green), frontoparietal control network-A and -B (FPN-A and FPN-B; blues), and default network-A and -B (DN-
A and DN-B; reds). The LANG network had a complex spatial relationship with these neighboring networks, showing regions closely packed
with default, frontoparietal control and salience network regions in the temporal cortex, and inferior and dorsal frontal cortices. The left
two columns show lateral and medial views of the inflated left hemisphere, while the right two columns show the right hemisphere.

asymmetry was not a result of such bias, when seed
regions were placed in the right pSTC region (biasing
the correlations towards the right hemisphere) in
some subjects, the functional connectivity patterns
revealed a similar distribution of regions that were
also larger on the left than right (data not shown).
These results support that the LANG network is dis-
tributed across both hemispheres but contains larger
regions in the left hemisphere.

The Candidate Language Network is Similarly Or-
ganized and Closely Juxtaposed with Other Associ-
ation Networks.

In all subjects, the LANG network contained re-
gions distributed in multiple zones of association cor-
tex with a broad organizational pattern that paral-
leled other distributed association networks (Fig. 4).
Moreover, the spatial sequence of networks, from
LANG to DN-B to DN-A (yellow-pink-red networks in
Fig. 4), can be observed in multiple distributed zones
in each individual. Clear examples can be seen in tem-
poral and parietal cortices but also along posterome-
dial cortices, where the LANG network contains a
small region in the dPMC neighboring the large re-
gions characteristic of the default network (see S1, S2,
S4, S5, and S7 in Fig. 4). Within the IFG, regions of DN-
B and LANG networks were closely interdigitated, oc-
cupying alternating regions curving along the inferior
edge of the left IFG in a caudal to rostral axis (see S1,
S2, S3 and S5 in Fig. 4 for clear examples). Along the
pSTC, DN-B and LANG regions were also closely situ-
ated with complex demarcations, in some cases along
the length of the superior temporal sulcus (51, S2, S5,
S7 in Fig. 4). In some cases, DN-A regions also bor-
dered LANG regions, for instance near the left IFG (see
S2, S5 in Fig. 4), the left TP (52, S3, S5), the left pSTC
(S5, S6), and left dPMC (S5, S7).

The LANG network also bordered the frontopari-
etal control networks in multiple (but not all) loca-
tions. In the IFG, several subjects displayed close-knit
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LANG and frontoparietal control network regions,
particularly FPN-B (see S1, S5, S6, S7 in Fig. 4). LANG
and FPN regions were closely positioned along the
midline near the pSFG, which also contains a charac-
teristic frontoparietal control network region (e.g.,
see Fig. 2 in Vincent et al. 2008). The LANG network
also bordered the salience (SAL) network near the an-
terior inferior parietal lobe close to the sylvian fissure
and supramarginal gyrus, as well as in posterior re-
gions of the IFG near or in BA6. However, the parietal
FPN-A and FPN-B regions did not consistently border
the LANG network at or near the pSTC region.

The overall picture was that language regions
were distinct but positioned near to separable associ-
ation networks, with consistent neighboring relation-
ships across individuals that were evident in multiple
cortical locations.

The Candidate Language Network Responds to
Language Task Demands.

Figure 5 shows the boundaries of the LANG net-
work in each individual, defined by the unbiased data-
driven parcellations, overlaid onto regions showing
task activation during a language task contrast col-
lected from the same individuals. The spatial similar-
ity can be clearly observed between the two maps,
one defined by functional connectivity and one by re-
gional increases in activity during reading sentences
compared to lists of non-words. For each subject a
threshold was selected by eye, to allow the topogra-
phy of regions showing strong and weak task effects
to be observed, respecting that data quality is not
equivalent in all subjects. No masking of the task acti-
vation maps was applied that might accentuate their
similarity with the intrinsic connectivity maps.

The resulting maps revealed three key findings
(Fig. 5). First, in most subjects the regions showing
strong task effects were largely confined to the boun-
daries of the intrinsically defined candidate language
network (but see descriptions of exceptions below).
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Figure 5: The candidate language network shows close spatial correspondence with regions activated during a language task
contrast. The language network (LANG) is shown in black outline and was defined using k-means clustering. Independently acquired data
collected during a language localizer task contrast (Fedorenko et al. 2010) reveals cortical response to linguistic demands. Red-yellow
colorbars show within-individual z-normalized beta values (i.e,, ‘increased activation’) for the contrast of reading sentences versus reading
lists of non-words. In all subjects (S1-S7), the language task activations fell largely within the boundaries of the intrinsically defined can-
didate language network. The overlap was not perfect, and in some cases hints of other networks can be seen (e.g., see S4 and S5), though
these exceptions were not consistent across subjects. The upper and lower thresholds were selected by eye for each subject, to show the
distribution of language-responsive regions while removing regions showing low responses. The detailed anatomy of the distributed intrin-
sic network corresponds closely with regions showing task-driven activation, including in smaller areas extending beyond the classical
language zones (e.g., see S2 and S6), suggesting that the intrinsically organized network is functionally specialized.

Second, in many places the regions showing task acti-
vation had boundaries that occurred at the boundary
of the intrinsic LANG network regions. As a particu-
larly striking example, note that in S5 the task acti-
vated regions, particularly in the IFG and lateral tem-
poral cortex, almost entirely fill in the spaces between
the boundaries of the LANG network. Other clear ex-
amples include the left pSTC regions in S1 and left lat-
eral frontal and temporal regions in S6. Third, the as-
sociation between task activation and intrinsic con-
nectivity was typically not restricted to one part of the
brain. Instead, evidence of task activation was found
in intrinsic network regions distributed across all 9
zones highlighted in Fig. 1, particularly when all sub-
jects are considered together. For examples, note the
small dPMC region of the LANG network in S2, S4 and
S7, or the multiple regions on the right hemisphere
lateral surface in S2, S6 and S7. The importance of this
is that it suggests that the whole distributed network
is recruited during the language task contrast, even
smaller regions predicted by functional connectivity,
rather than just the classical perisylvian language re-
gions.

The overlap was not perfect. Regions of clear task
activation that did not overlap with the intrinsic net-
work could be observed in some subjects. For exam-
ple, in addition to the LANG network regions, the task
activation map for S5 (Fig. 5) revealed midline regions
along the retrosplenial and posterior cingulate corti-
ces, the anterior medial prefrontal cortex and a cir-
cumscribed region of the medial temporal lobe, in an
organization reminiscent of DN-A (Braga and Buckner
2017; Braga et al. 2019). Similarly, in addition to the
regions of the LANG network, S4 showed regions at or
near the primary visual cortex, intraparietal sulcus
and frontal eye fields, that typically form part of the
dorsal attention network (Corbetta and Shulman
2002). Importantly, the evidence for the recruitment
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of these other systems was restricted to one or few
subjects, while the evidence for a close association be-
tween language task activation and the intrinsic can-
didate language network was evident in all subjects.
One possible exception was the left angular gyrus,
which showed strong task-driven activation in multi-
ple subjects (e.g., S1, S2, S5; Fig. 5) but did not seem to
contain a region of the LANG network defined by in-
trinsic connectivity in any subject.

To quantitatively test for the selectivity of task-
driven responses, the average language task activa-
tion effect (mean beta value) was calculated within
each of the 6 networks (LANG, DN-A, DN-B FPN-A,
FPN-B and SAL) defined a priori using functional con-
nectivity (Fig. 6). In all subjects, the intrinsic LANG
network showed the highest level of activation during
the language task. In most subjects, the LANG network
showed a striking degree of selectivity, being acti-
vated considerably more than all other networks. In
some subjects (e.g., S2, S4 and S7 in Fig. 6) the LANG
network was the only network showing activity
clearly above baseline. These observations suggest
that the LANG network is selectively recruited during
the present task contrast involving semantic and syn-
tactic processing. In contrast, neighboring networks
showed limited if any evidence of activation, despite
their close spatial proximity in multiple cortical zones.
One exception was DN-B in S1, which also showed a
strong task-activation effect, however this observa-
tion did not generalize to other subjects. In S5, DN-A
also showed evidence of response that was not found
across subjects.

The Language Network Abuts an Intermediate Net-
work that is Adjacent to Tongue Motor and Audi-
tory Regions.

The proximity of Broca’s area to motor represen-
tations of the tongue, lips and other oral structures in
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Figure 6: The candidate lan- Networks Language Task s, Anatomical Selectivity
guage network is selectively
activated during a language
task contrast. (Left column)
The networks defined by intrin-
sic functional connectivity from
Fig. 4 are replotted. The candi-
date language network (LANG)
is shown in yellow, with the sa-
lience network (SAL) in green,
the frontoparietal control net-
works (FPN-A and FPN-B) in
blues, and the default networks
(DN-A and DN-B) in reds. (Mid-
dle column) Task activation for
the contrast of reading sen-
tences versus reading lists of
non-words (sentences > non-
words) is shown, with the in-
trinsic LANG network outline in
black (see Fig. 5 for other
views). (Right column) Bar
graphs show the mean beta val-
ues for the sentences > non-
words  contrast,  averaged
within each within-individual a
priori-defined network, along
with the standard error of the
mean.  Despite  differences
across individuals, LANG was
the only network showing con-
sistently higher activation for
sentences > non-words, showed
the highest activation of all net-
works in all participants, and in
some cases (52, $4 and S7) was
the only network that showed
clear increased activity for lan-

guage.

Mean Beta Mean Beta Mean Beta Mean Beta

Mean Beta

the inferior portion of
the motor strip has been
previously noted
(Geschwind 1970; Kru-
bitzer 2007). Given the
possibility of delineating
neighboring functional
regions with precision in
individuals, we explored
the relationship be-
tween the language net-
work and sensory and
motor  regions  im-
portant for hearing and
vocalization. The language network defined in the  regions,onein the IFG and one in the pMFG, that were
present set of individuals contained two frontal close to the motor strip along the central sulcus (Figs.

Mean Beta

Mean Beta

DN-A DN-B LANG FPN-B FPN-A SAL

17


https://doi.org/10.1101/2019.12.11.873174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.11.873174; this version posted December 12, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A

Figure 7: Distributed networks link lan-

| Language Task z3.0m=38.0 Tongue Motor Task z 5.0mE=13.0 |

guage regions with tongue motor and
auditory regions in S1. An intermediate
network (INT) was observed which sits in-
between the language network (LANG) and
both the temporal auditory (AUD) and
frontal orofacial motor (MOT) regions. (A)
Yellow regions show activations during the
language localizer task (as in Fig. 5; sen-
tences > non-words), while blue regions
show regions displaying increased response
during a separate tongue movement task
contrast (tongue movements > hand and
foot movements) provided by the same sub-
ject. The black outline displays the parcella-
tion-defined intrinsic language network
(LANG; Fig. 4). Black solid circles are cen-
tered on seed vertices that were used to de-
fine intrinsic connectivity networks in the re-
maining panels. The remaining panels show
seed-based intrinsic connectivity patterns
from seeds selected from the temporal (Tmp;
B) and frontal lobes (Frt; C). Auditory and
motor regions were recapitulated using
functional connectivity using seed regions
placed in the contralateral (right; RH) hem-
isphere as correlation patterns close to the
seed are difficult to interpret. Black dashed
circles refer to the reflected location of the
contralateral seeds. White-filled circles de-
note the location of the seed used to define
correlation patterns in that panel. The INT
network displays an organization that par-
allels the LANG network, containing neigh-
boring regions in both inferior frontal and
temporal cortices, as well as along the pos-
terior superior frontal midline (not shown).
The function of the INT network is unclear,
however its distributed organization and
Jjuxtaposition with LANG, MOT and AUD re-
gions in multiple locations suggests it may

form part of a hierarchy linking language and sensorimotor func-
tions. Task activations are shown as mean z-normalized beta values,
and intrinsic correlations as Fisher’s r-to-z normalized Pearson’s
product-moment correlations, ranging from 0.2-0.6, as in Fig. 1.

1, 4 and 5; see also Glasser et al. 2016; Fedorenko et
al. 2010). In addition, a large extended regional re-
sponse belonging to the LANG network was located in
the temporal cortex near to auditory cortex along the
supratemporal plane. Seed-based functional connec-
tivity was used to explore the relationship between
these LANG regions and the nearby anatomy in the
two subjects that provided a motor localizer task (S1
and S2).

We began by mapping orofacial motor and sepa-
rately auditory regions. Tongue motor regions occup-
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OT Network (RH)

b o "v

ied inferior portions of the central sulcus and nearby
gyri (blue regions in Figs. 7A & 8A; see also Carey et
al. 2017; Brown et al. 2008; Hesselmann et al. 2004).
Functional connectivity from a seed placed in the cen-
tral sulcus on the contralateral hemisphere revealed a
bilateral motor network (MOT; Figs. 7B & 8B). A close
correspondence was observed in both subjects be-
tween the intrinsic connectivity MOT network and
task-driven activations (see also Fig. 6 in Gordon et al.
2017). To define auditory sensory regions, a seed was
placed in the contralateral hemisphere on the su-
pratemporal plane at or near Heschl’s gyrus. This de-
fined an auditory network (AUD; Figs. 7C & 8C) based
on intrinsic connectivity that comprised a bilateral set
of circumscribed regions at the approximate
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anatomical location of Heschl’s gyrus in both subjects.
No auditory localizer was available for these subjects,
so the function of the AUD network was presumed
based on the bilateral supratemporal distribution of
the regions.

We next mapped the immediately adjacent zones
of the cortex. We hypothesized that the language net-
work regions in the lateral frontal cortex would be
juxtaposed with the tongue motor region (Krubitzer
2007) and that the temporal regions would be juxta-
posed with the auditory regions. Instead, we unex-
pectedly observed a small gap between sensorimotor
(MOT and AUD) networks and the LANG network near
the pSTC and pMFG, and a larger gap in the IFG (Figs.
7 & 8). When seed regions were placed in the spaces
between these networks, we identified a smaller, in-
termediate network (INT). The INT network occupied
regions in between the LANG network and the MOT
and AUD networks in both frontal and temporal lobes,
and also contained a small region neighboring the
LANG region in the pSFG. Both subjects displayed a
similar distribution of the INT network. Notably, in
the frontal lobe the INT network bridged the space be-
tween tongue regions and the pMFG LANG region,
forming a LANG-INT-MOT sequence of regions. The
IFG region did contain a neighboring INT network re-
gion (clear in S1 in Fig. 7, less clear in S2 in Fig. 8),
however this was separated from the tongue region
by the salience network in these subjects (see SAL
network in IFG in Fig. 4). Along the midline, a LANG-
INT-MOT sequence could also be seen extending from
rostral to caudal regions near the pSFG in both sub-
jects (data not shown). In the superior temporal cor-
tex, the sequence of LANG-INT-AUD networks oc-
curred in two separate places, one more caudally near
or at the planum temporale, and one more rostrally
nearer Heschl’s gyrus (Figs. 7C & 8C).

Discussion

The present results demonstrate that a distrib-
uted language network can be defined within individ-
uals using intrinsic functional connectivity. Organiza-
tional details suggest that the network i) is distinct
but spatially adjacent to the default and frontoparietal
control networks throughout the cortex, ii) has a dis-
tributed spatial motif that parallels other association
networks, iii) involves upwards of 9 cortical regions
in the left hemisphere alone, some of which extend be-
yond the classical language zones and have not been
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previously emphasized, and iv) responds in an ana-
tomically-specific manner to language-task demands
with adjacent networks showing minimal or no re-
sponse. We also observed a smaller distinct distrib-
uted network that occupies regions in between the
language network and the orofacial motor regions in
the frontal lobe and the auditory reception regions in
the temporal lobe, suggesting a network hierarchy
linking language to functionally-related sensorimotor
regions. We discuss the implications of these collec-
tive observations for understanding the relationship
of the language network with the multiple parallel
networks that populate association cortex.

The Language Network Can Be Resolved Within
Individuals Using Functional Connectivity.

A distributed network that contains regions in
classic perisylvian language areas was observed in all
7 individuals tested using intrinsic functional connec-
tivity (Fig. 1; see also Hampson et al. 2002; Lee et al.
2012; Hacker et al. 2013; Glasser et al. 2016). The net-
work was confirmed across analysis methods (Figs. 1,
2 and 4), independent datasets within the same indi-
vidual (Fig. 3), and could be detected by initiating net-
work definition from multiple distributed locations
(Fig. 2). The language network occupied regions that
were juxtaposed with other association networks,
such as the default, frontoparietal control and sali-
ence networks (Fig. 4). The close spatial relationship
between neighboring networks, some of which were
finely interdigitated (e.g., see sequential LANG and
DN-B network regions along the left IFG in Fig. 4), in-
dicates why some prior studies of functional connec-
tivity, especially data-driven methods using group av-
eraged data, may have failed to separate the language
network from nearby systems like the default net-
work (e.g.,, Yeo et al. 2011; Power et al. 2011; but see
Mineroff et al. 2018; Blank et al. 2014) and also why
studies capturing the network may miss its functional
significance.

The Language Network Parallels the Organiza-
tional Motif of Other Association Networks.

An intriguing observation of the present study is
that the language network is just one of multiple sim-
ilarly organized distributed association networks.
The literature has most often focused on specializa-
tion of language regions without consideration of how
language networks are similar or dissimilar from
other distributed association networks. Our results
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Figure 8: Distributed networks link lan-

A

‘ Language Task z 3.5m238.0 Tongue Motor Task z 7.0mE=15.0 |

guage regions with tongue motor and
auditory regions in S2. Generalizing the
findings from S1 (Fig. 7), intrinsic connectiv-
ity in S2 also revealed an intermediate (INT)
distributed system that bridged the spaces
between the language network (LANG) and
sensorimotor regions for hearing (AUD) and
tongue movements (MOT). A) Task-acti-
vated regions are shown for the language
(vellow) and tongue motor localizer (blue)
task contrasts. The remaining panels show
seed-based intrinsic connectivity patterns
from seeds selected in the temporal lobe
(Tmp; B) and the frontal lobe (Frt; C), as well
as in homologous regions of the right hemi-
sphere (RH). Task activations are shown as
mean z-normalized beta values, and intrin-
sic correlations as Fisher’s r-to-z normalized
Pearson’s product-moment correlations,
ranging from 0.2-0.6, as in Fig. 1.

are fully consistent with a highly
specialized left-lateralized network
but also illustrate that the distinct
language network is just one of sev-
eral distributed association net-
works that share a common organ-
izational motif.

Specifically, the network in-
cluded classical language regions in
the frontal and temporal cortices
(IFG, pSTC, pSFG, TP, pMFQ) as pre-
dicted by clinical and task-activa-
tion studies (see Introduction).
However, the language network
also extended beyond the classical
language system (see Lee et al.
2012; Hacker et al. 2013). Regions were observed in
the parietal (dPMC and possibly pSTC region), midcin-
gulate (MCC), and inferior temporal (alTC) cortices,
with potentially a further region within the ventrome-
dial prefrontal cortex (Fig. 1 and 4). An anterior pre-
frontal region (aSFG) was also detected that appeared
to be distinct from the pSFG region. Further regions
were detected in the right hemisphere, and these re-
gions again displayed a distributed organization that
was in many ways homologous to the spatial distribu-
tion observed in the left hemisphere (Fig. 4).

When considered together, the resulting language
network parallels the distributed motif characteristic
of association cortex in the non-human primate (see
Fig. 4 in Goldman-Rakic 1988; Margulies et al. 2009;

LANG Network (Tmp)

LANG Network (Frt)
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INT Network (Tmp)

INT Network (Frt) AUD Network (RH)

Buckner and Margulies 2019; see also Ghahremani et
al. 2017) and previously observed across multiple as-
sociation networks in humans (Yeo etal. 2011; Power
et al. 2011; Margulies et al. 2016; Braga and Buckner
2017). Consistent with earlier observations focused
on frontal cortex (Fedorenko et al. 2012), the lan-
guage network contained side-by-side regions with
other well-characterized networks such as the default
network, which sits at the apex of a sensory to trans-
modal cortex hierarchy (Margulies et al. 2016; Buck-
ner and Margulies 2019; Buckner and DiNicola 2019).
Neighboring language and DN-B network regions
were observed in multiple cortical zones (Fig. 4). The
present characterization further illustrates that the
spatial juxtapositions are present for multiple
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distributed components of the language network
across the cortex.

For example, the default network contains distrib-
uted regions along the posterior, middle and anterior
cortical midline, including within the posterior cingu-
late and retrosplenial cortices, and along the frontal
midline (see Zones 5-9 in Fig. 3 in Braga and Buckner
2017; and detailed anatomy in Braga et al. 2019). The
language network regions were observed within each
of these zones (Fig. 1), with regions reliably defined
within the posterior (dPMC; Zone 5 in Braga and
Buckner 2017), middle (MCC; Zone 6) and anterior
cortical midline at the pSFG (Zone 7), aSFG (Zone 8),
and potentially ventromedial prefrontal cortex (Zone
9). Along the lateral surface, language regions were
also observed near to or directly bordering the DN-B
in the 4 zones highlighted in Fig. 3 of Braga and Buck-
ner 2017, including the IFG, aSFG and pSFG, TP and
pSTC. The posterior parietal pSTC region also bor-
dered the prominent default network regions in the
inferior parietal lobule (Fig. 4).

The side-by-side relationship between the lan-
guage network and other distributed association net-
works could only fully be appreciated when the
smaller midline regions were resolved within individ-
uals. This reinforces the notion that the association
cortices are organized into parallel, distributed net-
works, and that in this sense the language network is
a characteristic association network.

Task Activation is Highly Selective for the Lan-
guage Network

By collecting data during a language localizer task
performed by each of our volunteers, we were able to
test the hypothesis that the language network, as de-
fined by intrinsic connectivity, is activated by lan-
guage task demands and also explore the anatomical
specificity of the response (see also Glasser et al.
2016). Overlap between connectivity and task activa-
tion maps was observed throughout the cortical man-
tle (Fig. 5). In many cases, the idiosyncratic shape of
language network regions closely matched task acti-
vated patterns (e.g., see S1, 52, S5 and S6 in Fig. 5), de-
spite being defined in independent data and based on
different analysis principles. Importantly, this corre-
spondence extended beyond the classical language re-
gions and often included the smaller regions of the
language network. Notable examples include the
dPMC region in S2, S4, S5 and S7, the aSFG region in
S1, S2, S4, S5, S6, the alTC region in S1, S5, S6, and
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even the ventromedial prefrontal cortex region in S1,
S5, S7 (Fig. 5). The small MCC region showed evidence
of task activation in S5 (Fig. 5) at the thresholds se-
lected.

The finding of task activation in these smaller
midline regions shows that, under certain task condi-
tions, the entire distributed network is recruited sim-
ultaneously in a coordinated and selective manner. In
other words, the domain-specialized module appears
to be the distributed network, not simply localized re-
gions (see also DiNicola et al. 2019).

The correspondence between functional connec-
tivity and task activation has been noted before (e.g.,
Smith et al. 2009; Glasser et al. 2016; Gordon et al.
2017; Buckner et al. 2008; Ji et al. 2019). Recently,
Tavor et al. (2016) showed that functional connectiv-
ity can predict idiosyncratic task activation patterns
across individuals. Glasser et al. (2016) also showed
that language activation patterns can be recapitulated
by intrinsic connectivity using seeds placed in the
PMFG and pSTC (see also Hampson et al. 2002). Here
we provide corroborative and also additional evi-
dence for spatial specificity. When the average task
activation effect was calculated for 6 distributed net-
works identified a priori, the language network
showed robust and selective response during the lan-
guage task (Fig. 6). This was despite that the other
networks often possessed regions closely positioned
near to the language network simultaneously in mul-
tiple cortical zones.

An Intermediate Network Abuts the Language
Network as well as Orofacial Motor and Auditory
Regions.

Motivated by the hypothesis that the location of
prominent language network regions may be ex-
plained by their proximity to orofacial motor and au-
ditory regions, we explored the functional anatomy of
these regions in two individuals (Figs. 7 and 8). Rather
than being juxtaposed, we unexpectedly found a slight
separation between sensorimotor regions and the
language network in both frontal and temporal corti-
ces. When the functional anatomy of this gap was ex-
plored using a seed-based approach, we observed a
distinct ‘intermediate’ (INT) network that had a dis-
tributed organization and occupied neighboring cor-
tical regions to the LANG network in both lateral
frontal and temporal cortices (Figs. 7 and 8), as well
as along the dorsal posterior frontal midline. In the
frontal lobe, the INT network bordered the LANG
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network at both dorsolateral (pMFG), dorsomedial
(pSFG) and ventrolateral (IFG) locations. The motor
task only included tongue movements and it was not
possible to map out motor regions involved in the
movement of other articulators (lips, pharynx) or the
vocal folds (Carey et al. 2017; Brown et al. 2008; Hes-
selmann et al. 2004; see also Petrides et al. 2005).
Hesselmann and colleagues (2004) previously
showed that lip movements activate a motor region
more dorsal than ventral motor regions activated for
tongue movements. One might speculate that the
pMFG and IFG INT network regions are associated
with different laropharyngeal movements related to
independent aspects of articulation and vocalization
(see Fig. 3 in de Heer et al. 2017)

The spatial relationships raise the possibility that
the LANG and INT networks form a sequence of func-
tional regions that is repeated in multiple cortical
zones. The sequence links language regions with
tongue movement regions (LANG-INT-MOT) in
pMFG (Figs. 7B and 8B) and with auditory regions
(LANG-INT-AUD) in the temporal lobe (Figs. 7C and
8C). In posterior IFG, the sequence did not terminate
in tongue motor regions, but seemed to lead to the sa-
lience network (LANG-INT-SAL; see Fig. 4). The re-
sultis a parallel sequence of distributed networks that
fall along a gradient from language regions to sen-
sorimotor and possibly other association networks
(see also Margulies et al. 2016; Buckner and Margu-
lies 2019; Braga and Buckner 2017; Power et al.
2011).

Following the sequence into transmodal cortex,
the LANG network also displayed regions neighboring
DN-B in many cortical zones (Fig. 4). In particular, DN-

B contains a region in anterior IFG that is closely in-
terdigitated with the LANG network region and ex-
tends the sequence into anterior IFG (i.e, DN-B-
LANG-INT-MOT). Similarly, a DN-B region is found in
the inferior parietal cortex, at or near the temporopa-
rietal junction, which also can be seen as an extension
of the sequence into the parietal lobe (i.e., DN-B-
LANG-INT-AUD). Altogether, these observations sit-
uate the LANG network as falling along a gradient of
distributed networks that link auditory and motor
cortices with transmodal cortices that support
higher-level cognitive functions.

Conclusions

The present study extends our understanding of
the language network by showing that the distributed
organization of the language network closely parallels
that of other association networks. We reveal the
close spatial relationships between language network
regions and other distributed systems in classic lan-
guage regions, and show that the language network
sits within a large-scale gradient linking sensorimotor
and higher-level association networks. We also re-
solve small language regions in both hemispheres that
have not been previously emphasized and show that
these are also language-responsive. The close corre-
spondence of the language network defined by func-
tional connectivity and task-activation suggests that
precision functional mapping could aid applied en-
deavors targeting the language network such as intra-
cranial neuromodulation or to limit complications
from surgical resection. Such an approach might be
particularly useful for clinical populations that may be
unable to perform tasks in the scanner.
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