

1 **TITLE**

2 No consistent evidence for microbiota in murine placental and fetal tissues

3

4 **RUNNING TITLE**

5 Murine placental and fetal tissues lack microbiota

6

7 **AUTHORS**

8 Kevin R. Theis^{1,2#}, Roberto Romero^{2-7,#}, Jonathan M. Greenberg¹, Andrew D. Winters^{1,2}, Valeria

9 Garcia-Flores^{2,8}, Kenichiro Motomura^{2,8}, Madison M. Ahmad¹, Jose Galaz^{2,8,9}, Marcia Arenas-

10 Hernandez^{2,8}, Nardhy Gomez-Lopez^{1,2,8,10,#}

11

12 ¹ Department of Biochemistry, Microbiology and Immunology, Wayne State University School of
13 Medicine, Detroit, MI, USA

14 ² Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of
15 Intramural Research, *Eunice Kennedy Shriver* National Institute of Child Health and Human
16 Development, National Institutes of Health, U.S. Department of Health and Human Services.
17 Bethesda, MD and Detroit, MI

18 ³ Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA

19 ⁴ Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI,
20 USA

21 ⁵ Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA

22 ⁶ Detroit Medical Center, Detroit, MI, USA

23 ⁷ Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA

24 ⁸ Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit,
25 MI, USA

26 ⁹ Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica
27 de Chile, Santiago, Chile

28 ¹⁰ Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan,
29 USA

30

31 **CORRESPONDING AUTHOR(S)**

32 # Kevin R. Theis (ktheis@med.wayne.edu)

33 # Roberto Romero (prbchiefstaff@med.wayne.edu)

34 # Nardhy Gomez-Lopez (ngomezlo@med.wayne.edu)

35

36 **FUNDING**

37 This research was supported, in part, by the Perinatology Research Branch, Division of Obstetrics
38 and Maternal-Fetal Medicine, Division of Intramural Research, *Eunice Kennedy Shriver* National
39 Institute of Child Health and Human Development, National Institutes of Health, U.S. Department
40 of Health and Human Services (NICHD/NIH/DHHS); and, in part, with Federal funds from
41 NICHD/NIH/DHHS under Contract No. HHSN275201300006C.

42 Dr. Romero has contributed to this work as part of his official duties as an employee of the United
43 States Federal Government.

44

45 **WORD COUNT OF ABSTRACT: 250**

46 **WORD COUNT OF TEXT: 3926 (excluding Materials and Methods)**

47 **ABSTRACT**

48 The existence of a placental microbiota and *in utero* colonization of the fetus has been the subject
49 of recent debate. The objective of this study was to determine whether the placental and fetal
50 tissues of mice harbor bacterial communities. Bacterial profiles of the placenta and fetal brain,
51 lung, liver, and intestine were characterized through culture, qPCR, and 16S rRNA gene
52 sequencing. These profiles were compared to those of the maternal mouth, lung, liver, uterus,
53 cervix, vagina, and intestine, as well as to background technical controls. Positive bacterial cultures
54 from placental and fetal tissues were rare; of the 165 total bacterial cultures of placental tissues
55 from the 11 mice included in this study, only nine yielded at least a single colony, and five of those
56 nine positive cultures came from a single mouse. Cultures of fetal intestinal tissues yielded just a
57 single bacterial isolate: *Staphylococcus hominis*, a common skin bacterium. Bacterial loads of
58 placental and fetal brain, lung, liver, and intestinal tissues were not higher than those of DNA
59 contamination controls and did not yield substantive 16S rRNA gene sequencing libraries. From
60 all placental or fetal tissues (N = 49), there was only a single bacterial isolate that came from a
61 fetal brain sample having a bacterial load higher than that of contamination controls and that was
62 identified in sequence-based surveys of at least one of its corresponding maternal samples.
63 Therefore, using multiple modes of microbiologic inquiry, there was not consistent evidence of
64 bacterial communities in the placental and fetal tissues of mice.

65

66 **IMPORTANCE**

67 The prevailing paradigm in obstetrics has been the sterile womb hypothesis, which posits that
68 fetuses are first colonized by microorganisms during the delivery process. However, some are now
69 suggesting that fetuses are consistently colonized by microorganisms *in utero* by microbial

70 communities that inhabit the placenta and intra-amniotic environment. Given the established
71 causal role of microbial invasion of the amniotic cavity (i.e. intra-amniotic infection) in pregnancy
72 complications, especially preterm birth, if the *in utero* colonization hypothesis were true, there are
73 several aspects of current understanding that will need to be reconsidered including the magnitude
74 of intra-amniotic microbial load required to cause disease and their potential influence on the
75 ontogeny of the immune system. However, acceptance of the *in utero* colonization hypothesis is
76 premature. Herein, we do not find consistent evidence for placental and fetal microbiota in mice
77 using culture, qPCR, and DNA sequencing.

78

79 **Key words**

80 Microbiome, low microbial biomass sample, pregnancy, *in utero* colonization, mouse model

81 **INTRODUCTION**

82 The existence of resident microbial communities in the placenta (1-30) and potentially of
83 *in utero* microbial colonization of the fetus (6, 22, 24, 31-33) have been the subject of recent
84 debate. A few studies of the human placenta have reported the consistent detection of bacteria
85 through microscopy (20, 34, 35) or culture (6). However, many recent studies detecting the
86 presence of bacteria in the placenta, and thus proposing the existence of a placental microbiota,
87 have done so using DNA sequencing techniques (1-5, 8-12, 15).

88 A principal caveat of these studies has been that the detected bacteria may reflect
89 background DNA contamination from DNA extraction kits and PCR reagents rather than resident
90 bacterial communities within the placenta (7, 14, 17, 21, 25). Another critique has been that even
91 if the detected molecular signals of bacteria in the placenta are not background DNA contaminants,
92 they may nevertheless reflect bacterial products circulating in the maternal blood rather than viable
93 bacterial communities inhabiting the placenta (36). This is important because the detection of
94 microbial DNA is not the same as the identification of a viable microorganism, and fetal exposure
95 to microbial products (37), including DNA (38-40), is not commensurate with *in utero* microbial
96 colonization of the fetus (24).

97 To establish the existence of resident bacterial communities in placental or fetal tissues
98 would require: 1) the identification of bacterial DNA in placental or fetal tissues that is distinct
99 from bacterial DNA detected in technical controls (e.g. DNA extraction kits, PCR reagents,
100 laboratory environments), 2) confirmation that the bacterial load of placental or fetal tissues
101 exceeds that of technical controls through quantitative real-time PCR (qPCR), 3) visualization of
102 bacteria in placental or fetal tissues using microscopy, 4) demonstration of the viability of bacteria
103 in these tissues through culture, and 5) ecological plausibility (i.e. the detected bacteria could

104 survive and reproduce in these tissues) (21, 25). To date, these criteria have not been met in any
105 one study, and affirmative conclusions about the existence of a placental microbiota and *in utero*
106 microbial colonization of the fetus are premature.

107 While much of the debate regarding the existence of resident microbial communities in the
108 placenta and of *in utero* microbial colonization of the fetus has focused on humans, a few studies
109 have been conducted on mammalian animal models as well. Specifically, studies of the placental
110 and fetal tissues of rats and mice (22, 33, 40), and preliminary studies of the placental and fetal
111 tissues of rhesus macaques (41-45), have suggested that these tissues harbor bacterial
112 communities. The benefit of using animal models to investigate the existence of *in utero*
113 microbiota is that you can surgically obtain placental and fetal tissues prior to the onset of labor –
114 if the fetal tissues are populated by viable bacterial communities, then bacterial colonization of the
115 fetus had to occur *in utero*.

116 The objective of the current study was to determine whether the placental and fetal tissues
117 of mice harbor bacterial communities using bacterial culture, qPCR, and 16S rRNA gene
118 sequencing and by comparing the bacterial profiles of these tissues to those of maternal tissues and
119 background technical controls.

120 **MATERIALS AND METHODS**

121 **Study subjects and sample collection**

122 C57BL/6 mice were purchased from The Jackson Laboratory in Bar Harbor, ME, USA,
123 and bred in the animal care facility at C.S. Mott Center for Human Growth and Development at
124 Wayne State University, Detroit, MI. Eleven pregnant mice were euthanized at 17.5 days of
125 gestation. The dam's chest and abdomen were shaved, 70% alcohol was applied, and the dam was
126 placed on a surgical platform within a biological safety cabinet. Study personnel donned sterile
127 surgical gowns, masks, full hoods, and powder-free exam gloves during sample collection. Sterile
128 disposable scissors and forceps were used throughout, and new scissors and forceps were used for
129 each organ that was sampled.

130 The oral cavity and vagina were swabbed with Dacron (Medical Packaging Corp.,
131 Camarillo, CA) and ESwabs (BD Diagnostics, Sparks, MD) for molecular microbiology and
132 bacterial culture, respectively. For the abdomen, a Dacron swab was collected, iodine was applied
133 and, after the iodine dried, an ESwab was collected. A midline incision was made along the full
134 length of the abdomen. The peritoneum was sampled with a Dacron swab. The uterine horns were
135 separated from the cervix and placed within a sterile Petri dish, wherein they were immediately
136 processed by a different investigator within the biological safety cabinet. Uterine horns were
137 dissected and fetuses (the fetus inside the amniotic sac attached to the placenta) were placed in
138 individual Petri dishes. Uterine tissues were collected for both molecular microbiology and
139 bacterial culture. Two fetuses from each dam were selected for analysis; tissues from one were
140 used for molecular microbiology and tissues from the other for bacterial culture. From each fetus,
141 the placenta, lung, liver, intestine, and brain were collected (molecular microbiology was
142 performed on fetal brain samples from all 11 mice, i.e. mice A-K; bacterial culture was completed

143 on fetal brain samples from mice E-K). The fetal spleen and tail were also collected for molecular
144 microbiology.

145 Next, the maternal cervix, liver, and lung were sectioned and one sample of each was
146 placed into a sterile 1.5 ml microcentrifuge tube and an anaerobic transport medium tube
147 (Anaerobe Systems, Morgan Hill, CA) for molecular microbiology and bacterial culture,
148 respectively. Lastly, after all placental and fetal tissues were sampled and stored, the maternal
149 heart and the maternal proximal and distal large intestine were collected for molecular
150 microbiology, and the maternal middle intestine was collected for bacterial culture. Procedures
151 were approved by the Institutional Animal Care and Use Committee at Wayne State University
152 (Protocol 18-03-0584).

153

154 **Bacterial culture**

155 ESwabs and tissues collected for bacterial culture were placed within a COY Laboratory
156 Products (Grass Lake, MI) hypoxic growth chamber (5% CO₂, 5% O₂) and processed in the
157 following order: placenta, fetal liver, fetal lung, fetal brain, fetal intestine, maternal uterus,
158 maternal liver, maternal lung, maternal cervix, maternal skin post-sterilization, maternal vagina,
159 maternal oral cavity, and the maternal mid-intestine. While processing samples for bacterial
160 culture within the chamber, study personnel wore sterile sleeve protectors (Kimtech pure A5;
161 36077; Kimberly Clark, Irving, TX), nitrile exam gloves, and sterile nitrile gloves (52102;
162 Kimberly Clark) over the top of the nitrile exam gloves.

163 Tissues were removed from the anaerobic transport medium tubes using a sterile disposable
164 inoculating loop (10 µl; Fisher Scientific, Hampton, NH), placed into a sterilized Wheaton dounce
165 reservoir (2 ml or 5 ml; DWK Life Sciences, Millville, NJ) containing 1 ml of sterile phosphate-

166 buffered saline (PBS; Gibco, Fisher Scientific), and homogenized for 1 minute. Tissue
167 homogenates were transferred to a 5 ml centrifuge tube containing an additional 1.5 ml of sterile
168 PBS. For mice E-K, maternal lung and maternal mid-intestine tissues were homogenized in sterile
169 5 ml centrifuge tubes using 0.5 ml sterile PBS and a sterile disposable scalpel (Surgical Design,
170 Lorton, VA).

171 Tissue homogenates and ESwab buffer solutions were plated on blood agar (TSA with 5%
172 sheep blood) and chocolate agar, and incubated at 37° C under oxic, hypoxic (5% CO₂, 5% O₂),
173 and anoxic (5% CO₂, 10% H, 85% N) atmospheres. All samples were additionally plated on
174 MacConkey agar, and also added to SP4 broth with urea and SP4 broth with arginine, and
175 incubated at 37° C under an oxic atmosphere. All samples were cultured in duplicate under all
176 growth conditions (media type x atmosphere) and were incubated for seven days. There was
177 ultimately no growth of *Ureaplasma* or *Mycoplasma* spp. from maternal, placental, or fetal
178 samples in SP4 broth, or of bacteria in general from placental and fetal samples on MacConkey
179 agar. Therefore, data from these growth media (i.e. SP4 urea, SP4 arginine, MacConkey) are not
180 included in the Results section.

181 During the processing of each mouse's samples for culture, three chocolate agar plates
182 were left open in the hypoxic chamber to serve as negative controls – they were subsequently
183 incubated for seven days under oxic, hypoxic, and anoxic conditions. Additionally, for each
184 mouse, the PBS stock used for tissue homogenization was plated on blood agar, chocolate agar
185 and MacConkey agar, and was further added to SP4 broths containing urea and arginine. The PBS-
186 control blood agar and chocolate agar plates were incubated under oxic, hypoxic, and anoxic
187 conditions, and the MacConkey agar plates and SP4 broths were incubated under oxic conditions.
188 These negative controls were incubated for seven days.

189 Distinct bacterial isolates (i.e. colonies) recovered from negative controls and placental or
190 fetal tissues were streaked for purity and taxonomically identified based upon their 16S rRNA
191 gene sequence identity, as determined through Sanger sequencing (see details below). In one
192 instance, there was contiguous growth of bacterial isolates on a plate for a single placental sample
193 (that of Mouse J); the isolates all had the same morphotype, so a representative isolate was streaked
194 for purity and taxonomically identified through Sanger sequencing.

195 The negative control plates yielded five total bacterial isolates over the course of the
196 experiment. Four were successfully sequenced: two were identified as *Cutibacterium acnes* and
197 two as *Staphylococcus hominis*. If a specific bacterium was cultured on a technical control plate
198 on the day a mouse's samples were processed as well as on a placental or fetal sample plate for
199 that mouse (i.e. there was a 100% 16S rRNA gene sequence match between the bacterial isolates
200 recovered on the two plates), that bacterium was not included in analyses. Overall, this included
201 11 bacterial isolates for three mice (D, J & K). Of these 11 isolates, four were *Cutibacterium acnes*
202 and seven were *Staphylococcus hominis*. If a specific bacterium was cultured on a mouse's
203 placental or fetal sample plate as well as on a technical control plate from another sample
204 processing day, but not on a control plate from that mouse's sampling day, the bacterium was
205 included in analyses.

206 For maternal cervix, uterus, and liver samples, the unique isolate morphotypes on each
207 plate were streaked for purity and taxonomically identified through Sanger sequencing of the 16S
208 rRNA gene. Samples of the maternal oral cavity, lung, vagina, and intestine often yielded bacterial
209 isolates with contiguous growth. Therefore, the taxonomic identities of the bacteria cultured from
210 these samples were determined through plate wash PCR (46) followed by 16S rRNA gene
211 sequencing (see details below).

212 During each week of the experiment, blood, chocolate, and MacConkey agar plates were
213 inoculated with *Eikenella corrodens*, *Enterococcus faecalis*, *Escherichia coli*, *Klebsiella*
214 *pneumoniae*, *Staphylococcus aureus*, and *Streptococcus agalactiae*, and cultured under oxic,
215 hypoxic, and anoxic conditions. SP4 broths with urea or arginine were inoculated with *Ureaplasma*
216 *urealyticum* and *Mycoplasma hominis*, respectively. Each of these cultures was positive over the
217 course of the experiment (MacConkey agar was positive for *Escherichia coli* throughout).

218

219 **Taxonomic identification of individual bacterial isolates**

220 After being streaked for purity, bacterial isolates from placental, fetal, and maternal uterine,
221 cervical, and liver samples were stored in nuclease-free water and frozen at -20° C until colony
222 PCR targeting the 16S rRNA gene was performed. The 16S rRNA gene of each isolate was first
223 amplified using the 27F/1492R primer set and then bi-directionally Sanger sequenced through
224 GENEWIZ (South Plainfield, NJ) using the 515F/806R primer set, which targets the V4
225 hypervariable region of the 16S rRNA gene. Forward and reverse reads were trimmed using DNA
226 Baser software (<http://www.dnabaser.com/>) with default settings, and assembled using the CAP
227 (contig assembly program) of BioEdit software (v7.0.5.3), also with default settings. The
228 taxonomic identities of individual bacterial isolates were determined using the Basic Local
229 Alignment Search Tool (BLAST) (47). 16S rRNA gene sequence similarities between isolates and
230 their top match on BLAST were $\geq 99.5\%$, unless otherwise noted (**Table 1; Table 2**).

231

232 **DNA extraction from plate washes of cultured bacteria**

233 Plate wash was performed by pipetting 1-2 ml of PBS onto the agar plate and dislodging
234 bacterial colonies with either sterile L-shaped spreaders or inoculating loops. The PBS wash was

235 then transferred into cryovials and stored at -80°C until DNA was extracted. DNA was extracted
236 from plate wash samples using Qiagen DNeasy PowerSoil (Germantown, MD) extraction kits.
237 Washes from maternal samples that yielded growth under multiple atmospheres for the same media
238 type were pooled prior to the extraction process. Purified DNA was stored at -20° C.

239

240 **16S rRNA gene sequencing of plate wash extracts**

241 The 16S rRNA genes in plate wash extracts were sequenced at Wayne State University on
242 an Illumina MiSeq system using a 2 X 250 cycle V2 kit, and following Illumina sequencing
243 protocols (48). The 515F/806R primer set was used to target the V4 region of the 16S rRNA gene.
244 The 16S rRNA gene sequences from the paired fastq files for these samples were processed as
245 previously described (21).

246

247 **DNA extraction from swab and tissue samples**

248 All Dacron swab and tissue samples collected for molecular microbiology were stored at -
249 80° C until DNA extractions were performed. DNA extractions were performed in a biological
250 safety cabinet by study personnel donning sterile surgical gowns, masks, full hoods, and powder-
251 free exam gloves. Extractions of tissues generally included 0.015 – 0.100 grams of tissue, except
252 for the fetal tail and spleen, whose masses were very low.

253 DNA was extracted from swabs, tissues, and background technical controls (i.e. sterile
254 Dacron swabs (N = 11) and blank DNA extraction kits (N = 23)) using the DNeasy PowerLyzer
255 PowerSoil Kit (Qiagen, Germantown, MD) with minor modifications to the manufacturer's
256 protocol. Specifically, 400 µl of bead solution, 200 µl of phenol:chloroform:isoamyl alcohol (pH
257 7–8), and 60 µl of Solution C1 were added to the supplied bead tube. Cells within samples were

258 lysed by mechanical disruption for 30 seconds using a bead beater. After centrifugation, the
259 supernatants were transferred to new tubes, and 100 µl of solution C2, 100 µl of solution C3, and
260 one µl of RNase A enzyme were added, and tubes were incubated at 4° C for five minutes. After
261 centrifugation, the supernatants were transferred to new tubes that contained 650 µl of solution
262 C4 and 650 µl of 100% ethanol. The lysates were loaded onto filter columns, centrifuged for one
263 minute, and the flow-through was discarded. This step was repeated until all sample lysates were
264 spun through the filter columns. Five hundred µl of solution C5 were added to the filter columns,
265 centrifuged for one minute, the flow-through was discarded, and the tube was centrifuged for an
266 additional three minutes as a dry-spin. Finally, 60 µl of solution C6 were placed on the filter
267 column and incubated for five minutes before centrifuging for 30 seconds to elute the extracted
268 DNA. Purified DNA was stored at -20° C.

269 Purified DNA was quantified using a Qubit 3.0 fluorometer with a Qubit dsDNA BR
270 Assay kit (Life Technologies, Carlsbad, CA), according to the manufacturer's protocol. All
271 purified DNA samples were then normalized to 80 ng/µl (when possible) by diluting each
272 sample with the Qiagen elution buffer (Solution C6).

273

274 **16S rRNA gene quantitative real-time PCR (qPCR)**

275 A preliminary test was performed to investigate whether DNA amplification inhibition
276 existed among the different sample types. For this test, 4.7 µl of purified *Escherichia coli* ATCC
277 25922 (GenBank accession: CP009072) genomic DNA (0.005 ng/µl) containing seven 16S
278 rDNA copies per genome was spiked into 7.0 µl of purified DNA from mouse samples that were
279 serially diluted with Solution C6 by a factor of 1:3 (i.e. 1:0, 1:3, 1:9). For tissue sample types
280 with a mean DNA concentration above 250 ng/µl, DNA concentrations were normalized to 80

281 ng/μl by dilution with Solution C6 before being serially diluted and spiked with *E. coli* genomic
282 DNA. Genomic DNA was quantified using a Qubit 3.0 fluorometer with a Qubit dsDNA HS
283 Assay kit (Life Technologies, Carlsbad, CA) according to the manufacturer's protocol. Three μl
284 of each spiked sample were then used as a template for qPCR. For all samples, spiked reactions
285 contained approximately 1.0×10^3 *E. coli* 16S rDNA copies. There was no evidence of DNA
286 amplification inhibition (**Supplemental Figure 1A, B**).

287 Total bacterial DNA abundance within samples was measured via amplification of the V1
288 - V2 region of the 16S rRNA gene according to the protocol of Dickson et al (49) with minor
289 modifications. These modifications included the use of a degenerative forward primer (27f-CM:
290 5'-AGA GTT TGA TCM TGG CTC AG-3') (50) and a degenerate probe containing locked
291 nucleic acids (+) (BSR65/17: 5'-56FAM-TAA +YA+C ATG +CA+A GT+C GA-BHQ1-3').
292 Each 20 μl reaction contained 0.6 μM of 27f-CM primer, 0.6 μM of 357R primer (5'-CTG CTG
293 CCT YCC GTA G-3'), 0.25 μM of BSR65/17 probe, 10.0 μl of 2X TaqMan Environmental
294 Master Mix 2.0 (Life Technologies, Carlsbad, CA), and 3.0 μl of either purified DNA (diluted to
295 80 ng/μl when possible), elution buffer, or nuclease-free water. The total bacterial DNA qPCR
296 was performed using the following conditions: 95° C for 10 min, followed by 45 cycles of 94° C
297 for 30 sec, 50° C for 30 sec, and 72° C for 30 sec. Duplicate reactions were run for all samples.
298 All samples were run across a total of five runs.

299 Raw amplification data were normalized to the ROX passive reference dye and analyzed
300 using the on-line platform Thermo Fisher Cloud: Standard Curve (SR) 3.3.0-SR2-build15 with
301 automatic threshold and baseline settings. Cycle of quantification (Cq) values were calculated for
302 samples based on the mean number of cycles required for normalized fluorescence to
303 exponentially increase.

304 After plotting a regression of $\log(E. coli$ 16S rRNA gene copy number) and Cq value for
305 standard curves included in each qPCR run, 16S rRNA gene copy number in mouse samples was
306 calculated according to Gallup (51) using the equation $X_o = E_{AMP}^{(b-Cq)}$, where E_{AMP} is the
307 exponential amplification value for the qPCR assay, calculated as $E_{AMP} = 10^{(-1/m)}$ and b and m are
308 the intercept and slope of the regression.

309

310 **16S rRNA gene sequencing of swab and tissue sample extracts**

311 Amplification and sequencing of the V4 region of the 16S rRNA gene was performed at
312 the University of Michigan's Center for Microbial Systems as previously described (52), except
313 that library builds were performed in triplicate and pooled for each individual sample prior to the
314 equimolar pooling of all sample libraries for multiplex sequencing. Sample-specific MiSeq run
315 files have been deposited on the NCBI Sequence Read Archive (BioProject ID SUB6641162).

316 Raw sequence reads were processed using mothur software (v1.39.5) (53) following the
317 Standard Operating Procedure provided by Schloss et al. (www.mothur.org/wiki/MiSeq_SOP).
318 Paired-end reads were assembled into contiguous sequences, quality checked (maximum
319 length = 275, maximum ambiguous base pairs = 0, and maximum number of homopolymers = 8),
320 and aligned against the SILVA 16S rDNA reference database (release 102) (54, 55); sequences
321 falling outside the target alignment space were removed. Quality sequences were pre-clustered
322 (diffs = 2) and chimeric sequences were identified with VSEARCH (56) and removed. The
323 remaining sequences were taxonomically classified using the SILVA reference database with a k-
324 nearest neighbor approach and a confidence threshold of 80%. Sequences derived from an
325 unknown domain, Eukaryota, Archaea, chloroplasts, or mitochondria were removed. Operational

326 taxonomic units (OTUs) were defined by clustering sequences at a 97% sequence similarity cutoff
327 using the average neighbor method.

328

329 **Statistical analysis**

330 The bacterial loads, as assessed through qPCR, of maternal, placental and fetal samples
331 were compared to those of background technical controls (i.e. sterile Dacron swabs and blank
332 DNA extraction kits) using t-tests or Mann-Whitney U tests with sequential Bonferroni corrections
333 applied. The bacterial loads of placental and fetal tissues were compared to one another using
334 Wilcoxon matched pairs tests, again corrected for multiple comparisons.

335 The beta diversity of 16S rRNA gene profiles among maternal, placental, fetal and
336 technical control samples were characterized using the Bray-Curtis similarity index. Bray-Curtis
337 similarities in sample profiles were visualized using Principal Coordinates Analysis (PCoA) plots
338 and statistically evaluated using non-parametric multivariate ANOVA (NPMANOVA). These
339 analyses were limited to samples that yielded a 16S rRNA gene library with ≥ 250 quality-filtered
340 sequences and a Good's coverage $\geq 95\%$. All data analysis was completed in PAST software (v
341 3.25) (57). Heat maps of sample bacterial profiles were generated using the open-source software
342 program Morpheus (<https://software.broadinstitute.org/morpheus>).

343

344 **RESULTS**

345 **Bacterial culture from placental and fetal tissues**

346 Growth of bacterial isolates from placental and fetal tissues was rare (**Figure 1A; Figure**
347 **2**). Only 3/11 mice (F, H & J) yielded more than two total bacterial isolates across all their cultured
348 placental and fetal samples under all growth conditions (**Table 1**). Most of the bacterial isolates
349 from placental and fetal samples were *Staphylococcus* spp. (mostly *S. hominis*) (**Figure 1A**).
350 *Staphylococcus* spp. were cultured from the mouth, intestine, and vagina of dams (**Figure 1B**);
351 however, two of the five bacterial isolates recovered from the 114 negative control plates included
352 in this study were also *Staphylococcus*, specifically *S. hominis*. The non-staphylococci bacteria
353 cultured from placental or fetal samples were *Bacillus*, *Corynebacterium*, *Paenibacillus*,
354 *Propionibacterium*, and unclassified bacilli (**Table 1**). These bacteria were rarely, if ever, cultured
355 from maternal samples (**Figure 1A, B**).

356 In general, only one or two placental or fetal sites within a given fetus yielded a bacterial
357 isolate, and there was little consistency among the fetuses in terms of which site yielded an isolate
358 (**Figure 1A; Table 1**). For example, of the 132 blood and chocolate agar plates on which placental
359 tissue homogenates were spread, only nine (6.8%) yielded even a single bacterial isolate, and five
360 of these plates came from a single placental sample (Mouse H) (**Figure 2**). All of the bacterial
361 isolates from Mouse H's placental sample were *Staphylococcus* (either *S. hominis* or *S. epidermidis*
362 / *caprae* / *capitis*). There were no exact matches of the 16S rRNA genes of these isolates within
363 the 16S rRNA gene surveys of placental tissues from Mouse H, nor were there any matches within
364 the 16S rRNA gene surveys of any of the sampled maternal body sites for Mouse H, which
365 included the maternal skin, heart, mouth, lung, liver, proximal intestine, distal intestine,
366 peritoneum, cervix, and vagina (**Table 1**). The placental sample from Mouse J yielded many

367 colonies of *Staphylococcus caprae* on one chocolate agar plate under hypoxic conditions; yet there
368 were no bacterial colonies on the replicate chocolate agar plate incubated under hypoxic
369 conditions, nor on any other plate for this sample (**Figure 2; Table 1**). An exact match of the 16S
370 rRNA gene of this *Staphylococcus caprae* isolate was identified in the 16S rRNA gene survey of
371 placental tissues from Mouse J, as well as in the 16S rRNA gene surveys of the maternal heart,
372 mouth, and proximal intestine samples for Mouse J. However, the bacterial load of the placental
373 sample from Mouse J, as assessed by 16S rRNA gene qPCR, was not high – it was less than the
374 bacterial load of 14/23 (60.9%) DNA extraction kit controls (**Figure 1C**).

375 Of the 132 blood and chocolate agar plates on which fetal intestinal tissue homogenates
376 were spread, only one yielded growth – a single bacterial colony of *Staphylococcus hominis*
377 (**Figure 2**). The 16S rRNA gene of this bacterial isolate was not detected in the molecular survey
378 of fetal intestines from this mouse (Mouse F), but it was identified in the 16S rRNA gene surveys
379 of maternal lung and skin from Mouse F (**Table 1**). This sample had the lowest bacterial load of
380 any fetal intestinal sample in the study, and had a bacterial load less than that of 14/23 (60.9%)
381 DNA extraction kit controls (**Figure 3**).

382

383 **Bacterial culture from maternal compartments**

384 Bacterial cultures of the maternal intestine, mouth, vagina, and lung often yielded lawns of
385 bacterial growth dominated by unclassified Pasteurellaceae, *Lactobacillus*, and *Staphylococcus*
386 (**Figure 1B**). Body site-specific variation in the structure of cultured bacterial communities from
387 maternal samples was evident (**Figure 1B**). For instance, the vast majority of bacteria cultured
388 from the vagina were unclassified Pasteurellaceae, while *Bacteroides* and a distinct strain of

389 *Lactobacillus* were consistently cultured from the maternal intestine in addition to the unclassified
390 Pasteurellaceae, *Lactobacillus*, and *Staphylococcus* isolated from other body sites (**Figure 1B**).

391 Bacterial cultures of the maternal cervix yielded isolates in 6/11 (54.5%) mice (**Table 2**).
392 The most common bacterium cultured from the murine cervix was *Pasteurella caecimuris*; it was
393 recovered in culture from 5/11 cervical samples. In each case, an exact match for the 16S rRNA
394 gene of the *Pasteurella caecimuris* isolate was identified in the 16S rRNA gene survey of the
395 corresponding cervical sample (**Table 2**).

396 Bacteria were rarely cultured from the uterus (2/11 mice) and maternal liver (4/11 mice)
397 (**Table 2**). The two bacteria cultured from the uterus were *Bacillus niabensis* and *Staphylococcus*
398 *aureus*. An exact match of the 16S rRNA gene of these isolates was not identified in the 16S rRNA
399 gene surveys of the respective uterine samples. The bacteria cultured from maternal liver samples
400 were primarily *Lactobacillus* and *Staphylococcus* species. Of the nine distinct bacterial
401 morphotypes cultured from maternal liver tissues, only 3 (33%) had an exact match of their 16S
402 rRNA gene identified in the 16S rRNA gene surveys of their respective samples (**Table 2**).
403

404 **Quantitative real-time PCR (qPCR) of murine and control samples**

405 Bacterial load, as characterized by 16S rRNA gene copy abundance, varied greatly across
406 maternal, placental, and fetal body sites (**Figure 3**). The bacterial loads of swabs of the maternal
407 mouth, vagina, and skin exceeded those of sterile Dacron swabs (**Figure 3A**). Similarly, the
408 bacterial loads of tissues of the maternal proximal and distal intestine, lung, cervix, heart, liver,
409 and uterus exceeded those of blank DNA extraction kits (**Figure 3B**). In contrast, bacterial loads
410 of the maternal peritoneum, the placenta, and the fetal lung, liver, brain, and intestine did not
411 exceed those of their respective background technical controls (**Figure 3A, B**). The spleen and tail

412 were the only fetal tissues with bacterial loads exceeding those of blank DNA extraction kits
413 (**Figure 3B**). However, only 1/11 (9.1%) fetal tail and 2/11 (18.2%) fetal spleen samples had
414 bacterial loads exceeding those of each of the blank DNA extraction kits. Corrected for multiple
415 comparisons, no placental or fetal tissue, including the tail and spleen, had a bacterial load
416 exceeding that of any other placental or fetal tissue (Wilcoxon matched pairs, $p \geq 0.68$).

417

418 **16S rRNA gene sequencing of murine and control samples**

419 Six of the 23 (26.1%) blank DNA extraction kits, and 8/11 (72.7%) sterile swab controls,
420 yielded a 16S rRNA gene library with ≥ 250 quality-filtered sequences and a Good's coverage \geq
421 95%. The prominent (i.e. $\geq 2.25\%$ relative abundance) operational taxonomic units (OTUs) in the
422 bacterial profiles of the DNA extraction kit controls were identified as *Ralstonia*, unclassified
423 *Bacillales*, *Flavobacterium*, S24-7, *Brevibacterium*, *Pelomonas*, unclassified Bacteroidetes, and
424 *Acinetobacter* (**Figure 4**). However, only two of these prominent OTUs, identified as *Ralstonia*
425 and *Pelomonas*, were present in the bacterial profiles of more than half of the DNA extraction kit
426 controls. A decontam analysis indicated that the OTUs identified as *Ralstonia*, *Pelomonas*,
427 *Pseudomonas*, and *Acinetobacter* were likely background DNA contaminants (**Figure 4**).

428 The bacterial profiles of placental and fetal samples could not be compared to those of
429 background technical controls because only two of the 77 (2.6%) placental and fetal brain, lung,
430 liver, intestine, spleen, and tail samples included in this study, yielded a 16S rRNA gene library
431 with ≥ 250 sequences and a Good's coverage $\geq 95\%$. These two samples were the placenta from
432 Mouse I and the fetal spleen from Mouse B. The placenta from Mouse I had an average bacterial
433 load in comparison to that of other placentas (**Figure 3**), and no bacteria were cultured from the
434 placental tissues of this mouse (**Figure 1**, **Figure 2**, **Table 1**). The prominent OTUs in the bacterial

435 profile of the placental sample from Mouse I were identified as *Bacteroides*, *Akkermansia*, S24-7,
436 *Lactobacillus*, and *Escherichia*. The fetal spleen from Mouse B had the highest bacterial load of
437 any fetal spleen sample; its bacterial load was 58% higher than any other spleen sample (**Figure**
438 **3**). The prominent OTUs in the bacterial profile of the fetal spleen from Mouse B were
439 *Lactobacillus*, S24-7, and unclassified Lachnospiraceae.

440 All maternal skin, mouth, proximal and distal intestinal samples yielded a 16S rRNA gene
441 library with ≥ 250 sequences and a Good's coverage $\geq 95\%$. Six (54.5%), four (36.4%), and three
442 (27.3%) maternal peritoneal, cervical, and lung samples, respectively, yielded a 16S rRNA gene
443 library with ≥ 250 sequences and a Good's coverage $\geq 95\%$. However, no maternal liver or uterine
444 samples, and only one (9.1%) maternal heart sample, yielded a 16S rRNA gene library. The
445 structure of the bacterial profiles of the maternal body sites with at least three 16S rRNA gene
446 libraries meeting the above criteria were compared with those of background technical controls
447 (**Figure 4**, **Figure 5**).

448 The taxonomic identities of prominent OTUs varied among maternal body sites (**Figure**
449 **4**). Maternal proximal and distal intestinal samples had the most OTU-rich bacterial profiles. The
450 maternal proximal intestine was characterized by *Bacteroides*, *Desulfovibrio*, *Helicobacter*,
451 *Lachnospira*, unclassified Lachnospiraceae, *Lactobacillus*, and S24-7, while the maternal distal
452 intestine had bacterial profiles consistently comprised of “*Candidatus Arthromitus*,” *Bacteroides*,
453 *Lactobacillus*, *Parasutterella*, unclassified Prevotellaceae, and S24-7. Maternal vaginal and
454 cervical bacterial profiles were dominated by unclassified Pasteurellaceae; the vagina also
455 consistently contained *Helicobacter*. Maternal lung bacterial profiles were typified by
456 *Lactobacillus* and S24-7, while those of the maternal mouth were dominated by *Streptococcus*,
457 *Mannheimia*, *Lactobacillus*, and unclassified Pasteurellaceae. Maternal skin, a low microbial

458 biomass site (**Figure 3A**), and the peritoneum, a very low to nonexistent microbial biomass site
459 (**Figure 3A**), had bacterial profiles that overlapped with those of background technical controls
460 more so than did the profiles of higher microbial biomass sites (**Figure 4**). Specifically, skin
461 bacterial profiles consistently contained *Bifidobacterium*, *Helicobacter*, unclassified
462 Pasteurellaceae, *Ralstonia*, S24-7, *Staphylococcus*, and *Streptococcus*. *Ralstonia* was the dominant
463 OTU in the bacterial profiles of the maternal peritoneum, as well as in the profiles of the
464 background technical controls (**Figure 4**). Indeed, the bacterial profiles of the maternal peritoneum
465 were not distinguishable from those of background technical controls (Bray-Curtis similarity
466 index; NPMANOVA, $F = 0.974$, $p = 0.467$) (**Figure 5**).

467

468 **Comprehensive consideration of individual placental and fetal tissues across microbiological**
469 **inquiries**

470 Overall, there was only a single bacterial isolate (*Bacillus circulans*, cultured from the fetal
471 brain tissue of Mouse F) that was cultured from a placental or fetal tissue that had a bacterial load
472 higher than that of background technical controls, and that was identified in the 16S rRNA gene
473 surveys of at least one of that fetus' maternal samples (**Table 1**).

474

475 **DISCUSSION**

476 **Principal findings of the study**

477 1) Of the 165 total bacterial cultures of placentas from the 11 mice, only nine (5.5%) yielded even
478 a single colony, and five of those nine positive cultures came from a single mouse; 2) of the 165
479 total bacterial cultures of fetal intestinal tissues, only one (0.6%) was positive, yielding a single
480 isolate of *Staphylococcus hominis*; 3) the bacterial loads of placental and fetal brain, lung, liver,
481 and intestinal samples were not higher than those of DNA extraction kit controls; 4) only two
482 (2.6%) placental or fetal tissue samples yielded a 16S rRNA gene library with at least 250
483 sequences and a Good's coverage value of 95%; 5) the 16S rRNA gene libraries of each maternal
484 skin, mouth, vaginal, and proximal and distal intestinal sample met these criteria, as did at least
485 25% of maternal lung, cervical, and peritoneum samples; 6) similar to the placental and fetal
486 tissues samples, maternal heart, liver, and uterine samples did not yield 16S rRNA gene libraries
487 with at least 250 sequences and a Good's coverage value of 95%; and 7) overall, from all placental
488 or fetal tissues for which there were culture, qPCR, and corresponding maternal sample sequence
489 data (N = 49), there was only a single bacterial isolate that came from a fetal brain sample having
490 a bacterial load higher than that of contamination controls and that was identified in sequence-
491 based surveys of at least one of its corresponding maternal samples.

492

493 **Prior reports of placental and fetal microbiota in mice**

494 An initial investigation of the existence of microbiota in the murine placenta and fetal
495 intestine was carried out by Martinez et al. (40). Specifically, bacterial culture, 16S rRNA gene
496 qPCR, and 16S rRNA gene sequencing were performed on the placenta and fetal intestines of 13
497 mice at day 17 of gestation (40). All bacterial cultures of the placenta and fetal intestine were

498 negative. Yet, the bacterial loads of the fetal intestine were higher than those of placentas. After
499 removing the OTUs detected in 16S rRNA gene sequencing surveys of background control
500 samples from the overall dataset, the bacterial profiles of murine fetal intestine were dominated by
501 *Enterococcus*, *Stramenopiles*, *Rhodoplanes*, and *Novosphingobium*. In contrast, the bacterial
502 profiles of murine placentas were more diverse, with Pirellulaceae, Aeromonadaceae, MIZ46,
503 ZB2, Veillonellaceae, Weeksellaceae, *Fluviicola*, *Bdellovibrio*, and Comamonadaceae being most
504 common. The conclusion of the study was that, although murine fetuses do not appear to be
505 populated by microbial communities, they are exposed to bacterial DNA *in utero*. Conversely, in
506 a subsequent molecular study by Kuperman et al. (18), 24 murine placental samples (four regions
507 were sampled from two placentas each from three mice at gestational day 19) had no detectable
508 16S rRNA gene amplicons after PCR. Hence, more comprehensive investigations were needed.

509 Most recently, Younge et al. (22) used bacterial culture, fluorescent *in situ* hybridization
510 (FISH), and 16S rRNA gene sequencing to evaluate the presence of bacterial communities in the
511 placenta and fetal intestine of 18-30 fetuses from 2 litters in each of early, mid, and late gestations.
512 Positive bacterial cultures were most common in mid-gestation and were not observed in late
513 gestation. The most common bacteria cultured from the placenta and fetal intestine were
514 *Lactobacillus*, *Escherichia*, *Enterococcus*, *Bacteroides*, and *Bacillus*. Mechanistic studies
515 indicated that these cultured bacteria were not simply contaminants transferred from maternal
516 compartments during sample processing. In the fetal intestine, bacteria were further visualized
517 through FISH using a universal probe for the bacterial 16S rRNA gene. 16S rRNA gene profiles
518 of the placenta and fetal intestine were similar. In early gestation, the profiles of these tissues were
519 characterized by “*Candidatus Arthromitus*,” S24-7, *Lactobacillus*, and *Desulfovibrio*, while in mid
520 and late gestation they were dominated by *Kurthia* and *Escherichia*. Sourcetracker analyses

521 suggested that most of the bacterial signals from the fetal intestine in early gestation were attributed
522 to background technical controls or to unknown sources. However, in mid and late gestation, the
523 bacterial signals in the fetal intestine were indicated to potentially have come from the placenta or
524 amniotic membrane. Therefore, the conclusion of the study was that there is fetal exposure to
525 microbial communities from the placenta and the extraplacental membranes *in utero*.

526

527 **The findings of this study in the context of prior reports**

528 In the current study, culture of bacteria from placental and fetal tissues was generally rare.
529 Most of the bacterial isolates were identified as *Staphylococcus hominis*. The origin of these
530 bacteria could be maternal sites, as *Staphylococcus* spp. were cultured from maternal sites and
531 *Staphylococcus hominis* specifically was identified in molecular surveys of the maternal skin.
532 Alternatively, these bacteria could potentially be contaminants from laboratory personnel, given
533 that two of the five bacterial isolates recovered from negative control plates in this study were also
534 *Staphylococcus hominis*. The other bacteria (*Bacillus*, *Corynebacterium*, *Paenibacillus*, and
535 *Propionibacterium*) cultured from placental and fetal tissues were rarely, if ever, cultured from
536 maternal samples or identified in the molecular surveys of maternal samples. Given that the only
537 possible source of placental and fetal microbiota is microorganisms in the maternal compartments,
538 the latter finding suggests that these bacteria were likely contaminants. Furthermore, there was no
539 consistent recovery in culture of specific microorganisms (aside from *Staphylococcus hominis*)
540 from multiple placental and fetal tissues from the same fetus or in the same tissue types among
541 fetuses from different litters. Notably, the taxonomic identities of bacteria cultured in the current
542 study generally differed, with the exception of *Staphylococcus* and *Bacillus*, from those initially

543 reported by Younge et al. in placental and fetal tissues. Therefore, across current murine studies,
544 culture has not provided consistent evidence for a placental or fetal microbiota.

545 In the current study, qPCR revealed that the bacterial loads of the placenta, fetal lung, liver,
546 brain, and intestine did not exceed those of background technical controls, whereas samples from
547 maternal sites, excluding the peritoneum, did exceed those of controls. In addition, there was no
548 variation in bacterial load among placental and fetal tissues. These results are in contrast to those
549 of Martinez et al. (40) in which the bacterial loads of fetal intestine exceeded those of the placenta.
550 To our knowledge, no other studies have directly compared the bacterial loads of the placenta and
551 fetal intestine in mammals. However, the qPCR results in our study are in agreement with prior
552 qPCR investigations of human placental tissues – the bacterial loads of placentas are
553 indistinguishable from those of background technical controls (7, 14, 21). Hence, there remains
554 disagreement among studies with respect to the extent of bacterial biomass in placental and fetal
555 tissues.

556 Herein, the murine placenta and fetal tissues did not yield substantive 16S rRNA gene
557 sequence libraries, while the maternal sites other than the uterus, heart, and liver consistently did
558 so. These results are consistent with those of Kuperman et al. (18), in which 30 cycles of PCR did
559 not yield discernible amplicons from murine placental tissue. Notably, in our study, triple library
560 preparations were performed and pooled for each sample, and still minimal amplicons were
561 generated after 30 cycles of PCR. Martinez et al. (40) also used 30 cycles of PCR in their sequence
562 library preparations and included samples in their analyses if they yielded at least 200 quality-
563 filtered sequences, reporting a distinct bacterial DNA signal in the placenta and fetal intestine. In
564 this study, we only included samples in analyses if they yielded at least 250 quality-filtered
565 sequences with a Good's coverage value of at least 95%. If we had used the criterion of 200

566 sequences, independent of any consideration of Good's coverage, only one additional fetal sample
567 would have been included in analyses. Younge et al. (22) generated substantive sequence libraries
568 for placental and fetal intestine samples; however, their library preparation protocol was based on
569 that of the Earth Microbiome Project (i.e. 35 cycles of PCR). The discrepancies among murine
570 studies may therefore be due to underlying differences in the sequence library protocols used.
571 Nevertheless, as with culture and qPCR approaches, we did not find consistent evidence of a
572 bacterial signal in placental and fetal tissues using DNA sequencing.

573 Notably, in this study, there was only one case in which a bacterial isolate (i.e. *Bacillus*
574 *circulans*) from a placental or fetal sample (i.e. fetal brain) had a bacterial load exceeding that of
575 all background technical controls, and in which the bacterium was also identified in molecular
576 surveys of at least one corresponding maternal sample (i.e. maternal skin). Therefore, in this one
577 case, there may have been hematogenous transfer from a distant maternal site to the fetus.
578 However, overall, there was not consistent evidence of resident bacterial communities in the
579 murine placenta or the fetus.

580

581 **Strengths of this study**

582 First, this study included multiple modes of microbiological inquiry, including bacterial
583 culture, 16S rRNA gene qPCR, and 16S rRNA gene sequencing, to determine if the placental and
584 fetal tissues of mice harbored bacterial communities. Second, this study included the analysis of
585 many maternal, placental, and fetal body sites, including valuable low microbial biomass maternal
586 sites such as the lung, cervix, and skin (i.e. positive controls), and maternal sites presumed to be
587 sterile such as the liver and heart (i.e. negative controls). Third, thorough controls for potential

588 background contamination were incorporated into bacterial culture, qPCR and DNA sequence-
589 based analyses.

590

591 **Limitations of this study**

592 First, this study did not include fluorescent *in situ* hybridization (FISH) to visualize
593 potential bacterial communities in the placental and fetal tissues of mice, since protocols for low
594 bacterial biomass FISH have not yet passed internal validation. Second, this study did not include
595 tissue samples spiked with known numbers of bacterial cells, which could have provided
596 information on the limits of microbial detection in the investigative approaches we used. Third,
597 this study focused exclusively on evaluating the existence of bacterial communities in murine
598 placental and fetal tissues; eukaryotic microbes and viruses were not considered in this study.

599

600 **Conclusion**

601 Using bacterial culture, 16S rRNA gene qPCR, and 16S rRNA gene sequencing, there was
602 not consistent and reproducible evidence of bacterial communities inhabiting the placenta or fetal
603 tissues of mice, providing further evidence against the *in utero* colonization hypothesis. In
604 addition, these findings emphasize the importance of including appropriate background technical
605 controls, as well as positive and negative tissue controls, in all microbiological approaches from
606 culture to sequencing when reevaluating paradigms of sterility.

607

608 **REFERENCES**

- 609 1. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. 2014. The placenta harbors a
610 unique microbiome. *Sci Transl Med* 6:237ra65.
- 611 2. Doyle RM, Alber DG, Jones HE, Harris K, Fitzgerald F, Peebles D, Klein N. 2014. Term and preterm
612 labour are associated with distinct microbial community structures in placental membranes
613 which are independent of mode of delivery. *Placenta* 35:1099-101.
- 614 3. Antony KM, Ma J, Mitchell KB, Racusin DA, Versalovic J, Aagaard K. 2015. The preterm placental
615 microbiome varies in association with excess maternal gestational weight gain. *Am J Obstet
616 Gynecol* 212:653.e1-16.
- 617 4. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. 2015. The placental microbiome varies in
618 association with low birth weight in full-term neonates. *Nutrients* 7:6924-37.
- 619 5. Bassols J, Serino M, Carreras-Badosa G, Burcelin R, Blasco-Baque V, Lopez-Bermejo A,
620 Fernandez-Real JM. 2016. Gestational diabetes is associated with changes in placental
621 microbiota and microbiome. *Pediatr Res* 80:777-784.
- 622 6. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. 2016. Human gut colonisation may be
623 initiated in utero by distinct microbial communities in the placenta and amniotic fluid. *Sci Rep*
624 6:23129.
- 625 7. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, Leite R, Elovitz MA, Parry
626 S, Bushman FD. 2016. Comparison of placenta samples with contamination controls does not
627 provide evidence for a distinct placenta microbiota. *Microbiome* 4:29.
- 628 8. Prince AL, Ma J, Kannan PS, Alvarez M, Gisslen T, Harris RA, Sweeney EL, Knox CL, Lambers DS,
629 Jobe AH, Chougnat CA, Kallapur SG, Aagaard KM. 2016. The placental membrane microbiome is
630 altered among subjects with spontaneous preterm birth with and without chorioamnionitis. *Am
631 J Obstet Gynecol* 214:627.e1-627.e16.
- 632 9. Doyle RM, Harris K, Kamiza S, Harjunmaa U, Ashorn U, Nkhoma M, Dewey KG, Maleta K, Ashorn
633 P, Klein N. 2017. Bacterial communities found in placental tissues are associated with severe
634 chorioamnionitis and adverse birth outcomes. *PLoS One* 12:e0180167.
- 635 10. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Nitert MD. 2017.
636 Contributions of the maternal oral and gut microbiome to placental microbial colonization in
637 overweight and obese pregnant women. *Sci Rep* 7:2860.
- 638 11. Parnell LA, Briggs CM, Cao B, Delannoy-Bruno O, Schrieffer AE, Mysorekar IU. 2017. Microbial
639 communities in placentas from term normal pregnancy exhibit spatially variable profiles. *Sci Rep*
640 7:11200.
- 641 12. Zheng J, Xiao XH, Zhang Q, Mao LL, Yu M, Xu JP, Wang T. 2017. Correlation of placental
642 microbiota with fetal macrosomia and clinical characteristics in mothers and newborns.
643 *Oncotarget* 8:82314-82325.
- 644 13. Lager S, de Goffau MC, Sovio U, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS. 2018.
645 Detecting eukaryotic microbiota with single-cell sensitivity in human tissue. *Microbiome* 6:151.
- 646 14. Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, Hofstaedter CE, Roche AM,
647 Mattei LM, Bittinger K, Elovitz MA, Leite R, Parry S, Bushman FD. 2018. Lack of detection of a
648 human placenta microbiome in samples from preterm and term deliveries. *Microbiome* 6:196.
- 649 15. Leon LJ, Doyle R, Diez-Benavente E, Clark TG, Klein N, Stanier P, Moore GE. 2018. Enrichment of
650 clinically relevant organisms in spontaneous preterm-delivered placentas and reagent
651 contamination across all clinical groups in a large pregnancy cohort in the United Kingdom. *Appl
652 Environ Microbiol* 84:e00483-18.

653 16. Seferovic MD, Pace RM, Meyer KM, Beninati M, Chu DM, Liu X, Li F, Aagaard K. 2018. 113: 654 Taxonomic changes of placental microbes with bacterial-metabolized ursodeoxycholic acid 655 treatment in IHCP is indicative of a functional placental microbiome. *Am J Obstet Gynecol* 656 218:S81.

657 17. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS, 658 Smith GCS. 2019. Human placenta has no microbiome but can contain potential pathogens. 659 *Nature* 572:329-334.

660 18. Kuperman AA, Zimmerman A, Hamadia S, Ziv O, Gurevich V, Fichtman B, Gavert N, Straussman 661 R, Rechnitzer H, Barzilay M, Shvalb S, Bornstein J, Ben-Shachar I, Yagel S, Haviv I, Koren O. 2019. 662 Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. 663 *BJOG* doi:10.1111/1471-0528.15896.

664 19. Meyer KM, Pace RM, Prince AL, Seferovic M, Chu DM, Aagaard KM. 2019. 940: Comparison of 665 placenta with DNA extraction controls provides evidence for distinct microbiota in placenta 666 samples. *Am J Obstet Gynecol* 220:S606-S607.

667 20. Seferovic MD, Pace RM, Carroll M, Belfort B, Major AM, Chu DM, Racusin DA, Castro ECC, 668 Muldrew KL, Versalovic J, Aagaard KM. 2019. Visualization of microbes by 16S *in situ* 669 hybridization in term and preterm placentas without intraamniotic infection. *Am J Obstet 670 Gynecol* 221:146.e1-146.e23.

671 21. Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, Bieda J, 672 Maymon E, Pacora P, Fettweis JM, Buck GA, Jefferson KK, Strauss JF, 3rd, Erez O, Hassan SS. 673 2019. Does the human placenta delivered at term have a microbiota? Results of cultivation, 674 quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. *Am J Obstet Gynecol* 675 220:267.e1-267.e39.

676 22. Younge N, McCann JR, Ballard J, Plunkett C, Akhtar S, Araujo-Perez F, Murtha A, Brandon D, Seed 677 PC. 2019. Fetal exposure to the maternal microbiota in humans and mice. *JCI Insight* 4:e127806.

678 23. Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. 2017. Review: Maternal health and the 679 placental microbiome. *Placenta* 54:30-37.

680 24. Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. 2017. A critical assessment of the "sterile 681 womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant 682 microbiome. *Microbiome* 5:48.

683 25. de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS, Peacock SJ, Smith 684 GCS, Parkhill J. 2018. Recognizing the reagent microbiome. *Nat Microbiol* 3:851-853.

685 26. Bushman FD. 2019. De-discovery of the placenta microbiome. *Am J Obstet Gynecol* 220:213- 686 214.

687 27. Fischer LA, Demerath E, Bittner-Eddy P, Costalanga M. 2019. Placental colonization with 688 periodontal pathogens: the potential missing link. *Am J Obstet Gynecol* 221:383-392.e3.

689 28. O'Callaghan JL, Turner R, Dekker Nitert M, Barrett HL, Clifton V, Pelzer ES. 2019. Re-assessing 690 microbiomes in the low-biomass reproductive niche. *BJOG* doi:10.1111/1471-0528.15974.

691 29. Peric A, Weiss J, Vulliemoz N, Baud D, Stojanov M. 2019. Bacterial colonization of the female 692 upper genital tract. *Int J Mol Sci* 20:3405.

693 30. Stinson LF, Boyce MC, Payne MS, Keelan JA. 2019. The not-so-sterile womb: evidence that the 694 human fetus is exposed to bacteria prior to birth. *Front Microbiol* 10:1124.

695 31. Chu D, Stewart C, Seferovic M, Suter M, Cox J, Vidaeff A, Aagaard K. 2017. 26: Profiling of 696 microbiota in second trimester amniotic fluid reveals a distinctive community present in the mid 697 trimester and predictive of the placental microbiome at parturition. *Am J Obstet Gynecol* 698 216:S18-S19.

699 32. Rehbinder EM, Lødrup Carlsen KC, Staff AC, Angell IL, Landrø L, Hilde K, Gaustad P, Rudi K. 2018.
700 Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? *Am J Obstet Gynecol* 219:289.e1-289.e12.
701
702 33. Borghi E, Massa V, Severgnini M, Fazio G, Avagliano L, Menegola E, Bulfamante GP, Morace G, Borgo F. 2019. Antenatal microbial colonization of mammalian gut. *Reprod Sci* 26:1045-1053.
703
704 34. Stout MJ, Conlon B, Landeau M, Lee I, Bower C, Zhao Q, Roehl KA, Nelson DM, Macones GA, Mysorekar IU. 2013. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. *Am J Obstet Gynecol* 208:226.e1-7.
705
706 35. Cao B, Mysorekar IU. 2014. Intracellular bacteria in placental basal plate localize to extravillous trophoblasts. *Placenta* 35:139-42.
707
708 36. Kliman HJ. 2014. Comment on "the placenta harbors a unique microbiome". *Sci Transl Med* 6:254le4.
709
710 37. Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, Steinert A, Heikenwalder M, Hapfelmeier S, Sauer U, McCoy KD, Macpherson AJ. 2016. The maternal microbiota drives early postnatal innate immune development. *Science* 351:1296-302.
711
712 38. Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E. 2009. Bifidobacterium and Lactobacillus DNA in the human placenta. *Lett Appl Microbiol* 48:8-12.
713
714 39. Rautava S, Collado MC, Salminen S, Isolauri E. 2012. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. *Neonatology* 102:178-84.
715
716 40. Martinez KA, 2nd, Romano-Keeler J, Zackular JP, Moore DJ, Brucker RM, Hooper C, Meng S, Brown N, Mallal S, Reese J, Aronoff DM, Shin H, Dominguez-Bello MG, Weitkamp JH. 2018. Bacterial DNA is present in the fetal intestine and overlaps with that in the placenta in mice. *PLoS One* 13:e0197439.
717
718 41. Chu D, Prince A, Ma J, Baquero K, Blundell P, Takahashi D, Dean T, Grove K, Aagaard K. 2017. 114: Evidence of fetal microbiota and its maternal origins in a non-human primate model. *American Journal of Obstetrics and Gynecology* 216:S80.
719
720 42. Prince A, Chu D, Meyer K, Ma J, Baquero K, Blundell P, Dean T, Takahashi D, Friedman J, Grove K, Aagaard K. 2017. 23: The fetal microbiome is altered in association with maternal diet during gestation. *Am J Obstet Gynecol* 216:S17.
721
722 43. Chu D, Prince A, Ma J, Pace R, Takahashi D, Friedman J, Kievit P, Sullivan E, Grove K, Aagaard K. 2018. 115: Contribution of the fetal microbiome to the taxonomic diversity and functionality of the postnatal gut microbiome in a non-human primate (NHP) model. *Am J Obstet Gynecol* 218:S82-S83.
723
724 44. Prince A, Ma J, Hu M, Chu D, Miller L, Jobe A, Chouquet C, Kallapur S, Aagaard K. 2018. 843: Chorioamnionitis induced by intra-amniotic injection of IL-1, LPS, or ureaplasma parvum is associated with an altered microbiome in a primate model of inflammatory preterm birth. *Am J Obstet Gynecol* 218:S503.
725
726 45. Prince AL, Ma J, Hu M, Chu DM, Miller L, Jobe A, Chouquet C, Kallapur S, Aagaard KM. 2019. 521: Intra-amniotic injection alters the intrauterine microbiome in a primate model of inflammatory preterm birth. *Am J Obstet Gynecol* 220:S349.
727
728 46. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA. 2004. New strategies for cultivation and detection of previously uncultured microbes. *Appl Environ Microbiol* 70:4748-55.
729
730 47. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol* 215:403-10.
731
732 48. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. *Appl Environ Microbiol* 79:5112-20.
733
734
735
736
737
738
739
740
741
742
743
744
745
746

747 49. Dickson RP, Erb-Downward JR, Freeman CM, Walker N, Scales BS, Beck JM, Martinez FJ, Curtis JL,
748 Lama VN, Huffnagle GB. 2014. Changes in the lung microbiome following lung transplantation
749 include the emergence of two distinct *Pseudomonas* species with distinct clinical associations.
750 *Plos One* 9:15.

751 50. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two
752 primers commonly used for amplification of bacterial 16S rRNA genes. *Appl Environ Microbiol*
753 74:2461-2470.

754 51. Gallup J. 2001. qPCR inhibition and amplification of difficult templates, p 1-59. *In* Kennedy S,
755 Oswald N (ed), *PCR troubleshooting and optimization: the essential guide*. Caister Academic
756 Press, Norfolk, UK.

757 52. Winters AD, Romero R, Gervasi MT, Gomez-Lopez N, Tran MR, Garcia-Flores V, Pacora P, Jung E,
758 Hassan SS, Hsu CD, Theis KR. 2019. Does the endometrial cavity have a molecular microbial
759 signature? *Sci Rep* 9:9905.

760 53. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB,
761 Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009.
762 Introducing mothur: open-source, platform-independent, community-supported software for
763 describing and comparing microbial communities. *Appl Environ Microbiol* 75:7537-41.

764 54. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. 2007. SILVA: a
765 comprehensive online resource for quality checked and aligned ribosomal RNA sequence data
766 compatible with ARB. *Nucleic Acids Res* 35:7188-96.

767 55. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. 2013. The
768 SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
769 *Nucleic Acids Res* 41:D590-6.

770 56. Rognes T, Flouri T, Nichols B, Quince C, Mahe F. 2016. VSEARCH: a versatile open source tool for
771 metagenomics. *PeerJ* 4:e2584.

772 57. Hammer O, Harper D, Ryan P. 2001. PAST: Paleontological Statistics software package for
773 education and data analysis. *Palaeontologia Electronica* 4:1-9.

774

775

776 **TABLES**

777 **Table 1. Bacterial cultivation results for placental and fetal brain, lung, liver, and intestinal**

778 **samples.**

		Bacterial culture		16S rRNA gene qPCR	16S rRNA gene sequence match between the isolate and ≥ 1 sequence within a 16S rRNA gene library	
Mouse	Placental or fetal body site	Total # of isolates recovered	Top NCBI BLAST taxonomic designation (≥ 99.5% 16S rRNA gene sequence identity unless otherwise indicated)	Was sample bacterial load > that of blank kit controls?	Library for that specific tissue type in that Mouse	Library for any maternal body site in that Mouse
A	Placenta	0		No		
	Lung	0		No		
	Liver	0		No		
	Intestine	0		Yes		
B	Placenta	1	<i>Cutibacterium acnes</i>	No	No	No
	Lung	0		No		
	Liver	1	<i>Cutibacterium acnes</i>	No	No	No
	Intestine	0		No		
C	Placenta	0		No		
	Lung	1	<i>Bacillus simplex / frigoritolerans</i>	No	No	No
	Liver	0		No		
	Intestine	0		No		
D	Placenta	0		No		
	Lung	0		No		
	Liver	0		No		
	Intestine	0		No		
E	Placenta	1	<i>Corynebacterium tuberculostearicum</i> (98.5%)	Yes	No	No
	Brain	1	<i>Bacillus halosaccharovorans</i>	Yes	No	No
	Lung	0		No		
	Liver	0		No		
	Intestine	0		No		
F	Placenta	1	<i>Staphylococcus hominis</i>	No	No	Yes (lung, skin)
	Brain	7	<i>Bacillus circulans; Bacillus megaterium / flexus; Bacillus</i> spp.; <i>Ornithinibacillus</i> sp.; <i>Marseille-P3601; Paenibacillus</i> spp.	Yes	No	Yes, for 1/7 isolates (skin)
	Lung	0		No		
	Liver	1	<i>Bacillus sonorensis</i>	No	No	No
	Intestine	1	<i>Staphylococcus hominis</i> (99.4%)	No	No	Yes (lung, skin)
G	Placenta	0		No		
	Brain	1	<i>Staphylococcus hominis</i>	No	No	Yes (peritoneum, skin)
	Lung	0		No		
	Liver	1	<i>Staphylococcus hominis</i>	No	No	Yes (peritoneum, skin)
	Intestine	0		No		
H	Placenta	16	<i>Staphylococcus hominis; Staphylococcus epidermidis / caprae / capitis</i>	No	No	No
	Brain	3	<i>Staphylococcus hominis; Staphylococcus warneri; Staphylococcus epidermidis / caprae / capitis</i>	No	No	No
	Lung	0		No		
	Liver	1	<i>Paenibacillus timonensis</i> (98.0%)	No	No	No
	Intestine	0		Yes		
I	Placenta	0		No		
	Brain	0		No		
	Lung	1	<i>Cutibacterium acnes</i> (99.0%)	No	No	No
	Liver	0		No		
	Intestine	0		No		
J	Placenta	TMTc*	<i>Staphylococcus caprae</i>	No	Yes	Yes (heart, mouth, intestine)
	Brain	0		No		
	Lung	0		No		
	Liver	0		No		
	Intestine	0		No		
K	Placenta	0		No		
	Brain	0		No		
	Lung	0		No		
	Liver	0		No		
	Intestine	0		No		

779 *TMTc = too many too count (i.e. at least some contiguous growth)

780

781 **Table 2. Bacterial cultivation results for maternal cervical, uterine, and liver samples.**

		Bacterial culture		16S rRNA gene qPCR	16S rRNA gene sequence match between the isolate and ≥ 1 sequence within a 16S rRNA gene library
Mouse	Low microbial biomass maternal body site	# of unique colony morphotypes recovered	Top NCBI BLAST taxonomic designation ($\geq 99.5\%$ 16S rRNA gene sequence identity unless otherwise indicated)	Was sample bacterial load $>$ that of blank kit controls?	Library for that specific tissue type in that Mouse
A	Cervix	1	<i>Rodentibacter pneumotropicus</i> (98.0%)	No	Yes
	Uterus	1	<i>Bacillus niabensis</i>	No	No
	Liver	0		No	
B	Cervix	0		No	
	Uterus	0		No	
	Liver	2	<i>Lactobacillus gasseri</i> ; <i>L. murinus</i>	No	Yes, for 1/2 morphotypes
C	Cervix	0		No	
	Uterus	0		No	
	Liver	5	<i>Bacteroides sartorii</i> (98.0%); <i>Klebsiella varicola</i> ; <i>L. gasseri</i> / <i>L. johnsonii</i> ; <i>L. murinus</i> ; <i>Staphylococcus hominis</i>	Yes	Yes, for 2/5 morphotypes
D	Cervix	0		No	
	Uterus	0		No	
	Liver	0		No	
E	Cervix	1	<i>Pasteurella caecimuris</i>	Yes	Yes
	Uterus	0		No	
	Liver	0		No	
F	Cervix	0		Yes	
	Uterus	0		No	
	Liver	1	<i>Staphylococcus epidermidis</i> / <i>S. caprae</i> / <i>S. capitis</i>	No	No
G	Cervix	5	<i>Bacteroides sartorii</i> ; <i>Faecalibaculum rodentium</i> (97.9%); <i>Lactobacillus murinus</i> ; <i>L. reuteri</i> (99.2%); <i>Pasteurella caecimuris</i>	Yes	Yes, for 5/5 morphotypes
	Uterus	0		No	
	Liver	0		No	
H	Cervix	0		Yes	
	Uterus	0		No	
	Liver	0		No	
I	Cervix	6	<i>Bacillus circulans</i> ; <i>Pasteurella caecimuris</i> ; <i>Rodentibacter pneumotropicus</i> (98.1%); <i>Staphylococcus hominis</i> ; <i>S. xylosus</i> ; <i>Streptococcus thoraltensis</i> (99.3%)	No	Yes, for 4/6 morphotypes
	Uterus	0		No	
	Liver	0		No	
J	Cervix	1	<i>Pasteurella caecimuris</i>	No	Yes
	Uterus	1	<i>Staphylococcus aureus</i>	No	No
	Liver	1	<i>Staphylococcus epidermidis</i> / <i>S. caprae</i> / <i>S. capitis</i>	No	No
K	Cervix	1	<i>Pasteurella caecimuris</i>	Yes	Yes
	Uterus	0		Yes	
	Liver	0		No	

782

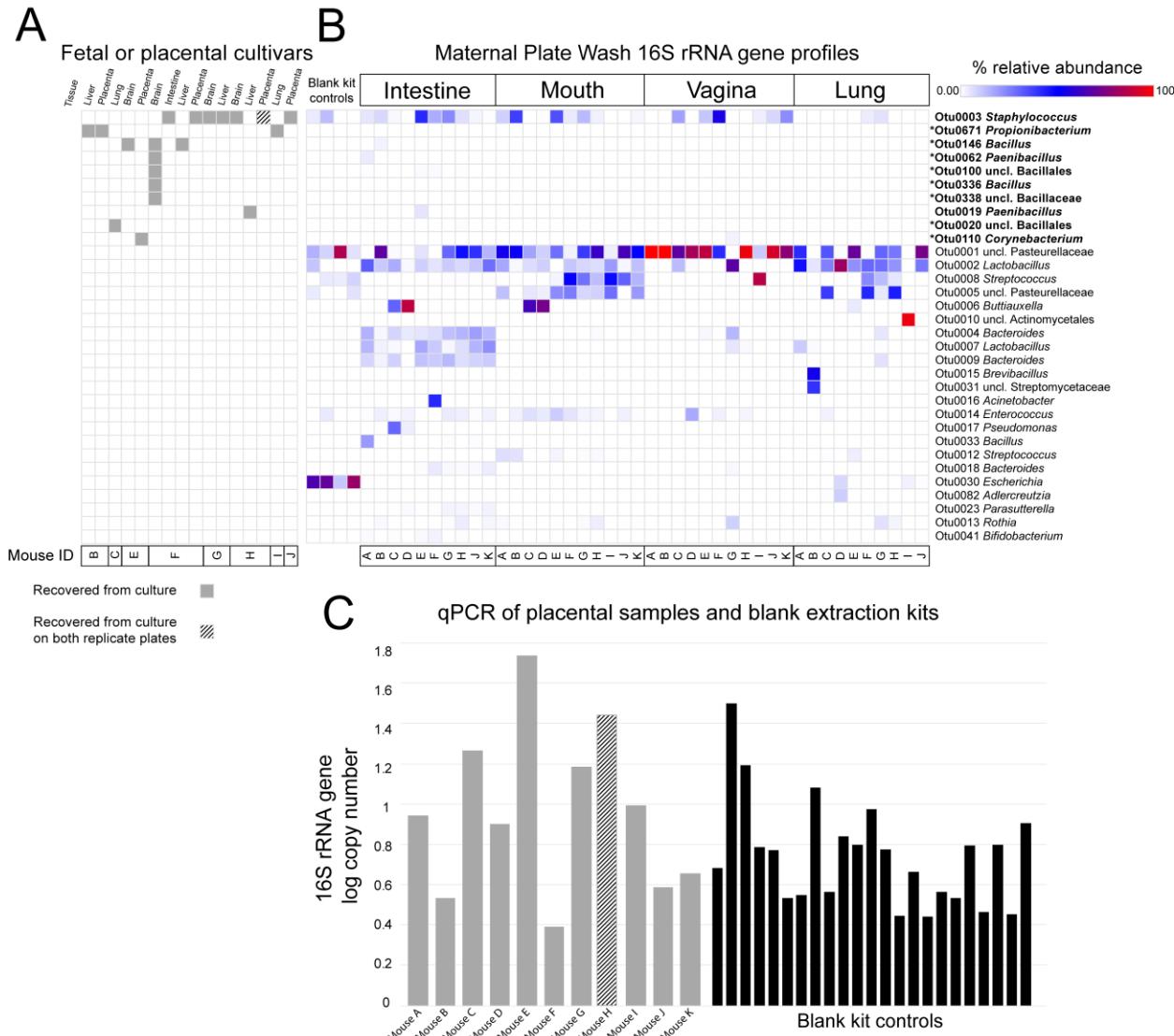
783

784 **FIGURES**

785 **Figure 1. Bacterial cultivation results for A) fetal and placental tissues in relation to those**
786 **for B) maternal intestinal, mouth, vaginal, and lung samples, and C) a comparison of the**
787 **bacterial loads of individual placental samples and blank extraction kit controls in light of**
788 **the cultivation results.** Panel A indicates the recovery of bacterial isolates from placenta and/or
789 fetal tissues, by mouse and across different growth media and atmosphere conditions. The
790 taxonomic assignments of these isolates were determined by comparing their 16S rRNA gene
791 sequences to those of the operational taxonomic units (OTUs) of molecular surveys of the mixed
792 bacterial communities cultured from maternal intestinal, oral, vaginal, and lung samples (sequence
793 identity was $\geq 97.2\%$). Panel B provides the results of 16S rRNA gene molecular surveys of the
794 plate washes of bacterial growth from maternal intestinal, oral, vaginal, and lung samples, as well
795 as of blank extraction kit controls processed alongside the plate washes. OTUs were included in
796 the heat map in Panel B if they had an average percent relative abundance $\geq 0.5\%$ across all plate
797 washes or if they were the best 16S rRNA gene sequence match to bacterial isolates in Panel A
798 (indicated by an asterisk). The bolded OTUs represent the best 16S rRNA gene sequence matches
799 to placental and fetal isolates in Panel A. Panel C illustrates similarities in bacterial load, as
800 assessed by 16S rRNA gene quantitative real-time PCR (qPCR), between placental samples
801 yielding at least one bacterial isolate and blank DNA extraction kit controls.

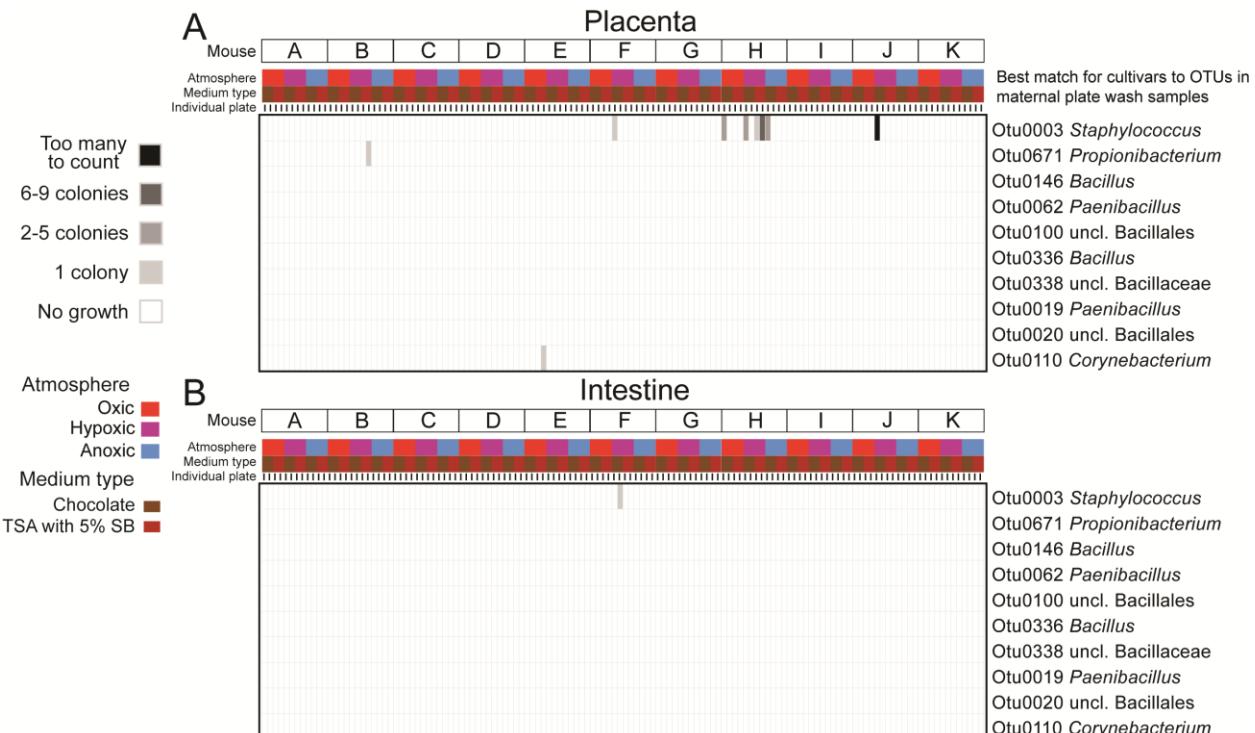
802 **Figure 2. Heat maps illustrating bacterial cultivation results for A) placenta and B) fetal**
803 **intestinal tissues.** Each column of the heat map represents a single agar plate. The x-axis indicates
804 the mouse identity, atmospheric condition, growth medium, and paired replicate for each agar
805 plate. The vast majority of blood and chocolate agar plates did not yield any bacterial growth over
806 seven days for placental (93.2%) and fetal intestinal (99.2%) samples. The operational taxonomic

807 units (OTUs) on the y-axis are those that represent the best 16S rRNA gene sequence matches to
808 bacterial isolates recovered from any placental or fetal sample in this study overall (i.e. the OTUs
809 in bold font in Figure 1B).

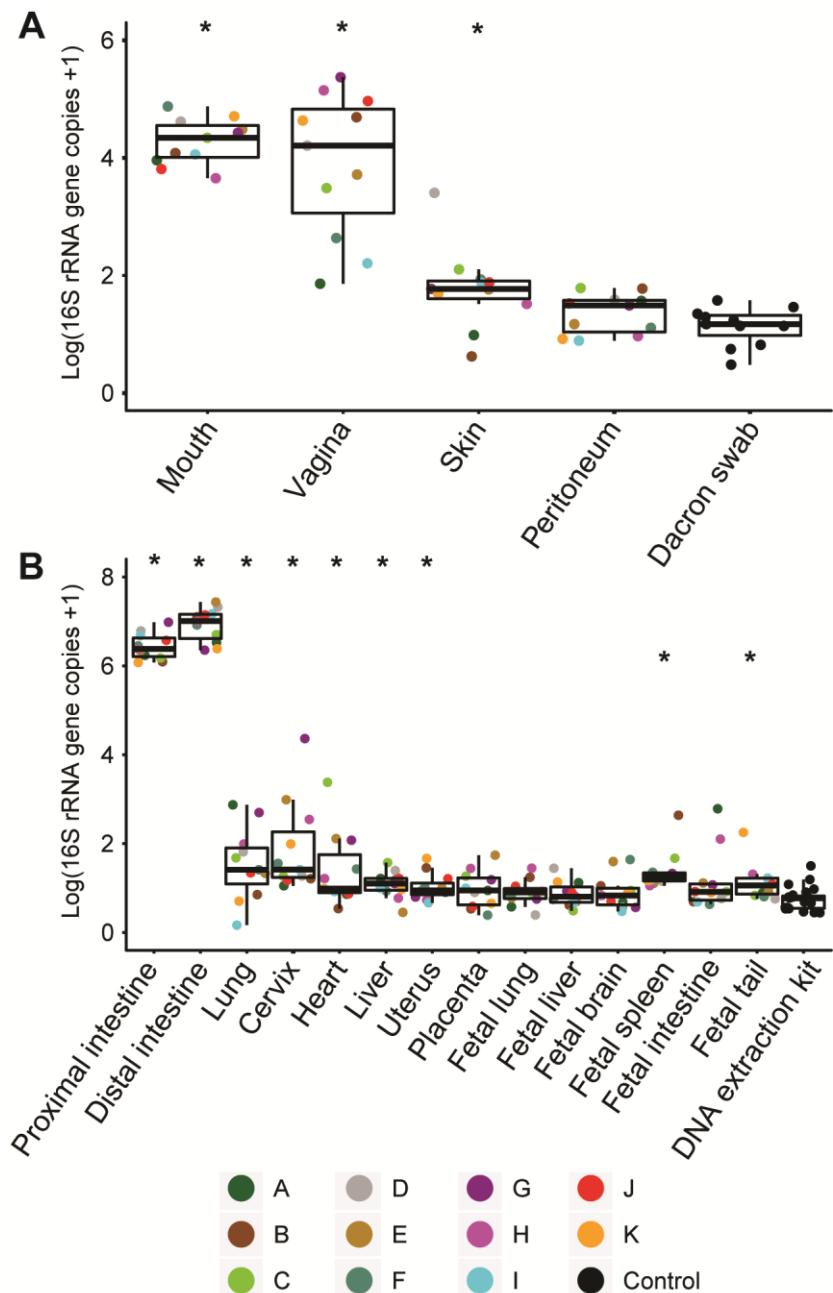

810 **Figure 3. Quantitative real-time PCR (qPCR) analyses illustrating variation in bacterial load**
811 **among A) maternal swab samples and Dacron swab controls, and B) maternal, placental,**
812 **and fetal tissue samples and blank DNA extraction kit controls.** Bars indicate the median and
813 quartile log-16S rRNA gene copy values for each sample and control type. Points, color-coded by
814 mouse identity, indicate the mean values of two replicate qPCR reactions. An asterisk indicates
815 that bacterial loads of that sample type were greater than those of corresponding technical controls.

816 **Figure 4. Heat map illustrating the relative abundances of prominent ($\geq 2.25\%$ average**
817 **relative abundance) operational taxonomic units (OTUs) among the 16S rRNA gene profiles**
818 **of maternal swab and tissue samples and background technical controls.** The four OTUs in
819 red font were identified as background DNA contaminants by the R package decontam.

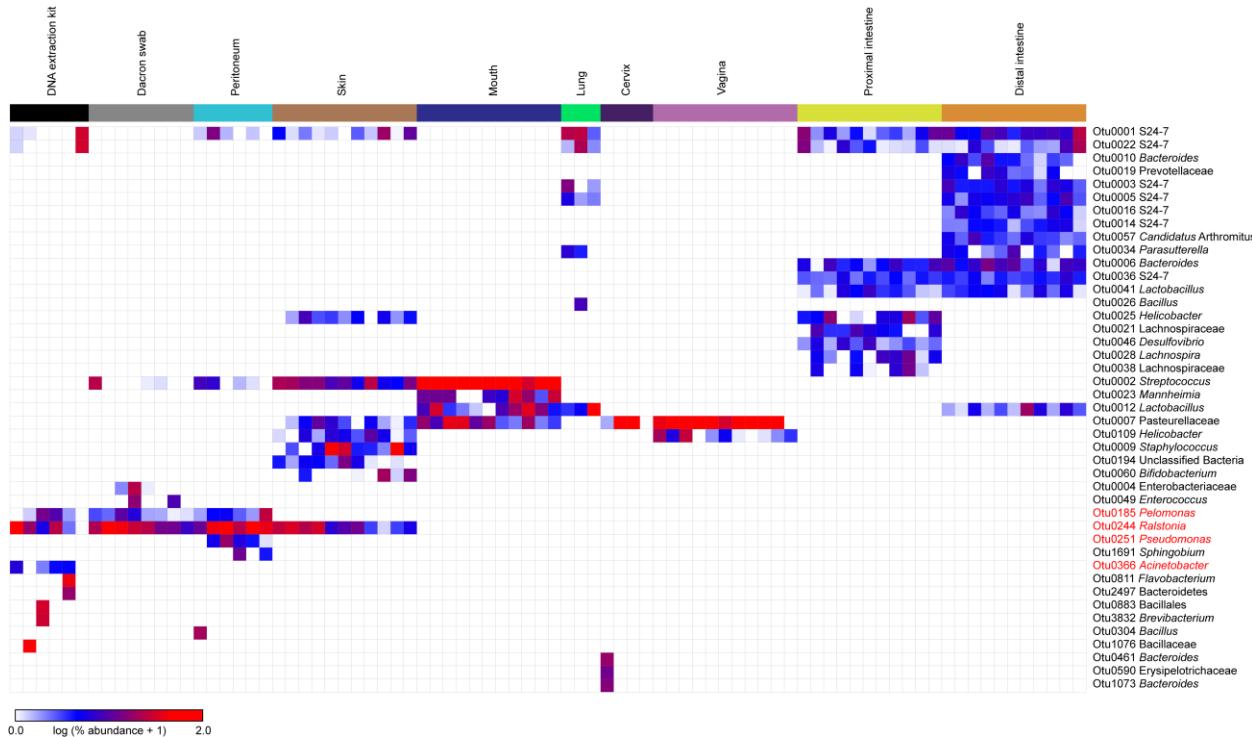
820 **Figure 5. Principal Coordinates Analysis (PCoA) illustrating variation in 16S rRNA gene**
821 **profiles among A) maternal swab samples and Dacron swab controls, and B) maternal tissue**
822 **samples and blank DNA extraction kit controls.** 16S rRNA gene profiles were characterized
823 using the Bray-Curtis similarity index.


824

825 **Figure 1.**


826

827 **Figure 2.**


828

829 **Figure 3.**

830

831 **Figure 4.**

833 **Figure 5.**

834