

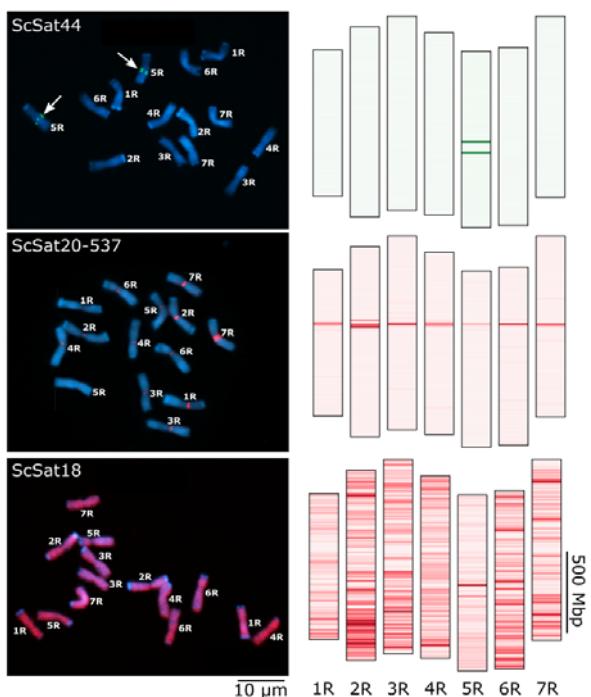
1 Chromosome-scale genome assembly 2 provides insights into rye biology, 3 evolution, and agronomic potential

4
5 M. Timothy Rabanus-Wallace, Bernd Hackauf, Martin Mascher, Thomas Lux, Thomas Wicker, Heidrun
6 Gundlach, Mariana Bález, Andreas Houben, Klaus F.X. Mayer, Liangliang Guo, Jesse Poland, Curtis J.
7 Pozniak, Sean Walkowiak, Joanna Melonek, Coraline Praz, Mona Schreiber, Hikmet Budak, Matthias
8 Heuberger, Burkhard Steuernagel, Brande Wulff, Andreas Börner, Brook Byrns, Jana Čížková, D. Brian
9 Fowler, Allan Fritz, Axel Himmelbach, Gemy Kaithakottil, Jens Keilwagen, Beat Keller, David Konkin,
10 Jamie Larsen, Qiang Li, Beata Myśkow, Sudharsan Padmarasu, Nidhi Rawat, Uğur Sesiz, Biyiklioglu Sezgi,
11 Andy Sharpe, Hana Šimková, Ian Small, David Swarbreck, Helena Toegelová, Natalia Tsvetkova, Anatoly
12 V. Voylokov, Jan Vrána, Eva Bauer, Hanna Bolibok-Bragoszewska, Jaroslav Doležel, Anthony Hall, Jizeng
13 Jia, Viktor Korzun, André Laroche, Xue-Feng Ma, Frank Ordon, Hakan Özkan, Monika Rakoczy-
14 Trojanowska, Uwe Scholz, Alan H. Schulman, Dörthe Siekmann, Stefan Stojowski, Vijay Tiwari, Manuel
15 Spannagl, Nils Stein

16 **Abstract [106 / about 100 words]**

17 *We present a chromosome-scale annotated assembly of the rye (*Secale cereale* L. inbred line 'Lo7')*
18 *genome, which we use to explore Triticeae genomic evolution, and rye's superior disease and stress*
19 *tolerance. The rye genome shares chromosome-level organization with other Triticeae cereals, but*
20 *exhibits unique retrotransposon dynamics and structural features. Crop improvement in rye, as well as in*
21 *wheat and triticale, will profit from investigations of rye gene families implicated in pathogen resistance,*
22 *low temperature tolerance, and fertility control systems for hybrid breeding. We show that rye*
23 *introgressions in wheat breeding panels can be characterised in high-throughput to predict the yield*
24 *effects and trade-offs of rye chromatin.*

25 **Main Text [3979/4000 words (excl methods, captions); 7/8 visual
26 items]**


27 Rye (*Secale cereale* L.) is a member of the grass tribe Triticeae and close relative of wheat (*Triticum
28 aestivum* L.) and barley (*Hordeum vulgare* L.), grown primarily for human consumption and animal feed.
29 Rye is uniquely tolerant of biotic and abiotic stresses and thus exhibits high yield potential under
30 marginal conditions. This makes rye an important crop along the northern boreal-hemiboreal belt, a
31 climatic zone predicted to expand considerably in Eurasia and North America with anthropogenic global
32 warming¹. Rye chromatin introgressions into bread wheat can significantly increase yield by conferring
33 disease resistance and enhanced root biomass²⁻⁵. Rye also possesses a unique bi-factorial self-
34 incompatibility system⁶, and rye genes controlling self-compatibility and male fertility have enabled the
35 establishment of efficient cytoplasmic male sterility (CMS)-based hybrid breeding systems that exploit
36 heterosis at large scales⁷. Implementation of such systems in cereals will be invaluable to meeting future
37 human calorific requirements.

38 Rye is diploid with a large genome (~7–8 Gbp)⁸ compared even to the diploid barley genome and the
39 subgenomes of the hexaploid bread wheat⁹. Like barley and wheat, rye entered the genomics era very
40 recently. A virtual gene-order was released in 2013¹⁰, and a shotgun *de novo* genome survey of the same
41 line became available in 2017¹¹. Both resources have been rapidly adopted by researchers and
42 breeders¹²⁻¹⁴, but cannot offer the same opportunities as the higher quality genome assemblies available
43 for other Triticeae species^{9,15-19}.

44 We report the assembly of a chromosome-scale genome sequence for rye line 'Lo7', providing insights
45 into rye genome organisation and evolution, and representing a comprehensive resource for genomics-
46 assisted crop improvement.

47 **Results**

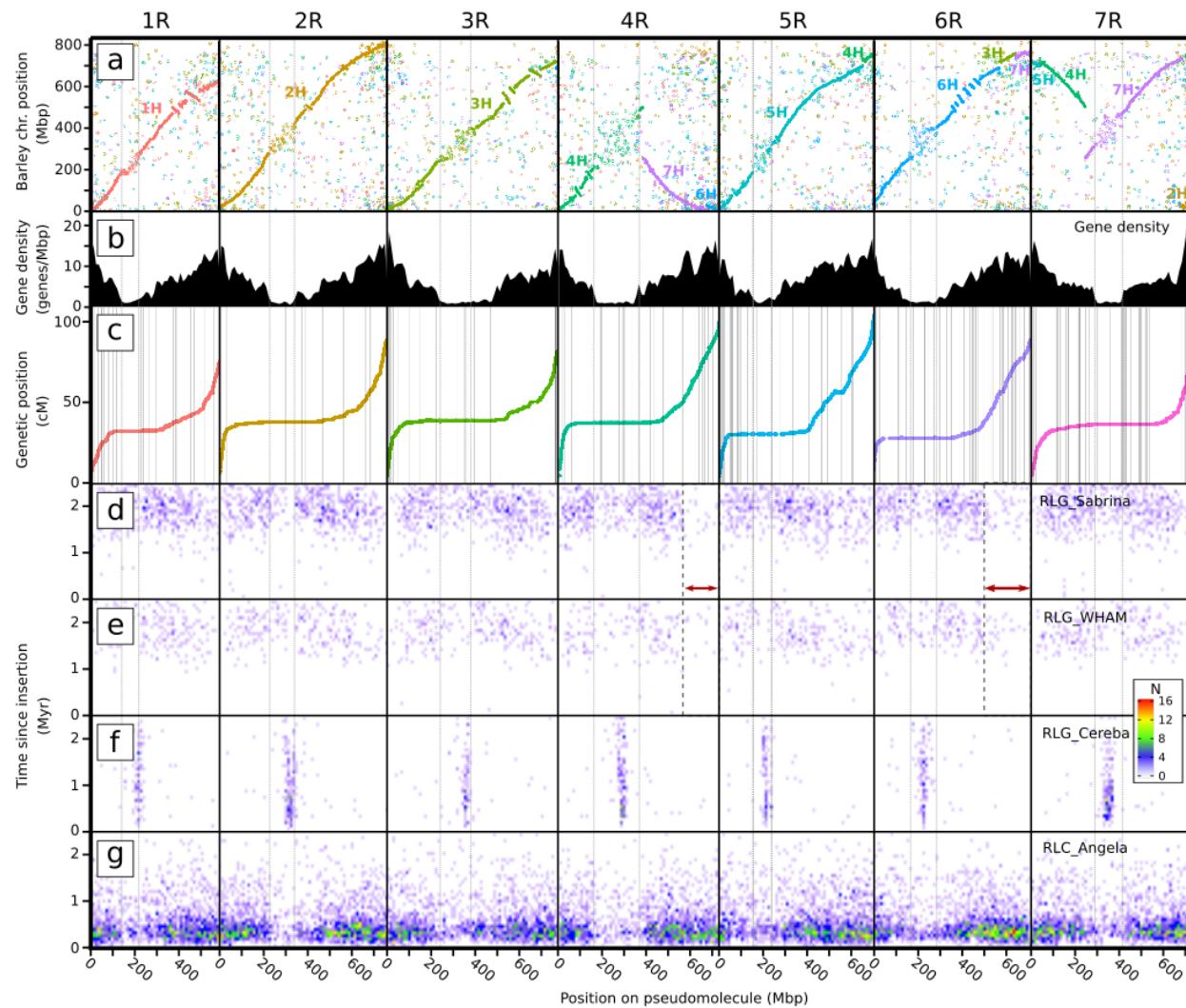
48 **An annotated chromosome-scale genome assembly**

49
50 **Figure M-FISH.** FISH of mitotic rye chromosomes with ScSat44, ScSat18 and ScSat20-537-specific probes (left) and *in silico* predicted repeat
51 distribution (right), showing agreement between real and predicted hybridization sites. Chromosomes are counterstained with DAPI (blue),
52 ScSat44 in green (chromosome 5R is arrowed), ScSat18 and ScSat20-537 in red. Arrows mark chromosome-specific binding of ScSat44 to
53 chromosome 5R. Darkness is scaled evenly between the maximum and minimum densities of each repeat across all assembled chromosomes
54 (Methods).

55
56 We estimated the genome size of 15 rye genotypes by flow-cytometry (Methods, Note S-FLOWCYT) and
57 found 'Lo7' among the smaller of these at 7.9 Gbp. We *de novo* assembled scaffolds representing 6.74
58 Gbp of the 'Lo7' genome (Table 1) from >1.8 Tbp of short read sequence (Methods; Notes S-PSASS, S-
59 ASSDATA). The scaffolds were ordered, oriented and curated using a variety of independent data
60 sources including: (i) chromosome-specific shotgun (CSS) reads¹⁰, (ii) 10X Chromium linked reads, (iii)
61 genetic map markers¹¹, (iv) 3D chromosome conformation capture sequencing (Hi-C)²⁰, and (v) a
62 Bionano optical genome map (tbls. S-ASSSTATS—S-OPTSTAT). After intensive manual curation, 83% of
63 this assembled sequence (i.e. ~75.5% of the total genome size) was arranged first into super-scaffolds
64 (N50 >29 Mbp) and then into pseudomolecules. Annotation of various features (Methods) yielded
65 34,441 high confidence genes, which we estimate comprises 97.9% of the entire gene complement (tbl.

66 S-ANNOTSTAT), 19,456 full-length DNA LTR retrotransposons (LTR-RTs) from six transposon families (tbl.
67 S-TEANNOT)²¹, 13,238 putative miRNAs in 90 miRNA families (tbls. S-miRNA_sequences—S-miRNA
68 target_table), and 1,382,323 tandem repeat arrays (tbls. S-TANDREPCOMPN-S-SAT_ANNOT).
69 Fluorescence *in situ* hybridisation (FISH) to mitotic 'Lo7' chromosomes using probes targeting tandem
70 repeats showed that scaffolds for which assignment to a chromosome pseudomolecule was difficult are
71 highly enriched in short repeats (Methods; Note S-REP).

72 **Gene collinearity among the Triticeae**


73 We used the assembly to closely assess gene-level collinearity between rye, barley and bread wheat
74 (Methods; figs. M-TRACKSa, Note S-COLLIN)^{9,11,15,22-24}. As previously reported, Triticeae chromosome
75 groups 1–3 appear essentially collinear across all three species^{9,10,15}. Rearrangements such as those
76 between 4R and 7R are observable at high resolution, along with several inversions (e.g. on 1RL and 3RL;
77 fig. M-TRACKSa). Rearrangements affecting subtelomeres were reflected in the absence of hybridisation
78 signals from two subtelomere-specific FISH probes developed in this study (Note S-FISH; tbl. S-FISH).
79 Regions of rye-barley collinearity contrast with distinct low-collinearity 'modules' (henceforth denoted
80 LCMs) that surround the centromeres of chromosomes. Such regions, in which enough gene synteny is
81 conserved to demonstrate identity by descent but the order of orthologs significantly differs among
82 relatives, can now be observed in the sequenced genomes of many species^{25,26} (figs. M-TRACKSa; Note
83 S-COLLIN). While centromeres can suffer from assembly difficulties, the LCM boundaries extend well
84 into the pericentromeres, and on several chromosomes occur within large scaffolds validated by
85 multiple sources of data including optical maps. The LCMs of rye, wheat, and barley differ in length, but
86 curiously (i) the sets of genes that fall inside and outside the LCMs are almost the same in all three
87 species, (ii) The LCMs distinctly correlate with regions of low gene density (fig. M-TRACKSb), and (iii)
88 possess a distinct and characteristic repetitive element population (figs M-TRACKSd-g, Note S-REP). We
89 explore these observations in more detail below.

Assembly	Raw scaffolds (after chimera breaking)	In pseudomolecules	chromosome-scale
Scaffolds	109,776	476	
Total length (Mbp)	6,670.03	6,206.74	
N50 length (Mbp)	15.16	29.44	
% length with chromosome assignment	95.3%	100%	
Optical genome map			
Maps	5,601		
Total length (Mbp)	6,660.18		
N50 length (Mbp)	1.671		
Total aligned length (Mbp)	6,248.60		
Uniquely aligned length (Mbp)	6,029.11		
Gene feature annotation	<i>High confidence set</i>	<i>Low confidence set</i>	
Number of genes	34,441	22,781	
Mean gene length	2,892	946	
Mean exons per gene	4.42	1.79	
Proportion of complete BUSCO set	96.4%	5.8%	
LTR-RT annotation	<i>Superfamily</i>	<i>Full-length copies</i>	<i>Mean age (Mya)</i>
<i>RLC_Angela</i>	Copia	11,128	0.53
<i>RLG_Cereba</i>	Gypsy	934	1.24
<i>RLG_Sabrina</i>	Gypsy	3,996	2.10
<i>RLG_WHAM</i>	Gypsy	1,457	2.06
<i>DTC_Clifford</i>	CACTA	1,480	N.A.
<i>DTC_Conan</i>	CACTA	516	N.A.

90 **Table M-STATS.** Genome assembly and annotation statistics. CSS=Chromosome Specific Shotgun. BUSCO=Benchmarking universal single-copy
91 orthologs (v3; <https://busco.ezlab.org/>).

92 **Evolutionary dynamics of the intergenic space**

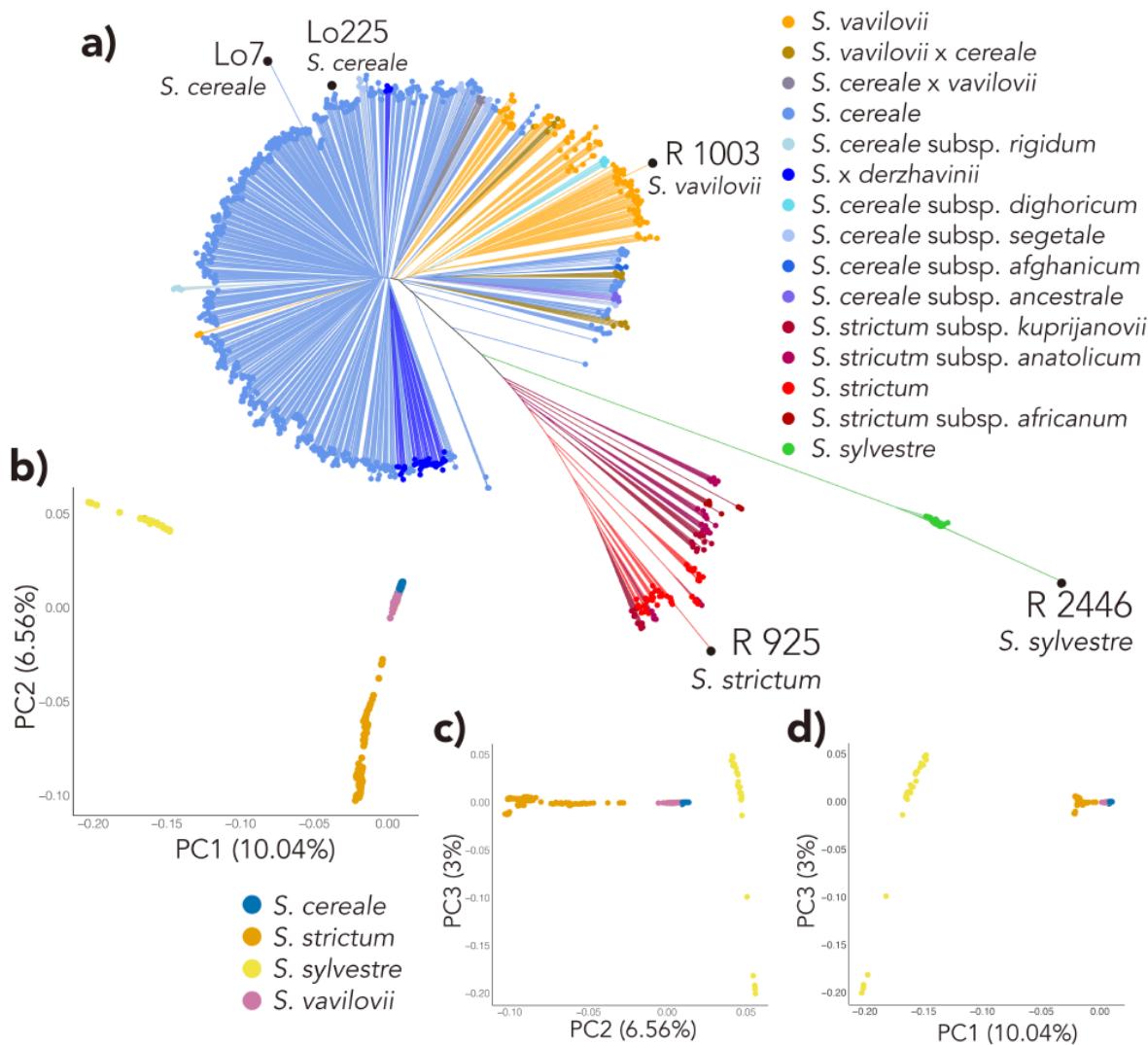
93 Transposable elements, especially long terminal repeat retrotransposons (LTR-RTs), exert a primary
94 influence on Triticeae genome structure and composition²⁷⁻²⁹. Full-length LTR-RTs represent the same
95 proportion of the total assembly size as exhibited by other major Triticeae reference assemblies (fig. S-
96 RPT_ASSCMP, tbl. S-TE_ASSCMP_ANNOTSTATS), indicating similar assembly completeness³⁰. Past LTR-RT
97 activity can be inferred by estimating the insertion ages of individual LTR-RT elements, and the
98 evolutionary relationships among LTR-RT families (Methods; Note S-REP).

99

100 **Figure M-TRACKS.** Selected information tracks for 'Lo7' chromosomes 1R to 7R (left-to-right). Twin vertical grey lines in each chromosome panel denote the boundaries of the LCMs for each chromosome. **A)** Gene collinearity with barley (cv. Morex), with the position on the Morex pseudomolecules on the vertical axis. Text and point colours represent barley chromosomes as labelled. **B)** Density of annotated gene models. **C)** Genetic map positions of markers used in assembly. Scaffold boundaries marked by grey vertical lines. **D-G)** Positions and ages of four LTR retrotransposon families in the genome, represented as a heatmap. Binned ages are on the vertical axis (from 0 Mya at the bottom), and bin positions are across the horizontal. Heat represents the number of TEs in each age/position bin (see legend inset). Red arrows mark notable changes in LTR-RT profiles.

107

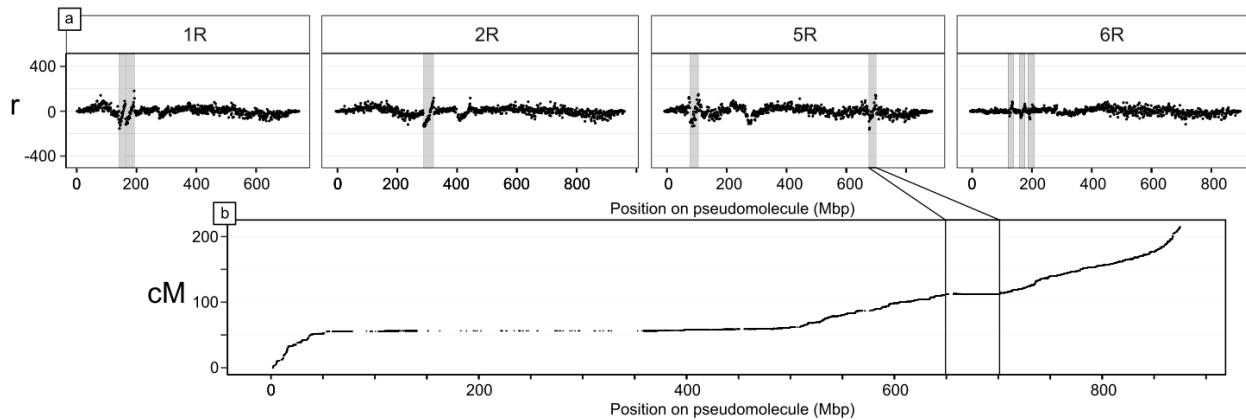
108 As in barley and wheat, rye LTR-RT show clear niche specialisation across genomic compartments
109 ^{27,28}(fig. M-TRACKSc-f; Note S-REP): *RLC_Sabrina*, *RLG_WHAM*, and *RLC_Angela* are depleted in
110 centromeres and pericentromeres, with the depleted region normally corresponding closely to the LCMs


111 (fig. M-TRACKSb-f). *RLC_Cereba* strictly occupies centromeres³¹. The long arm termini of chromosomes
112 4RL and 6RL bear distinct tandem repeat (Note S-REP) and LTR-RT profiles (fig. M-TRACKSc,d; figs. S-
113 TETERMPROF, S-KMERREP): *DTC_Clifford* elements are two to four times more abundant than on the
114 long arm termini of the other chromosomes, while *RLG_Sabrina* and *RLG_WHAM* elements are almost
115 absent. We suspect such changes are most likely the result of ancestral chromosome arm translocations
116 from a close relative. In the case of 4RL the profile changes are particularly clear and we can ascertain
117 that: (i) since the altered TE profile boundaries do not coincide with a collinearity break with wheat or
118 barley (figs. M-TRACKSa, S-KMERREP; Note S-COLLIN), the donor is likely of rye lineage; (ii) since in the
119 donated segments, *DTC_Clifford* is more abundant than *RLG_Sabrina* and *RLG_WHAM*, the donors must
120 have diverged from the 'Lo7' ancestor prior to the expansion of the latter elements in earnest, around
121 3.5 Mya; and (iii) since the recent *RLC_Angela* expansion is recorded across 4R, the introgressions
122 occurred before its beginning around 1.8 Mya.

123
124 The timing of expansions differs markedly between LTR-RT families of the rye genome, demonstrating
125 that older families degrade as younger families expand. Repetitive insertion into the centromere
126 suggests a centromere-outwards chromosome expansion mechanism, as is most apparent for
127 chromosomes 2R, 4R, and 6R, by the distribution of older *Cereba* elements being more distant from the
128 centromere than the younger. Comparing rye with wheat and barley, the variously curved and straight
129 slopes of collinear runs of genes (Note S-COLLIN) suggest physical genome expansion acted quite
130 uniformly across the rye genome since its split from wheat. Conversely, the size changes that separate
131 rye from wheat and barley are pronounced near telomeres, indicating that genome expansion
132 mechanisms alter over million year timescales and likely contribute to both speciation and ancient
133 hybridisation events³². In rye, barley and in each individual wheat subgenome, the TE superfamilies
134 *Gypsy* (RLG) and *Copia* (RLC) expanded in the same order^{27,28}, but not at the same time: The *Gypsy*-to-

135 *Copia* progression was probably set in motion by the LTR-RT composition of a shared ancestral genome,
136 but the *rates* of expansion and suppression of each superfamily would have depended upon functional
137 and selective peculiarities of each genome or sub-genome (arguments expanded in note S-TEEXP).

138 **Structural variation and *Secale* genome evolution**


139

140
141 **Figure M-PHYLO.** Diversity and relationships among *Secale* taxa. The population structure corresponds to the structure of three taxa as
142 presented in Schreiber et al. 2019 but gives a clearer grouping due to the additional wild accessions, especially with regard to *S. vavilovii*, the
143 wild progenitor, which was previously indistinguishable from domesticated rye but is now forming a subgroup within *S. cereale*. **a)** Neighbour-
144 joining tree, with taxonomic assignments to subspecies level, according to genebank passport data. **b-d)** The first three principal components
145 of genetic variance within the dataset, with samples coloured according to species.

146
147 The many Triticeae gene-collinearity disruptions observable as inversions and pericentromeric LCMs
148 suggest rapid accumulation of structural variations (SVs) that might segregate in rye populations causing

149 undesired linkage in breeding and mapping efforts. To investigate further, we used Hi-C data from single
150 individuals of four rye species to identify candidate SVs among *S. cereale* and three other *Secale* species.
151 We included a second *S. cereale* genotype, 'Lo225', an inbred line from which the mapping population
152 used for assembly was derived. To provide phylogenetic context, we extended the *Secale* phylogeny of
153 Schreiber et al. (2019)³³, adding 347 genotypes, and calling variants against the new genome assembly
154 (Methods; fig. M-PHYLO). Many inversions (>10) were observed to segregate among non-'Lo7' *Secale*
155 genotypes, making assembly artefacts a highly unlikely source of error (Note S-SV). One such 'Lo7'—
156 'Lo225' inversion on 5RL corresponds to a distinct local plateau in the genetic map (fig. M-SV),
157 representing complete linkage between the 382 annotated high confidence genes in this region. Rye
158 pericentromeres are especially prone to large-scale SVs ($p<0.001$; Note S-SV), in agreement with
159 previous findings^{29,34}. This confirms SV as one possible mechanism for the formation of LCMs, and helps
160 to explain the lack of genes in these regions, since recombination-suppressed genes are evolutionarily
161 disadvantaged by Muller's ratchet³⁵. Such SVs likely contribute to phenotypic diversity (and potentially
162 heterosis, as suspected for maize^{36,37}), and influence *Secale* evolution by creating postpollination
163 reproductive barriers that enable allopatric speciation³⁸.

164
165 **Figure M-SV.** Hi-C asymmetry detects SVs between the reference genotype 'Lo7' and *S. cereale* 'Lo225' on four chromosomes. **a)** SVs result in
166 discontinuities in r , the ratio of Hi-C links mapping left:right relative to 'Lo7'. Large inversions (marked) typically produce clean, diagonal lines.
167 Visually-identified candidate SVs are shaded, but shading is omitted from some r anomalies around centromeres where missing sequence
168 causes artefacts. **b)** The rightmost inversion marked on 5R corresponds to a region of reduced recombination on chromosome 5R.

169 **Revised hypotheses on ancient translocations and the origin of the rye genome**

170 It has been proposed that the cereal rye genome is a mosaic of Triticeae genomes resulting from

171 reticulate evolution because variations in the degree of gene sequence divergence between various

172 regions of the genome and their Triticeae orthologs indicate a number of distinct translocation donors¹⁰.

173 We have presented evidence that the LTR-RT profile (figs. M-TRACKSd—e, Note S-REP) is a result of such

174 reticulation within the rye lineage. It remains to be established whether significant chromatin

175 introgressions occurred involving genera besides *Secale*. We exploited the new assembly to more closely

176 investigate the cause of differential sequence divergence rates by estimating the divergence rate of

177 synonymous coding sequence sites between rye and the wheat D genome (Methods, Note S-REP). The D

178 genome was selected because it (i) contains no large chromosomal translocations relative to ancestral

179 Triticeae karyotype (Note S-COLIN), and (ii) diverged from the ancestral rye genome only after the split

180 from barley, meaning R-D divergence places a coarse lower bound on how much divergence it is possible

181 to accumulate since the R-H split. The rates we recorded (~0.06—0.14 subs/synonymous site/year) can

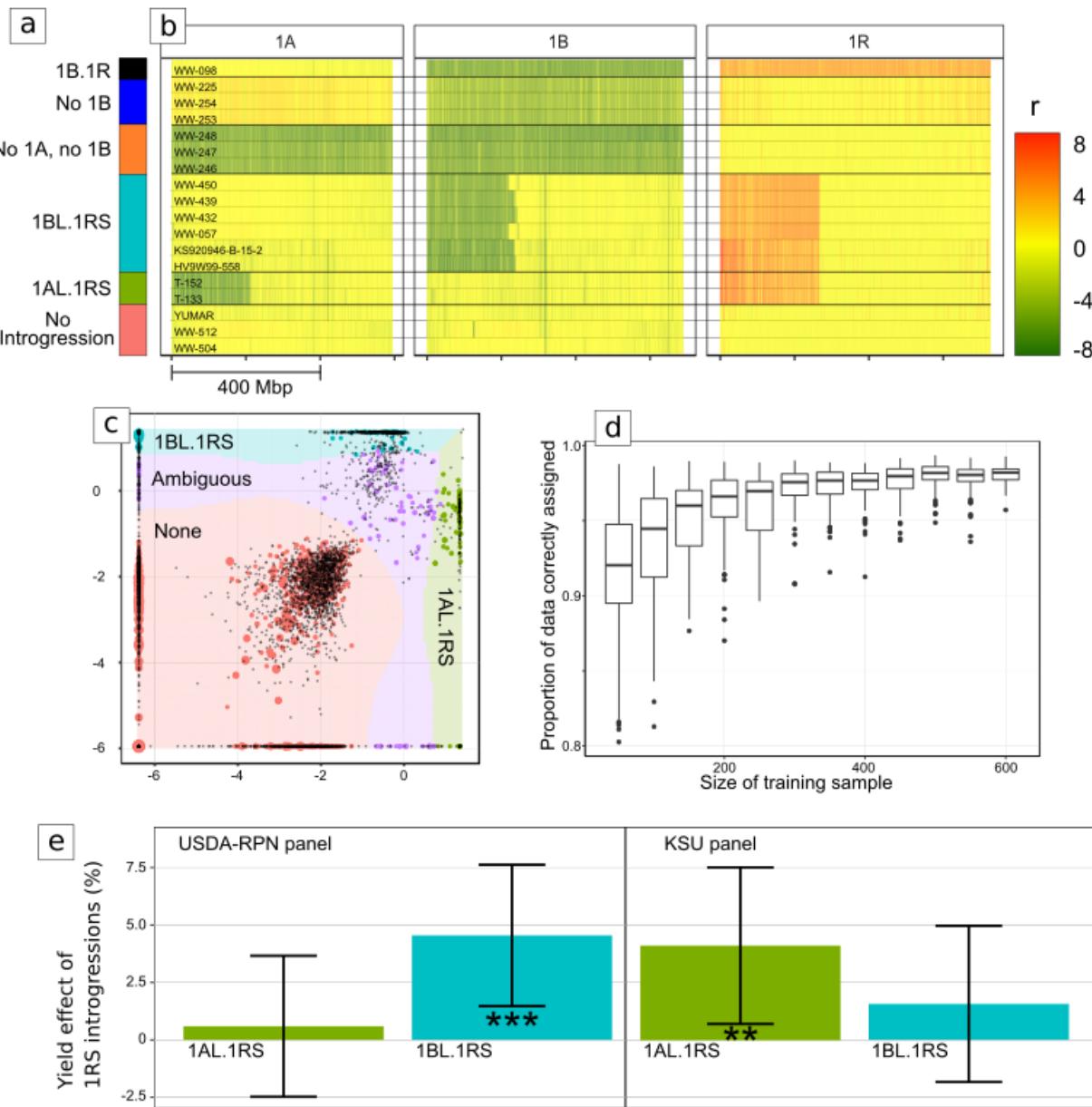
182 account for the ~5—15% identity spread of divergences that Martis et al. (2013) measured between rye

183 and barley, without recourse to introgressions from beyond the R-D split. No cleanly-delimited

184 divergence-level blocks are immediately evident to support extra-*Secale* introgressions. While some of

185 the variation in divergence levels might yet be caused by such ancient translocations, inferring to what

186 degree is confounded by other sources of random variation, probably including segregating


187 recombination-suppressing SVs as observed in this study. We conclude that the mosaic hypothesis is

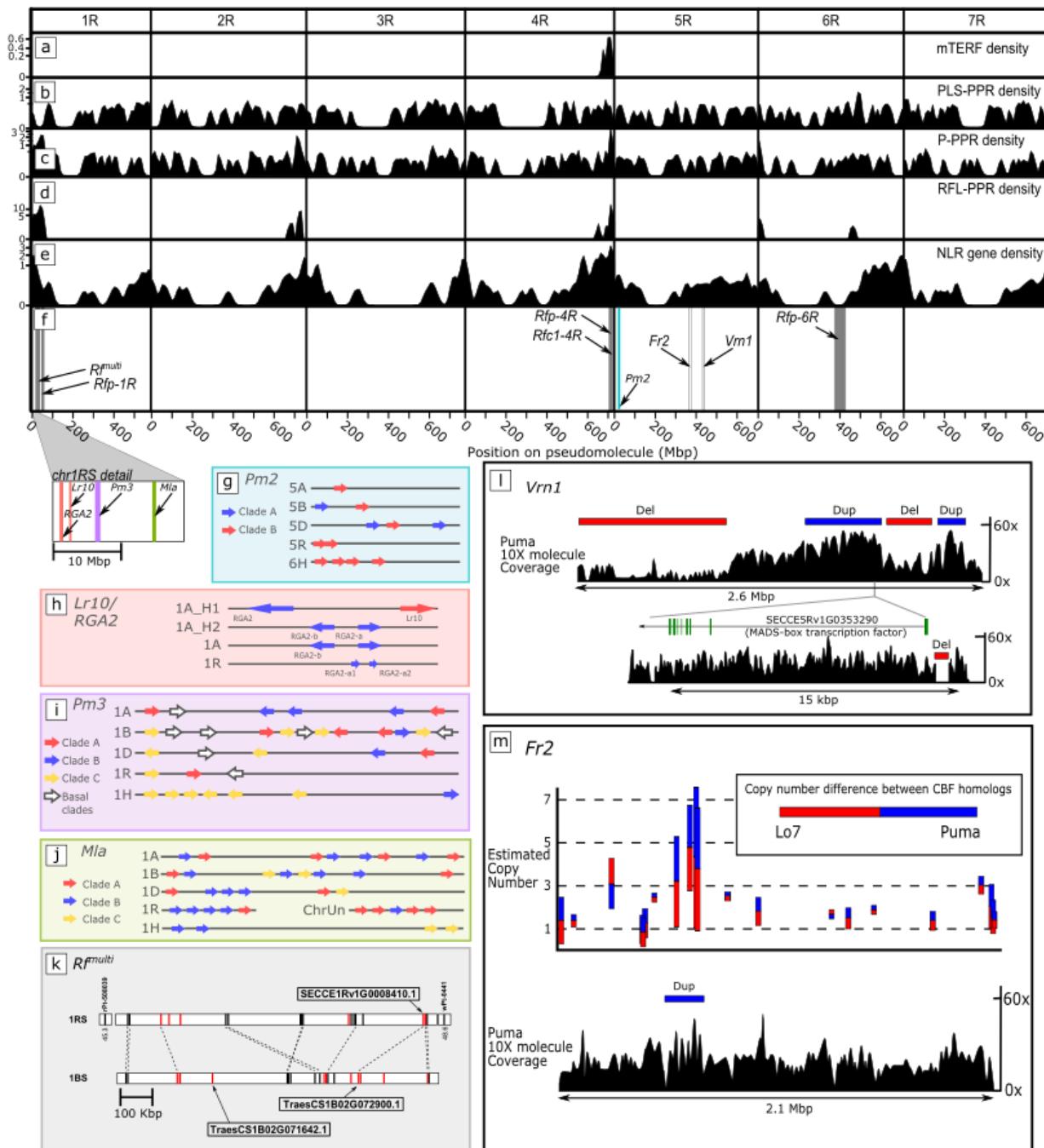
188 indeed necessary to explain rye evolution, and currently most parsimonious when limited to

189 introgressive hybridisations primarily between divergent *Secale* populations.

190

191 Enhancing the benefits of rye germplasm in wheat breeding lines

192


193 **Figure M-INTROG.** Combined reference mapping as a means to classify wheat and wheat-rye introgression karyotypes. **a)** Colour key for
 194 subfigures b, c, e. **b)** Normalised read mapping depths for 1 Mbp bins of chromosomes 1A, 1B, and 1R, for a selection of wheat lines (including
 195 also some *Aegilops tauschii* accessions which contain no A or B subgenome) with various chromosome complements and introgressions (rows).
 196 The value r denotes the difference between the \log_2 reads per million mapping to a bin, compared to *T. aestivum* cv. Chinese Spring. **c)** Visual
 197 representation of an SVM classifier, with the two selection features shown on the x and y axes. Points represent training samples, with colour
 198 corresponding to human-designated classification, and size proportional to the total number of mapped reads for the sample. Background
 199 colours represent the hypothetical classification that would be given to a sample at that position. **d)** Results of cross-validation testing the
 200 accuracy of the classifier and its relationship to the size of the training set. **e)** Comparison of yields between non-ambiguous predicted

201 karyotypes, modelled using an MLM with testing year and location as random effects and rye introgressions as fixed effects. Results are shown
202 for panels maintained by two institutions, USDA-RPN (left) and KSU (right). Bar height = Predicted yield effect of introgressions, +/- 1SD.
203 Significant differences (Student's t) given as: '***' p<.01; '****' p<.001.
204
205 The transfer of rye chromatin into bread wheat can provide substantive yield benefits and tolerance to
206 biotic and abiotic stressors³⁹, though at the expense of bread making quality⁴⁰. These transfers are
207 thought to have involved a single 1BL.1RS Robertsonian translocation originating from cv. Kavkaz and a
208 single 1AL.1RS translocation from cv. Amigo (fig. M-INTROGa)^{3,4}. Breeding efforts face a trade-off
209 between yield and quality. Breeders must screen breeding panels for rye introgressions, an effort
210 hitherto dependent upon arduous cytogenetics or marker genotyping, which has limited resolution and
211 is sensitive to genetic variation among lines. With a full reference genome, inexpensive low-density high
212 throughput sequencing (HTS) of a wheat panel proved sufficient to identify the positions of rye
213 introgressions⁴¹. We implemented an HTS approach on four expansive wheat germplasm panels (KSU,
214 USDA-RPN, CIMMYT, WHEALBI; Methods) segregating for both 1RS.1AL and 1RS.1BL. Translocations into
215 wheat can be observed as obvious changes in normalised read depth across both the translocated and
216 replaced chromosomal regions (fig. M-INTROGb; Note S-INTROG). A range of translocation junctions and
217 karyotypes can be distinguished.
218 The power of this sequence-based approach over previous markers was validated by confirming the
219 karyotype of the novel 1AL.1RS—1BL.1RS recombination line KS090616K-1 (KSU panel; Note S-INTROG)
220 that produces high yields, without sacrificing bread making quality. We confirmed that the KS090616K-1
221 breeding line carried a 1R translocation on group 1A, and after re-sequencing the wheat parents that
222 carry donors of 1A.1R and 1B.1R, used high-density polymorphisms in the translocated 1R arm to
223 precisely identify the recombination breakpoints, which fall at around 6 Mb from the tip of 1RS (Kavkaz-
224 derived) onto the 1AL.1RS (Amigo-derived) line (Note S-INTROG). Moreover, this analysis conclusively

225 confirmed the universal common origins of the Kavkaz- and Amigo-derived translocations respectively
226 (Methods; Note S-INTROG).

227 Visual classification of a whole panel of karyotypes is still time-costly, so we developed an automated
228 support vector machine classifier to alleviate this bottleneck (Methods; figs. M-INTROGc). Automatic
229 classification consistently replicated human assignment with over 97% accuracy (fig. M-INTROGd). We
230 then proved that the automated classifications predict yield. A mixed-effects linear model applied to
231 yield data available for the USDA-RPN and KSU panels showed that 1R introgressions could produce ~3—
232 5% better yields on average (Methods; fig. M-INTROGe; tbls. S-INTROGPHENO—S-GLMRES). The 1A.1R
233 karyotype outyielded 1B.1R in the KSU panel, but the reverse was true of the USDA panel. This likely
234 owes to the diversity of wheat genotypes and environmental conditions used in the trials; the effects of
235 foreign chromatin are highly non-uniform and influenced by diverse factors, in particular the wheat
236 genetic background^{40,42}. Only one multi-site study has, to our knowledge, studied yield in 1RS-
237 introgressed wheats on a large scale (Note S-1RS_PUBLIC), in which the best overall yield was achieved
238 by a 1RS.1AL introgression line, both with and without the application of fungicidal treatments and
239 during a drought year, while a 1RS.1BL line in the same panel performed less well, similarly suggesting
240 significant variability in the pathogen resistance and root morphology traits that 1RS can confer to
241 improve yield. Improved knowledge of the individual rye genes that confer these benefits is required to
242 help untangle these factors.

243 Rye genes for enhanced breeding and productivity

244

245 Figure M-GENES. Comparative genomics of rye genes with agricultural significance. a–e) Density (instances per Mbp) of mTERFs, PPRs, and
 246 NLRs across the pseudomolecules (see also tables S-NLR to S-MTERF). For visualisation, the y-axis is transformed using $x \rightarrow x^{\frac{1}{2}}$. f) Genes and loci
 247 discussed in the text (see also table S-QTLs). Colours correspond to box outlines in panels g–m; g–j) Physical organisation of selected NLR
 248 gene clusters compared across cultivated Triticeae genomes. k) Organisation of RFL genes at the 'Lo7' *Rf^{multi}* locus compared to its wheat
 249 (Chinese Spring) counterpart. Flanking markers are shown on either end of the rye sequence. Two full-length wheat RFLs and a putative rye
 250 ortholog are labelled. PPR genes are coloured red. l–m) CNV between 'PUMA-SK' and 'Lo7' revealed by 10X Genomics linked read sequencing.

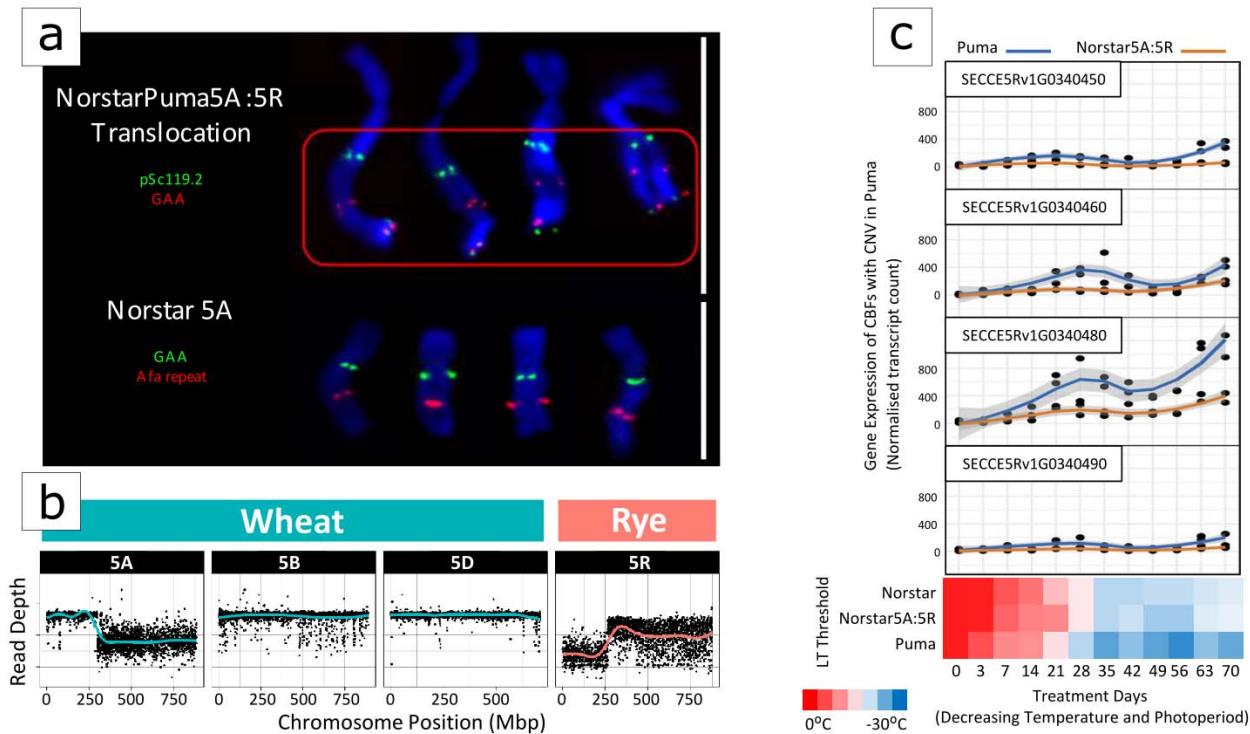
251 (Dup)lications and (Del)etions flagged by the Loupe analysis software are marked. The estimated copy number differences between 'Lo7' and
252 'Puma' are shown for *Cbf* genes within the *Fr2* interval.
253

254 Enhanced fertilisation control: Rye as a model for hybrid breeding systems in Triticeae
255 Efficient hybrid plant breeding requires lines exhibiting either self-incompatibility (SI), switchable fertility
256 control mechanisms, or gynoecy. Unlike wheat and barley, rye naturally enables both pollen guidance
257 via SI, and switchable fertility via CMS and restorer-of-fertility (*Rf*) genes.

258 Rye's SI is controlled by a two-locus system typical in Poaceae species. Pollen tube germination is
259 suppressed when both stigma and pollen possess identical alleles at two SI loci, termed the *S*- and the *Z*-
260 locus⁶, previously mapped to chromosomes 1R and 2R⁴³⁻⁴⁵ respectively. The breakdown of SI is poorly
261 understood, yet essential for the development of inbred lines, which is in turn indispensable for
262 producing heterotic seed and pollen parent lines in hybrid breeding. A DOMAIN OF UNKNOWN
263 FUNCTION gene, designated *DUF247*, is a prime candidate for the *S*-locus in the related ryegrass (*Lolium*
264 *perenne*, Poaceae, Tribe Poeae)⁴⁶. We mapped the rye *S*-locus-controlled SI phenotype to an interval on
265 1R, which falls about 3 Mbp from the rye ortholog of *L. perenne*'s *DUF247* (*SECCE1Rv1G0014240*;
266 Methods; tb1s. S-QTLS—S-1RSTS). Similarly, the *Z*-locus-linked marker *TC116908*⁴⁵ mapped within about
267 0.2 Mbp of two other *DUF247* homologs (*SECCE2Rv1G0130770*; *SECCE2Rv1G0130780*) on 2R. This
268 proximity suggests that *DUF247* might have been involved in SI since at least the time of the Triticeae—
269 Poaceae split, making it a candidate for investigation relevant to barley and wheat^{47,48}.

270 Turning to fertility control, mitochondrial genes that selfishly evolve to cause CMS prompt the evolution
271 of nuclear *Rf* genes to suppress their expression or effects. Known *Rf* genes belong to a distinct clade
272 within the family of pentatricopeptide repeat (PPR) RNA-binding factors, whose encoded proteins are
273 referred to as *Rf*-like (RFL)^{49,50}. Members of the mitochondrial transcription TERmination Factor (mTERF)
274 family are likely also involved in fertility restoration in cereals⁵¹. The repertoire of restorer genes is
275 predicted to expand in outcrossing species^{35,52}. We investigated this hypothesis by comparing RFL and

276 mTERF gene counts between rye and several closely and distantly allied species including barley and the
277 subgenomes of various wheat species. The numbers of rye RFLs (n=82) and mTERFs (n=131) place it
278 clearly within the range occupied almost exclusively by outcrossers (i.e. $n_{mTERF} > 120$ and $n_{RFL} > 65$; tbls. S-
279 PPR_BREEDINGSYS; Note S-OUTIN), an indicator that rye's younger RFL/mTERF genes evolved under
280 selection to suppress CMS. The 'Lo7' sequence assembly reveals strong overlap in the distribution of
281 PPR-RFLs and mTERF gene clusters, and strong correlation of these clusters with known *Rf* loci
282 (Methods; fig. M-GENESa—f; tbls. S-QTL, S-PPR, S-MTERF). A PPR-RFL/mTERF hotspot on 4RL coincides
283 with known *Rf* loci for two rye CMS systems known as CMS-P (the commercially predominant 'Pampa'-
284 type) and CMS-C^{7,14,53,54} (fig. M_GENESb,e,f; tbls. S-PPR, S-QTL). We determined, as previously
285 hypothesised, that these two loci, *Rfp* and *Rfc*, are indeed closely linked but physically distinct⁵⁵ (tbl. S-
286 QTLS). Two members of the PPR-RFL clade reside within 0.186 Mbp of the *Rfc1* locus (tbls. S-PPR, S-QTL).
287 The *Rfp* locus is, in contrast, neighboured by four mTERF genes (tbls. S-MTERF, S-QTL), in agreement
288 with previous reports that an mTERF protein represents the *Rfp1* candidate gene in rye⁵⁶.
289 While the most commonly used restorer cytoplasm in wheat hybrid breeding is derived from *Triticum*
290 *timopheevii* Zhuk. (CMS-T)⁵⁷, alternative sterility-conferring cytoplasms acquired from *Aegilops kotschyii*
291 Bois., *Ae. uniaristata* Vis. and *Ae. mutica* Bois.⁵⁸ can be efficiently restored by the wheat locus *Rf*^{multi}
292 (*Restoration-of-fertility in multiple CMS systems*) on chromosome 1BS. Replacement of the *Rf*^{multi} locus
293 by its rye ortholog produces the male-sterile phenotype^{59,60}. Characterising this pair of sterility-switching
294 genes could expedite flexible future solutions for the development of exchangeable wheat restorer
295 lines. At the syntenic position of *Rf*^{multi}, the wheat B subgenome and rye share a PPR-RFL gene cluster—
296 with almost twice the number of genes in wheat⁹ (fig. M-GENESm; tbl. S-QTLs; Notes S-OUTIN—S-
297 RFMULTI). Only two wheat RFL-PPR genes in the cluster, *TraesCS1B02G071642.1* and
298 *TraesCS1B02G072900.1*, encode full length proteins with only the latter corresponding to a putative rye
299 ortholog (*SECCE1Rv1G0008410.1*). Thus, the absence of a *TraesCS1B02G071642.1* ortholog in the non-


300 restorer rye suggests it as an attractive Rf^{multi} candidate. The only current implementations of a wheat-
301 rye Rf^{multi} CMS system involve 1RS.1BL translocations^{5,58,61}, which are typically linked to reduced baking
302 quality⁴⁰. Breaking this linkage may now benefit from marker development and/or genome editing
303 approaches targeting *TraesCS1B02G071642.1*.

304

305 New allelic variety in NLR genes and opportunities for pathogen resistance
306 Nucleotide-binding-site and leucine-rich repeat (NLR)-motif containing genes commonly associate with
307 pest and pathogen resistance⁶². We annotated 792 full-length rye NLR genes (tbls. S-NLR—S-RLOC),
308 finding them enriched in distal chromosomal regions, similar to what has been seen recently in the
309 bread wheat genome^{9,63} (fig. M-GENESa; Note S-NLR). Distal parts of chromosomes 4RL and 6RL, which
310 bear a distinct TE composition, are also particularly rich in NLR genes, further corroborating a unique,
311 evolutionary-distinct origin for these segments.

312 We compared the genomic regions in rye that are orthologous to resistance gene loci *Pm2*, *Pm3*, *Mla*,
313 *Lr10* from wheat and barley (tbl. S-RLOC; fig M_GENESg-j; Note S-NLR). Besides the *Lr10* locus, all loci
314 contained complex gene families with several subfamilies that were present or absent in some genomes,
315 indicating either functional redundancy, or the evolution of distinct resistance pathways or targets. For
316 example, the wheat *Pm3* and rye *Pm8/Pm17* genes are orthologs and belong to a subfamily (clade A, fig.
317 M_GENESi) which is absent in barley, whereas a different distinct subfamily (clade B, fig. M-GENESi) of
318 the *Pm3* genes is present in wheat and barley but absent in rye (fig. M-GENESi, Note S-NLR). A similar
319 case occurs in the *Mla* family: One of two main identified clades (clade B, fig. M_GENESj) contains
320 known wheat resistance genes *TmMla1*⁶⁴, *Sr33* and *Sr50*⁶⁵ and yet is absent in barley, while a second
321 *Mla* subfamily (clade C, fig. M_GENESj) contains all known barley *Mla* resistance alleles⁶⁶, yet the clade is
322 absent from rye (Note S-NLR). Rye inbred line 'Lo7', therefore appears to have lost whole subclades of
323 pathogen resistance genes since its split from wheat.

324 The genetic basis of cold tolerance in rye, and its applications to wheat

325

326 **Figure M-COLD.** Cold tolerance region *Fr2* in 'Puma' and 'NorstarPuma5A:5R' translocation line. **a)** Chromosome labelling (top) using wheat and
327 rye specific probes for chromosome 5A in 'Norstar' and 5A:5R in the 'Puma'/'Norstar' translocation line confirms the presence of a rye
328 translocation (red box). Read depth (bottom) of group 5 chromosomes confirms the balanced translocation event, gain of a large region of
329 chromosome 5R from 'Puma' (rye - light red line) and loss of a large region on chromosome 5A of 'Norstar' (wheat - light blue line) in
330 'NorstarPuma5A:5R'. White bars = 10 μ m. **b)** Confirmation of the 5A:5R translocation into 'Norstar' using the combined reference mapping
331 method. Read depth is given in \log_2 reads per million vs Chinese Spring. **c)** Gene expression analysis of rye *Cbf* genes with copy number
332 variation in 'Puma' (blue line) and 'NorstarPuma5A:5R' (orange line). Plants were grown in a time series with decreasing day length and
333 temperature over a 70 day period and the temperatures at which fifty percent lethality was observed (LT₅₀) were recorded (heatmap).

334

335 As the most frost tolerant crop among the Triticeae⁶⁷, rye is an ideal model to investigate the genetic
336 architecture of low temperature tolerance (LTT) in cereals. Genetic mapping has revealed a locus *Fr2* on
337 the group 5 chromosomes controlling LTT⁶⁸ in rye⁶⁹, *T. monococcum*⁷⁰, bread wheat^{71,72}, and barley⁷³. In
338 cold-tolerant varieties, the *Fr2* locus up-regulates LTT-implicated *Cbf* genes during seedling development
339 under cold conditions⁷⁴. *Cbf* genes are highly conserved in the Triticeae⁷⁵. We identified the *Fr2* locus as

340 a cluster of 21 *Cbf*-related genes at 614.3—616.5 Mbp on 5R (tbl. S-FR2). The region also contained 12
341 other genes that have been implicated in plant development, such as MYB transcription factors and a
342 FAR1-related gene (tbl. S-FR2). A comparison of annotated Triticeae protein sequences within *Fr2*
343 suggest the *Cbf* gene family expanded in rye, a mechanism for rye's LTT, consistent with findings from
344 other Triticeae⁷⁶ (Note S-COLD).

345 To identify variation that may be important for cold acclimation we used recurrent selection to develop
346 an *Fr2* homozygous line of the self-incompatible rye variety 'Puma', which exhibits exceptional LTT. We
347 sequenced 10X Genomics Chromium libraries of this line (designated 'Puma-SK') and performed a
348 comparison to the 'Lo7' reference sequence as a control since 'Lo7' has comparatively poor LTT.
349 Mapping depth analysis detected copy number variation (CNV) patterns in four *Fr2 Cbf* genes
350 (*SECCE5Rv1G030450*, *SECCE5Rv1G030460*, *SECCE5Rv1G030480*, and *SECCE5Rv1G030490*; fig. M-COLDm;
351 tbl. S-CNV; Note S-COLD). Encouragingly, all four are members of the *Cbf* subfamily ('group IV', see fig. S-
352 CBFPHYLO) for which CNV has been previously implicated in LTT in wheat⁷⁶. Interestingly, we also
353 detected a 597 bp deletion in the promoter of 'Puma's *Vrn1* (*SECCE5Rv1G0353290*) allele. Although the
354 effect of this deletion on LTT is not yet established, *Vrn1* is known to progressively down-regulate the
355 expression of LTT genes during the vegetative/reproductive transition, impairing the plant's ability to
356 acclimate to cold stress^{77,78}.

357

358 We also assessed LTT-implicated genes' potential for transfer to other members of the Triticeae, mainly
359 wheat. 'Norstar' winter wheat is an important Canadian line with LTT sufficient to allow experiments in
360 the Canadian winter—but weaker than 'Puma's LTT, making it suitable for a comparison of LTT between
361 wheat and rye⁷⁷. A locus influencing 'Norstar's superior LTT occurs on chromosome 5A⁷¹ and, like 'Lo7',
362 contains tandemly repeated *Cbfs*⁷⁹. We thus developed a 5A.5RL translocation line in the 'Norstar'
363 winter wheat genetic background using 'Puma' as the 5R donor, which we confirmed using cytogenetics

364 and combined reference mapping (Methods; fig. M-COLDa,b). As a result of the translocation, the wheat
365 *Cbf* and *Vrn1* cluster is replaced completely by the orthologous rye locus (fig. M-COLDb; tbl. S-CNV).
366 However, the LTT of 'Norstar' was not significantly altered by the translocation (fig. M-COLDc),
367 suggesting that the rye *Cbf* gene cluster is activated in wheat, but it is differentially regulated in the
368 wheat background, as previously suggested by Campoli et al. (2009)⁷⁴. We used RNAseq to confirm that
369 expression of 'Puma' *Vrn1* and those *Cbfs* with CNV were indeed attenuated during treatments of cold
370 stress in 'Norstar5A:5R' (fig. M-COLDc; Note S-COLD). Characterisation of these important regulatory
371 factors is an ongoing effort, necessary to facilitate improvement of wheat temperature tolerance using
372 rye cytoplasm introgressions.

373 *Discussion*

374 The high-quality chromosome-scale assembly of rye inbred line 'Lo7' constitutes an important step
375 forward in genome analysis of the Triticeae crop species, and complements the resources recently made
376 available for different wheat species^{16,26,80-82} and barley^{15,83}. This resource will help reveal the genomic
377 basis of differences in major life-history traits between the self-incompatible, cross-pollinating rye and
378 its selfing and inbreeding relatives barley and wheat. Our comparative genomic exploration
379 demonstrates how LTR-RT movement histories influence genome expansion and record ancient
380 translocations. The precise nature and origin of the LCMs remains an opportunity for future research,
381 requiring harmonisation of knowledge about the mechanics of pericentromeric structural variation, and
382 the evolutionary effects of gene order disruption. The joint utilisation of the rye and wheat genomes to
383 characterise the effects of rye chromatin introgressions may provide a short-term opportunity to
384 breeders as they continue to better separate confounding variables from the genetic combinations that
385 best improve yield in various environments; but these benefits will ultimately be limited by negative
386 linkage so long as whole chromosome arm translocations are involved. Discoveries at the single-gene
387 level—such as the contributions offered here to pathogen resistance, LTT, the root system (tbl. S-QTLs),

388 SI, and male fertility restoration control—will be best tested and exploited by finer-scale manipulation in
389 dedicated experiments¹⁴. This is an indispensable pre-requisite for the development of gene-based
390 strategies that exploit untapped genetic diversity in breeding materials and *ex situ* gene banks to
391 improve small grain cereals and meet the changing demands of global environments, farmers and
392 society.

393

394

395 Methods

396 'Lo7' genome assembly

397 Descriptions of the assembly methods are given in notes S-PSASS—S-ASSDATA, and figures S-ASSOVER—
398 S-HICSV.

399 Gene annotation

400 We performed *de novo* gene annotation of the rye genome relying on a previously established
401 automated gene prediction pipeline^{15,82}. The annotation pipeline involved merging three independent
402 annotation approaches, the first based on expression data, the second an *ab initio* prediction for
403 structural gene annotation in plants and the third on protein homology. To aid the structural annotation,
404 RNAseq data was derived from five different tissues/developmental stages, and IsoSeq data from three
405 (Supplementary Note 3).

406 IsoSeq nucleotide sequences were aligned to the rye pseudomolecules using GMAP⁸⁴ (default
407 parameters), whereas RNAseq datasets were first mapped using Hisat2⁸⁵ (arguments --dta) and
408 subsequently assembled into transcript sequences by Stringtie⁸⁶ (arguments -m 150 -t -f 0.3). All
409 transcripts from IsoSeq and RNAseq were combined using Cuffcompare⁸⁷ and subsequently merged with
410 Stringtie (arguments --merge -m 150) to remove fragments and redundant structures. Transdecoder
411 (github.com/TransDecoder) was then used to find potential open reading frames (ORFs) and to predict
412 protein sequences. BLASTp⁸⁸ (ncbi-blast-2.3.0+, arguments -max_target_seqs 1 -evalue 1e-05) was used
413 to compare potential protein sequences with a trusted set of reference proteins (Uniprot
414 Magnoliophyta, reviewed/Swiss-Prot) and hmmscan⁸⁹ was employed to identify conserved protein
415 family domains for all potential proteins. BLAST and hmmscan results were fed back into Transdecoder-
416 predict to select the best translations per transcript sequence.

417 Homology-based annotation is based on available Triticeae protein sequences, obtained from UniProt
418 (uniprot.org). Protein sequences were mapped to the nucleotide sequence of the pseudomolecules
419 using the splice-aware alignment software GenomeThreader (<http://genomethreader.org/>; arguments -
420 startcodon -finalstopcodon -species rice -gcmincoverage 70 -prseedlength 7 -prhdist 4). Evidence-based
421 and protein homology based predictions were merged and collapsed into a non-redundant consensus
422 gene set. *Ab initio* annotation using Augustus⁹⁰ was carried out to further improve structural gene
423 annotation. To minimise over-prediction, hint files using IsoSeq, RNASeq, protein evidence, and TE
424 predictions were generated. The wheat model was used for prediction.
425 Additionally, an independent, homology-based gene annotation was performed using GeMoMa⁹¹ using
426 eleven plant species: *Arabidopsis thaliana* (n=167), *Brachypodium distachyon* (314), *Glycine max* (275),
427 *Mimulus guttatus* (256_v2.0), *Oryza sativa* (323), *Prunus persica* (298), *Populus trichocarpa* (444),
428 *Sorghum bicolor* (454), *Setaria italica* (312), *Solanum lycopersicum* (390), and *Theobroma cacao* (233).
429 All versions were downloaded from Phytozome (phytozome.jgi.doe.gov/pz). Initial homology search for
430 coding exons was done with mmseqs2⁹². These results were then combined into gene models with
431 GeMoMa using mapped RNAseq data for splice site identification. The resulting eleven gene annotation
432 sets were further combined and filtered using the GeMoMa module GAF. The following filters were
433 applied: a) complete predictions (i.e. predictions starting with Methionine and ending with a stop
434 codon); b) relative GeMoMa score >=0.75; c) evidence>1, (i.e. predictions were perfectly supported by
435 at least two reference organisms), or tpc=1 (i.e., predictions were completely covered by RNA-seq
436 reads), or pAA>=0.7 (i.e., predictions with at least 70% positive scoring amino acid in the alignment with
437 the reference protein).
438 All structural gene annotations were joined with EvidenceModeller⁹³, and weights were assigned as
439 follows: Expression-based Consensus gene set (RNAseq, and IsoSeq and protein homology-based): 5;
440 homology-based (GeMoMa), 5; ab initio (augustus), 2.

441 In order to differentiate candidates into complete and valid genes, non-coding transcripts, pseudogenes
442 and transposable elements, we applied a confidence classification protocol. Candidate protein
443 sequences were compared against the following three manually curated databases using BLAST: firstly
444 PTREP (botserv2.uzh.ch/keldata/trep-db), a database of hypothetical proteins that contains deduced
445 amino acid sequences in which, in many cases, frameshifts have been removed, which is useful for the
446 identification of divergent TEs having no significant similarity at the DNA level; secondly UniPoa, a
447 database comprised of annotated Poaceae proteins; thirdly UniMag, a database of validated
448 magnoliophyta proteins. UniPoa and UniMag protein sequences were downloaded from Uniprot
449 (www.uniprot.org/) and further filtered for complete sequences with start and stop codons. Best hits
450 were selected for each predicted protein to each of the three databases. Only hits with an E-value below
451 10e-10 were considered.
452 Furthermore, only hits with subject coverage (for protein references) or query coverage (transposon
453 database) above 75% were considered significant and protein sequences were further classified using
454 the following confidence: a high confidence (HC) protein sequence is has at least one full open reading
455 frame and has a subject and query coverage above the threshold in the UniMag database (HC1) or no
456 BLAST hit in UniMag but in UniPoa and not TREP (HC2); a low confidence (LC) protein sequence is not
457 complete and has a hit in the UniMag or UniPoa database but not in TREP (LC1), or no hit in UniMag and
458 UniPoa and TREP but the protein sequence is complete.
459 The tag REP was assigned for protein sequences not in UniMag and complete but with hits in TREP.
460 Functional annotation of predicted protein sequences was done using the AHRD pipeline
461 (github.com/groupschoof/AHRD). Completeness of the predicted gene space was measured with BUSCO
462 (v3; <https://busco.ezlab.org/>).

463 **RNA isolation and sequencing**

464 RNA-seq for annotation

465

466 Seeds of 'Lo7' were sown in a Petri dish on moistened filter paper and treated with cold stratification (4

467 °C) for two days during imbibition. After an additional day at room temperature (~20 °C) seedlings were

468 transferred to a 40-well tray containing a peat and sand compost and propagated in a Conviron BDW80

469 cold environment room (CER; Conviron) with set points of 16 h day/8 h night and temperatures of 20/16

470 °C for a further three days. Tissues were sampled at six stages, described in table S-RNAGROWTH. Plants

471 for sampling timepoints 1—3 were transferred to a CER set at 16-hour photoperiod (300 µmol m⁻² s⁻¹),

472 temperatures of 20 and 16 °C, respectively, and 60% relative humidity. Plants for sampling timepoints

473 4—6 were transferred to a vernalisation CER running at 6 °C with 8 hours photoperiod for 61 days. After

474 this period the plants were transferred to 1 L pots containing Petersfield Cereal Mix (Petersfield,

475 Leicester, UK) and moved to the CER with settings as described above. Total RNA was extracted from

476 each of the six organ/stages using RNeasy plant mini-kits (Qiagen). For the RNAseq data sets used for

477 the annotation. RNA from 3 biological replicates for each organ/stage was pooled and for the 6 pooled

478 samples, library construction and sequencing on the Illumina NovaSeq platform was performed by

479 Novogene using a standard strand specific protocol ([en.novogene.com/next-generation-sequencing-](http://en.novogene.com/next-generation-sequencing-services/gene-regulation/mrna-sequencing-service)

480 services/gene-regulation/mrna-sequencing-service) and generating >60 M 150 PE reads per sample.

481

482 For the IsoSeq data used in the annotation RNA from root and shoot samples were used (timepoints 1

483 and 2 in table S-RNAGROWTH). The IsoSeq libraries were created starting from 1 µg of total RNA per

484 sample and full-length cDNA was then generated using the SMARTer PCR cDNA synthesis kit (Clontech)

485 following PacBio recommendations set out in the IsoSeq method (pacb.com/wp-

486 content/uploads/Procedure-Checklist-Iso-Seq-Template-Preparation-for-Sequel-Systems.pdf). PCR
487 optimisation was carried out on the full-length cDNA using the KAPA HiFi PCR kit (Kapa Biosystems) and
488 10—12 cycles was sufficient to generate the material required for SMRTbell library preparation. The
489 libraries were then completed following PacBio recommendations, without gel-based size-selection
490 (pacb.com/wp-content/uploads/Procedure-Checklist-Iso-Seq-Template-Preparation-for-Sequel-Systems.pdf).
491
492 The library was quality checked using a Qubit Fluorometer 3.0 (Invitrogen) and sized using the
493 Bioanalyzer HS DNA chip (Agilent Technologies). The loading calculations for sequencing were
494 completed using the PacBio SMRTlink Binding Calculator v5.1.0.26367. The sequencing primer from the
495 SMRTbell Template Prep Kit 1.0-SPv3 was annealed to the adapter sequence of the libraries. Each library
496 was bound to the sequencing polymerase with the Sequel Binding Kit v2.0. Calculations for primer and
497 polymerase binding ratios were kept at default values. Sequencing Control v2.0 was spiked into each
498 library at ~1% prior to sequencing. The libraries were prepared for sequencing using Magbead loading
499 onto the Sequel Sequencing Plate v2.1. The libraries were sequenced on the PacBio Sequel Instrument
500 v1, using 1 SMRTcell v2 per library. All libraries had 600-minute movies, 120 minutes of immobilisation
501 time, and 120 minutes pre-extension time (tbl. S-DATACCESS).
502

503 RNA-seq for expression profiling of 'NorstarPuma5A:5R' and 'Puma'
504 Total RNA was extracted from 48 samples, representing both 'NorstarPuma5A:5R' and 'Puma' lines at
505 each sampling date of the 12 time points during cold acclimation (Note S-COLD), using the Plant RNA
506 Isolation Mini Kit (Agilent Technologies). The yield and RNA purity were determined
507 spectrophotometrically with Nanodrop 1100 (Thermfisher), and the quality of the RNA was verified by
508 Agilent 2100 Bioanalyzer (Agilent Technologies). Purified total RNA was precipitated and re-suspended

509 in RNase-free water to a final concentration of 100 ng/µl. Libraries were constructed using the TruSeq
510 RNA Sample Preparation Kit v2 (Illumina) with two replicates at each time point. Paired-end sequencing
511 was conducted on the Illumina HiSeq2500, generating 101 bp reads (tbl. S-DATAACCESS).

512 **Annotation of repetitive elements**

513 For use in the evolutionary analyses presented in the main text (e.g. fig. 4d—g) annotated a high-
514 stringency set of full-length transposon copies belonging to single TE families (tbl. S-TEANNOT) using
515 BLASTn⁸⁸ searches (using default parameters) against the 'Lo7' pseudomolecules for long terminal
516 repeats (LTRs) documented in the TREP database
517 (botinst.uzh.ch/en/research/genetics/thomasWicker/trep-db.html) that occur at a user-defined distance
518 range in the same orientation: For RLC_Angela elements, the two LTRs had to be found within a range of
519 7,800—9,300 bp (a consensus RLC_Angela sequence has a length of approximately 8,700 bp), while a
520 range from 6,000—12,000 bp was allowed for RLG_Sabrina and RLG_WHAM elements. For the
521 centromere-specific RLG_Cereba elements, a narrower range of 7,600-7,900 bp was used. Multiple
522 different LTR consensus sequences were used for the searches in order to cover the intra-family
523 diversity. A total of 18 LTR consensus sequences each were used for RLC_Angela, seven for RLG_Sabrina
524 elements, 6 were used for RLG_WHAM elements, and 5 for RLC_Cereba elements.
525 To validate the extracted TE populations, the size range of all isolated copies and the number of copies
526 that flanked by target site duplications (TSDs) were determined. A TSD was accepted if it contained at
527 least 3 matches between 5' and 3' TSD (e.g. ATGCG and ACGAG). This low stringency was applied
528 because TSD generation is error-prone⁹⁴, and thus multiple mismatches can be expected. Across all
529 surveys, 80-90% of all isolated full-length elements were flanked by a TSD.

530 The pipeline also extracts so-called “solo-LTRs”—products of intra-element recombination that results in
531 loss of the internal domain and generation of a chimeric solo-LTR sequence—as a metric of how short
532 repetitive sequences are assembled.

533 The two LTRs of each TE copies were aligned with the program Water from the EMBOSS package⁹⁵ and
534 nucleotide differences between LTRs were used to estimate the insertion age of each copy based on the
535 estimated intergenic mutation rate of 1.3E-8 substitutions per site per million years⁹⁶.

536 Full-length DNA transposons were identified by BLASTn searches of consensus sequences of the terminal
537 inverted repeats (TIRs) of a given family. TIRs were required to be found in opposite orientation in a
538 user-defined distance interval of 7,000—15,000 bp.

539

540 To produce a library of full length LTR-retrotransposons suitable for quantitative assembly completeness
541 comparison (fig. S-RPT_ASSCMP), we required an annotation performed identically to those carried out
542 on other assemblies (tbls. S-TE_ASSCMP_ANNOTSTATS, S-DATAACCESS). We therefore implemented the
543 methods described in Monat et al. (2019)⁸³ on a selection of genome assemblies given in note S-REP.

544

545 Tandem repeats where annotated with TandemRepeatsFinder⁹⁷ under default parameters (tbls. S-
546 SAT_ANNOT, S-TANDREPCOMP). Overlapping annotations where removed with a priority-based
547 approach assigning higher scoring and longer elements first. Elements which overlapped already
548 assigned elements were either discarded (>90% overlap) or shortened (<=90% overlap) if their
549 remaining length exceeded 49 bp.

550 To obtain a collection of nonredundant tandem repeat units suited for FISH probe development, the
551 consensus sequences of the tandem repeat units (output of TandemRepeatsFinder) where clustered
552 with vmatch dbcluster (vmatch.de) at high stringency with >=98% identity and a mutual overlap >=98%
553 (98 98 -v -identity 98 -exdrop 3 -seedlength 20 -d -p). The 300 largest clusters with member sizes from

554 199 to 343 where each subjected to a multiple sequence alignment with MUSCLE⁹⁸ under default
555 parameters. A consensus sequence (>=70% majority) derived per cluster from the MUSCLE score file
556 served as template sequence for the FISH probes (tbl. S-FISH).
557 The distribution of TRs across the genome (main fig. M-FISH) was visualised using R base plotting
558 functions. Colours were selected from the package colourspace palettes 'Reds3' and 'Greens3', e.g.
559 using the command sequential_hcl('Reds3',105)[105:5] to achieve 100 grades of a palette, and then
560 selected to represent relative TR densities by scaling the output of the 'density' function run over the
561 tandem repeats (with automatic bandwidth selection) on each chromosome to between 1 and 100 (for
562 each TR family).

563 **Annotation of miRNAs**

564 MicroRNA identification was performed by following a two-step homology-based pipeline. The 'Lo7'
565 pseudomolecules were compared with all known mature plant miRNA sequences retrieved from
566 miRBase⁹⁹ (v21; www.mirbase.org). This step was performed using SUMirFind (<https://github.com/hikmetbudak/miRNA-annotation/blob/master/ SUMirFind.pl>), an in-house script, and the matches with
567 no mismatch or only one base mismatch between a mature miRNA sequence and the pseudomolecule
568 sequence were accepted. A second in-house script, SUMirFold
569 (<https://github.com/hikmetbudak/miRNA-annotation/blob/master/ SUMirFold.pl>), was used to obtain
570 precursor sequences of the candidate mature miRNAs from the pseudomolecules and assess their
571 secondary structure-forming abilities with UNAFold¹⁰⁰ (tbls. S-miRNA1—S-miRNAX) together with the
572 following criteria: 1) No mismatches are allowed at Dicer cut sites; 2) No multi-branched loops are
573 allowed in the hairpin containing the mature miRNA sequence; 3) Mature miRNA sequence cannot be
574 located at the head portion of the hairpin; 4) No more than 4 and 6 mismatches are allowed in the
575 miRNA and its hairpin complement (miRNA*), respectively^{101,102}. The final set of identified miRNAs from

577 the pseudomolecules was obtained by SUmirScreen script (<https://github.com/hikmetbudak/miRNA-annotation/blob/master/SUmirScreen.py>). The resulting miRNAs were mapped back to the
578 pseudomolecules and the genomic distribution statistics were recorded with SUmirLocate script
579 (<https://github.com/hikmetbudak/miRNA-annotation/blob/master/SUmirLocate.py>).

581 Coding targets of the identified miRNAs were predicted by the web-tool psRNAtarget, using *S.
582 cereale* coding sequences retrieved from NCBI^{103,104}. Potential target sequences were compared with the
583 viridiplantae proteins by using BLASTx⁸⁸ (arguments -eval 1E-6 –outfmt 5). Functional annotations of
584 the potential targets were performed using Blast2GO software¹⁰⁵. Finally, repeat contents of the pre-
585 miRNAs were assessed with RepeatMasker (<http://www.repeatmasker.org/>).

586 **Fluorescence *in situ* hybridisation (FISH)**

587
588 Three days old roots of the rye accession WR 'Lo7' were pre-treated in 0.002 M 8-hydroxyquinoline at
589 7°C for 24 h and fixed in ethanol:acetic acid (3:1 v/v). Chromosome preparation and FISH were
590 performed according to the methods described by Aliyeva-Schnorr et al. (2015)¹⁰⁶. The hybridization
591 mixture contained 50% deionized formamide, 2× SSC, 20% dextran sulfate, and 5 ng/μl of each probe.
592 Slides were denatured at 75°C for 3 min, and the final stringency of hybridization was 76%. Thirty-four to
593 forty-five nt long 5'-labelled oligo probes designed for the *in silico* identified repeats and the published
594 probes sequence pSc119.2.1¹⁰⁷ were used as probes (tbl. S-FISH). Images were captured using an
595 epifluorescence microscope BX61 (Olympus) equipped with a cooled CCD camera (Orca ER,
596 Hamamatsu). Chromosomes were identified visually based primarily on morphology, heterochromatic
597 DAPI+ bands, and the localisation of pSc119.2.1¹⁰⁷.

598 **Rye Gene level synteny with other Triticeae species**

599 High confidence gene sequences from the 'Lo7' gene annotation were aligned to the annotated
600 transcriptomes of bread wheat⁹ (*Triticum aestivum* cv. Chinese Spring) and barley¹⁵ (*Hordeum vulgare*
601 cv. Morex) using BLASTn⁸⁸ with default parameters. The lowest E-value alignment for each gene against
602 the transcriptome associated with each subject genome (or subgenome) was selected, with the longest
603 alignment chosen in the case of a tie. Only reciprocal best matches per (sub/)genome were accepted.
604 BLAST hit filtering and subsequent visualisation were performed in the R statistical environment
605 exploiting the packages 'data.table' and 'ggplot'.

606 **Wheat (D subgenome)—rye substitution rate variation across the genome**

607
608 Probable orthologs shared by the wheat D subgenome⁹ and rye line 'Lo7' were identified by aligning
609 BLASTp⁸⁸ (default parameters) the predicted proteins of either each genome against the other and
610 applying the reciprocal best match criterion. The identified homologs were first aligned at the protein
611 level and, based on the protein alignment, a codon-by-codon DNA alignment was generated. For
612 comparison of substitution rates, only fourfold degenerate third codon positions were used, namely
613 those of the codons for Ala, Gly, Leu, Pro, Arg, Ser, Thr and Val. From the alignments of fourfold
614 degenerate sites, the ratio of synonymous substitutions per synonymous site was calculated for each
615 gene pair, if at least 100 fourfold degenerate sites could be aligned. Substitution rates along
616 chromosomes were calculated as a 100 genes running average. Because even bi-directional closest
617 homologs may still include "deep paralogs" (i.e. genes that were duplicated in the ancestor of which one
618 copy was deleted in one species while the other copy is deleted in the other species), we performed the
619 same analysis using exclusively single-copy genes. Single-copy genes were identified as follows: all
620 individual rye coding DNA sequences (CDSs) were used in BLASTn searches against all other predicted

621 rye CDSs. A gene was considered single-copy if it had no homologs with E-values below 10e-20.
622 Substitution rates were then calculated as the rates of synonymous substitutions per synonymous site in
623 fourfold degenerate codon sites in coding regions of genes.

624 **Phylogenetic analysis**

625 The genotyping-by-sequencing (GBS) data set of 603 samples from Schreiber et al. (2019)³³ was
626 extended by a 347 further GBS samples from the IPK gene bank (mainly wild *Secale* taxa), and the five
627 samples used in the Hi-C SV-detection study ('Lo7', 'Lo225', 'R1003', 'R925', 'R2446'). The resulting
628 sample set (n=955) and passport data are listed in table S-DIVERSITYPSPT. DNA isolated from the five Hi-
629 C samples was sent to Novogene (en.novogene.com/) for Illumina library construction and sequencing in
630 multiplex on the NovaSeq platform (paired end 150 bp reads, approximately 140 Gbp per sample, S2
631 flow cell). Demultiplexing, adapter trimming, read mapping and variant calling correspond to the
632 approach described in Schreiber et al. (2019)³³, using the new reference for read mapping. The data set
633 was filtered for a maximum of 30% missing data and a minor allele frequency of 1% resulting in 72,465
634 SNPs used for the phylogenetic analyses. A neighbor joining tree was constructed with the R package 'ape'
635 version 5.3¹⁰⁸, based on genetic distances computed with the R package SNPRelate¹⁰⁹. PCA was
636 performed with smartPCA from the EIGENSOFT package (github.com/DReichLab/EIG) using least square
637 projection without outlier removal.

638 **Wheat-rye introgression haplotype identification and classification**

639
640 We assayed for the presence of 1R germplasm in wheat genotypes *in silico* by mapping various wheat
641 sequence data to a combined reference genome made up of the pseudomolecules of rye line 'Lo7' (this
642 study) and wheat cv. Chinese Spring⁹. Publicly available data was obtained from the Wheat and barley

643 Legacy for Breeding Improvement (WHEALBI) project resources¹¹⁰ (n=506), the International Maize and
644 Wheat Improvement Centre (CIMMYT; n=903), and Kansas State University (KSU; n=4277). GBS libraries
645 were constructed and sequenced for samples from the United States Department of Agriculture
646 Regional Performance Nursery (USDA-RPN; n=875; tbl. S-DATAACCESS) as described in Rife et al.
647 (2018)¹¹¹. Based upon the approach described by Keilwagen et al. (2019)⁹¹, reads were demultiplexed
648 with a custom C script (github.com/umngao/splitgbs) and aligned to the combined reference using
649 bwa¹¹² mem (arguments -M) after trimming adapters with cutadapt¹¹³. The aligned reads from all panels
650 were filtered for quality using samtools¹¹⁴ (arguments flags -F3332 -q20). The numbers of reads aligned
651 to 1 Mbp non-overlapping bins on each pseudomolecule were tabulated. The counts were expressed as
652 $rpmm \triangleq \log_2(\text{reads mapped to bin per million reads mapped})$. To control for mappability biases over the
653 genome, the $rpmm$ for each bin was normalised by subtracting the $rpmm$ attained by the Chinese Spring
654 sample for the same bin to give the normalised $rpmm$, r .
655 To investigate the possibility of classifying the samples automatically, visual representations of r across
656 the combined reference genome were inspected, and obvious cases of 1R.1A and 1R.1B introgression
657 were distinguished from several other karyotypes including non-introgressed samples, and ambiguous
658 samples showing a slight overabundance of 1RS reads, but less discernible signals of depletion in 1A or
659 1B (see Note S-INTROG). We defined the following feature vectors: $featureA = -\log[(mean(r1A_l) -$
660 $mean(r1A_N)) \times (mean(r1R_l) - mean(r1R_N))]$ and $featureB = -\log[(mean(r1B_l) - mean(r1B_N)) \times ($
661 $mean(r1R_l) - mean(r1R_N))]$. Whenever the term inside the log was negative (and would thus give an
662 undefined result), the value of the feature was set to the minimum of the defined values for that
663 feature. The quantity $mean(r1R_l)$ refers to the average value of r for all bins within the terminal 200 Mbp
664 of the normally (l)introgressed end of 1R (an $_N$ in the subscript denotes the terminal 300 Mbp of the
665 normally (N)on-introgressed arm), and so forth for other chromosomes. This choice of feature definition
666 meant that, wherever little difference in r occurred between 1RS and 1RL, suggesting no presence of

667 rye, the factor $mean(r1R_i) - mean(r1R_N)$ would pull the feature values close to the origin, and differences
668 between r on the long and short arms of 1A or 1B would pull the values of A or B respectively away from
669 the origin, depending upon which introgressions are present. A classifier was developed by training a
670 support vector machine to distinguish non-introgressed, 1A.1R-introgressed, 1B.1R-introgressed, and
671 ambiguously-introgressed samples, using the function `ksvm` (arguments `type="C-svc"`, `kernel='rbfdot'`,
672 `C=1`) from the R package `kernlab`. Classification results are given in table S-INTROG_PREDICTED. Testing
673 was performed by generating sets of between 50 and 600 random samples from the dataset and using
674 these to train a model, then using the `kernlab::predict` to test the model's accuracy of prediction on the
675 remaining data not used in training. This was repeated 100 times for each training data set size.

676

677 To investigate the 1R-recombinant genotype KS090616K, raw reads of genotypes Larry, TAM112 and
678 KS090616K (NCBI SRA project id: PRJNA566411) were mapped to the combined wheat/rye reference,
679 and mapping results processed with `samtools`¹¹⁴. The `bcftools`¹¹⁴ `mpileup` and `call` functions were used to
680 detect and genotype single-nucleotide polymorphisms (SNPs) between the two samples. SNP positions
681 at which Larry and TAM112 carried different alleles were used to partition chromosome 1RS in
682 KS090616K into parental haplotypes (Note S-INTROG).

683

684 To confirm the common origin of the 1AL.RS and 1BL.1RS introgressions, predicted 1RS carriers were
685 selected to form a combined 1RS panel (over twelve hundred lines) to call SNPs. A total of over 3 million
686 SNPs were called with `samtools/bcftools` (`mpileup -q 20, -r chr1R:1-300000000; call -mv`). SNPs were
687 filtered based on combined minimum read depth of 25, minor allele frequency of 0.01. A total of over
688 900 thousand SNPs were obtained. All pair-wise identity by state (IBS) percentages were calculated and
689 the square root values of percent different calls were used to derive a heatmap for all pair-wise
690 comparisons.

691 **Identification and analysis of gene families**

692 **Resistance gene homologs**

693

694 To investigate rye homologs of the wheat and barley genes *Pm2*, *Pm3*, *Mla*, *Lr10* and *RGA2* (GeneBank

695 IDs in tbl. S-NLRESEARCH), homology searches were performed against the rye 'Lo7', bread wheat⁹ (cv.

696 Chinese Spring), and barley¹⁵ (cv. Morex) genome sequences, using BLASTn⁸⁸ (default parameters). Hits

697 with at least 80% sequence identity were visualised using dotter¹¹⁵ for manual assessment and

698 annotation. The obtained coding sequences were converted to protein sequences, allowing comparison

699 with the EMBOSS program WATER (emboss.sourceforge.net), ClustalW¹¹⁶, or MUSCLE⁹⁸, with reference

700 sequences and other obtained sequences to aid distinction between potentially functional full-length

701 genes, and pseudogenes with truncations or premature stop codons.

702 Annotated genes were aligned using MUSCLE (default parameters), and the phylogenetic relationships

703 among them were inferred using MisterBayes¹¹⁷ (GTR substitution model with gamma distributed rate,

704 variation across sites, and a proportion of invariable sites).

705 Manually-annotated positions of the genes *Pm2*, *Pm3*, *Mla*, *Lr10* and *RGA2* on the 'Lo7'

706 pseudomolecules were compared with the annotated NLR genes identified by the gene feature

707 annotation pipeline (described above) in order to link the genome-wide NLR analysis with the detailed

708 analysis of the four R loci. Pairwise distances between NLRs were calculated based on the resultant tree

709 using the cophenetic.phylo function in the R package 'ape'¹⁰⁸, and multidimensional scaling on the

710 pairwise distances was conducted with the core R function 'cmdscale'.

711

712 PPR and mTERF genes

713

714 The 'Lo7' pseudomolecules were scanned for ORFs with the getorf program of the EMBOSS package⁹⁵.

715 ORFs longer than 89 codons were searched for the presence of PPR motifs using hmmsearch from the

716 HMMER¹¹⁸ package (<http://hmmer.org>) and the profile hidden Markov models (HMMs) as defined in

717 Cheng et al. (2016)¹¹⁹ for the PPR family PF02536 from the Pfam 32.0 database (<http://pfam.xfam.org>)

718 and for the mTERF motif¹²⁰. Downstream processing of the hmmsearch results for the PPR proteins

719 followed the pipeline described in Cheng et al. (2016)¹¹⁹. A score was attributed to each PPR sequence

720 (the sum of hmmsearch scores for all PPR motifs in the protein). In parallel, the HC and LC protein

721 models from the gene feature annotation (described above) were screened to identify the annotated

722 proteins containing PPR motifs. Five-hundred and twenty-six PPR models were identified in the HC and

723 seventy-six in the LC protein datasets respectively, and scored using the same approach as with the

724 hmmsearch results. Where putative exons identified from the six-frame translations of the genome

725 sequence overlapped with gene models in the 'Lo7' annotation, only the highest scoring of the

726 overlapping models were retained. P- and PLS-class genes with scores below 100 and 240, respectively,

727 were removed from the annotation, as they are unlikely to represent functional PPR genes. Only genes

728 encoding mTERF proteins longer than 100 amino acids were included in the final annotation.

729

730 Mapping genes governing the reproduction biology in rye

731

732 Molecular markers previously mapped in relation to Rf and SI genes were integrated in the 'Lo7'

733 assembly (S-QTL) based on BLASTn sequence similarity searches as described by Hackauf et al. (2009)¹²¹.

734 The S locus genomic region in rye was identified using orthologous gene models from *Brachypodium*

735 *dystachion* including *Bradi2g35750*, that is predicted to encode a protein of unknown function
736 *DUF247*⁴⁶. Furthermore, we included the marker *SCM1* from Hackauf and Wehling (2002)¹²² in our
737 analyses, that represents the rye ortholog of a thioredoxin-like protein linked to the *S* locus in the grass
738 *Phalaris coerulescens*^{123,124}. Likewise, the isozyme marker *Prx7* linked to the *S* locus in rye was
739 investigated as described by Wricke and Wehling (1985)⁴³. The *S* locus was mapped in a F2 population
740 (n= 96), produced by crossing the self-incompatible variety 'Volhova' with the self-fertile line No. 5
741 ('I.5'), the latter of which carrying the mutation for self-fertility at the *S* locus on chromosome 1R
742 (Voylokov et al. 1993, Fuong et al. 1993). Progeny from this cross are heterozygous for the self-fertility
743 mutation. The gametic selection caused by self-incompatibility in such crosses was used for the mapping
744 of *S* relative to markers (S-1RSTS) according to previously described protocols^{45,125}. The SI mechanism
745 prevents fertilization of all pollen grains except those carrying the *Sf* allele. As a consequence, only those
746 50% of the pollen grains carrying the mutation will be able to grow and fertilize upon self-pollination of a
747 F1 hybrid from the cross. Therefore, the functional *S* allele results in distorted segregation of marker loci
748 linked to the self-fertility mutation in the F2. The degree of segregation distortion depends on the
749 recombination frequency *r* between the segregation distortion locus (SDL) and analyzed marker loci. For
750 example, after selfing a F1 with the constitution *SM1/SfM2*, where *S* and *Sf* are active (wild type) and
751 inactive (mutant) alleles of the self-incompatibility locus *S*, respectively, and *M1* and *M2* are alleles of a
752 marker locus linked in coupling phase, the expected segregation ratio for the marker will be as
753 follows¹²⁶:

	female gamete	male gamete	
		<i>rM1</i>	(1- <i>r</i>) M2
	0.5 M1	<i>r/2 M1M1</i>	(1- <i>r</i>)/2 M1M2
	0.5 M2	<i>r/2 M1M2</i>	(1- <i>r</i>)/2 M2M2

754

755 In case of $r=0$ the frequency of heterozygous genotypes for the marker locus is equal to 0.5, and a
756 significant excess of homozygous genotypes for the allele that originated from the self-fertile line (M22)
757 is observed. Distorted segregation of marker loci were statistically analysed for mapping the *S* locus as
758 outlined by Voylokov et al. (1998)¹²⁷.

759

760 Genes affecting low temperature tolerance

761

762 The line 'Puma-SK' was produced by subjecting 'Puma' by recurrent selection under extreme cold winter
763 conditions (-30 °C) to purify for the alleles contributing to increased cold tolerance. 'Puma-SK' was used
764 in an intergeneric cross with the Canadian winter wheat cultivar 'Norstar', which generated a winter
765 wheat introgression line (containing a segment of 5RL from 'Puma' (designated herein as 'Norstar-
766 5A5R') that contained *Fr2*¹²⁸.

767 To characterize the *Fr2* region in 'Puma-SK' and the introgression in 'NorstarPuma5A:5R', whole genome
768 sequencing was performed using the Chromium 10X Genomics platform. Nuclei were isolated from 30
769 seedlings, and high molecular-weight genomic DNA was extracted from nuclei using phenol chloroform
770 according to the protocol of Zheng et al. (2012)¹²⁹. Genomic DNA was quantified by fluorometry using
771 Qubit 2.0 Broad Range (Thermofisher) and size selection was performed to remove fragments smaller
772 than 40 kbp using pulsed field electrophoresis on a Blue Pippin (Sage Science) according to the
773 manufacturer's specifications. Integrity and size of the size selected DNA were determined using a
774 Tapestation 2200 (Agilent), and Qubit 2.0 Broad Range (Thermofisher), respectively. Library preparation
775 was performed as per the 10X Genomics Genome Library protocol
776 ([https://support.10xgenomics.com/genome-exome/library-prep/doc/user-guide-chromium-genome-
777 reagent-kit-v2-chemistry](https://support.10xgenomics.com/genome-exome/library-prep/doc/user-guide-chromium-genome-reagent-kit-v2-chemistry)) and uniquely barcoded libraries were prepared and multiplexed for

778 sequencing by Illumina HiSeq. De-multiplexing and the generation of fastq files was performed using
779 LongRanger mkfastq ([https://support.10xgenomics.com/genome-
780 exome/software/pipelines/latest/using/mkfastq](https://support.10xgenomics.com/genome-exome/software/pipelines/latest/using/mkfastq); default parameters).

781 Sequencing reads from 'Puma-SK' and 'NorstarPuma5A:5R' were aligned to the rye line 'Lo7' and bread
782 wheat cv. Chinese Spring⁹ genome assemblies, respectively, using LongRanger WGS
783 (<https://support.10xgenomics.com/genome-exome/software/pipelines/latest/using/wgs>; arguments -
784 vcmode 'freebayes'). Large scale structural variants detected by LongRanger were visualized with a
785 combination of Loupe ([https://support.10xgenomics.com/genome-
786 exome/software/visualization/latest/what-is-loupe](https://support.10xgenomics.com/genome-exome/software/visualization/latest/what-is-loupe); *tbl.* S-DATAACCESS). Short variants were called
787 using the Freebayes software (github.com/ekg/freebayes) implemented within the Longranger WGS
788 pipeline. For determining the introgression, 'NorstarPuma5A5R' reads which did not map to the Chinese
789 Spring reference were aligned to the 'Lo7' assembly using the LongRanger align pipeline
790 ([https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-
791 pipelines](https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines)). Samtools¹¹⁴ bedcov was used to calculate the genome-wide read coverage across both
792 references. Copy number variation between 'Puma-SK' and 'Lo7' was detected using a combination of
793 barcode coverage analysis output by the Longranger WGS pipeline, and read depth-of-coverage based
794 analysis using CNVnator¹³⁰ and cn.mops¹³¹.

795 To identify differentially expressed genes that may be contributing to the phenotypic differences in cold
796 tolerance, 'Puma-SK' and 'NorstarPuma5A:5R' were grown and crown tissues harvested at different
797 stages of cold acclimation. Both genotypes were grown for 14 days (d) at 20 °C with a 10 hour (h) day
798 length. Plants were then treated to decreasing temperatures and daylengths over a 70d period,
799 designed to mimic field conditions for winter growth habit. After the initial 14 d growth period, the
800 temperature was reduced to 18 °C, then after 3 d (15 °C), 7 d (12 °C), 14 d (9 °C), 21 (6 °C), 28 d (3 °C), 35
801 d (2 °C), 42 d (2 °C), 49 d (2 °C), 56 d (2 °C), 63 d (2 °C), and 70 d (2 °C). In addition to adjusting the

802 temperature, the day length was adjusted incrementally from 13.5 h at 0 d to 9.2 h at 70 d. Day length
803 changes were programmed to occur on day 3 and day 4 of each week. For each change in temperature,
804 crowns were sampled from two independent replicate plants for each genotype, which were used for
805 analysis of gene expression by RNA sequencing. Crown tissue was sampled one hour after the lights
806 came on in the morning to minimize circadian rhythm effects. In addition, at each change in
807 temperature, five plants from each genotype were used to analyze the rate of plant phenological
808 development (dissection of the plant crown to reveal shoot apex development) and cold hardiness
809 during cold acclimation. Cold hardiness was determined using LT50 measurements, the temperature at
810 which 50% of the plants are killed by LT stress, using the procedure outlined by Fowler et al. (2016)⁷².
811 Sequencing adapters were removed and low-quality reads were trimmed using Trimmomatic¹³². RNA
812 reads from 'NorstarPuma5A:5R' and 'Puma' were aligned to the 'Lo7' reference using Hisat2⁸⁵ (default
813 arguments) and transcripts were quantified with htseq¹³³. Differential expression analysis was carried
814 out using DESeq2¹³⁴ (default parameters).

815 Data Availability

816 Data access information including raw sequence data, selected assembly visualisations, gene
817 annotation, and optical map data, is tabulated in the table S-DATAACCESS.

818

819 Acknowledgements

820

821 We thank the following for their valuable contributions: Manuela Knauft, Ines Walde, and Susanne
822 Koenig, and Stefanie Thumm (IPK), Jennifer Ens (University of Saskatchewan), Cristobal Uauy and James
823 Simmonds (John Innes Centre), Susan Duncan (Earlham Institute), Zdeňka Dubská, and Jitka Weiserová
824 (Institute of Experimental Botany), Alex Hastie (Bionano Genomics), Kobi Baruch (NRGene), and Stefan
825 Taudien (Universitätsmedizin Göttingen) provided technical, laboratory, and greenhouse services. Anne
826 Fiebig, Jens Bauernfeind, Thomas Münch, and Heiko Miehe (IPK) provided IT services. Andreas Graner
827 provided advice. Bionano optical maps were generated through funding The Czech Science Foundation
828 (grant number: 17-17564S) via H. S., and the German Federal Ministry of Education and Research via Eva
829 Bauer (grant number: 0315946A), who also contributed funding for WGS sequencing. KWS LOCHOW
830 GMBH funded the CSS sequencing. A. L. received funding from the Agriculture and Agri-Food Canada
831 International Collaboration Agri-Innovation Program. A. S. received funding from the Natural Resources
832 Institute Finland (Luke) Innofood Strategic Funds program. A. Hall received funding from the
833 Biotechnology and Biological Sciences Research Council Designing Future Wheat program (grant
834 number: BB/P016855/1). K. F. X. M. received funding from the Bundesministerium für Bildung und
835 Forschung (de.NBI, number 031A536) and from the Bundesministerium für Ernährung und
836 Landwirtschaft (WHEATSEQ number 2819103915). D. S. received funding from HYBRO Saatzucht GmbH
837 & Co. KG. J. D. received funding from the European Regional Development Fund's plants as a tool for
838 sustainable global development project (grant number: CZ.02.1.01/0.0/0.0/16_019/0000827). B. W.
839 received funding from the 2Blades Foundation. B. H. and F. O. received funding from the Julius Kühn-
840 Institute. V. K. received funding from KWS SAAT SE & Co. KGaA. A. Houben received funding from the
841 Deutsche Forschungsgemeinschaft (grant number: HO 1779/30-1). U. S. received funding from the
842 Bundesministerium für Bildung und Forschung (de.NBI, number FKZ 031A536). H. B. received funding

843 from the Montana Wheat and Barley Committee. X-F. M. received funding from the Noble Research
844 Institute, LLC. E. B. received funding from the Bundesministerium für Bildung und Forschung via the
845 project “RYE-SELECT: Genome-based precision breeding strategies for rye” (grant number: 0315946A). I.
846 S. and J. M. received funding from the Australian Research Council (grant number: CE140100008). C. J. P.
847 received funding from Genome Canada and Genome Prairie (grant number: CTAG2). D. K. and A. S.
848 received funding through the National Research Council Canada’s Wheat Flagship Program. D. B. F.
849 received funding from the Province of Saskatchewan Agriculture Development Fund (ADF). B. K.
850 received funding from the Bundesamt für Landwirtschaft, Bern (grant number: PGREL NN-0036). M. R-T.,
851 H. B-B., S. S., and B. M. received funding from the Polish National Science Centre (grant numbers: DEC-
852 2015/19/B/NZ9/00921; DEC-2014/14/E/NZ9/00285; 2015/17/B/NZ9/01694).

853 **Author information**

854

855 **Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 County Road 20,**

856 **Harrow, ON, N0R 1G0, Canada**

857 Jamie Larsen

858 **Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue**

859 **South, Lethbridge AB T1J 4B1, Canada**

860 André Laroche

861 **Chinese Academy of Crop Sciences (CAAS), No.12 Zhongguancun South Street, Haidian District, Beijing**

862 **100081, China**

863 Jizeng Jia

864 **Plant Genomics, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UG, UK**

865 Anthony Hall, David Swarbreck, Gemy Kaithakottil

866 **Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade**

867 **Universitária, Recife PE, 50670-901, Brazil**

868 Mariana Báez

869 **Plant Genome and Systems Biology (PGSB), Helmholtz Zentrum München, Ingolstädter Landstr. 1,**

870 **85764 Neuherberg, Germany**

871 Thomas Lux, Heidrun Gundlach, Manuel Spannagl, Klaus F.X. Mayer

872 **National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No. 1**

873 **Shizishan Street, Hongshan District, Wuhan, Hubei Province, China**

874 Qiang Li

875 **HYBRO Saatzaucht GmbH & Co. KG, Langlinger Str. 3, 29565 Wriedel, Germany**

876 Dörthe Siekmann

877 **Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for**
878 **Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic**
879 Jaroslav Doležel, Jana Čížková, Jan Vrána, Hana Šimková, Helena Toogelová
880 **Computational Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK**
881 Burkhard Steuernagel
882 **Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK**
883 Brande Wulff
884 **Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institute, Erwin-Baur-Str. 27, 06484**
885 **Quedlinburg, Germany**
886 Jens Keilwagen
887 **Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institute, Rudolf-Schick-Platz 3a,**
888 **18190 Groß Lüsewitz, Germany**
889 Bernd Hackauf
890 **Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Erwin-Baur-Str. 27, 06484**
891 **Quedlinburg, Germany**
892 Frank Ordon
893 **KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37574 Einbeck, Germany**
894 ~ and ~
895 **Federal State Budgetary Institution of Science Federal Research Center, Kazan Scientific Center of**
896 **Russian Academy of Sciences, ul. Lobachevskogo, 2/31, Kazan 420111, Tatarstan, Russian Federation**
897 Viktor Korzun
898 **Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland,**
899 **Germany**

900 Andreas Houben, Uwe Scholz, Martin Mascher, Mona Schreiber, Nils Stein, Sudharsan Padmarasu, M.

901 Timothy Rabanus-Wallace, Axel Himmelbach, Andreas Börner

902 **Department of Crop Sciences CiBreed - Center for Integrated Breeding Research, Georg-August**

903 **University Göttingen, Von Siebold Straße 8, D-37075 Göttingen, Germany**

904 Nils Stein

905 **German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany**

906 Martin Mascher

907 **Montana BioAgriculture Inc., Montana, USA**

908 Hikmet Budak

909 **Kansas State University, 4024 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA**

910 Jesse Poland, Liangliang Guo, Alan Fritz

911 **Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki,**

912 **Finland**

913 Alan H. Schulman

914 **Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA**

915 Xue-Feng Ma

916 **Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, 119991 Moscow,**

917 **Russia**

918 Anatoly V. Voylokov

919 **Molecular Biology, Genetics and Bioengineering, Sabanci University, University Cad No 27, Istanbul,**

920 **Turkey**

921 Biyiklioglu Sezgi

922 **Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.**

923 **7/9, 199034, St. Petersburg, Russia**

924 Natalia Tsvetkova

925 **Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, 80333 München, Germany**

926 Eva Bauer

927 **ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of**

928 **Western Australia, 35 Stirling Highway, Crawley 6009 WA, Australia**

929 Ian Small, Joanna Melonek

930 **Department of Field Crops, University of Cukurova Faculty of Agriculture, Balcalı, Çukurova**

931 **Üniversitesi Rektörlüğü, 01330 Sarıçam/Adana, Turkey**

932 Hakan Ozkan, Uğur Sesiz

933 **Plant Sciences and Landscape Architecture, University of Maryland, College Park, 4291 Fieldhouse**

934 **Drive 2102, Plant Sciences Building, College Park, MD 20742, USA**

935 Vijay Tiwari, Nidhi Rawat

936 **Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan**

937 **S7N 5A8, Canada**

938 Curtis J. Pozniak

939 **Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan**

940 **S7N 5A8, Canada**

941 Brook Byrns, Sean Walkowiak, D. Brian Fowler

942 **University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK,**

943 **S7N 0W9, Canada**

944 Andy Sharpe

945 **Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Pl,**

946 **Saskatoon, SK S7N 0W9, Canada**

947 David Konkin

948 **Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich,**
949 **Switzerland**

950 Beat Keller, Coraline Praz, Thomas Wicker

951 **Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland**

952 Matthias Heuberger

953 **Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences -**
954 **SGGW, Nowoursynowska Str 159, 02-776 Warsaw, Poland**

955 Monika Rakoczy-Trojanowska, Hanna Bolibok-Bragoszewska

956 **Department of Genetics, Plant Breeding and Biotechnology, West Pomeranian University of**
957 **Technology Szczecin, Słowackiego 17, 71-434 Szczecin, Poland**

958 Stefan Stojalowski, Beata Myśkow

959

960 Author Contributions

961 *Project conception and consortium coordination*

962

963 N. S. (leader), K. F. X. M., M. M., V. T., N. R.

964

965 *Manuscript and main figures*

966

967 M. T. R-W. (leader), N. S., B. H., with input from all authors.

968

969 *Genome assembly and data integration*

970

971 M. T. R-W. (leader), M. M.

972

973 *Provision, curation, cultivation, and phenotyping of genetic resources*

974

975 A. B. (*Secale* diversity panel); V. K. ('Lo7'); D. B. F., B. H., Q. L., C. J. P., B. B. ('Norstar', 'Puma'); V. K., B. H.,
976 M. R-T., H. B-B., S. S., B. M. (*Secale* genome size estimation panel).

977

978 *Sequencing data* [ADD SECTION FOR FUNDING SEQUENCING?]

979

980 J. L., A. L., J. J., A. Hall, D. S., A. Himmelbach, S. P., A. H. S., J. P., B. B.

981

982 *Genome size estimation and chromosome flow sorting*

983

984 J. D., J. Č., J. V.

985

986 *Bionano optical map*

987

988 H. Š., H. T., E. B.

989

990 *FISH*

991

992 M. B., A. Houben.

993

994 *Gene annotation*

995

996 D. S., G. K., T. L., M. S., K. F. X. M., J. K.

997

998 *Repetitive element annotation and analysis*

999

1000 H. G., T. W., M. S., K. F. X. M.

1001

1002 *miRNA annotation*

1003

1004 H. B., B. S.

1005

1006 *Secale diversity analysis*

1007
1008 M. S., M. M., H. S., U. S.
1009
1010 *Hi-C-based SV detection*
1011
1012 M. T. R-W. with input from M. M.
1013
1014 *Resistance gene identification and analysis*
1015
1016 B. S., B. W, B. H., B. K., C. P., T. W.
1017
1018 *SI and CMS gene identification and analysis*
1019
1020 B. H., I. S., J. M.
1021
1022 *Mapping of S- locus*
1023
1024 B. H., A. V. V., N.T.
1025
1026 *Wheat-rye introgression analysis*
1027
1028 J. P., L. G., M. T. R-W., M. M., with input from B. H.
1029
1030 *Low temperature tolerance analysis*
1031
1032 C. J. P., B. B., S. W.
1033
1034
1035

1036 **Competing Interests**

1037 V. K. is an employee of KWS SAAT SE & Co. KGaA. Dörthe Siekmann is an employee of
1038 HYBRO Saatzucht GmbH & Co. KG.

1039

1040

1041 **Corresponding Authors**

1042 Correspondence to Nils Stein (stein@ipk-gatersleben.de).

1043

1044 **References**

1045
1046
1047 1. Beck, H.E. *et al.* Present and future Köppen-Geiger climate classification maps at 1-km
1048 resolution. *Scientific data* **5**, 180214 (2018).
1049 2. Sharma, S. *et al.* Integrated genetic map and genetic analysis of a region associated
1050 with root traits on the short arm of rye chromosome 1 in bread wheat. *Theoretical and*
1051 *Applied Genetics* **119**, 783-793 (2009).
1052 3. Lukaszewski, A.J. Introgressions between wheat and rye. in *Alien introgression in wheat*
1053 163-189 (Springer, 2015).
1054 4. Kim, W., Johnson, J., Baenziger, P., Lukaszewski, A. & Gaines, C. Agronomic effect of
1055 wheat-rye translocation carrying rye chromatin (1R) from different sources. *Crop Science*
1056 **44**, 1254-1258 (2004).
1057 5. Crespo-Herrera, L.A., Garkava-Gustavsson, L. & Åhman, I. A systematic review of rye
1058 (*Secale cereale* L.) as a source of resistance to pathogens and pests in wheat (*Triticum*
1059 *aestivum* L.). *Hereditas* **154**, 14 (2017).
1060 6. Lundqvist, A. Self-incompatibility in rye: I. Genetic control in the diploid. *Hereditas* **42**,
1061 293-348 (1956).
1062 7. Geiger, H. & Schnell, F. Cytoplasmic Male Sterility in Rye (*Secale cereale* L.) 1. *Crop*
1063 *science* **10**, 590-593 (1970).
1064 8. Doležel, J. *et al.* Plant genome size estimation by flow cytometry: inter-laboratory
1065 comparison. *Annals of Botany* **82**, 17-26 (1998).
1066 9. IWGSC. Shifting the limits in wheat research and breeding using a fully annotated
1067 reference genome. *Science* **361**, eaar7191 (2018).
1068 10. Martis, M.M. *et al.* Reticulate evolution of the rye genome. *The Plant Cell* **25**, 3685-3698
1069 (2013).
1070 11. Bauer, E. *et al.* Towards a whole-genome sequence for rye (*Secale cereale* L.). *The*
1071 *Plant Journal* **89**, 853--869 (2017).
1072 12. Schneider, A., Rakszegi, M., Molnár-Láng, M. & Szakács, É. Production and
1073 cytomic identification of new wheat-perennial rye (*Secale cereanum*) disomic
1074 addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein
1075 content (1R, 4R, 6R). *Theoretical and Applied Genetics* **129**, 1045-1059 (2016).
1076 13. Li, J., Zhou, R., Endo, T.R. & Stein, N. High-throughput development of SSR marker
1077 candidates and their chromosomal assignment in rye (*Secale cereale* L.). *Plant breeding*
1078 **137**, 561-572 (2018).
1079 14. Hackauf, B. *et al.* QTL mapping and comparative genome analysis of agronomic traits
1080 including grain yield in winter rye. *Theoretical and applied genetics* **130**, 1801-1817
1081 (2017).
1082 15. Mascher, M. *et al.* A chromosome conformation capture ordered sequence of the barley
1083 genome. *Nature* **544**, 427--433 (2017).
1084 16. Maccaferri, M. *et al.* Durum wheat genome highlights past domestication signatures and
1085 future improvement targets. *Nature genetics* **51**, 885 (2019).
1086 17. Zhu, T. *et al.* Improved genome sequence of wild emmer wheat Zavitan with the aid of
1087 optical maps. *G3: Genes, Genomes, Genetics* **9**, 619-624 (2019).
1088 18. Zimin, A.V. *et al.* Hybrid assembly of the large and highly repetitive genome of *Aegilops*
1089 *tauschii*, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm.
1090 *Genome Research* **27**, 787--792 (2017).

1091 19. Braun, E.-M. *et al.* Gene expression profiling and fine mapping identifies a gibberellin 2-
1092 Oxidase gene co-segregating with the dominant dwarfing gene *Ddw1* in rye (*Secale*
1093 *cereale* L.). **10**, 857 (2019).

1094 20. Lieberman-Aiden, E. *et al.* Comprehensive mapping of long-range interactions reveals
1095 folding principles of the human genome. *Science* **326**, 289-293 (2009).

1096 21. Wicker, T. *et al.* A unified classification system for eukaryotic transposable elements.
1097 *Nature Reviews Genetics* **8**, 973 (2007).

1098 22. Naranjo, T., Roca, A., Goicoechea, P. & Giraldez, R. Arm homoeology of wheat and rye
1099 chromosomes. *Genome* **29**, 873-882 (1987).

1100 23. Moore, G., Devos, K., Wang, Z. & Gale, M. Cereal genome evolution: grasses, line up
1101 and form a circle. *Current biology* **5**, 737-739 (1995).

1102 24. Devos, K.M. *et al.* Chromosomal rearrangements in the rye genome relative to that of
1103 wheat. *Theoretical and Applied Genetics* **85**, 673-680 (1993).

1104 25. Dvorak, J. *et al.* Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B.
1105 *Theoretical and applied genetics* **131**, 2451-2462 (2018).

1106 26. Luo, M. *et al.* Genome sequence of the progenitor of the wheat D genome *Aegilops*
1107 *tauschii*. *Nature* (2017).

1108 27. Wicker, T. *et al.* Impact of transposable elements on genome structure and evolution in
1109 bread wheat. *Genome biology* **19**, 103 (2018).

1110 28. Wicker, T., Gundlach, H. & Schulman, A.H. The Repetitive Landscape of the Barley
1111 Genome. in *The Barley Genome* 123-138 (Springer, 2018).

1112 29. Dvořák, J. Triticeae genome structure and evolution. in *Genetics and Genomics of the*
1113 *Triticeae* 685-711 (Springer, 2009).

1114 30. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR
1115 Assembly Index (LAI). *Nucleic acids research* **46**, e126-e126 (2018).

1116 31. Presting, G.G., Malysheva, L., Fuchs, J. & Schubert, I. A TY3/GYPSY
1117 retrotransposon-like sequence localizes to the centromeric regions of cereal
1118 chromosomes. *The Plant Journal* **16**, 721-728 (1998).

1119 32. Serrato-Capuchina, A. & Matute, D.R. The role of transposable elements in speciation.
1120 *Genes* **9**, 254 (2018).

1121 33. Schreiber, M., Himmelbach, A., Börner, A. & Mascher, M. Genetic diversity and
1122 relationship between domesticated rye and its wild relatives as revealed through
1123 genotyping-by-sequencing. *Evolutionary applications* **12**, 66-77 (2019).

1124 34. Dvorak, J. *et al.* Structural variation and rates of genome evolution in the grass family
1125 seen through comparison of sequences of genomes greatly differing in size. *The Plant*
1126 *Journal* **95**, 487-503 (2018).

1127 35. Wright, S.I., Ness, R.W., Foxe, J.P. & Barrett, S.C. Genomic consequences of
1128 outcrossing and selfing in plants. *International Journal of Plant Sciences* **169**, 105-118
1129 (2008).

1130 36. Springer, N.M. *et al.* Maize inbreds exhibit high levels of copy number variation (CNV)
1131 and presence/absence variation (PAV) in genome content. *PLoS genetics* **5**, e1000734
1132 (2009).

1133 37. Sun, S. *et al.* Extensive intraspecific gene order and gene structural variations between
1134 *Mo17* and other maize genomes. *Nature genetics* **50**, 1289 (2018).

1135 38. Baack, E., Melo, M.C., Rieseberg, L.H. & Ortiz-Barrientos, D. The origins of reproductive
1136 isolation in plants. *New Phytologist* **207**, 968-984 (2015).

1137 39. Fribe, B., Jiang, J., Raupp, W., McIntosh, R. & Gill, B. Characterization of wheat-alien
1138 translocations conferring resistance to diseases and pests: current status. *Euphytica* **91**,
1139 59-87 (1996).

1140 40. Graybosch, R.A. Mini review: uneasy unions: quality effects of rye chromatin transfers to
1141 wheat. *Journal of Cereal Science* **33**, 3-16 (2001).

1142 41. Keilwagen, J. *et al.* Detecting large chromosomal modifications using short read data
1143 from genotyping-by-sequencing. *Frontiers in plant science* **10**, 1133 (2019).

1144 42. Kumlay, A. *et al.* Understanding the effect of rye chromatin in bread wheat. *Crop science*
1145 **43**, 1643-1651 (2003).

1146 43. Wricke, G. & Wehling, P. Linkage between an incompatibility locus and a peroxidase
1147 isozyme locus (Prx 7) in rye. *Theoretical and applied genetics* **71**, 289-291 (1985).

1148 44. Voylokov, A., Fuong, F. & Smirnov, V. Genetic studies of self-fertility in rye (*Secale*
1149 *cereale* L.). 1. The identification of genotypes of self-fertile lines for the Sf alleles of self-
1150 incompatibility genes. *Theoretical and applied genetics* **87**, 616-618 (1993).

1151 45. Hackauf, B. & Wehling, P. Approaching the self-incompatibility locus Z in rye (*Secale*
1152 *cereale* L.) via comparative genetics. *Theoretical and Applied Genetics* **110**, 832-845
1153 (2005).

1154 46. Manzanares, C. *et al.* A gene encoding a DUF247 domain protein cosegregates with the
1155 S self-incompatibility locus in perennial ryegrass. *Molecular biology and evolution* **33**,
1156 870-884 (2015).

1157 47. Abdel-Ghani, A.H., Parzies, H.K., Ceccarelli, S., Grando, S. & Geiger, H.H. Estimation of
1158 quantitative genetic parameters for outcrossing-related traits in barley. *Crop science* **45**,
1159 98-105 (2005).

1160 48. Whitford, R. *et al.* Hybrid breeding in wheat: technologies to improve hybrid wheat seed
1161 production. *Journal of experimental botany* **64**, 5411-5428 (2013).

1162 49. Chen, L. & Liu, Y.-G. Male sterility and fertility restoration in crops. *Annual review of*
1163 *plant biology* **65** (2014).

1164 50. Melonek, J., Stone, J.D. & Small, I. Evolutionary plasticity of restorer-of-fertility-like
1165 proteins in rice. *Scientific reports* **6**, 35152 (2016).

1166 51. Bernhard, T., Koch, M., Snowdon, R.J., Friedt, W. & Wittkop, B. Undesired fertility
1167 restoration in *msm1* barley associates with two *mTERF* genes. *Theoretical and Applied*
1168 *Genetics* **132**, 1335-1350 (2019).

1169 52. Gaborieau, L., Brown, G.G. & Mireau, H. The propensity of pentatricopeptide repeat
1170 genes to evolve into restorers of cytoplasmic male sterility. *Frontiers in plant science* **7**,
1171 1816 (2016).

1172 53. Geiger, H., Yuan, Y., Miedaner, T. & Wilde, P. Environmental sensitivity of cytoplasmic
1173 genic male sterility (CMS) in *Secale cereale* L. *Fortschritte der Pflanzenzuechtung*
1174 (1995).

1175 54. Geiger, H. Cytoplasmatisch-genische Pollensterilität in Roggenformen iranischer
1176 Abstammung. *Naturwissenschaften* **58**, 98-99 (1971).

1177 55. Stojalowski, S., Jaciubek, M.o.a. & Masojć, P. Rye SCAR markers for male fertility
1178 restoration in the P cytoplasm are also applicable to marker-assisted selection in the C
1179 cytoplasm. *J Appl Genet* **46**, 371-373 (2005).

1180 56. Wilde, P. *et al.* Restorer Plants. (US Patent App. 16/064,304, 2019).

1181 57. Gupta, P.K. *et al.* Hybrid wheat: past, present and future. *Theoretical and Applied*
1182 *Genetics*, 1-21 (2019).

1183 58. Lukaszewski, A.J. Chromosomes 1BS and 1RS for control of male fertility in wheats and
1184 triticales with cytoplasms of *Aegilops kotschy*, *Ae. mutica* and *Ae. uniaristata*.
1185 *Theoretical and applied genetics* **130**, 2521-2526 (2017).

1186 59. Tsunewaki, K. Fine mapping of the first multi-fertility-restoring gene, Rf multi, of wheat
1187 for three *Aegilops* plasmids, using 1BS-1RS recombinant lines. *Theoretical and Applied*
1188 *Genetics* **128**, 723-732 (2015).

1189 60. Hohn, C.E. & Lukaszewski, A.J. Engineering the 1BS chromosome arm in wheat to
1190 remove the Rf multi locus restoring male fertility in cytoplasms of *Aegilops kotschy*, *Ae.*
1191 *uniaristata* and *Ae. mutica*. *Theoretical and applied genetics* **129**, 1769-1774 (2016).

1192 61. Jung, W.J. & Seo, Y.W. Employment of wheat-rye translocation in wheat improvement
1193 and broadening its genetic basis. *Journal of Crop Science and Biotechnology* **17**, 305-
1194 313 (2014).

1195 62. Kourelis, J. & van der Hoorn, R.A. Defended to the nines: 25 years of resistance gene
1196 cloning identifies nine mechanisms for R protein function. *The Plant Cell* **30**, 285-299
1197 (2018).

1198 63. Steuernagel, B. *et al.* Physical and transcriptional organisation of the bread wheat
1199 intracellular immune receptor repertoire. (2018).

1200 64. Jordan, T. *et al.* The wheat *Mla* homologue *TmMla1* exhibits an evolutionarily conserved
1201 function against powdery mildew in both wheat and barley. *The Plant Journal* **65**, 610-
1202 621 (2011).

1203 65. Mago, R. *et al.* The wheat *Sr50* gene reveals rich diversity at a cereal disease resistance
1204 locus. *Nature plants* **1**, 15186 (2015).

1205 66. Seeholzer, S. *et al.* Diversity at the *Mla* powdery mildew resistance locus from cultivated
1206 barley reveals sites of positive selection. *Molecular plant-microbe interactions* **23**, 497-
1207 509 (2010).

1208 67. Dvorak, J. & Fowler, D. Cold Hardiness Potential of Triticale and Teraploid Rye 1. *Crop
1209 Science* **18**, 477-478 (1978).

1210 68. Jung, W.J. & Seo, Y.W. Identification of novel C-repeat binding factor (CBF) genes in rye
1211 (*Secale cereale* L.) and expression studies. *Gene* **684**, 82-94 (2019).

1212 69. Börner, A., Korzun, V., Voylokov, A., Worland, A. & Weber, W. Genetic mapping of
1213 quantitative trait loci in rye (*Secale cereale* L.). *Euphytica* **116**, 203-209 (2000).

1214 70. Vágújfalvi, A., Galiba, G., Cattivelli, L. & Dubcovsky, J. The cold-regulated transcriptional
1215 activator *Cbf3* is linked to the frost-tolerance locus *Fr-A2* on wheat chromosome 5A.
1216 *Molecular Genetics and Genomics* **269**, 60-67 (2003).

1217 71. Båga, M. *et al.* Identification of quantitative trait loci and associated candidate genes for
1218 low-temperature tolerance in cold-hardy winter wheat. *Functional & integrative genomics*
1219 **7**, 53-68 (2007).

1220 72. Fowler, D., N'Diaye, A., Laudencia-Chingcuanco, D. & Pozniak, C. Quantitative trait loci
1221 associated with phenological development, low-temperature tolerance, grain quality, and
1222 agronomic characters in wheat (*Triticum aestivum* L.). *PLoS One* **11**, e0152185 (2016).

1223 73. Francia, E. *et al.* Two loci on chromosome 5H determine low-temperature tolerance in a
1224 'Nure'(winter)×'Tremois'(spring) barley map. *Theoretical and Applied Genetics* **108**, 670-
1225 680 (2004).

1226 74. Campoli, C., Matus-Cádiz, M.A., Pozniak, C.J., Cattivelli, L. & Fowler, D.B. Comparative
1227 expression of *Cbf* genes in the Triticeae under different acclimation induction
1228 temperatures. *Molecular Genetics and Genomics* **282**, 141-152 (2009).

1229 75. Akhtar, M. *et al.* *DREB1/CBF* transcription factors: their structure, function and role in
1230 abiotic stress tolerance in plants. *Journal of genetics* **91**, 385-395 (2012).

1231 76. Würschum, T., Longin, C.F.H., Hahn, V., Tucker, M.R. & Leiser, W.L. Copy number
1232 variations of *CBF* genes at the *Fr-A2* locus are essential components of winter hardiness
1233 in wheat. *The Plant Journal* **89**, 764-773 (2017).

1234 77. Fowler, D., Chauvin, L., Limin, A. & Sarhan, F. The regulatory role of vernalization in the
1235 expression of low-temperature-induced genes in wheat and rye. *Theoretical and Applied
1236 Genetics* **93**, 554-559 (1996).

1237 78. Galiba, G., Vágújfalvi, A., Li, C., Soltész, A. & Dubcovsky, J. Regulatory genes involved
1238 in the determination of frost tolerance in temperate cereals. *Plant Science* **176**, 12-19
1239 (2009).

1240 79. Babben, S. *et al.* Association genetics studies on frost tolerance in wheat (*Triticum
1241 aestivum* L.) reveal new highly conserved amino acid substitutions in *CBF-A3*, *CBF-A15*,
1242 *VRN3* and *PPD1* genes. *BMC genomics* **19**, 409 (2018).

1243 80. Avni, R. *et al.* Wild emmer genome architecture and diversity elucidate wheat evolution
1244 and domestication. *Science* **357**, 93–97 (2017).

1245 81. Ling, H.-Q. *et al.* Draft genome of the wheat A-genome progenitor *Triticum urartu*.
1246 *Nature* **496**, 87–90 (2013).

1247 82. IWGSC. A chromosome-based draft sequence of the hexaploid bread wheat (*Triticum*
1248 *aestivum*) genome. *Science* **345**, 1251788 (2014).

1249 83. Monat, C. *et al.* TRITEX: chromosome-scale sequence assembly of Triticeae genomes
1250 with open-source tools. *BioRxiv*, 631648 (2019).

1251 84. Wu, T.D. & Watanabe, C.K. GMAP: a genomic mapping and alignment program for
1252 mRNA and EST sequences. *Bioinformatics* **21**, 1859–1875 (2005).

1253 85. Kim, D., Langmead, B. & Salzberg, S.L. HISAT: a fast spliced aligner with low memory
1254 requirements. *Nature methods* **12**, 357 (2015).

1255 86. Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from
1256 RNA-seq reads. *Nature biotechnology* **33**, 290 (2015).

1257 87. Ghosh, S. & Chan, C.-K.K. Analysis of RNA-Seq data using TopHat and Cufflinks. in
1258 *Plant Bioinformatics* 339–361 (Springer, 2016).

1259 88. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment
1260 search tool. *Journal of molecular biology* **215**, 403–410 (1990).

1261 89. Potter, S.C. *et al.* HMMER web server: 2018 update. *Nucleic Acids Research* **46**, W200–
1262 W204 (2018).

1263 90. Stanke, M. *et al.* AUGUSTUS: ab initio prediction of alternative transcripts. *Nucleic acids*
1264 *research* **34**, W435–W439 (2006).

1265 91. Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: Homology-Based Gene Prediction
1266 Utilizing Intron Position Conservation and RNA-seq Data. in *Gene Prediction* 161–177
1267 (Springer, 2019).

1268 92. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for
1269 the analysis of massive data sets. *Nature biotechnology* **35**, 1026 (2017).

1270 93. Haas, B.J. *et al.* Automated eukaryotic gene structure annotation using
1271 EVidenceModeler and the Program to Assemble Spliced Alignments. *Genome biology* **9**,
1272 R7 (2008).

1273 94. Wicker, T. *et al.* DNA transposon activity is associated with increased mutation rates in
1274 genes of rice and other grasses. *Nature communications* **7**, 12790 (2016).

1275 95. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open
1276 software suite. (Elsevier current trends, 2000).

1277 96. Ma, J. & Bennetzen, J.L. Rapid recent growth and divergence of rice nuclear genomes.
1278 *Proceedings of the National Academy of Sciences* **101**, 12404–12410 (2004).

1279 97. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic acids*
1280 *research* **27**, 573–580 (1999).

1281 98. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high
1282 throughput. *Nucleic acids research* **32**, 1792–1797 (2004).

1283 99. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and
1284 deep-sequencing data. *Nucleic acids research* **39**, D152–D157 (2010).

1285 100. Markham, N.R. & Zuker, M. UNAFold. in *Bioinformatics* 3–31 (Springer, 2008).

1286 101. Alptekin, B., Akpinar, B.A. & Budak, H. A comprehensive prescription for plant miRNA
1287 identification. *Frontiers in plant science* **7**, 2058 (2017).

1288 102. Akpinar, B.A., Kantar, M. & Budak, H. Root precursors of microRNAs in wild emmer and
1289 modern wheats show major differences in response to drought stress. *Functional &*
1290 *integrative genomics* **15**, 587–598 (2015).

1291 103. Dai, X., Zhuang, Z. & Zhao, P.X. psRNATarget: a plant small RNA target analysis server
1292 (2017 release). *Nucleic acids research* **46**, W49–W54 (2018).

1293 104. Dai, X. & Zhao, P.X. psRNATarget: a plant small RNA target analysis server. *Nucleic acids research* **39**, W155-W159 (2011).

1294 105. Conesa, A. *et al.* Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* **21**, 3674-3676 (2005).

1295 106. Aliyeva-Schnorr, L., Ma, L. & Houben, A. A fast air-dry dropping chromosome preparation method suitable for FISH in plants. *JoVE (Journal of Visualized Experiments)*, e53470 (2015).

1296 107. Cuadrado, A., Jouve, N. & Ceoloni, C. Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence *in situ* hybridization. *Genome* **38**, 1061-1069 (1995).

1297 108. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* **35**, 526-528 (2018).

1298 109. Zheng, X. *et al.* A high-performance computing toolset for relatedness and principal component analysis of SNP data. *Bioinformatics* **28**, 3326-3328 (2012).

1299 110. Pont, C. *et al.* Tracing the ancestry of modern bread wheats. *Nature genetics* **51**, 905 (2019).

1300 111. Rife, T.W., Graybosch, R.A. & Poland, J.A. Genomic analysis and prediction within a US public collaborative winter wheat regional testing nursery. *The plant genome* **11**(2018).

1301 112. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **26**, 589-595 (2010).

1302 113. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet. journal* **17**, 10-12 (2011).

1303 114. Li, H. *et al.* The sequence alignment/map format and SAMtools. *Bioinformatics* **25**, 2078-2079 (2009).

1304 115. Sonnhammer, E.L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. *Gene* **167**, GC1-GC10 (1995).

1305 116. Thompson, J.D., Gibson, T.J. & Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. *Current protocols in bioinformatics*, 2.3. 1-2.3. 22 (2003).

1306 117. Ronquist, F. *et al.* MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic biology* **61**, 539-542 (2012).

1307 118. Finn, R.D., Clements, J. & Eddy, S.R. HMMER web server: interactive sequence similarity searching. *Nucleic acids research* **39**, W29-W37 (2011).

1308 119. Cheng, S. *et al.* Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. *The Plant Journal* **85**, 532-547 (2016).

1309 120. El-Gebali, S. *et al.* The Pfam protein families database in 2019. *Nucleic acids research* **47**, D427-D432 (2018).

1310 121. Hackauf, B., Rudd, S., Van der Voort, J., Miedaner, T. & Wehling, P. Comparative mapping of DNA sequences in rye (*Secale cereale* L.) in relation to the rice genome. *Theoretical and applied genetics* **118**, 371-384 (2009).

1311 122. Hackauf, B. & Wehling, P. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. *Plant Breeding* **121**, 17-25 (2002).

1312 123. Langridge, P., Baumann, U. & Juttner, J. Revisiting and revising the self-incompatibility genetics of *Phalaris coerulescens*. *The Plant Cell* **11**, 1826-1826 (1999).

1313 124. Li, X., Nield, J., Hayman, D. & Langridge, P. Cloning a putative self-incompatibility gene from the pollen of the grass *Phalaris coerulescens*. *The Plant Cell* **6**, 1923-1932 (1994).

1314 125. Hackauf, B., Korzun, V., Wortmann, H., Wilde, P. & Wehling, P. Development of conserved ortholog set markers linked to the restorer gene *Rfp1* in rye. *Molecular breeding* **30**, 1507-1518 (2012).

1342 126. Wagner, H., Weber, W. & Wricke, G. Estimating linkage relationship of isozyme markers
1343 and morphological markers in sugar beet (*Beta vulgaris* L.) including families with
1344 distorted segregations. *Plant Breeding* **108**, 89-96 (1992).

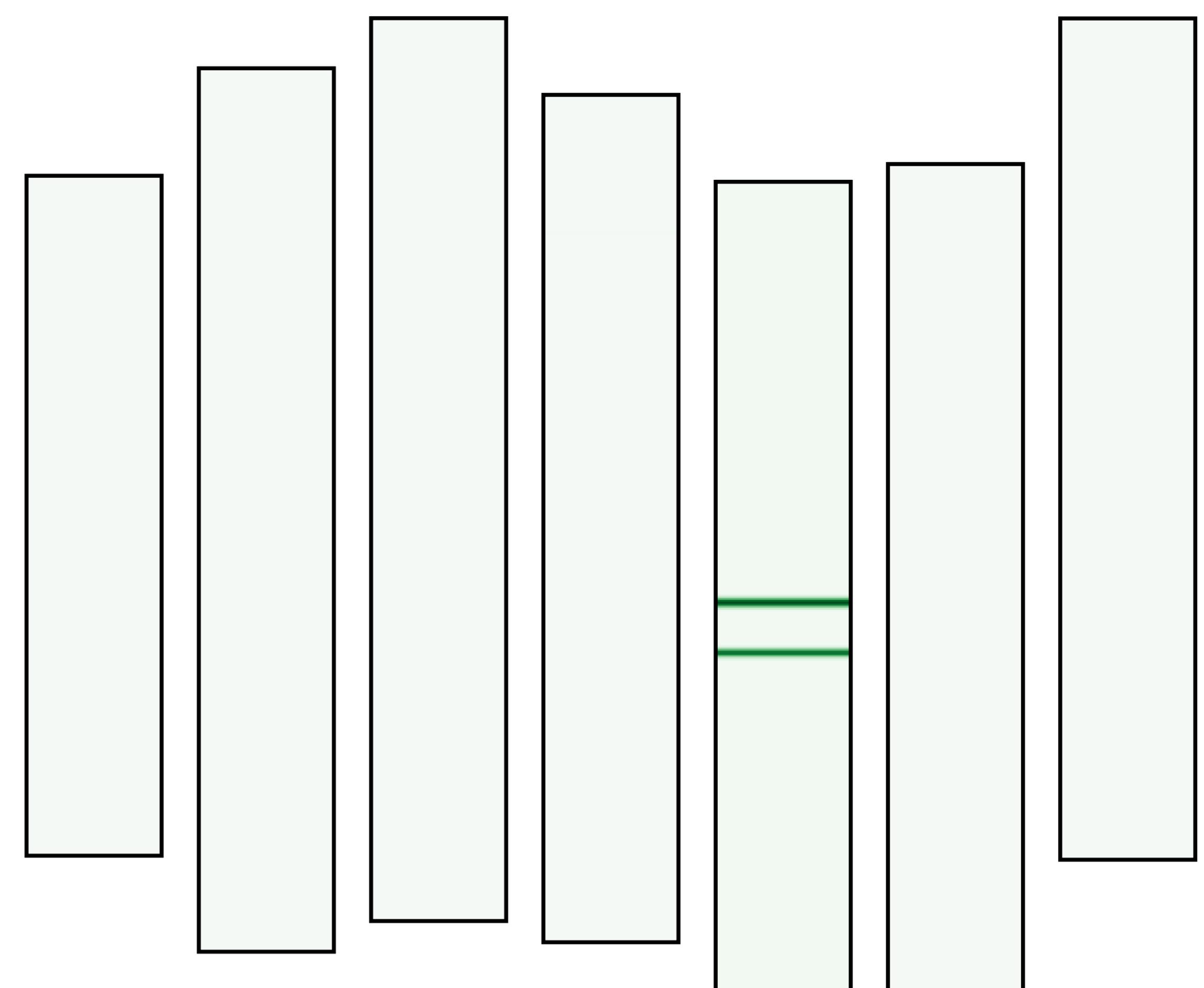
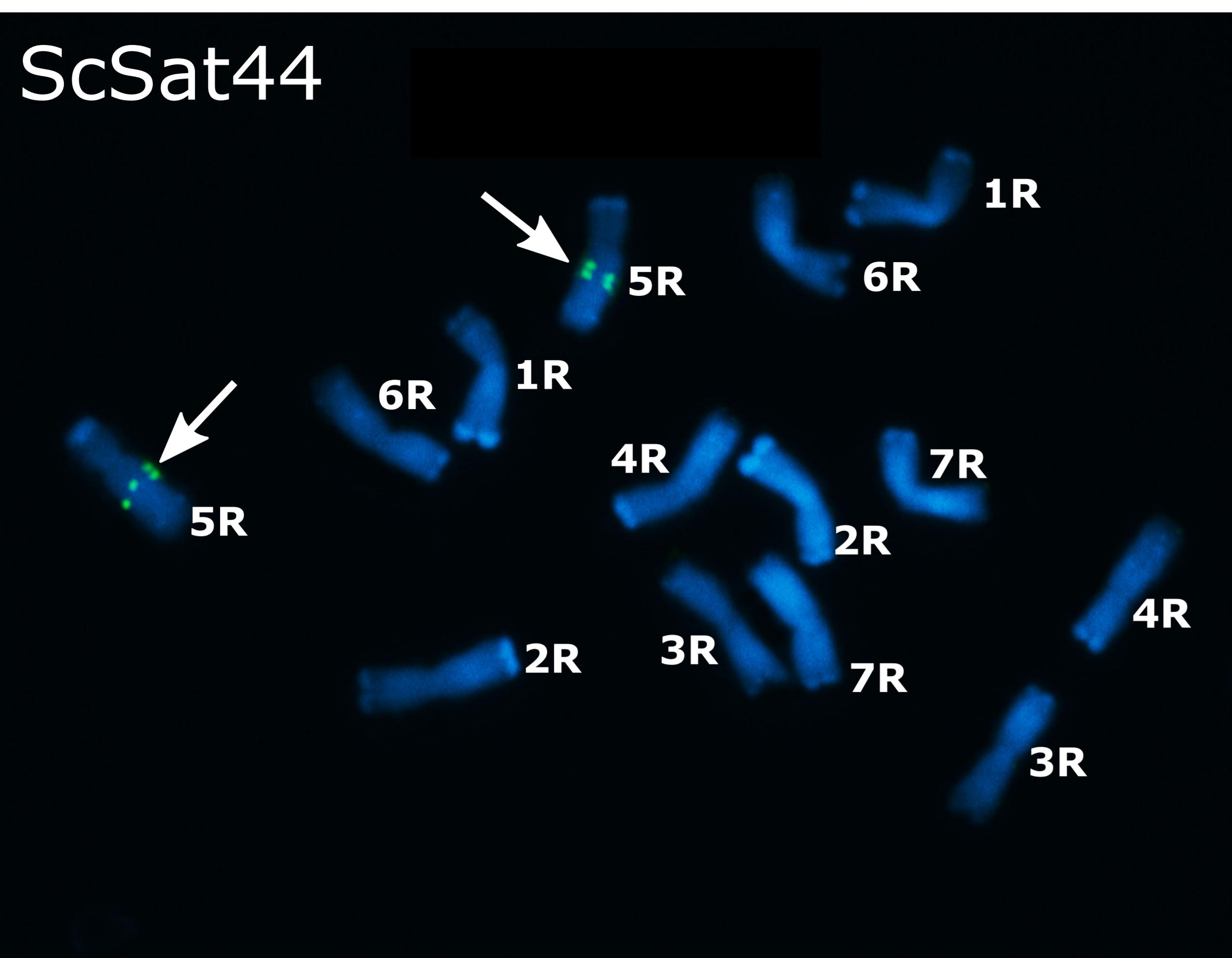
1345 127. Voylokov, A., Korzun, V. & Börner, A. Mapping of three self-fertility mutations in rye
1346 (*Secale cereale* L.) using RFLP, isozyme and morphological markers. *Theoretical and
1347 Applied Genetics* **97**, 147-153 (1998).

1348 128. Fowler, D.B. Cold acclimation threshold induction temperatures in cereals. *Crop Science*
1349 **48**, 1147-1154 (2008).

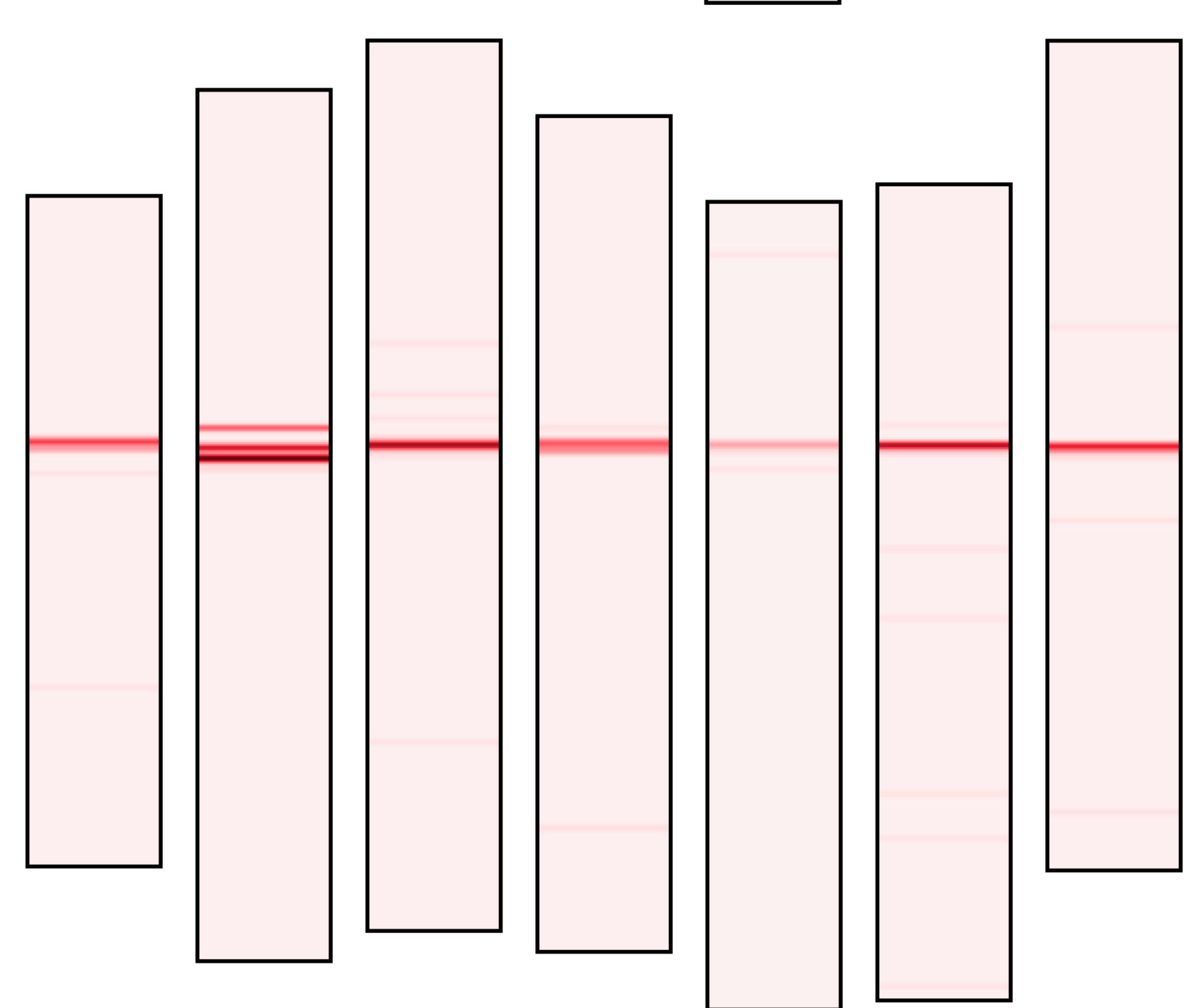
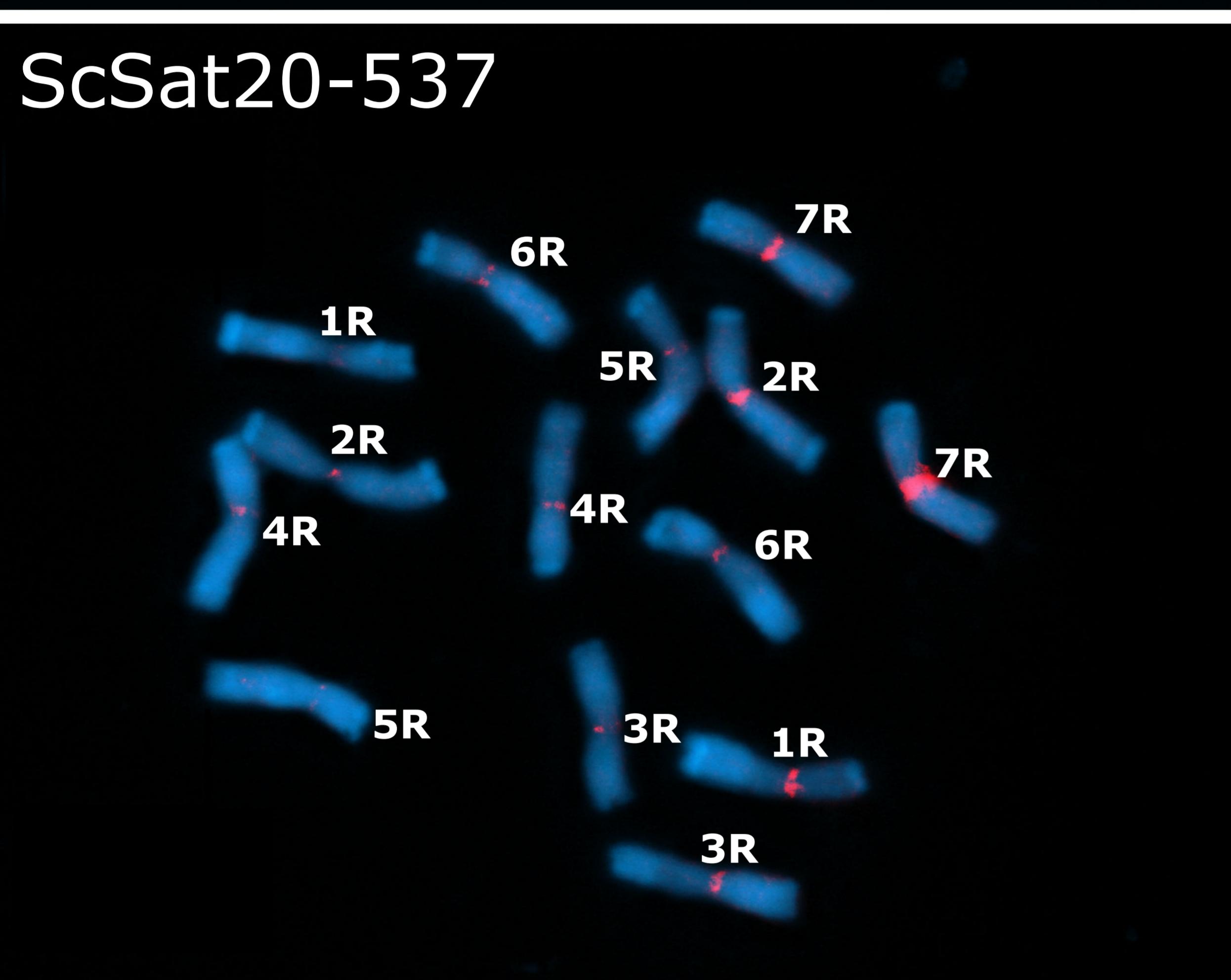
1350 129. Zhang, M. et al. Preparation of megabase-sized DNA from a variety of organisms using
1351 the nuclei method for advanced genomics research. *Nature Protocols* **7**, 467 (2012).

1352 130. Abyzov, A., Urban, A.E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover,
1353 genotype, and characterize typical and atypical CNVs from family and population
1354 genome sequencing. *Genome research* **21**, 974-984 (2011).

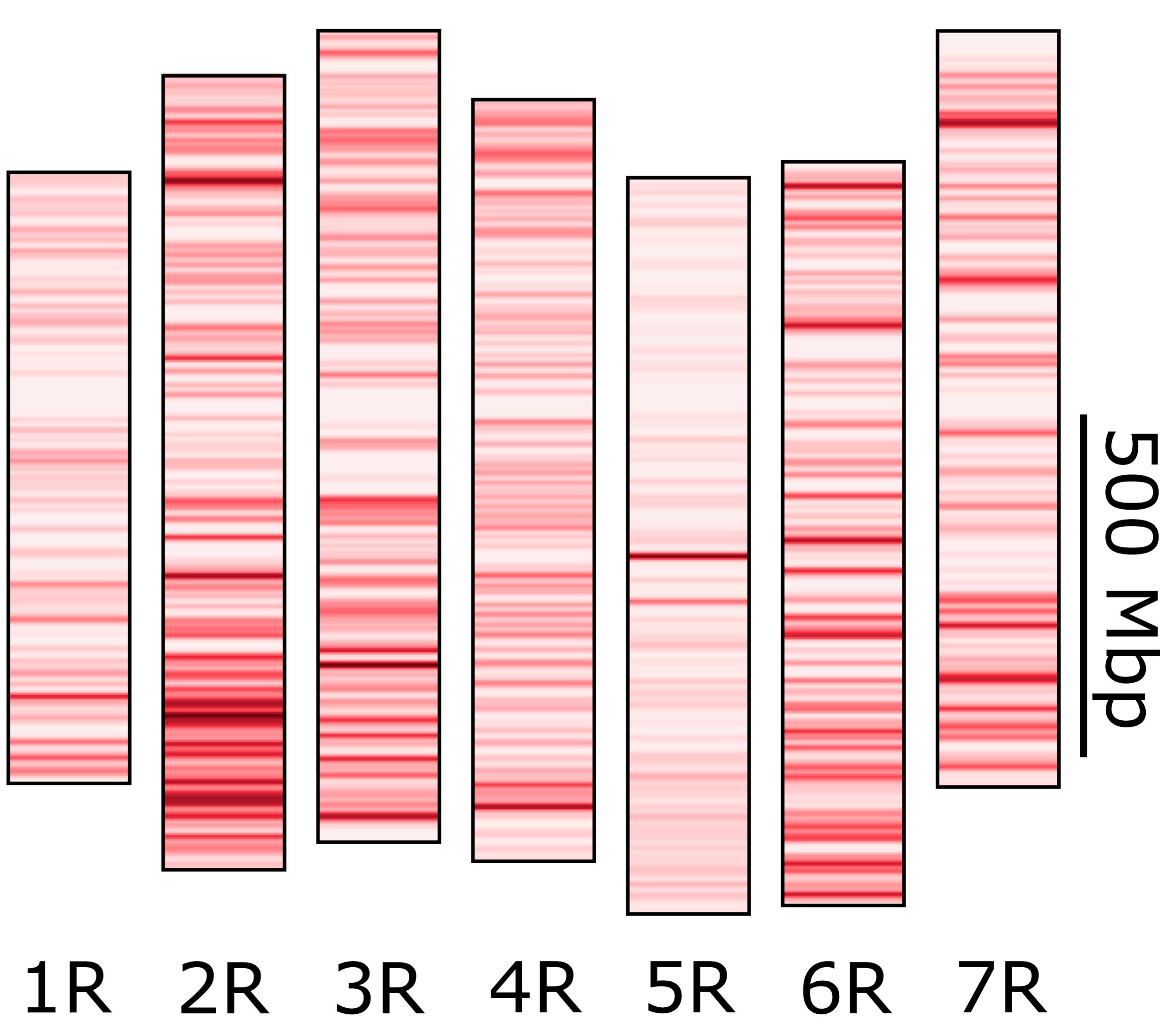
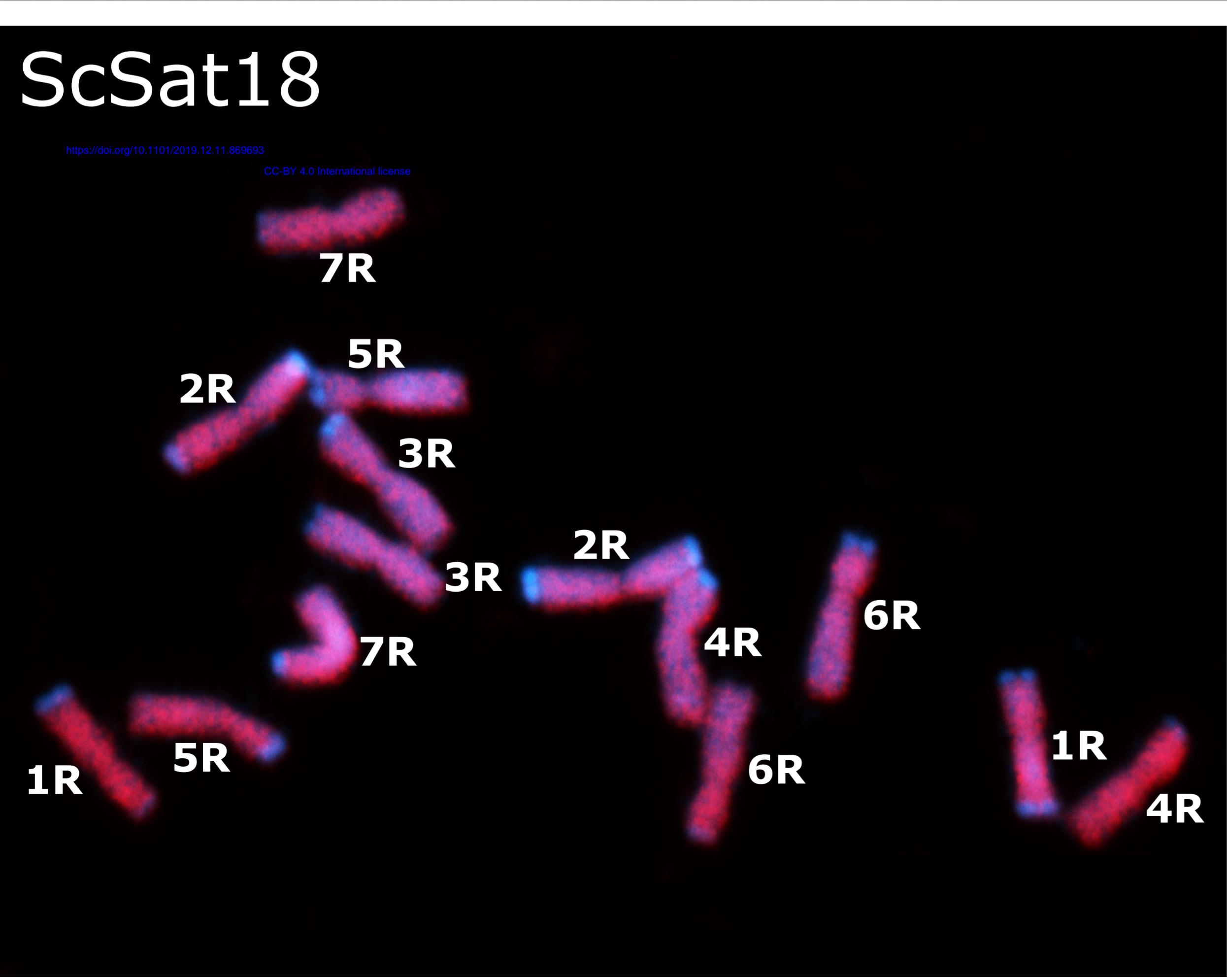
1355 131. Klambauer, G. et al. cn. MOPS: mixture of Poissons for discovering copy number
1356 variations in next-generation sequencing data with a low false discovery rate. *Nucleic
1357 acids research* **40**, e69-e69 (2012).

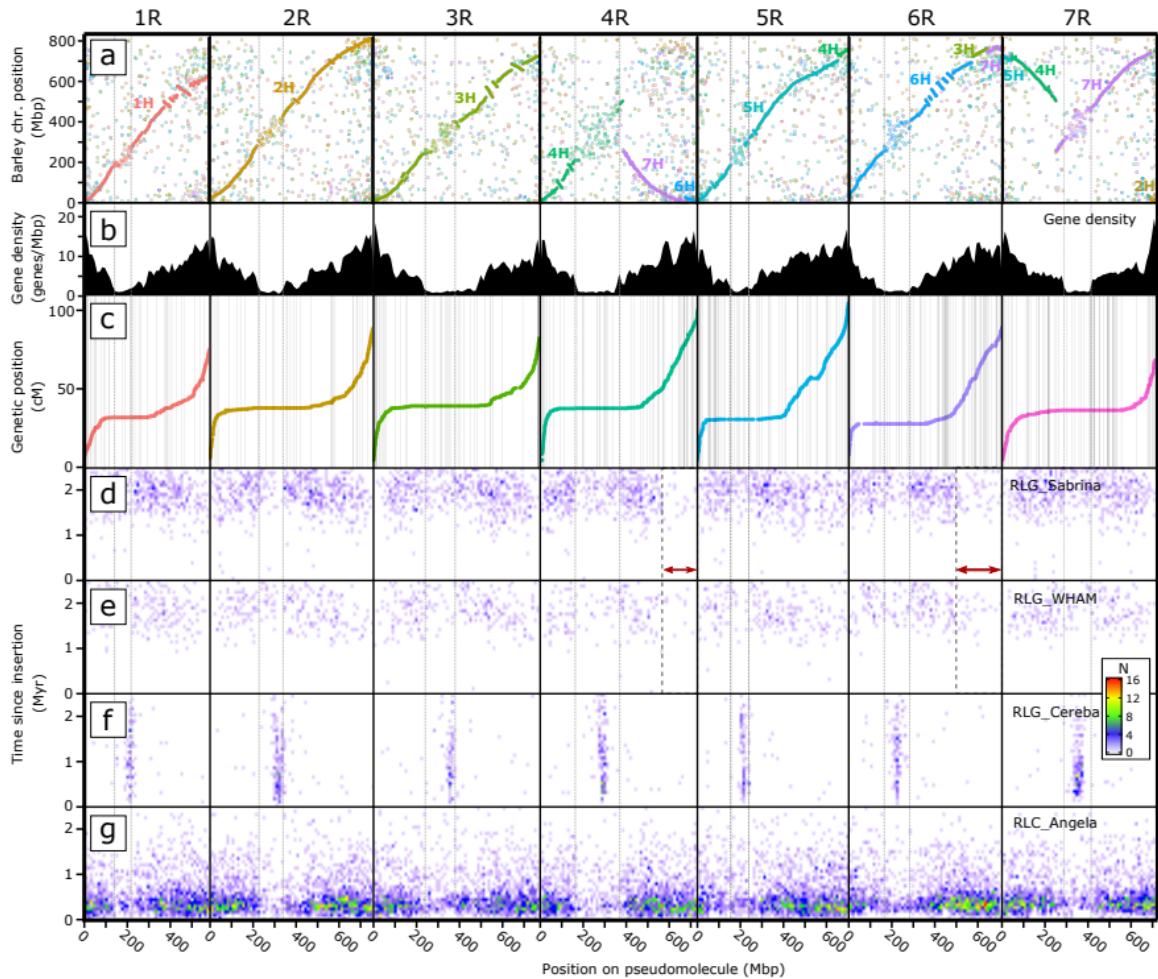


1358 132. Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1359 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).

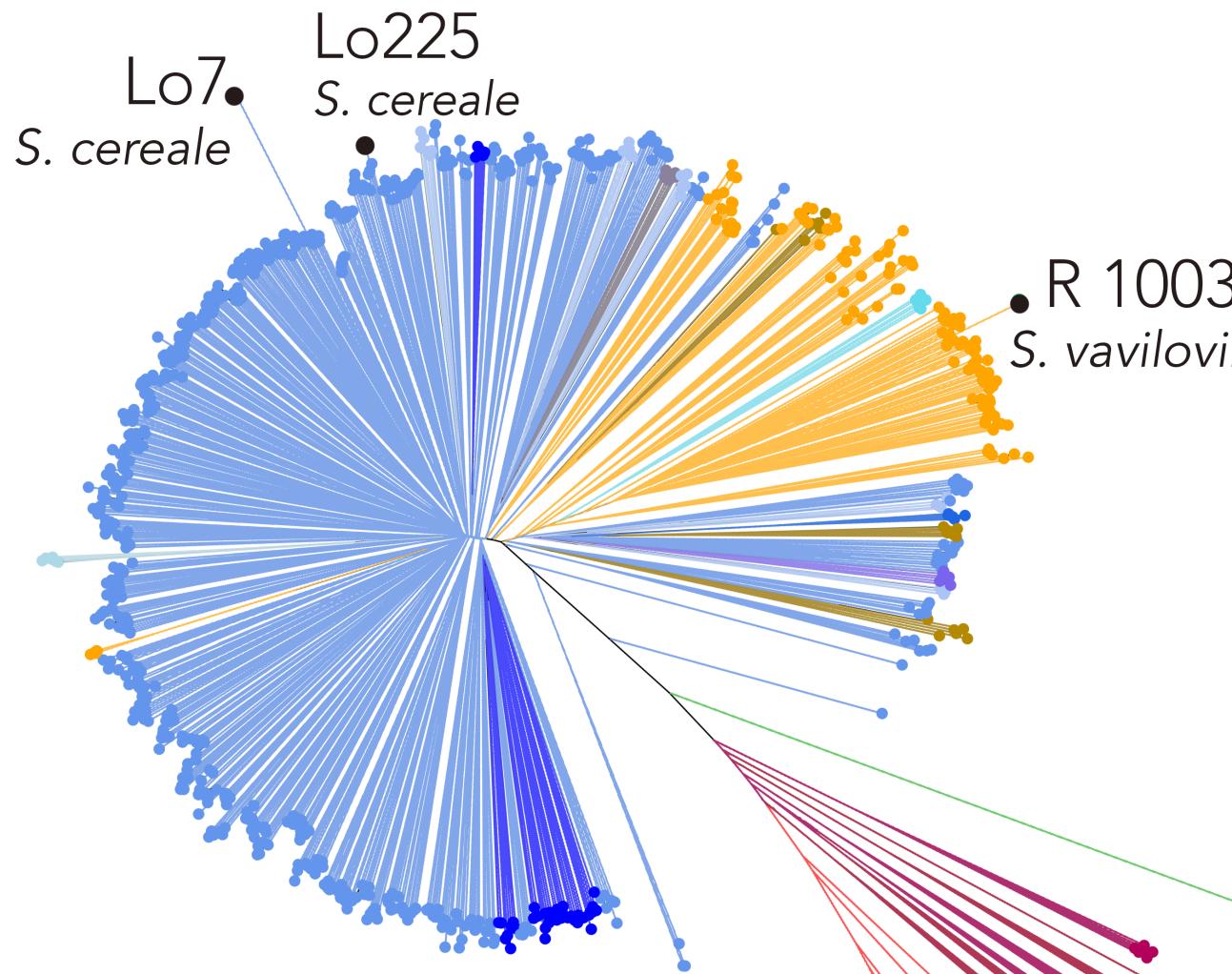
1360 133. Anders, S., Pyl, P.T. & Huber, W. HTSeq—a Python framework to work with high-
1361 throughput sequencing data. *Bioinformatics* **31**, 166-169 (2015).



1362 134. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
1363 for RNA-seq data with DESeq2. *Genome biology* **15**, 550 (2014).

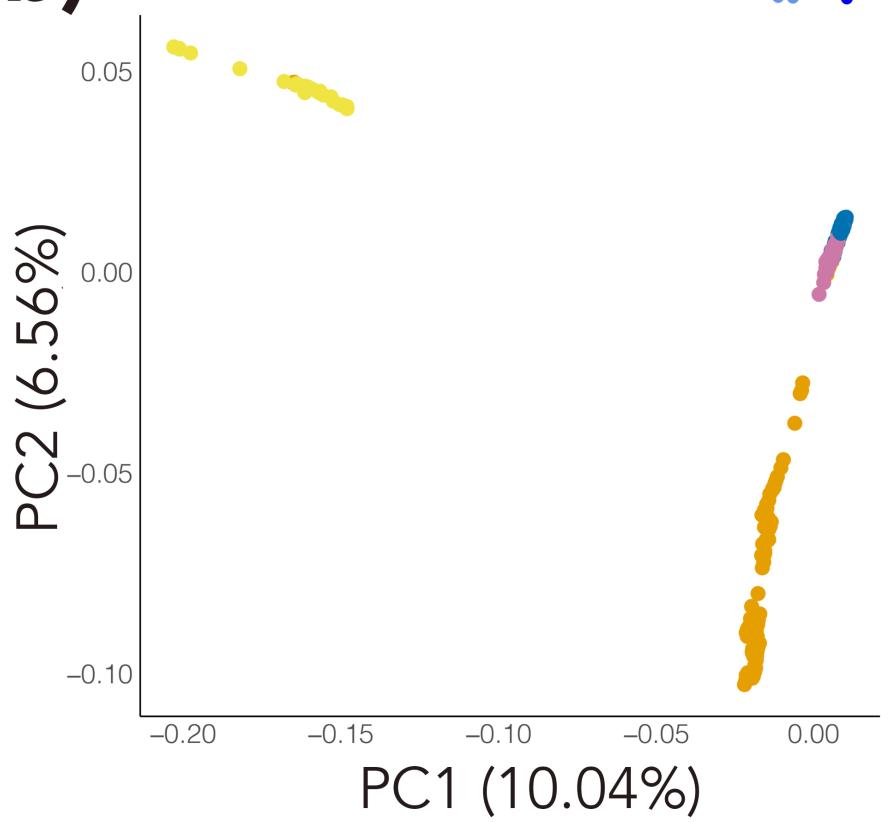
1364

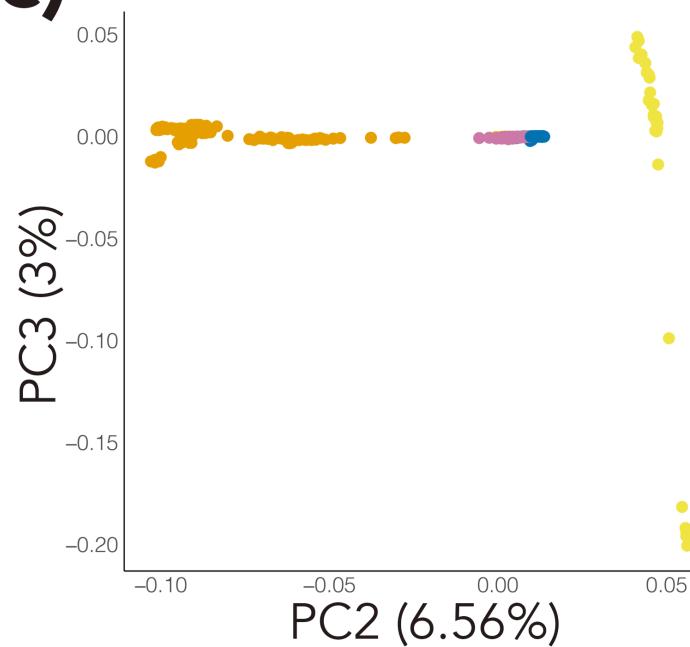
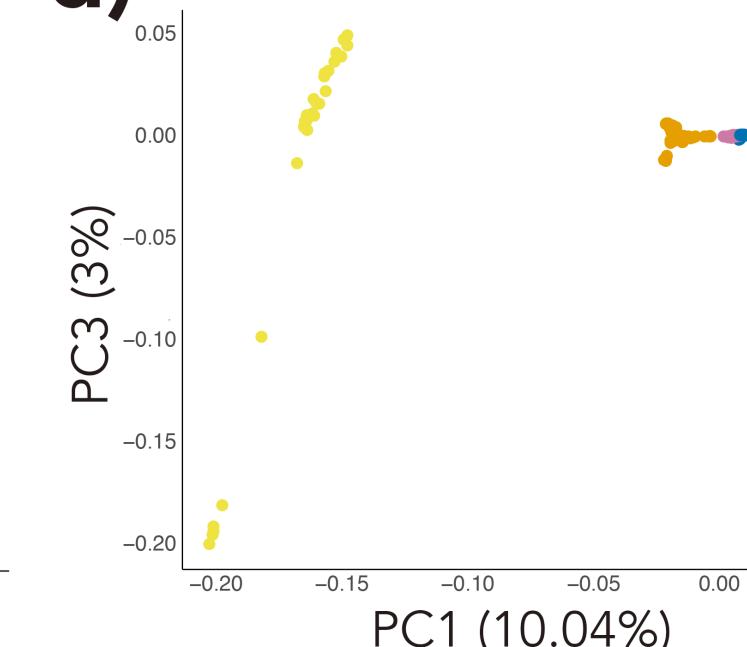


ScSat44

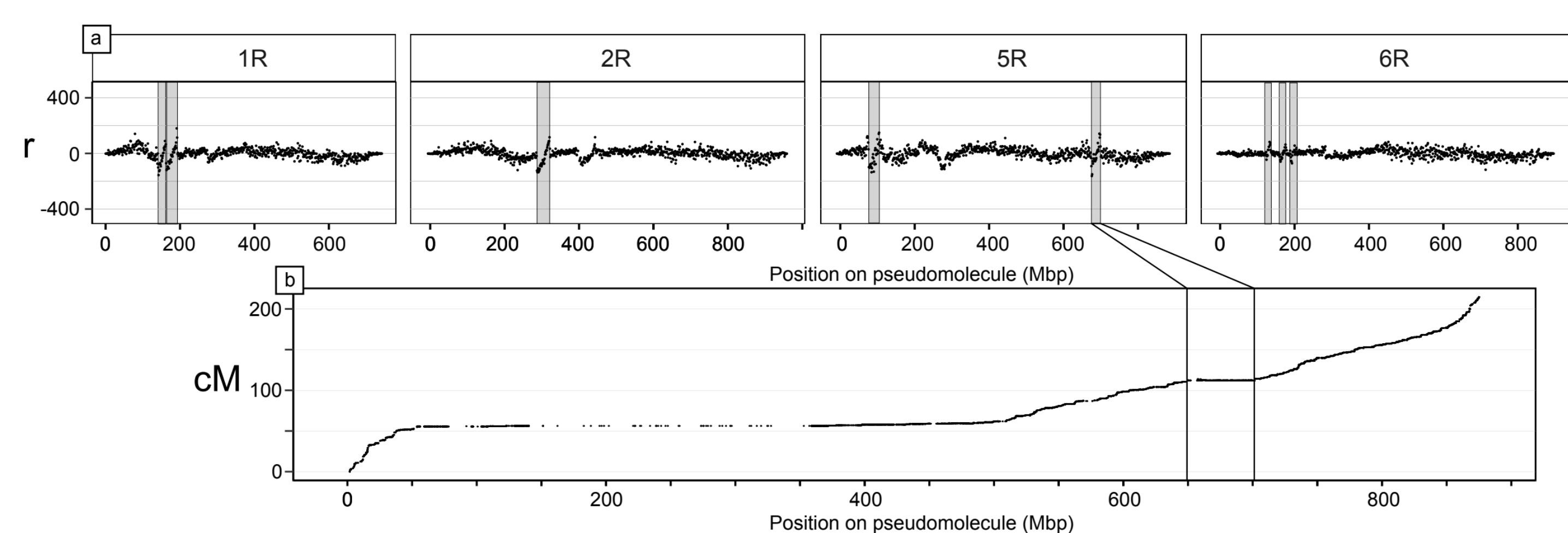

ScSat20-537

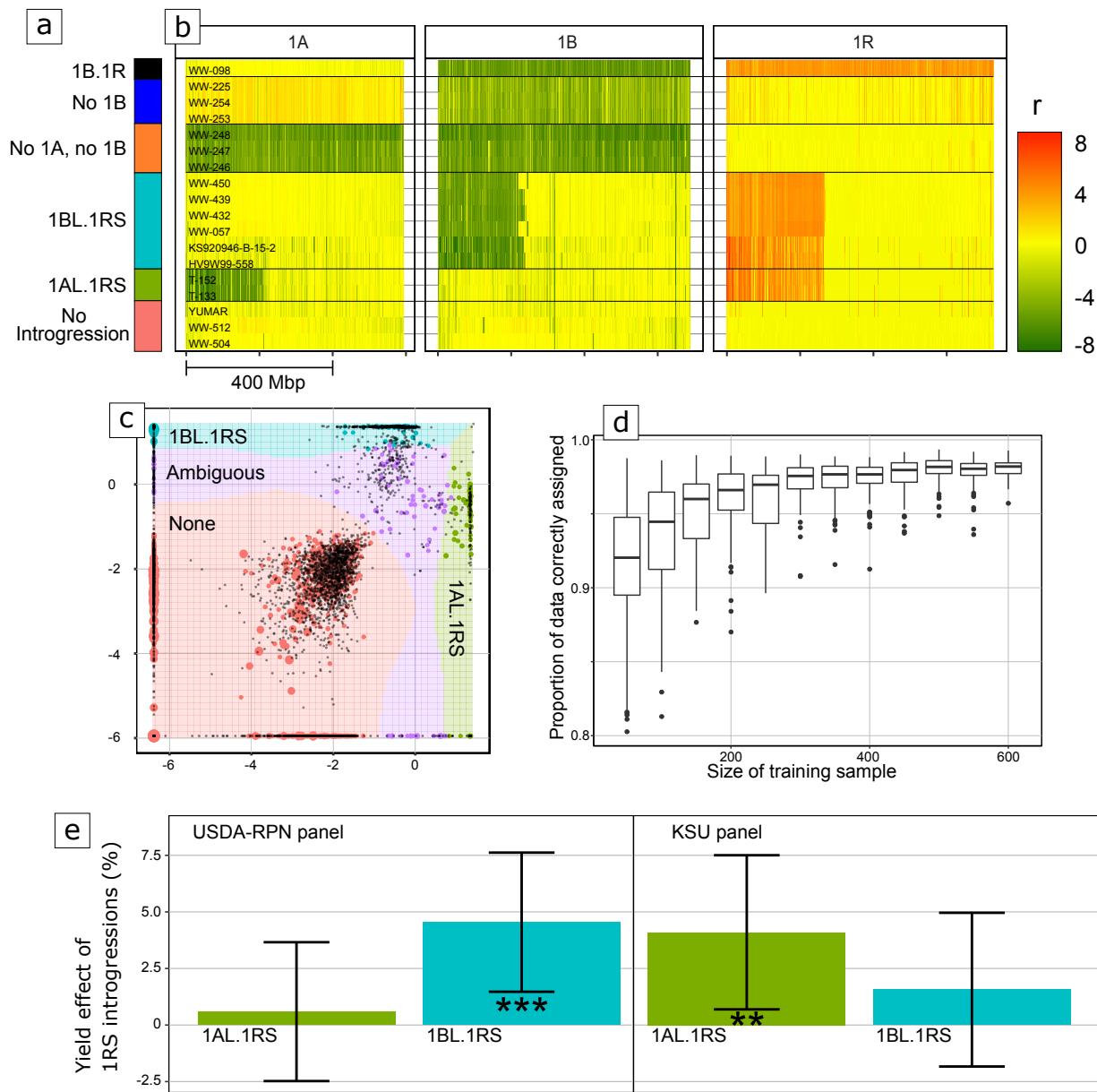


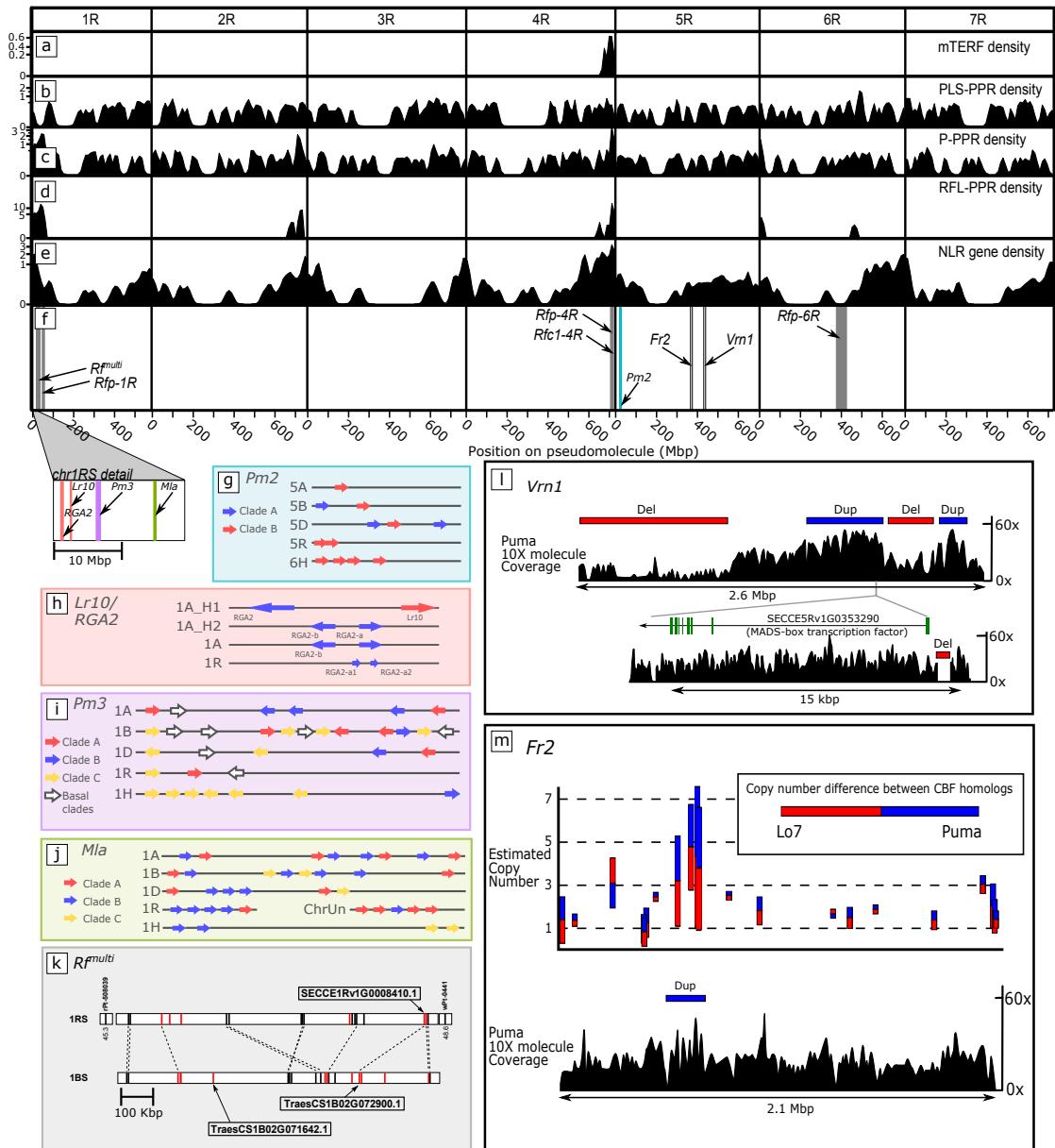
ScSat18


10 μ m



a)

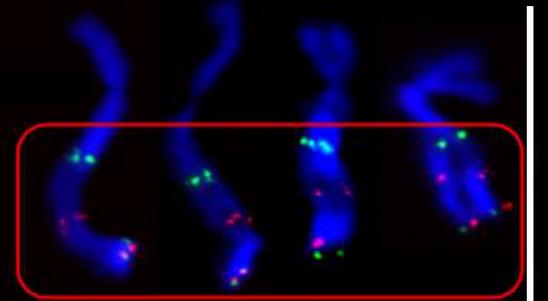

bioRxiv preprint doi: <https://doi.org/10.1101/12.11.869693>; this version posted December 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


- *S. vavilovii*
- *S. vavilovii x cereale*
- *S. cereale x vavilovii*
- *S. cereale*
- *S. cereale subsp. rigidum*
- *S. x derzhavinii*
- *S. cereale subsp. dighoricum*
- *S. cereale subsp. segetale*
- *S. cereale subsp. afghanicum*
- *S. cereale subsp. ancestrale*
- *S. strictum subsp. kuprianovii*
- *S. strictum subsp. anatolicum*
- *S. strictum*
- *S. strictum subsp. africanum*
- *S. sylvestre*


b)

- *S. cereale*
- *S. strictum*
- *S. sylvestre*
- *S. vavilovii*

c)**d)**



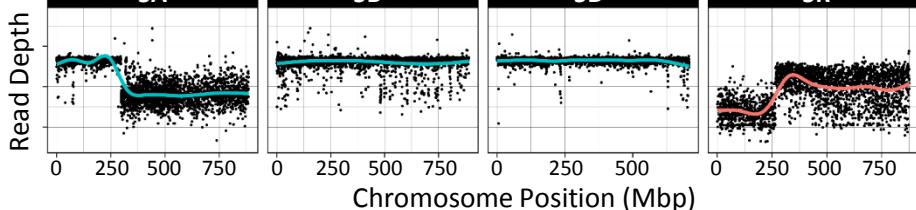
a

NorstarPuma5A:5R
Translocation

pSc119.2
GAA

Norstar 5A

GAA
Afa repeat


C

Puma — Norstar5A:5R —

b

Wheat

Rye

