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Abstract:

Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains
heavily based on phenotypic resemblance to normal hematopoietic precursors. This
framework can provide diagnostic challenges for immunophenotypically heterogeneous
immature leukemias, and ignores recent advances in understanding of developmental
multipotency of diverse normal hematopoietic progenitor populations that are
identified by transcriptional signatures. We performed transcriptional analyses of a
large series of acute myeloid and lymphoid leukemias and detected significant overlap
in gene expression between cases in different diagnostic categories. Bioinformatic
classification of leukemias along a continuum of hematopoietic differentiation identified
leukemias at the myeloid/T-lymphoid interface, which shared gene expression
programs with a series of multi or oligopotent hematopoietic progenitor populations,
including the most immature CD34+CD1a-CD7- subset of early thymic precursors.
Within these interface acute leukemias (IALs), transcriptional resemblance to early
lymphoid progenitor populations and biphenotypic leukemias was more evident in
cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses
revealed that expression of IAL transcriptional programs significantly correlated with
poor outcome in independent AML patient cohorts. Our results suggest that traditional
binary approaches to acute leukemia categorization are reductive, and that
identification of IALs could allow better treatment allocation and evaluation of

therapeutic options.
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Introduction:

Successful management of acute leukemia is underpinned by accurate diagnostic
classification, which provides a basis for treatment allocation, risk stratification and
implementation of targeted therapies (1). Although knowledge of the molecular
landscape of leukemia has increased enormously over the past decades, contemporary
classification remains heavily predicated on simple immunophenotypic resemblance to
either myeloid or lymphoid normal hematopoietic precursors (2). While this system has
historically been successful, some leukemia categories provide specific diagnostic and
therapeutic challenges. The current World Health Organization (WHO) classification (2)
recognizes acute leukemias of ambiguous lineage that either lack lineage-specific
markers (acute undifferentiated leukemias, AUL) or express a mixture of myeloid and
lymphoid antigens (mixed phenotype acute leukemias, MPAL). There is little consensus

on the best treatment approaches for these patients, and prognosis is usually poor (3-

5).

This framework also poses difficulties for some cases of T-acute lymphoblastic leukemia
(T-ALL) and acute myeloid leukemia (AML). T-ALL can be subclassified by
immunogenotypic and phenotypic resemblance to either immature/ early thymic
precursor (ETP), early cortical or late cortical normal T-progenitor equivalents (6, 7).
However, the genotypic and phenotypic heterogeneity of immature T-ALLs mean that
robust biological classification of this group is not straightforward (8). A subset of these
cases harbor mutations that are also commonly seen in AML, suggesting that at least
some immature T-ALLs may arise from transformation of a bipotent lympho-myeloid
progenitor (9-13). In addition, diagnostic distinction from AML by immunophenotype is

often not clear-cut, as immature T-ALLs commonly express myeloid lineage-associated
3
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80 markers (14). Conversely, the most phenotypically immature AML subgroup, M0-AML,
81 is also biologically heterogeneous and expresses lymphoid-associated antigens such as
82 CD7 or TdT in about 50% of cases (15). Immature T-ALLs are frequently chemoresistant
83 and require intensive treatment (10, 14, 16), while MO-AML cases have poor outcomes
84  compared to other AML subgroups (17, 18), so it is clinically important to consider

85  whether improved classification of these cases might allow better therapeutic choices.

86  Current leukemia classification also takes little account of modern advances in
87 understanding of human hematopoiesis, and the recognition of a diverse range of pluri-
88 and multipotent progenitors, as identified by transcriptional signatures and functional
89  assays (19). In particular, traditional notions of an early lymphoid/myeloid dichotomy
90 have been undermined by the discovery of a multitude of lymphoid committed cell
91 types which retain myeloid potential at different stages of differentiation: within the
92  phenotypic stem cell (20) or progenitor compartment (21-25) and in the thymus (26,
93  27). The relevance of these cell types in the context of leukemia is only beginning to be

94  explored (22, 28).

95 Leukemic transcriptome profiling should help to improve categorization, but traditional
96 analytical approaches have their shortcomings. T-ALL can be reproducibly categorized
97 according to a limited number of expression signatures that correlate with the
98 phenotype of differentiation arrest (6, 29, 30). Data may also be interrogated by gene
99 set enrichment analysis (GSEA), which has revealed that immature/ETP-ALLSs
100 transcriptionally resemble both normal hematopoietic stem cell (HSC) and immature
101  myeloid precursors (9). However, these approaches rely on comparisons of predefined
102  sample groups, neglect transcriptional heterogeneity of individual leukemias in each

103 group and cannot resolve relationships between groups. These analyses therefore
4
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104  provide limited information about the spectrum of differentiation arrest in acute

105 leukemia.

106  Evolutions in genomic analytical methods provide an opportunity to refine leukemia
107  classification. We have analyzed a series of acute leukemias that comprised a high
108  proportion of immature T-ALLs and AMLs using several approaches, including the novel
109  Iterative Clustering and Guide Gene Selection method (ICGS). This technique, when
110  applied to single-cell RNA-sequencing data, has been shown to infer cellular states from
111  transcriptional data, identify modules of guide genes that are specific to these cellular
112 developmental states in an unbiased, agnostic manner, and infer developmental
113 relationships between these states (31). We show that application of ICGS to global
114  expression data identifies a continuum of differentiation arrest, which includes a group
115  of myeloid/ T-lymphoid interface leukemias that lack clear lineage identity, and which

116  respond poorly to AML treatment regimens.

117
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118 Methods:

119  Microarray data analysis: All computational analysis was performed in R (v.3.3.2 or
120 above) unless otherwise specified. Data were normalised with normalize.quantiles
121 function from the preprocessCore v1.34.0 package and batch effects between 2
122  independent arrays were corrected using the ComBat function (sva package).
123 Hierarchical clustering was performed with the hclust function with distance (1-
124  Pearson correlation) and complete clustering method. Principal Component Analysis
125  (PCA) was performed with prcomp function. Both hierarchical clustering and PCA were

126  performed on all probes.

127 ICGS: 1CGS  was  performed  with  AltAnalyze  software v. 2.1.0
128  (http://www.altanalyze.org/) using HOPACH clustering, with default settings for gene
129  expression analysis options (moderated t-test for group comparison and Benjamini-
130  Hochberg false discovery rate <0.05). The gene expression filtering option was set to 2.
131 Cell cycle genes were excluded using the most stringent parameter. From the Liu et al.
132 pediatric cohort (32), all samples were used, whereas from the Chen et al. cohort (33)
133  only adult samples (>18 years) were selected. Heatmap visualization of ICGS data was

134  performed in AltAnalyze.

135  Differential expression analysis: Differentially expressed genes were derived using the
136  limma package (ImFit function) for microarray and DESeq2 for RNA-Seq. Contrast
137 matrices between selected groups are listed in Supplementary Table S1. Genes were
138  considered differentially expressed if Benjamini-Hochberg false discovery rate
139  (FDR)<0.05. Gene ranking for Gene Set Enrichment Analyis (GSEA) was performed

140  according to t-statistic for microarray data or Wald statistic for RNA-seq data. For the
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141  thymic subpopulation dataset, most variable genes across all populations were selected
142  as the union of all the probes differentially expressed between any two populations

143  (thymic HVGs, 8751 probes).

144  Pathway and Gene Set Enrichment Analysis: GSEA was performed with GSEA software

145  (http://software.broadinstitute.org/gsea/index.jsp) using the C2.all.v6.1 collection of
146  genesets from MSigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp) or a

147  collection of custom genesets (Supplementary Table S1) derived from datasets
148  generated here or publicly available (19, 23, 24, 34-36). When specific genesets were
149  derived from published data, differential expression analysis was performed as
150 indicated above using the contrasts indicated in Table S1. Differentially expressed genes
151  were then ranked by t-statistic for microarray data or by Wald statistic for RNA-seq
152  data and the top 500 genes (or all genes with FDR < 0.05 if <500 genes had FDR<0.05)
153  were selected as genesets to be tested by GSEA. GSEA outputs were either visualised
154  with the EnrichmentMap plugin (FDR Q-value cutoff 0.05) of Cytoscape (v.3.2.0), or with
155  heatmaps generated with Prism software (v.7). ClueGO analysis was performed with the
156  ClueGO plugin (v.2.1.6) of Cytoscape (v.3.2.0), using the GO Term Fusion option and

157  otherwise default parameters.

158  Data availability: All gene expression data have been deposited in the GEO portal
159  under the accession numbers GSE131180 (thymic populations isolated from neonatal
160  thymi), GSE131184, GSE131207 (AML and T-ALL samples). All relevant data are also

161 available from the authors.

162  Other experimental methods are described in the Supplemental Data.

163
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164  Results:

165  Transcriptional profiling identifies an AML-like subset of T-ALL

166 ~We performed transcriptional profiling of a series of 124 acute T-lymphoid and myeloid
167  leukemias (See Supplementary Methods). The 48 T-ALLs included a high proportion
168  (54.2%) of immature cases, as defined by T-receptor immunogenotype (37), comprising
169 9 IMO (germline TR), 9 IMD (TRD rearrangement only) and 8 IMG (TRG and TRD
170  rearranged but absent or incomplete TRB rearrangement) leukemias. Similarly, 28/76
171  AML samples (40.8%) were categorized as M0O-AML. Patient details are shown in

172 Supplementary Table S2.

173 Unsupervised hierarchical clustering (HC) analysis of the expression data revealed that
174  T-ALL and AML samples largely formed two distinct groups (HC cluster 1 and HC cluster
175 2, Figure 1A). Strikingly, 8/48 T-ALLs (16.7%, henceforth ‘AML-like T-ALL") segregated
176  in the AML cluster in this unsupervised analysis, and clustered together when HC was
177  restricted to T-ALLs (Supplementary Figure S1A). When visualized by Principal
178  Component Analysis (PCA), T-ALL and AML samples were distributed differently along
179  the first principal component. Notably, T-ALL samples clustering with AMLs by HC

180 overlapped with AML samples (Supplementary Figure 1B).

181  Not all of these AML-like T-ALLs exhibited immunogenotypic immaturity (6/8) or had
182 an ETP-ALL immunophenotype (4/7 fully-phenotyped samples) (14), indicating that
183  AML-like transcription features are not restricted to previously identified categories of

184  less differentiated T-ALLs.

185
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186  AML-like T-ALL is enriched for myeloid progenitor transcriptional signatures

187  We next examined the transcriptional differences between AML-like cases and the rest
188  of the T-ALL cohort. 2274 genes (Supplementary Table S3) were significantly
189  differentially expressed between the two groups (FDR <0.05), with 1213 and 1061
190 respectively upregulated and downregulated in AML-like T-ALLs. Pathway analysis
191 revealed that AML-like T-ALLs had elevated expression of genes involved in cell cycle
192  and mitochondrial, amino-acid and pyruvate metabolism, and high levels of interferon-
193  related genes, MYC, HOXA, MEIS1 and GATAZ2 targets (Figure 1B). Gene-sets that were
194  previously reported to be upregulated in AML in independent datasets were also
195  significantly over-represented. In contrast, TCR, NOTCH1 and TNF signaling were all

196  downregulated.

197  We then sought to better characterize AML-like T-ALLs similarity to normal stem and
198  progenitor cells, by performing GSEA using normal umbilical cord blood (UCB)
199  hematopoietic progenitor transcriptional signatures that we previously reported (38).
200 AML-like T-ALLs were significantly enriched for megakaryocytic-erythroid progenitor
201 (MEP) and granulocyte-monocyte progenitor (GMP), but not hematopoietic stem cells
202  (HSC) signatures. These leukemias were also enriched for a GMP signature from an
203 independent data-set (23), and resembled lymphoid-mono-dendritic progenitors
204  (LMDP) from an UCB-derived humanized murine model of early lymphoid development
205 (24) (Figure 1C). To confirm transcriptional similarity to myeloid progenitors, we
206 combined the gene expression of the T-ALL samples with that of highly purified stem
207 and progenitor populations (38) on a 2D PCA map. Consistent with the GSEA results,

208  AML-like T-ALLs localized in the HSPC differentiation space, near GMPs (Figure 1D).

209
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210  AML-like T-ALL transcriptionally resembles immature thymic progenitors

211 While previous analyses of ETP-ALL have evaluated transcriptional proximity to normal
212 ETP cells (9), comprehensive transcriptional comparisons of T-ALL and normal thymic
213 subpopulations are lacking. We performed transcriptional profiling of six
214 phenotypically defined T-lymphoid progenitor groups isolated from a series of human

215  thymi (Supplementary Figure S2A).

216  The genes most differentially expressed in each subpopulation (Supplementary Figure
217 S2B and Supplementary Table S4) were consistent with known T-lymphopoietic
218  transcriptional patterns. PCA also reflected this developmental progression
219  (Supplementary Figure S2C), which was similar to an in-vitro system of human

220  thymocyte differentiation from UCB CD34+ cells (39) (Supplementary Figure S2D).

221 PCA identified 3 main clusters: a rare (Supplementary Figure S2A) ‘early’ thymic group
222 comprising CD34+CD1a-CD7- samples, a ‘middle’ thymic group comprising CD34+CD1a-
223 CD7+, CD34+CD1a+ and CD4+ ISP samples and a ‘late’ thymic group encompassing the
224  transcriptionally similar CD4+CD8+DP/TRLow and CD4+CD8+DP/TRHigh samples. We
225  derived specific gene expression signatures for each of these clusters and used these in
226 GSEAs to assess the transcriptional similarity of AML-like T-ALLs to normal thymocyte
227  subsets. Strikingly, AML-like T-ALLs were strongly positively enriched for genes that
228 were specifically expressed by the most immature CD34+CD1a-CD7- thymic
229  subpopulation (Figure 1C). Of note, this signature differed from an ETP transcriptional
230 profile that we previously reported, which was derived by comparison to CB stem and
231 progenitor cells (38) (Supplemental Figure 2E-2G). Conversely, when compared with

232 therest of the T-ALL cohort, AML-like T-ALL samples were negatively enriched for ‘late’

10
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233 thymic discriminating genes (Figure 1C). Taken together, these results indicate that
234  AML-like T-ALLs share gene expression programs with both UCB-derived myeloid-
235 competent progenitors and the most immature thymic precursors, which also retain

236 myeloid differentiation potential (27).

237  Iterative Clustering and Guide Gene Selection analysis identifies a continuum of

238  leukemic differentiation arrest

239  The recently described ICGS method employs serial iterative clustering with pattern-
240  specific guide genes to define coherent transcriptional patterns between samples and
241 then groups these samples into cellular states that recapitulate developmental
242  trajectories (31). We reasoned this method could help resolve stages of differentiation
243 arrest in leukemia. To test the feasibility of applying this approach to leukemic datasets,
244  we initially used ICGS to analyze two published series of adult (33) and pediatric (32) T-
245  ALL. For both cohorts, the ICGS algorithm unbiasedly identified guide gene modules
246  enriched for human stem and progenitor cells (HSPCs, CD34+), myeloid cells and
247  thymocytes (Supplementary Figure S3A and S3C and Supplementary Table S5), and
248  ordered the T-ALL samples in clusters along a continuum of expression of these genes.
249  Along this spectrum, adult T-ALLs attributed to ICGS clusters with the lowest expression
250  of thymic-associated genes (Groups A and B), but with high expression of HSPC and
251  myeloid genes, were enriched for the ETP-ALL immunophenotype (10, 12-14). For the
252  pediatric cohort (32), ICGS ordering recapitulated in an unsupervised manner the
253  classification the authors had derived linking mutations to thymic developmental stages
254  (Supplementary Figure S3C and S3D). We thus concluded that ICGS allows unbiased

255  classification of leukemic samples according to their stage of differentiation arrest.

11
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256  We then used ICGS to analyze our patient cohort. ICGS classified these leukemias into
257  five developmental clusters that were defined by the levels of expression of a limited
258 number of guide genes (Figure 2A and Supplementary Table S5) that again
259  predominantly comprised transcripts that discriminate hematopoietic cell types. The
260 proportions of different leukemic phenotypes within each cluster are shown in Figure
261  2B. Cluster 1 was defined by high expression of thymic- and lymphoid-related genes
262 (e.g. TCF7, LCK, BCL11B), and comprised T-ALL cases exclusively. Conversely, Clusters 4
263 and 5 were effectively restricted to AML cases, with concentration of Core Binding
264  Factor (CBF)-AMLs in cluster 5. These clusters exhibited increased expression of factors
265  that define myeloid transcriptional modules (e.g. MPO, CEBPE, CSF3R). The intermediate
266  Clusters 2 and 3 were characterized by heterogeneous guide gene expression, and
267 included one third of T-ALL cases (16/48, 33.3%). Notably, the most immature MO
268  subtype AMLs were predominantly found in these two clusters (24/28, 85.7%), as
269  compared with 14/48 (29.2%, p<0.001 by Fisher test) of non-M0-AML. Also, virtually all
270  AML-like T-ALL samples that were defined by HC (7/8, 87.5%) were found in either
271 Cluster 2 (n=4) or 3 (n=3). ICGS therefore provides a means of classifying leukemias
272 along a spectrum of hematopoietic ontogeny, which in our cohort included a significant
273  number of cases at the interface between T-lymphoid and myeloid lineages. Broadly,
274  these ‘interface’ acute leukemias (IAL) either showed no clear evidence of mature T-
275 lymphoid or mature myeloid identity (Cluster 2), or had a partial HSPC/mature myeloid

276  signature (Cluster 3).

277  Mutational analysis of ICGS-defined clusters

278  We performed targeted next generation sequencing (NGS) of the 79/124 cases (34 T-

279 ALLs and 45 AMLs) where diagnostic material was available. The NGS panel
12
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280  (Supplementary Table S6) had a predominance of genes that are more often altered in
281  T-ALL, including mutations typically found in the immature subgroup that overlap with
282  those seen in AML (9, 10, 12, 40). Comprehensive results are in Supplementary Table

283  S7,and all mutations detected in = 2 patients are shown in Figure 2C.

284  Some results were in keeping with the spectrum of differentiation observed. Cluster 1
285 was enriched for T-ALL type NOTCH pathway-activating mutations (p<0.0001, all
286  comparisons below by Fisher test), while KIT mutations correlated with the
287  concentration of CBF-AMLs in Cluster 5 (p=0.0007). However, Cluster 1 was also
288  enriched for mutations in SUZ12 (p=0.004), WT1 (p=0.0044) and genes encoding
289  IL7R/JAK/STAT pathway members (p=0.0364), which are normally more frequent in
290 immature T-ALLs (9, 10, 41). Other mutations usually found in less differentiated
291  leukemias (13, 42, 43) were more common in interface cases. Notably, T-ALLs with
292  alterations in DNA methylating factors DNMT3A, IDH1 and IDHZ (including 4 with
293 double DNMT3A/IDH mutations) were confined to cluster 2 (p=0.0267). RUNX1-
294 mutated AMLs were restricted to interface clusters 2 and 3 (p=0.0015). Surprisingly,
295 AML-like T-ALLs in clusters 1 and 2 had frequent PTEN mutations, which are usually
296 found in more differentiated T-ALLs (44). Overall, AML-like T-ALLs were significantly
297  more likely to have PTEN mutations than the rest of the T-ALL cases analyzed by NGS
298  (3/6, 50% v 2/28, 7.1%, p=0.0287). Taken together, these results suggest that the
299 spectrum of differentiation arrest defined by ICGS is not directly paralleled by
300 underlying mutational genotype, but may throw light on the stage of arrest associated

301  with well-recognized somatic mutation patterns.

302  ICGS identifies myeloid leukemias with early lymphoid transcriptional signatures

13
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303 Having found that ICGS permits classification of acute leukemias along a spectrum of
304 hematopoietic differentiation, we went on to more precisely characterize the
305 transcriptional identity of individual clusters by GSEA. Analysis of the two published T-
306 ALL cohorts (32, 33) revealed that the least differentiated clusters were enriched for
307 transcriptional signatures from a series of immature myeloid and lymphoid progenitor

308 populations, in addition to HSCs (Supplementary Figure S3F).

309  Within our cohort, Cluster 1 T-ALLs were strongly enriched for mid- and late-thymic
310 expression profiles, and negatively enriched for both early thymic and UCB HSC and
311  myeloid progenitor signatures. AMLs in Clusters 4 and 5 had broadly converse patterns

312  of positive and negative enrichment (Figure 3A).

313  Transcriptional differences in IAL Clusters 2 and 3 were less clear-cut. Cluster 2 IAL
314  (comprising 7 T-ALL, 16 M0-AML and 4 non-M0 AML) were enriched for both HSC and a
315 series of lymphoid progenitor signatures, including MLP, LMDP, early B-cell
316  progenitors, T-oriented CD127- Early Lymphoid Precursors (ELPs) and CD34+CD1a-
317 CD7- early thymic cells (Figure 3A. Cluster 3 cases (9 T-ALL, 8 M0-AML and 10 non-MO0-
318 AML) were more likely to be enriched for myeloid profiles (MEP, GMP and UC-derived
319 monocyte-dendritic cell progenitors, MDCP), but also showed transcriptional
320 resemblance to several lymphoid subpopulations, including LMDP and both early and

321  mid-thymic signatures (Figure 3A).

322 We considered whether this heterogeneity might be driven by differing transcriptional
323  contributions of T-ALLs and AMLs within each cluster. Further analysis of Cluster 2
324 revealed the surprising finding that while T-ALLs were mostly negatively enriched for

325 lymphoid signatures, AMLs had expression patterns that resembled several lymphoid-
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326 competent populations, including MLPs, T-oriented CD127- and B-oriented CD127+
327 ELPs and early B-cell progenitors (Figure 3B). Similarly, Cluster 3 AMLs showed
328 significant enrichment for LMDP and mid-thymic signatures, while T-ALLs in the same
329  group were more likely to resemble myeloid populations, including GMPs and MDCPs
330 (Figure 3C). These data suggest that interface AMLs demonstrate significant lymphoid
331 orientation, which can be more pronounced than the T-ALLs with which they co-cluster
332 by ICGS. Enrichment for B-lymphoid transcription was particularly evident when
333  expression of genes related to B-cell development was compared in interface and non-

334  interface AMLs (Figure 3D).

335 ICGS-defined interface AMLs transcriptionally resemble mixed phenotype leukemia

336 Further GSEA revealed that interface Cluster 2 was significantly enriched for a myeloid
337 leukemic stem cell (LSC) transcriptional signature (34), and that this enrichment was
338  shared by both T-ALLs and AMLs in this group (Figures 3E and 3F). AMLs in interface
339  Cluster 3 (Figure 3G), and AML-like T-ALLs (NES=1.92; FWER=0.003) were also
340 enriched for the LSC signature, suggesting that expression of leukemia stemness genes

341 is a common feature of IAL cases.

342  As interface leukemias share expression profiles with a range of progenitors of
343  multipotent lineage capacity, we next tested whether there was any transcriptional
344  similarity to MPALs of either T-lymphoid/myeloid (T/M MPAL) or B-lymphoid/
345 myeloid (B/M MPAL) phenotype in children (35) and adults (36). We found that
346 interface Clusters 2 and 3 were enriched for B/M MPAL and T/M MPAL signatures
347  respectively, and that enrichment was driven by the AML cases in each group (Figures

348 3F and 3G). Therefore, in keeping with the results observed in normal progenitor
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349  comparisons, transcriptional resemblance to the earliest stages of lymphoid orientation

350 appears to be driven by interface AMLs rather than T-ALLs.

351 Interface AMLs have poor outcomes

352  The fact that interface AMLs exhibit markedly different transcription to other AML cases
353 led us to speculate that these leukemias may have specific biology which in turn might
354  affect clinical behavior. We therefore evaluated the outcome of interface AMLs in two
355 independent studies (45, 46). To identify these cases, we calculated an interface AML
356  (IAL) score based on gene expression differences between interface and non-interface
357 AMLs in our cohort (Supplementary Methods and Table S8). Outcome analyses revealed
358 that AMLs with high IAL scores had significantly shorter survival in both studies
359  (Figures 4A and 4B). Within the ALFA-1701 group, we found that high IAL scores
360 predicted lack of response to gemtuzumab ozogamicin (Figure 4C), which in keeping
361  with our previous results (47), correlated with reduced expression of CD33 in high IAL
362 cases (Figure 4D). Importantly, multivariate analysis of the ALFA-0701 cohort (46)
363 revealed that [AL score predicted outcome independently of other prognostic variables,
364  including cytogenetic classification and the recently described LSC17 score (34) (Table
365 1). Consistent with this, our [AL signature had almost no overlap with the LSC17
366  signature, or the extended 48 gene signature that was reported in the same paper (34)
367 (Supplementary Figure S4A and S4B). Full comparison of clinicobiological and
368 mutational profiles of ALFA-0701 patients with high and low [AL scores is shown in
369  Supplementary Table S9. Finally, we evaluated whether IAL High cases had evidence of
370 lymphoid transcriptional activation. In keeping with our earlier results (Figure 3), we
371  found that IAL High cases in both AML cohorts were significantly enriched for both MLP

372  signatures and B-lymphoid gene expression (Supplementary Figure S4C-54G).
16
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373 Discussion:

374 In keeping with modern concepts of a hematopoietic progenitor framework that
375 comprises a spectrum of differentiation potential, integrated transcriptional analysis of
376  AMLs and T-ALLs revealed a continuum of leukemic developmental arrest. While AMLs
377 and T-ALLs at either end of the spectrum were specifically enriched for the
378 transcriptional signatures of the corresponding lineage, interface leukemias had
379  evidence of both myeloid and lymphoid precursor gene expression, with early lymphoid
380 signature enrichment being driven by interface AML cases. Specifically, while interface
381  Cluster 3 AMLs had T-lymphoid transcriptional enrichment, interface Cluster 2 AMLs
382 more closely resembled B-oriented lymphoid precursors including early B progenitors,
383 MLPs and CD127+ ELPs (24, 38), and B/Myeloid MPAL (35, 36). This cluster comprised
384  a high proportion of RUNX1-mutated M0-AMLs, reported to show B-cell gene activation
385  (48). Overall, these results suggest that these leukemias may be more likely to arise
386  from lymphoid-oriented progenitors and/or be arrested at an early stage of lymphoid

387  orientation (prior to CD19 expression) than is currently recognized.

388  ICGS clustering presented several important differences with accepted methods of T-
389  ALL categorization by phenotype, immunogenotype or mutational profile (9, 14, 37).
390 For example, the majority of immature T-ALLs defined by TR rearrangement (37)
391  (16/26, 61.5%) or ETP-ALL phenotype (12/20, 60%) (14) were in Cluster 1, including
392 those with JAK-STAT pathway mutations (Supplementary Table S7). In addition, IALs
393  had low percentages of WT1 and SUZ12 mutations that are typical of ETP-ALLs (9, 10)
394  and positive enrichment for PTEN alterations that are more frequent in mature T-ALLs
395 (44, 49). We also noted differences in mutational cooccurrence in these groups. While

396 PHF6 mutations were always accompanied by NOTCH1 alterations in Cluster 1, 3/5

17


https://doi.org/10.1101/2019.12.10.870121
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.10.870121,; this version posted December 15, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

397 PHF6-mutated IALs (1/3 T-ALL and 2/2 AML) were NOTCH1 wild-type. This pattern
398  was also reported in MPAL (35, 50), and suggests that the leukemic phenotype of PHF6
399 mutation may correlate with co-expression of other oncogenes, as shown for TLX3 (51).
400 Interestingly, PHF6 has been shown to regulate B/T lineage plasticity, at least on a BCR-
401 ABL leukemic background (52). Interface AMLs were also not restricted to

402 immunophenotypically immature MO cases, since they included 29% of non-M0 AMLs.

403  Our description of myeloid/T-lymphoid IALs provides support for recent proposals to
404  define acute myeloid/T-lymphoblastic leukemia (AMTL) as a distinct diagnostic entity
405 (11), but our results also indicate that this group comprises significant molecular and
406 lineage heterogeneity, particularly with regard to lymphoid gene expression. It is also
407  striking that B-lymphoid transcription correlated with poor response to AML treatment
408 regimens. RUNXI-mutated AML-MO cases in our cohort showed B-lymphoid identity,
409  which is consistent with previous reports (48). Intriguingly, RUNX1-mutated AMLs have
410 recently been shown to be sensitive to glucocorticoids (53), which form the backbone of
411  ALL induction treatment. Our findings therefore suggest that the poor response of these
412  cases to AML therapy in both adults (54) and children (55) might be improved by better
413  treatment allocation, and would plead against the recent provisional classification of
414  RUNXI-mutated AML-MO with AML (2). Finally, we hope that these data will provide
415  further impetus to include these and other [ALs in shared myeloid/lymphoid protocols

416  that might provide better treatment options for patients with these poor-risk leukemias.

417
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Univariate Multivariate
Variable HR  95%CI p HR  95%CI p
GO Arm 0.82 0.61-1.10 0.19 0.85 0.59-1.22 0.38
Adverse cytogenetics 2.89 2.06-4.06 <0.001 2.17 1.41-3.36 <0.001
High LSC17 score* 2.45 1.71-3.53 <0.001 2.11 1.42-3.15 <0.001
NPM1 mutation 0.67 0.48-0.94 0.019 1.24  0.78-1.97 0.37
High IAL score 1.73 1.21-2.46 0.002 1.58 1.07-2.32 0.021

Table 1. Prognostic impact of IAL score on Overall Survival in the ALFA-0701 trial.

Covariates selected for multivariate analyses were selected based on the results of

univariate analyses (full results in Supplementary Table S10), with additional retention

of GO (gemtuzumab ozogamicin) treatment arm. *The LSC17 score was described in Ng

et al (34). HR = Hazard Ratio. Statistically significant differences are shown in bold.
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623  Figure 1: Transcriptional profiling identifies AML-like T-ALLs that are enriched
624 for immature myeloid and thymic progenitor transcriptional signatures. (A)
625  Unsupervised hierarchical clustering (HC) of the transcriptional profiles of 124 acute
626  leukemias, comprising 48 T-ALLs and 76 AMLs. A subset of T-ALL cases segregates with
627  the AML cluster. (B) GSEA analysis of pathways significantly enriched in AML-like T-
628  ALLs vs the rest of the T-ALL cohort. The MSigDB C2 collection of genesets was used and
629  only selected genesets with FDR < 0.05 are shown. NES = Normalized Enrichment Score.
630  (C) Enrichment of selected normal hematopoietic progenitor transcriptional signatures
631 derived from the indicated published datasets or our own analysis of thymic
632  subpopulations (genesets provided in Supplementary Table S4) in AML-like T-ALLs by
633  GSEA. NES = Normalized Enrichment Score, crossed out boxes indicate genesets that are
634  not significantly enriched (FDR > 0.05). HSC = Hematopoietic Stem Cell, CMP = Common
635  Myeloid Progenitor, GMP = Granulocyte-Monocyte Progenitor, MEP = Megakaryocytic-
636  Erythroid Progenitor, MLP = Multi-Lymphoid Progenitor, LMPP = Lymphoid-Primed
637  Multipotent Progenitor, MDCP = Monocyte-Dendritic cell Progenitor, LMDP =
638  Lymphoid-Mono-Dendritic Progenitor, ELP = Early Lymphoid Precursor. (D) 2D PCA
639 map of umbilical cord blood stem and progenitor populations and T-ALL gene
640  expression patterns (38); distribution of AML-like T-ALLs (blue squares) is significantly

641  different to that of other T-ALLs (PC1: p=0.003; PC2: p= 4.1x10-5 by two-sided t-test).

642
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Figure 2: Iterative Clustering and Guide Gene Selection (ICGS) analysis identifies a
continuum of leukemic differentiation arrest. (A-B) ICGS analysis of adult and
pediatric T-ALLs (n=48 samples) and AMLs (n=76 samples) identifies 5 acute leukemia
clusters (top). (A) Heatmap of expression of guide genes selected by ICGS. Columns
represent individual samples. Bars on the top identify ICGS clusters. Rows represent
genes, and bars on the side represent blocks of correlated genes. Selected enriched gene
ontology groups are shown. Full gene lists are provided in Supplementary Table S5.
Leukemic phenotypes are indicated in the bars below the heatmap. (B) Proportions of
leukemic phenotypic groups in each ICGS cluster. (C) Mutations observed in T-ALL
(n=34) and AML (n=45) samples ordered according to ICGS analysis in (A). Only

mutations found in at least 2 samples are shown.
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Figure 3: Transcriptional characterization of ICGS-defined clusters. GSEAs using
normal hematopoietic precursor transcriptional signatures of (A) all clusters, (B)
interface cluster 2 and (C) interface cluster 3. Analyses restricted to either T-ALL, AML-
like T-ALL, non-M0-AML and M0O-AML are shown. Crossed out boxes indicate genesets
that are not significantly enriched (FDR > 0.05). (D) Comparison of expression of genes
related to B-cell development in interface and non-interface AMLs. (E) - (G) Enrichment
of leukemic stem cell (LSC) (34) and mixed phenotype acute leukemia (MPAL) (35, 36)
transcriptional signatures by GSEA of (E) all clusters, (F) interface cluster 2 and (G)
interface cluster 3. Analyses restricted to either T-ALL, AML-like T-ALL, non-M0-AML

and M0-AML are shown.
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Figure 4: Interface IALs have poor outcomes. Survival comparisons of AMLs with
high and low IAL scores in independent cohorts, (A) Metzeler et al (45) and (B) ALFA-
1701 (46). OS = Overall Survival. EFS = Event-free Survival. Hazard ratios (HR) and 95%
Confidence Intervals for each event and p values are indicated. (C) Outcome
comparisons according to IAL score and treatment with gemtuzumab ozogamicin (GO)
in the ALFA-1701 cohort. (D) Comparison of CD33 expression in IAL High and Low
cases in the ALFA-1701 cohort. Boxes indicate median, interquartile range and whiskers

the 95 percentile.
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