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Abstract

Strong right-hand preference on the population level is a uniquely human feature, although the neural
basis for this is still not clearly defined. Recent behavioural and neuroimaging literature suggests
that hand preference may be related to the orchestrated function and size of fronto-parietal white
matter tracts bilaterally. Lesions to these tracts induced during tumour resection may provide an
opportunity to test this hypothesis. In the present study, a cohort of seventeen neurosurgical patients
with left hemisphere brain tumours were recruited to investigate whether resection of certain white
matter tracts affects the choice of hand selected for the execution of a goal-directed task (assembly
of jigsaw puzzles). Patients performed the puzzles, but also tests for basic motor ability, selective
attention and visuo-constructional ability, preoperatively and one month after surgery. Diffusion
tractography of fronto-parietal tracts (the superior longitudinal fasciculus) and the corticospinal tract
were performed, to evaluate whether resection of tracts was significantly associated with changes in
hand selection. A complementary atlas-based disconnectome analysis was also conducted. Results
showed a shift in hand selection despite the absence of any motor or cognitive deficits, which was
significantly associated with patients with frontal and parietal resections, compared with those with
resections in other lobes. In particular, this effect was significantly associated with the resection of
dorsal fronto-parietal white matter connections, but not with the ventral fronto-parietal tract. Dorsal
white matter pathways contribute bilaterally, with specific lateralised competencies, to control of goal-
directed hand movements. We show that unilateral lesions, by unbalancing the cooperation of the
two hemispheres, can alter the choice of hand selected to accomplish movements.
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Introduction

Handedness commonly refers to the tendency to use one hand over the other. Although the right
and left hands of humans are nearly identical in their basic anatomy and motility, nearly 90% of the
population show a strong preference for using the right hand to perform skilled movements
(McManus, 2009; Corballis 2003). However, the subjective preference to select one hand to
accomplish a specific task and the ability of this hand to do so are two related but not always
corresponding dimensions of handedness (Bryden, Pryde & Roy, 2000; Herve et al. 2005;
Angstmann et al. 2016). Significant scientific effort has been devoted so far to examining whether
hand preference correlates with anatomical asymmetries (McManus et al. 2019), and how altering
hand preference can affect neural structures (Marcori et al. 2019). Less attention has however been
paid to evaluating whether hand preference can be altered as a consequence of changes in
anatomical structure. This can be directly tested in the clinical setting by evaluating hand preference
before and after neurosurgical interventions, which provides a unique opportunity to evaluate the

neural basis of hand preference.

Manual dexterity primarily relies on the ability to perform independent finger movements, which
requires monosynaptic corticospinal fibres from primary motor cortex to spinal motoneurons (Porter
& Lemon, 1993). The corticospinal tract is broadly left-lateralised, with greater left to right
decussation of the pyramids (Flechsig, 1876). Further, the left corticospinal tract has a more dorsal
decussation at the midline in almost 90% of cases (Yakovlev & Rakic, 1966). While this was initially
believed to be linked to right-handedness, both post-mortem and neuroimaging studies have
demonstrated this to be unrelated to handedness (Lawrence & Kuypers, 1968; Kertesz &
Geschwind, 1971; Westerhausen, 2007). A consistent finding has been that handedness is
associated with morphology of the central sulcus, in proximity to the primary motor and
somatosensory hand region (Amunts et al. 2000; Germann et al. 2019). However, this is not a rigid
feature in that this region reshapes in corrected left-handers to follow a more ‘right-handed’
morphology, a consequence of an enforced shift in hand preference (Sun et al. 2012). It is well
established that the precentral gyrus is highly plastic, thus handedness-related structural differences
may reflect repeated lifelong use of one hand over the other (Steele & Zatorre, 2018; Simone et al.
2019). Given the lack of association between handedness and the asymmetry of cortical areas
hosting corticospinal fibres for motor output, it is thus plausible that this difference may reflect

structural asymmetry of pathways involved in earlier stages of action preparation.

Skilled manual action requires sensorimotor transformations to coordinate adequate muscle

synergies to perform finger movements. Sensorimotor integration mainly requiring visual and
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somatic information, is mediated by a widespread fronto-parietal circuit (Turella & Lingnau, 2014),
which has been well studied in macaques (Borra et al. 2017) but only partially in humans (Binkofski
et al. 1999). Notably, neurons tuned to eye and hand movements in monkey fronto-parietal regions
code primarily for the contralateral limb, but also for the ipsilateral limb (Cisek et al. 2003). This
observation has also been demonstrated in humans, using transcortical magnetic stimulation (TMS)
and functional magnetic resonance imaging (fMRI) (Schluter et al. 2001; Begliomini et al. 2008,
Gallivan et al. 2013), indicating there is bilateral but left-lateralised specialisation for visuomotor
control of movement that is handedness-independent (Sainburg et al. 2002; Begliomini et al. 2018).
This is intriguing given the well-established right hemisphere dominance for visuospatial attention
(Corbetta & Shulman, 2002). These results indicate that a bilateral frontal and parietal network
mediates skilled manual actions, mainly involving the superior longitudinal fasciculus (SLF) running
between the superior, middle and inferior frontal gyri and the superior and inferior parietal lobule
(SLF LILII respectively) (Thiebaut de Schotten et al. 2011; Budisavljevic et al. 2017). In a previous
study, we demonstrated that the structural asymmetry of these fronto-parietal tracts, rather than
corticospinal asymmetry, differs between self-reported right- and left-handers, which is also linked
with manual specialisation between hands on visuomotor tasks (Howells et al. 2018). Both groups
had similar left fronto-parietal tract volume and performance with the right hand - the results were
driven by differences in tract volume in the right hemisphere and left hand performance. This
indicates that lateralised motor behaviour may not be the result of solely a more developed, efficient
and thus dominant sensorimotor circuit in one hemisphere, but rather depends on the relationship
between two homologous circuits in both hemispheres. Should this be the case, a lesion disrupting
this cooperation may unbalance the system, resulting in an alteration of the motor behaviour of the
hands. At present it is unknown whether motor behaviour is altered when this symmetry is disrupted

by unilateral brain lesions, such as following neurosurgical procedures for the removal of a tumour.

Tractography is currently the only technique available for studying structural connections in the living
human brain and is commonly used to evaluate the relationship between structural asymmetry and
individual differences in behaviour (Catani et al. 2007; Forkel et al. 2014; Forkel & Catani 2018). In
the clinical setting, tractography methods can estimate the extent of disconnection of specific white
matter tracts by comparing the lesioned with the expected white matter anatomy known to be present
in a healthy brain (Catani et al. 2012; Fox et al. 2018, Thiebaut de Schotten & Foulon, 2017). Surgical
resection of tracts in one hemisphere alters their hemispheric asymmetry, thus changes in preferred
hand use due to resection in specific regions may reveal neural structures that are relevant in
mediating hand preference.

At present the most commonly used inventory scales to assess handedness lack the sensitivity to

evaluate subtle changes in manual behaviour (Brown et al. 2006; Flindall & Gonzalez, 2018). These
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questionnaires measure the overall result of the hand selection process, but do not provide data to
understand the underlying mechanisms themselves. Grasp-to-construct tasks are a useful means
by which to evaluate lateralised motor behaviour in an ecological context, providing a quantitative
measure of the interactions of each hand in both ipsilateral and contralateral space (Gonzalez et al.
2006,2007). Putting together a jigsaw puzzle is therefore a useful way of testing hand selection to
evaluate whether changes in lateralised manual behaviour following neurosurgical removal of brain
tumours. The hand selected for the motor actions required during two phases of movement (reach-
to-grasp and manipulation) during construction of puzzles was tested in seventeen patients in the
preoperative phase and one month following the intervention. Patients performed basic motor tests
to rule out any deficits in motor performance. As hand selection requires a significant cognitive load
(Rosenbaum, 1980; Liang et al. 2018), we compared these results with performance changes on
selective attention and visuoconstructional tasks to evaluate whether changes in hand selection were
associated with deficits in these domains. Diffusion tractography of the main fronto-parietal tracts
and the corticospinal tract were performed, to evaluate whether resection of specific tracts was
associated with changes in hand selection after surgery. Based on the literature, we predicted that
hand selection would be affected when resections occurred in white matter regions involving the

branches of the fronto-parietal superior longitudinal fasciculus.

Methods

2.1 Participants

Seventeen neuro-oncological patients who were candidates for awake surgery to remove a brain
tumour were enrolled in this study. Patients were recruited using the following inclusion criteria: (i) a
unilateral lesion in the left hemisphere, (ii) no previous surgery or radiotherapy (iii) no language or
visual field deficits, (iv) no previous neurological or psychiatric conditions (v) no history of fractures
involving the bones of the hand or fingers that might require restricted healing for longer than six
months. All patients gave written informed consent to the surgical and direct electrical stimulation
mapping procedure (IRB1299), and to the analysis of data for research purposes which followed the
principles laid out in the Declaration of Helsinki. Patients were assessed for self-rated handedness
using the Edinburgh Handedness Inventory (EHI, Oldfield, 1971). On this scale of hand preference
patients could score between -100 and 100, where under -60 indicated completely left-handed, over

60 indicated completely right-handed and a score between -60 and 60 indicated mixed handedness.
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Table 1: Demographic information

No. of patients 17

Sex 8 female; 9 male

Age (mean, SD, in years) 43+15

EHI (no patients) 13 (+100): 1 (+60); 1 (+15), 2 (-60) |

Education (mean, SD, in years) 13+3

Lesion location 9 frontal; 2 parietal; 4 temporal; 1 occipital |
Tumour grade 9 HGG; 7 LGG
Extent of resection Total or supratotal resection

Note: EHI Edinburgh handedness inventory, HGG high grade glioma, LGG low grade glioma
2.2 Neuropsychological assessment

All patients underwent a comprehensive preoperative (1 week prior to surgery) and postoperative (1
month after surgery) neuropsychological assessment. This assessment included evaluation across
cognitive domains including language, praxis, attention and executive function (for details see Puglisi
et al. 2018). For the purpose of this study, and to exclude severe postoperative deficits that could
affect the reliability of the postoperative assessment, we assessed changes between the pre- and
postoperative timepoints for scores in visuospatial exploration (letter cancellation),
visuoconstructional ability (Rey-Osterrieth Complex Figure), selective attention (Attentive Matrices)

and auditory comprehension (Token Test).
2.2.1 Assessment of hand performance

Hand performance was evaluated in two domains: arm-hand motor skills and praxis. The Action
Research Arm Test (ARAT) is a simple test used to assess upper extremity movements with the
dominant hand. It consists of 19 motor actions that are grouped into four subtests assessing four
actions: grasp, grip, pinch, and gross movement. All items are rated from 0 (the movement is not
possible) to 3 (normal performance of the task). The total score on the ARAT ranges from 0-57, with
a higher score indicating better performance (Yozbatiran et al., 2008). We used 57 as the cut-off for
this test. Patients without motor, sensory or visual deficits were assessed also for coordination and
fine movement control using the Movement Imitation test for ideomotor apraxia (De Renzi, 1980). It
consists of twenty-four gestures of different complexity that are imitated by the patient, requiring
independent movement of the hands. Each imitation trial is rated from O (impossible to replicate the
movement) to 3 (correct imitation at first presentation). The total score ranges from 0-72, where a

score of 52 is the cut-off for normal performance.
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2.2.2 Assessment of hand preference: jigsaw puzzle task

During the neuropsychological assessment and while comfortably seated in front of a table, patients
were asked to assemble two different jigsaw puzzles to evaluate spontaneous hand preference in a
‘naturalised’ setting (Gonzales et al. 2006). Each puzzle was of a standard size (17cm x 17¢cm) and
made up of 25 equally sized pieces (Supplementary Video). The underside of the pieces were
labelled with “1° or ‘2’ to indicate the hemispace in which they were to be presented. The pieces were
distributed across each side of the tabletop with the same number of pieces on each side. The patient
was seated exactly facing the middle of this distribution and provided with a central puzzle piece
directly in front of them, for orientation. An image of the completed puzzle image was displayed
opposite the patient for reference. The patients were asked to place each hand on the table face
down and then to reproduce the puzzle as fast and as accurately as possible and were blinded to
the purpose of the study (no instruction was given as to which hand to use). Patients were asked to
take one piece at a time and replace it if they could not fit it into the puzzle. The patients’ hands were
video recorded by a camera position directly in front of the patient, tilted downward to provide a view
of the action of both hands. Patients were given three minutes to complete each puzzle and then
asked to stop, even if the puzzle was not completed. The order of presentation of each puzzle was

counterbalanced between patients.

Performance on the two puzzles were scored offline using the video-recordings, by two
neuropsychologists blind to whether performed pre- or post-operatively (see Supplementary Video).
The performance was evaluated in two action phases: reach-to-grasp and manipulation. First, each
video was analysed to record the hand used every time a piece of the puzzle was reached for and
grasped (e.g.; Figure 1a). It was also recorded whether the hand used was reaching to grasp a piece
within its hemispace (e.g. right hand within right hemispace, R, left hand within left hemispace, L) or
whether it reached to grasp within the opposite hemispace (e.g. right hand into left hemispace, Rx;
left hand within right hemispace, Lx). As the effort required to reach across hemispace was higher,
the last condition was given a higher weight (Elliott et al. 1993; Liang et al. 2018). We used the
average across the two trials to create a final score of lateralised hand selection, calculating a
lateralisation index calculated as (R + (1.5 x Rx)) or (L + (1.5 x Lx)). A score of -1 reflects selection
solely of the left hand, a score of +1 reflects selection solely of the right, while a score of O reflects
selection of both hands equally. When one hand would reach and grasp a puzzle piece, this was
sometimes passed to the other hand for positioning. Thus, each video was also scored for the hand
that rotated the puzzle piece into the appropriate configuration and then fit it into position (Figure
1b). This was a cooperative movement as the other hand generally played as a supportive role, by
holding the puzzle in place. The final score for each hand was calculated based on the total number

of manipulations performed by each hand and a similar lateralisation index of hand selection was
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created (average across the two trials). For each of the two scores, the proportion of right hand use

out of the total grasps or manipulations was also calculated (R/(R+L)).

2.2.3 Statistical analysis of neuropsychology data

Multiple paired t-tests were used to assess differences between pre- and post-operative scores
related to: a) hand motor function, b) hand selection for the puzzle task and c) cognitive status.
Multiple repeated measures mixed ANOVAs were employed to assess the interaction between
clinical or demographic variables and hand selection in the pre- and post-operative timepoints. We
used timepoint (pre vs post) as the within-subjects factor, resected lobe, education and sex as
between-subjects factors, and resection volume and age as covariates. As we hypothesised that
fronto-parietal resections would have a significant impact on hand selection, for the resected lobe
factor we categorised patients into two groups: those with resections predominantly in the frontal or

parietal lobe, and those with resections in the temporal or occipital lobe.

2.3 Neuroimaging acquisition

All patients underwent a clinical MR imaging sequence one day before surgery, and at the one-
month follow-up. Preoperative MRI imaging was performed on a Philips Intera 3T scanner
(Koninklijke Philips N.V. Amsterdam, Netherlands), and acquired for characterisation of lesion
morphology and volume. A post-contrast gadolinium T1-MPRAGE sequence was performed using
the following parameters TE:2.7ms, TR:95.4s, FOV: 176 slices, slice thickness: 1mm and a T2-

FLAIR, as part of the clinical routine.

Nine patients also underwent a High Angular Resolution Diffusion Imaging (HARDI) sequence for
clinical purposes using an 8-channel head coil. A spin echo, single shot EPI sequence was
performed with 73 directions collected using a b-value of 2000s/mm3, and seven interleaved non-
diffusion weighted (b0) volumes (TE:96ms, TR 10.4ms). The acquisition had a matrix size of

128x128 with an isotropic voxel size of 2mma3.

2.3.1 Neuroimaging preprocessing and analysis

Volumetric analysis was used to define tumour volume using BrainLab software (Smartbrush).
Resection cavities were delineated on the postoperative T1 and registered to a preoperative
diffusion-weighted imaging map (Anisotropic Power, Dell’Acqua & Tournier, 2018) using the Clinical
Toolbox in SPM (Rorden et al., 2012).

Diffusion imaging data was visually inspected for outliers, corrected for signal drift, reordered and

corrected for head motion and eddy current distortions using ExploreDTIl (www.exploredti.com,
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Leemans et al. 2009). Standard diffusion tensor models cannot show multiple fibre orientations within
a voxel therefore are not suitable for evaluating fronto-parietal tracts (Thiebaut de Schotten et al.
2011). We used an advanced algorithm based on spherical deconvolution to model the orientation
distribution function, using a damped Richardson-Lucy algorithm (Dell’Acqua et al. 2010). The
following settings were used: ALFA = 1.7, 300 iterations, n= 0.001, v = 8, and an absolute threshold
of 0.001. Whole brain tractography was calculated using a step size of 1mm, with a constraint to
display streamlines between 15 and 200mm in length. Euler interpolation was used to track
streamlines using an angle threshold of 45 degrees. All spherical deconvolution modelling and whole
brain deterministic tractography was performed using StarTrack software (Dell’Acqua et al. 2012;

www.mr-startrack.com).

2.3.2 Tractography dissections

Virtual dissections of the three branches of the superior longitudinal fasciculus (SLFI-III) and the
precentral component of the corticospinal tract were performed using a ROI-based approach. The
regions of interest used as segment the SLF I-1ll are described in detail in Thiebaut de Schotten et
al. 2011 and Howells et al. 2018. The dorsal branch of the SLF (SLF I) connects the superior parietal
lobule with the superior frontal gyrus, running anterior and parallel to the cingulum but distinct,
separated by the cingulate sulcus (Thiebaut de Schotten et al. 2012). The middle branch (SLF II)
connects the posterior inferior parietal lobule (angular gyrus) with the middle frontal gyrus including
the frontal eye fields. The ventral branch (SLF IlI) connects the inferior frontal gyrus and ventral
precentral gyrus with the anterior inferior parietal lobule (supramarginal gyrus) and intraparietal
sulcus. For the purpose of this study, the corticospinal tract was defined as the streamlines extending
from the precentral gyrus to the brainstem (Catani & Thiebaut de Schotten 2016). The postoperative
MR with the delineated resection cavity was registered and overlaid on the preoperative diffusion
tractography using a similar approach to that described in Puglisi et al. (2019). By using the resection
cavity as an inclusion ROI, we could estimate the percentage of streamlines that were disconnected

by the resected region.

2.3.3 Estimation of tract resection

We used a supplementary approach to estimate the disconnection of tracts in the entire cohort. While
use of atlas-based tract estimation tools is challenging in patients with tumours that may displace or
disconnect tracts, it is a useful adjunctive tool to estimate tract-based lesion-symptom associations,
to complement findings identified with tractography. We used the online platform “Megatrack”, a
HARDI-based tractography atlas and lesion tool (https://megatrackatlas.org, Stones et al. OHBM
2019), to estimate the extent of disconnection of white matter tracts, based on the percentage of

disconnected streamlines as a proportion of the total making up the fibre bundle. Although a number
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of tract atlases are available (Rojkova et al. 2016), this approach is highly relevant in this case, as
one can take specific demographic factors can be taken into account when predicting likely tract

volume such as handedness (Howells et al. 2018).

A mixed repeated measures ANOVA was used to evaluate whether there was an interaction between
resection of a tract and a change in neuropsychological performance across tests (puzzle - reach-
to-grasp or manipulation phase, Rey figure, Attentive Matrices). We used timepoint (pre vs
postsurgery) as a within-subjects factor and the status of each of the three branches of the superior

longitudinal fasciculus (resected/preserved) as a between-subjects factor.

Results

3.1 Assessment of motor and cognitive abilities

Upper limb motor skills. Motor assessment was performed to exclude alteration of motor ability of
the dominant hand before and after surgery. The ARAT was used to test the ability of the dominant
hand in performing four basic motor actions (i.e. grasp, grip, pinch, and gross movement). The task
was fully accomplished (i.e. all actions were performed with full scores) by all patients at both

timepoints (Figure 2).

Praxis ability. There was no significant change in score on the ideomotor test (t(16)=126, p=0.126),
indicating no praxis deficits were evident before or after surgery.

Language comprehension. No patients experienced persistent postoperative aphasia, and their
performance on the Token test for auditory comprehension, despite a decrease (t(15)=2.7, p=0.014),

was within the range of normality in the postoperative phase (cut-off 22.5). All patients were therefore

able to understand the instructions given for the task.

Attentional processing. In line with the postoperative clinical course, a slight reduction in cognitive
performance was observed in selective attention (1(15)=2.5, p=0.023). The difference in omitted
letters between right and left hemifields in the cancellation test was assessed in the pre- and post-
operative phases. There was no significant change in visual field exploration between the two

timepoints (t(15)=—1.0, p=0.3). None of the patients showed hemispatial neglect.

No patients experienced any postoperative sensory deficits. One patient presented with hemianopia
in the first month follow-up, which fully recovered subsequently (Patient 1). In order to assess any

potential postoperative difficulties in task completion we compared the number of correct pieces
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placed at the end of the puzzle task between the two timepoints. The mean number of pieces
correctly placed was 14.9 out of 25 (s.d. 7.4) in the preoperative time point and 14.7 out of 25 (s.d.
7.3) in the postoperative time point. A paired samples t-test showed no significant difference between
time points (t(15)=—0.249, p=0.8).

(@) r (b) Preoperative hand selection
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handed P16 |
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Figure 1. Photographs showing layout of puzzle task and hand movement during the (a) reach-to-grasp (green) and (b)
manipulation (red) phases (see also Supplementary Video). (c) A bar graph shows hand selection in the preoperative time
point for both phases of the puzzle task (lines in red and green reflect median score for right-handed population). The
direction of hand use is consistent with hand preference reported on the Edinburgh Handedness Inventory.

3.2 Assessment of hand selection

Patients were asked to complete a self-rated handedness inventory (Edinburgh Handedness
Inventory, EHI) before and one month after surgery. Fourteen patients were right-handed (+60 on
EHI), two patients were left-handed (-60 in EHI) and one patient was mixed handed (+ 37.5 on EHI).
No patients reported any change in the EHI score in the one month follow up.

Assessment of task consistency before and after surgery. A comparison of hand selection, as

measured by the lateralisation index, was conducted between trials (first vs second puzzle).
Lateralised hand selection was highly correlated between the two trials in the preoperative (r=0.8,
p<0.001) and postoperative phase (r=0.6, p<0.003), indicating the test had good intraindividual
consistency for assessing hand selection in both reach-to-grasp and manipulation phases.

10
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Assessment of consistency of hand selection in the two phases of the puzzle task. Hand selection
on the puzzle was compared with the patient’s self-reported hand preference in the preoperative
time point. All patients used their dominant hand more than the non-dominant hand for both phases
of the puzzle (reach-to-grasp and manipulation; Figure 1c), with the exception of the mixed handed
patient who showed an inconsistent hand preference. This patient was excluded from subsequent
neuropsychological analysis. We evaluated the consistency in the hand selected for both reach-to-
grasp and manipulation phases. A bivariate analysis showed a strong correlation between the two
phases of the puzzle task in the preoperative phases (r2=0.8, p<0.001). An ANOVA showed no effect
of sex on lateralised preoperative hand selection in either phase (reach-to-grasp: F(1,14)=0.227,
p=0.6; manipulation: F(1,14)=0.37, p=0.6).
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Figure 2. Changes in neuropsychological scores before and after surgery. (a) Motor ability before and after surgery. (b)
The change in hand selection in the two phases of the puzzle. (c) A scatter graph showing the significant association
between change in hand selection for each phase and change in score on the attentive matrices. A negative score indicates
a shift to non-dominant hand use, or an improvement in the selective attention score. (d) the individual scores for each
patient are shown in the pre- and post-operative phases. Note: * reflects significance level of p<0.05.
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Table 2: Neuropsychological scores before and after surgery

PUZZLE PREOPERATIVE POSTOPERATIVE CHANGE
Mean (SD) Mean (SD) Mean (SD)
REACH-TO-GRASP LI 0.34 (0.43) 0.06 (0.48) -0.27 (0.4)
CROSSING HEMISPACE LI 0.69 (0.5) 0.17 (0.9) -0.5(0.8)
MANIPULATION LI 0.42 (0.53) 0.25 (0.6) -0.17 (0.5)
COGNITIVETESTS
IDEOMOTOR TEST (/72) 71.5(1.5) 70.7 (2.3) 0.7 (1.9)
ATTENTIVE MATRICES (/60) 52.1 (8) 46.3 (13.5) 5.8 (9)
REY FIGURE (/36) 33.2 (5.5) 31.3(7.5) 1.9 (6)
CANCELLATION TEST (L-R) 0.25 (0.9) 0.68 (1.8) -0.43 (1.67)
TOKEN TEST (/36) 35.2(1.8) 32.1(5.2) 3.1(4.5)

NOTE: Scores are mean (standard deviation). LI: a score of -1 indicates non-dominant hand use only; 0 indicates equal
use of both hands, 1 indicates dominant hand use only.

Assessment of hand selection before and after surgery. Multiple repeated measures ANOVAs were

used to assess the interaction between clinical or demographic variables and the change in hand
selection before and after surgery. The ANOVAs revealed no significant interaction between change
in hand selection and education, sex, resection volume or age. The only significant interaction was
between resected lobe and hand selection for both reach-to-grasp (F(1,14)=6.87, p=0.02) and
manipulation phases (F(1,14)=5.06, p=0.04). A significant difference in hand selection before and
after surgery emerged in patients with frontal or parietal resections, but not when resection affected

the temporal or occipital lobes (Figure 3a).

We finally compared cognitive scores with hand selection on the puzzle task. Bivariate analysis
showed a significant association between change in selective attention performance and hand
selection for reach-to-grasp (r2=0.605, p=0.01) and manipulation (r2= 6.01; p=0.014; Figure 2). The
greater shifts toward non-dominant hand use were correlated with lower scores on the selective
attention test. No significant correlations between change in visuoconstructional ability or auditory

comprehension, and change in hand selection for reach-to-grasp or manipulation were observed.

3.3 Effect of resected region on hand selection

Awake neurosurgery was performed in all patients, with the aid of the brain mapping technique, using
functional borders to achieve total or supratotal resection for tumours distributed across the left
hemisphere. All regions of the precentral gyrus for which motor evoked potentials of the hand could
be evoked by direct electrical stimulation were preserved in all cases (Bello et al. 2014; Figure 3).
Further, a new tool designed to assess and preserve eloguent regions controlling complex non-
visually guided hand actions was used during awake brain mapping in these patients (see previous

studies — Fornia et al. 2019). Mean resection volume was 76.7ml (s.d. 71.3).
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Figure 3. (a) Bar graph showing the shift in hand selection by resection group (b) Anatomical distribution of resections
within the frontal and parietal lobe. The lesion location of the mixed handed patient is not included here (c) Anatomical
distribution of resections within the temporal and occipital lobe. *p<0.05.

Table 3. Tractography measurements in right and left hemisphere

TRACT TRACT TRACTOGRAPHY
MEASUREMENTS (L) MEASUREMENTS (R) DISCONNECTION IN LEFT
HEMISPHERE

TRACTS | Mean Volume (SD) Mean Volume (SD)

SLFI 11473.5 (3439) 14444.25 (2532) 5/9 cases

SLFII 13373.25 (8247) 13166.875 (5873) 4/9 cases

SLFII 7722.4 (3144) 12033.5 (3349) 4/9 cases

CST 11455.4 (2431) 9528.6 (1266) 0/9 cases

NOTE: SLF: superior longitudinal fasciculus, CST corticospinal tract
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The tractography results showed that, following surgery, the dorsal branch of the superior
longitudinal fasciculus (SLF I) was disconnected in 5/9 cases, the middle branch (SLF II) in 4/9 cases
and the ventral branch (SLF IIl) in 4/9 cases. The corticospinal tract was intact in all patients. We
examined changes in hand selection in the two phases of the puzzle task (reach-to-grasp and
manipulation) between patients with specific branches of the superior longitudinal fasciculus
resected or preserved. We observed a trend to show greater shift in hand selection toward non-
dominant hand use following resection of the SLF | or SLF Il (Figure 4b). No consistent result was

associated with resection of the SLF III.

As under half of patients underwent diffusion tractography (9/16) patients, we confirmed our results
using an atlas-based approach. Again, this approach confirmed the preservation of all precentral
projections of the corticospinal tract. The dorsal fronto-parietal tract (SLF 1) was resected in 6/16
patients, the middle branch (SLF II) in 8/16 patients and the ventral branch (SLF Ill) in 7/16 patients.

There was good correspondence between the atlas-based and tractography-based approach.

Multiple repeated measures ANOVA showed an interaction between (atlas-based) tract resection
and shift in hand selection on both reaching and manipulation phases (Figure 4b). Patients with the
left dorsal fronto-parietal branch (SLF 1) resected showed a significantly greater shift toward non-
dominant hand use in the reach-to-grasp phase compared to patients submitted to a resection
preserving the same tract (F(1,14)=16.45, p=0.001). This same results were observed for the
manipulation phase (F(1,14)=4.4, p=0.05). Resection of the SLF Il resulted in a shift in hand selection
in the reach-to-grasp (F(1,14)=9.9, p=0.007) but not the manipulation phase. Resection or
preservation of the SLF Il did not affect the hand selection in the task. Overall the analysis point to

the left and middle fronto-parietal branches as significant tracts involved in hand selection.

Additionally, we evaluated whether resection of these tracts was related to a change in cognitive
performance on the selective attention and visuoconstructional tasks. Resection of the SLF | and
SLF Il result in a significant shift in hand selection during the task, and patients with resection of the
SLF | also showed a trend toward higher incidence of deficits on the selective attention task at 1
month following surgery (F(1,14)=4.3, p=0.058), as did those with resection of the SLF II
(F(1,14)=4.3, p=0.056). No associations between resection of these tracts and visuoconstructional

task performance before and after surgery was observed.
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Figure 4. Example of one patient included in the study (patient 3), (a) demonstrating change in hand selection on different
phases of puzzle. (b) Preoperative diffusion tractography dissections of the four tracts in this patient are shown with an
overlay of the resection cavity (cyan), showing the SLF | was resected (c) Megatrack atlas-based estimation of white matter
disconnection shown on the postoperative T1 also indicated complete resection (d) Boxplots showing group differences in
change in hand selection related to resection of specific tracts in the different phases of puzzle performance. ***p<0.001,
**p<0.01, *p<0.05

Discussion

In neurosurgical patients with left hemisphere brain tumours, we investigated whether resection of
fronto-parietal white matter pathways was associated with a shift in hand selection, assessed using
a puzzle assembly task. Our results show that subtle changes in hand selection occurred following
frontal and parietal resections, despite no primary deficits in motor ability. Patients primarily selected
the self-reported dominant hand (based on the EHI) for both reach-to-grasp and manipulation phases
of puzzle assembly, however there was a shift toward the increased use of their non-dominant hand
for this task in the postoperative phase. This hand selection shift was significantly correlated with the
surgical resection of superior and middle fronto-parietal white matter connections (i.e. SLF | and II),
but not the inferior fronto-parietal branch (SLF I1). Our results suggest that the relationship between
brain structure and lateralised hand motor behaviour is reciprocal: forced alteration of spontaneous
manual preference can affect structural hemispheric asymmetries (Sun et al. 2012), but also lesions

altering brain structure can produce subtle shifts in lateralised motor behaviour.
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Everyday interactions require complex highly skilled hand movements which are either performed
unimanually, or more commonly, requiring bimanual cooperation. The preference to use one hand
over the other to perform complex motor tasks is a distinct feature of our species, a lateralised
behaviour referred to as handedness. Hand-object interaction requires independent finger
movements to be orchestrated based on the properties of the object and the goal of the action. Thus,
lateralised hand use is unlikely to depend solely on asymmetry of neural structures in change of final
motor output, such as the dimensions of the precentral gyrus or corticospinal tract. A considerable
body of work has indicated that cooperative interplay of both hemispheres is required for movement,
and further that each hemisphere is responsible for different aspects of motor programming for
complex actions (Sainburg et al. 2002). When considering grasping and hand-object manipulation,
fronto-parietal connections are essential in providing the motor program with visual and
somatosensory information required to achieve adequate hand shaping and control in both monkeys
and humans (Borra et al. 2017; Turella & Lingnau 2014). Three parallel branches of the superior
longitudinal fasciculus convey sensorimotor transformations between frontal and parietal regions,
each of which has different patterns of structural asymmetry (Thiebaut de Schotten et al. 2011). This
interhemispheric asymmetry has been associated with specific aspects of upper limb kinematics in
healthy adults, precisely for different phases of visuomotor processing needed for reach-to-grasp
movements (Budisavljevic et al. 2016) and may have a genetic basis (Wiberg et al. 2019). We
recently demonstrated further that hemispheric asymmetry of the dorsal fronto-parietal tract differs
between self-reported right- and left-handers, with a greater left-lateralisation in right-handers, and
right-lateralisation in left-handers (Howells et al. 2018). Asymmetry of these fibres was also
associated with manual specialisation between the hands, measured using relative unimanual
performance between hands on a pegboard task. This indicates that relative contributions from both

hemispheres are involved in facilitating task performance with each hand.

Taken together, recent evidence indicates that lateralised motor behaviour, whether relating to hand
selection or manual ability, is linked to the interplay of both hemispheres, each in charge of specific
aspects of motor programming. In line with this hypothesis, unilateral lesions should result in
alteration of lateralised motor behaviour related to a specific feature of motor programming by
unbalancing interhemispheric interplay dependent on certain structural asymmetries. The
neurosurgical setting thus provides an opportunity to observe the consequence of selective lesions.
Our results indicate that neurosurgical resection of both frontal and parietal left hemisphere regions
alters motor behaviour, shifting hand selection toward increased non-dominant hand use one month
after the procedure. In particular, this was related to resection of those regions connected by the

dorsal and middle branch of the superior longitudinal fasciculus (SLF | and II).
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4.1 Fronto-parietal resection affects hand selection but not motor ability

A key result that emerged from our study is that the neurosurgical resections performed in premotor
and parietal regions did not impair gross motor skills of the dominant hand, as all patients performed
within the normal range on both basic motor and ideomotor apraxia tests (Figure 2). Preservation of
these functions was due to the intraoperative cortical and subcortical electrical stimulation awake
mapping procedure, used to identify eloquent structures during resection and hence producing
functional borders to resection (Bello et al. 2014). In this case, patients use a dedicated object
manipulation tool demonstrated to preserve praxis function (Rossi et al. 2018; Vigano et al. 2019;
Fornia et al. 2019). Resection of fronto-parietal tracts in the left hemisphere did not impair motor
ability itself, but rather caused a shift (and rarely a flip) in hand selection for reach-to-grasp
movements: the dominant hand was still used primarily over the non-dominant hand in the
postoperative timepoint, although to a lesser extent. This indicates that presurgical hand preference
was still preserved, however the strength of its dominance over the other hand decreased. A
prominent model of bilateral hemispheric interplay in control of hand movement indicates that the
left hemisphere (in right-handers) is specialised for predictive control of limb dynamics, whereas the
right hemisphere is specialised for impedance control and positional stability in unanticipated
perturbations (Sainburg, 2002). Both hemispheres contribute to the motor program with different
competencies. Damage to the left hemisphere may thus interrupt the ballistic component or timing
of movements which may affect the trajectory of the dominant hand. The hand selected for the task

may therefore change to compensate and to ensure the goal of the task is still achieved.

Notably, our results also showed that there was a similar shift toward right-hand use in the left-
handers tested, following the left hemisphere resections. This may provide preliminary evidence to
support the hypothesis that the left hemisphere is specialised for visually guided dominant hand
grasping, in both left and right-handers (Begliomini et al. 2018). Altogether this data supports the
hypothesis that bilateral fronto-parietal tracts support complex hand movements, for which the
balance of communication between hemispheres may support hand selection for goal directed
actions (Budisavljevic et al. 2016; Howells et al. 2018). However, a second point arises from these
results: as goal-directed movements could still be performed, the inclination to use the non-dominant,
ipsilesional hand more (or dominant hand, less) may reasonably be related to computations
reflecting the influence of a higher cognitive mechanism such as movement intentionality or

executive function.

4.2 Hand preference and online control of movement
The dorsal fronto-parietal branch (SLF 1) extends between superior frontal and anterior cingulate
cortices, and the precuneus and superior parietal lobule and has been traced in both monkeys and

humans (Petrides & Pandya, 1984; Thiebaut de Schotten et al. 2012). Despite running parallel to
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the cingulum, post-mortem studies have demonstrated that it is a distinct tract, separated by the
cingulate sulcus (Yagmurlu et al. 2016; Komaitis et al. 2019). The frontal terminations of the SLF |
include the preSMA, which codes for both contralateral and ipsilateral limb movements (Gallivan et
al. 2013) and plays a critical role in translating higher level goals to action (Wang et al. 2019). Other
cortical regions in the superior frontal gyrus including the frontal eye fields play an important role in
attention and working memory (Boisgueheneuc et al. 2006). The SLF | connects all of these regions
with the superior parietal lobule, crucial for orienting actions within space, using visual information to
code target location and movement direction, transforming spatial targets into movement vectors
(Goodale & Milner, 2018; Barany et al. 2014; Gallivan & Culham, 2015). The superior parietal lobule
can directly influence motor output through M1, but also is connected with premotor cortex to form
major relays for coordinating reach-related grasping movements (Monaco et al. 2011; Cattaneo et
al. 2019). Notably, the function of the superior parietal lobule relates to online monitoring of one’s
own body - lesions in this region can cause disorders of self-awareness such as fading limb, alien
hand or autotopagnosia (Wolpert et al. 1998; Herbet et al. 2019). The bilateral SLF | likely conveys
neural impulses for online control of movement of both hands, and our results show that
disconnecting this tract in the left hemisphere causes a shift toward non-dominant hand use when
exploring peripersonal space. In a previous study, we reported handedness-related differences in
hemispheric asymmetry of SLF | volume in healthy adults, a measurement likely reflecting enhanced
speed of conduction (Howells et al. 2018; Drobyshevsky et al. 2005). Further, damage in the right
hemisphere causes hyperexcitability of parieto-motor connections in the left fronto-parietal network
(Koch et al, 2008). Considering this evidence, one hypothesis may therefore be that hand selection,
as measured by our test, is a reflection of top-down online monitoring of one hand, due to faster and
more efficient movement intentionality. Thus, a shift in hand selection may reflect lower ‘power’ of
the dominant hand in this regard, or conversely, an upregulation of movement intention in the non-

dominant hand that disturbs the other. Further investigation is however required to test this theory.

4.3 Hand preference and attentional processing

A recent combined magnetoencephalography-tractography study has also linked differences in
structural asymmetry of the SLF | to selective attentional processes, measured in synchronisation of
alpha and gamma band oscillations (Rhys Marshall et al. 2015). While the role of selective attention
in action selection has been well described (Castiello, 1999), our results further show an association
between selective attention and dominant or non-dominant hand selection. Patients with greater shift
toward non-dominant hand use following surgery also had reduced selective attention ability, despite
no impairment in visual search strategies in either hemispace. Further, our results also show that
resection of the second branch of the SLF (SLF 1l) connecting the middle frontal gyrus with posterior
inferior parietal lobule (the angular gyrus) was associated with changes in hand selection, with a

similar trend for selective attention. Importantly, this tract connects neural regions within two
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important attention networks: the dorsal attention network (DAN; SLF 1) and the ventral attention
network (VAN; SLF IIl) (Corbetta & Shulman, 2002). Individual differences in structural asymmetry
of the SLF Il are associated with attentional biases in healthy adults, detected using behavioural
tasks such as the line bisection task (Thiebaut de Schotten et al. 2011). Recent TMS-tractography
combined studies have also demonstrated this tract also plays a key role in online monitoring and
movement correction of actions (Koch et al. 2010; Rodrigues-Herreros et al. 2015). Thus, the SLF |
and SLF Il are likely to both be involved in top-down attentional processing as well as mediating
online control of movement. Supporting this, there was a trend toward patients with resection of the
SLF | and/or SLF Il having greater declines in performance on the selective attention task in the
postoperative phase. This suggests there may be a link between attentional processing and
lateralised hand selection. Focusing on goal-relevant stimuli while ignoring distractors requires
executive control to efficiently allocate attentional resources, which is theorised to be supramodal
(Lavie et al. 2005; Spagna et al. 2015; Ptak et al. 2017). In 1980, Rosenbaum investigated reaction
time for reaching, altering the pre-cues such as direction, distance and the hand to be used for the
movement. He demonstrated that reaction time was reduced most substantially when hand selection
was cued, indicating this decision-making process has a considerable cognitive load. Executive
control of attention therefore may extend also to allocating motor attention toward selection of one

hand over another (Rushworth et al. 2003).

4.4 Limitations

Resection of the ventral fronto-parietal branch (SLF Ill) connecting the inferior frontal gyrus and
ventral precentral gyrus with the anterior inferior parietal lobule did not seem to affect hand selection
in our patient cohort. Given that structural asymmetry of this tract has been associated with both
kinematics of reach-to-grasp movements and handedness, this result was unexpected (Budisavljevic
et al. 2016; Howells et al. 2018; Wiberg et al. 2019). A possible explanation might be that the
paradigm used to construct a puzzle may be more adequate to test online control of movement in
peripersonal space, rather than specific hand shaping for grasping, therefore it may not have been

sensitive enough to detect subtle changes in skilled motor actions.

Studying the relationship between clinical manifestations and lesions in patients with brain tumours
is of great aid in that, unlike in situations of vascular insult, lesions are constrained and more focal,
and it is possible to assess neuropsychological performance before as well as after a neurosurgical
intervention. However, there are a number of limitations that deserve discussion. First, it is
challenging to assess whether or to what extent brain function is impaired in areas of diffuse tumour
infiltration. In this study, the growth of a tumour may already have affected hand preference, which
may explain why right-hand preference was not as strong as expected based on previous studies

(90% right-hand grasps in right-handers e.g. in Gonzalez et al. 2006). Further, brain tumours are a
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rare disease, thus the patient cohort tested was relatively small. With a larger patient cohort, we
would have been able to conduct voxel-lesion symptom mapping and more sophisticated statistical
analyses that would be better able to confirm our preliminary results (e.g. Foulon et al. 2018).
Moreover, our evaluation of motor ability was relatively crude, and kinematic analysis would better

be able to rule out the impact of subtle motor impairments and their effect on hand selection.

4.5 Conclusions

Handedness likely consists of a number of dimensions, each of which underlie lateralised motor
behaviour for a circumscribed set of tasks. Given that handedness does not have a one-to-one
relationship with manual specialisation, the different items and skills required for different tasks
designed to investigate this topic may yield different insights into preferred use of one hand for
interaction with the immediate environment (Todor & Doane, 1977). We here confined the
investigation of hand preference to a task involving completion of a jigsaw puzzle - requiring reaching
to grasp pieces and manipulation into position. This task tests motor behaviour requiring the
cooperation of different cognitive functions including motor planning but also mental rotation, working
memory and spatial attention to name but a few. It would be intriguing to contrast these results with
data collected from tasks requiring hand cooperation in different contexts, to dissociate whether

changing the cognitive load can modulate hand as well as action selection.

To conclude, our results provide preliminary evidence to support the role of dorsal fronto-parietal
tracts in lateralised hand selection for reaching and grasping movements. While these dorsal white
matter structures have already been associated with goal-directed hand movements in monkeys and
humans, to our knowledge this study is the first to demonstrate that disrupting their structural
asymmetry with unilateral lesions directly alters the choice of hand selected for these movements.
This may provide intriguing avenues for future study within the field of motor control and attention,
but also for understanding the importance of balance in the relative contributions of each hemisphere

toward a single cognitive process.
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