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Abstract:  34 

Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains 35 

heavily based on phenotypic resemblance to normal hematopoietic precursors. This 36 

framework can provide diagnostic challenges for immunophenotypically heterogeneous 37 

immature leukemias, and ignores recent advances in understanding of developmental 38 

multipotency of diverse normal hematopoietic progenitor populations that are 39 

identified by transcriptional signatures. We performed transcriptional analyses of a 40 

large series of acute myeloid and lymphoid leukemias and detected significant overlap 41 

in gene expression between cases in different diagnostic categories. Bioinformatic 42 

classification of leukemias along a continuum of hematopoietic differentiation identified 43 

leukemias at the myeloid/T-lymphoid interface, which shared gene expression 44 

programs with a series of multi or oligopotent hematopoietic progenitor populations, 45 

including the most immature CD34+CD1a-CD7- subset of early thymic precursors. 46 

Within these interface acute leukemias (IALs), transcriptional resemblance to early 47 

lymphoid progenitor populations and biphenotypic leukemias was more evident in 48 

cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses 49 

revealed that expression of IAL transcriptional programs significantly correlated with 50 

poor outcome in independent AML patient cohorts. Our results suggest that traditional 51 

binary approaches to acute leukemia categorization are reductive, and that 52 

identification of IALs could allow better treatment allocation and evaluation of 53 

therapeutic options. 54 

55 
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Introduction: 56 

Successful management of acute leukemia is underpinned by accurate diagnostic 57 

classification, which provides a basis for treatment allocation, risk stratification and 58 

implementation of targeted therapies (1). Although knowledge of the molecular 59 

landscape of leukemia has increased enormously over the past decades, contemporary 60 

classification remains heavily predicated on simple immunophenotypic resemblance to 61 

either myeloid or lymphoid normal hematopoietic precursors (2). While this system has 62 

historically been successful, some leukemia categories provide specific diagnostic and 63 

therapeutic challenges. The current World Health Organization (WHO) classification (2) 64 

recognizes acute leukemias of ambiguous lineage that either lack lineage-specific 65 

markers (acute undifferentiated leukemias, AUL) or express a mixture of myeloid and 66 

lymphoid antigens (mixed phenotype acute leukemias, MPAL). There is little consensus 67 

on the best treatment approaches for these patients, and prognosis is usually poor (3-68 

5). 69 

This framework also poses difficulties for some cases of T-acute lymphoblastic leukemia 70 

(T-ALL) and acute myeloid leukemia (AML). T-ALL can be subclassified by 71 

immunogenotypic and phenotypic resemblance to either immature/ early thymic 72 

precursor (ETP), early cortical or late cortical normal T-progenitor equivalents (6, 7). 73 

However, the genotypic and phenotypic heterogeneity of immature T-ALLs mean that 74 

robust biological classification of this group is not straightforward (8). A subset of these 75 

cases harbor mutations that are also commonly seen in AML, suggesting that at least 76 

some immature T-ALLs may arise from transformation of a bipotent lympho-myeloid 77 

progenitor (9-13). In addition, diagnostic distinction from AML by immunophenotype is 78 

often not clear-cut, as immature T-ALLs commonly express myeloid lineage-associated 79 
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markers (14). Conversely, the most phenotypically immature AML subgroup, M0-AML, 80 

is also biologically heterogeneous and expresses lymphoid-associated antigens such as 81 

CD7 or TdT in about 50% of cases (15). Immature T-ALLs are frequently chemoresistant 82 

and require intensive treatment (10, 14, 16), while M0-AML cases have poor outcomes 83 

compared to other AML subgroups (17, 18), so it is clinically important to consider 84 

whether improved classification of these cases might allow better therapeutic choices. 85 

Current leukemia classification also takes little account of modern advances in 86 

understanding of human hematopoiesis, and the recognition of a diverse range of pluri- 87 

and multipotent progenitors, as identified by transcriptional signatures and functional 88 

assays (19). In particular, traditional notions of an early lymphoid/myeloid dichotomy 89 

have been undermined by the discovery of a multitude of lymphoid committed cell 90 

types which retain myeloid potential at different stages of differentiation:  within the 91 

phenotypic stem cell (20)  or progenitor compartment (21-25) and in the thymus (26, 92 

27). The relevance of these cell types in the context of leukemia is only beginning to be 93 

explored (22, 28).  94 

Leukemic transcriptome profiling should help to improve categorization, but traditional 95 

analytical approaches have their shortcomings. T-ALL can be reproducibly categorized 96 

according to a limited number of expression signatures that correlate with the 97 

phenotype of differentiation arrest (6, 29, 30). Data may also be interrogated by gene 98 

set enrichment analysis (GSEA), which has revealed that immature/ETP-ALLs 99 

transcriptionally resemble both normal hematopoietic stem cell (HSC) and immature 100 

myeloid precursors (9). However, these approaches rely on comparisons of predefined 101 

sample groups, neglect transcriptional heterogeneity of individual leukemias in each 102 

group and cannot resolve relationships between groups. These analyses therefore 103 
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provide limited information about the spectrum of differentiation arrest in acute 104 

leukemia. 105 

Evolutions in genomic analytical methods provide an opportunity to refine leukemia 106 

classification. We have analyzed a series of acute leukemias that comprised a high 107 

proportion of immature T-ALLs and AMLs using several approaches, including the novel 108 

Iterative Clustering and Guide Gene Selection method (ICGS). This technique, when 109 

applied to single-cell RNA-sequencing data, has been shown to infer cellular states from 110 

transcriptional data, identify modules of guide genes that are specific to these cellular 111 

developmental states in an unbiased, agnostic manner, and infer developmental 112 

relationships between these states (31). We show that application of ICGS to global 113 

expression data identifies a continuum of differentiation arrest, which includes a group 114 

of myeloid/ T-lymphoid interface leukemias that lack clear lineage identity, and which 115 

respond poorly to AML treatment regimens.  116 

117 
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Methods:  118 

Microarray data analysis: All computational analysis was performed in R (v.3.3.2 or 119 

above) unless otherwise specified. Data were normalised with normalize.quantiles 120 

function from the preprocessCore v1.34.0 package and batch effects between 2 121 

independent arrays were corrected using the ComBat function (sva package). 122 

Hierarchical clustering was performed with the hclust function with distance (1-123 

Pearson correlation) and complete clustering method. Principal Component Analysis 124 

(PCA) was performed with prcomp function. Both hierarchical clustering and PCA were 125 

performed on all probes.  126 

ICGS: ICGS was performed with AltAnalyze software v. 2.1.0 127 

(http://www.altanalyze.org/) using HOPACH clustering, with default settings for gene 128 

expression analysis options (moderated t-test for group comparison and Benjamini- 129 

Hochberg false discovery rate <0.05). The gene expression filtering option was set to 2.   130 

Cell cycle genes were excluded using the most stringent parameter.   From the Liu et al. 131 

pediatric cohort (32), all samples were used, whereas from the Chen et al. cohort (33) 132 

only adult samples (>18 years) were selected. Heatmap visualization of ICGS data was 133 

performed in AltAnalyze. 134 

Differential expression analysis: Differentially expressed genes were derived using the 135 

limma package (lmFit function) for microarray and DESeq2 for RNA-Seq.   Contrast 136 

matrices between selected groups are listed in Supplementary Table S1. Genes were 137 

considered differentially expressed if Benjamini-Hochberg false discovery rate 138 

(FDR) < 0.05.  Gene ranking for Gene Set Enrichment Analyis (GSEA) was performed 139 

according to t-statistic for microarray data or Wald statistic for RNA-seq data. For the 140 
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thymic subpopulation dataset, most variable genes across all populations were selected 141 

as the union of all the probes differentially expressed between any two populations 142 

(thymic HVGs, 8751 probes).  143 

Pathway and Gene Set Enrichment Analysis: GSEA was performed with GSEA software 144 

(http://software.broadinstitute.org/gsea/index.jsp) using the C2.all.v6.1 collection of 145 

genesets from MSigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp) or a 146 

collection of custom genesets (Supplementary Table S1) derived from datasets 147 

generated here or publicly available (19, 23, 24, 34-36). When specific genesets were 148 

derived from published data, differential expression analysis was performed as 149 

indicated above using the contrasts indicated in Table S1. Differentially expressed genes 150 

were then ranked by t-statistic for microarray data or by Wald statistic for RNA-seq 151 

data and the top 500 genes (or all genes with FDR < 0.05 if <500 genes had FDR<0.05) 152 

were selected as genesets to be tested by GSEA. GSEA outputs were either visualised 153 

with the EnrichmentMap plugin (FDR Q-value cutoff 0.05) of Cytoscape (v.3.2.0), or with 154 

heatmaps generated with Prism software (v.7). ClueGO analysis was performed with the 155 

ClueGO plugin (v.2.1.6) of Cytoscape (v.3.2.0), using the GO Term Fusion option and 156 

otherwise default parameters. 157 

Data availability: All gene expression data have been deposited in the GEO portal 158 

under the accession numbers GSE131180 (thymic populations isolated from neonatal 159 

thymi), GSE131184, GSE131207 (AML and T-ALL samples). All relevant data are also 160 

available from the authors. 161 

Other experimental methods are described in the Supplemental Data. 162 

163 
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Results: 164 

Transcriptional profiling identifies an AML-like subset of T-ALL 165 

We performed transcriptional profiling of a series of 124 acute T-lymphoid and myeloid 166 

leukemias (See Supplementary Methods). The 48 T-ALLs included a high proportion 167 

(54.2%) of immature cases, as defined by T-receptor immunogenotype (37), comprising 168 

9 IM0 (germline TR), 9 IMD (TRD rearrangement only) and 8 IMG (TRG and TRD 169 

rearranged but absent or incomplete TRB rearrangement) leukemias. Similarly, 28/76 170 

AML samples (40.8%) were categorized as M0-AML. Patient details are shown in 171 

Supplementary Table S2.  172 

Unsupervised hierarchical clustering (HC) analysis of the expression data revealed that 173 

T-ALL and AML samples largely formed two distinct groups (HC cluster 1 and HC cluster 174 

2, Figure 1A).  Strikingly, 8/48 T-ALLs (16.7%, henceforth ‘AML-like T-ALL’) segregated 175 

in the AML cluster in this unsupervised analysis, and clustered together when HC was 176 

restricted to T-ALLs (Supplementary Figure S1A). When visualized by Principal 177 

Component Analysis (PCA), T-ALL and AML samples were distributed differently along 178 

the first principal component. Notably, T-ALL samples clustering with AMLs by HC 179 

overlapped with AML samples (Supplementary Figure 1B).  180 

Not all of these AML-like T-ALLs exhibited immunogenotypic immaturity (6/8) or had 181 

an ETP-ALL immunophenotype (4/7 fully-phenotyped samples) (14), indicating that 182 

AML-like transcription features are not restricted to previously identified categories of 183 

less differentiated T-ALLs. 184 

185 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2019. ; https://doi.org/10.1101/2019.12.10.870121doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.10.870121
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

AML-like T-ALL is enriched for myeloid progenitor transcriptional signatures 186 

We next examined the transcriptional differences between AML-like cases and the rest 187 

of the T-ALL cohort. 2274 genes (Supplementary Table S3) were significantly 188 

differentially expressed between the two groups (FDR <0.05), with 1213 and 1061 189 

respectively upregulated and downregulated in AML-like T-ALLs. Pathway analysis 190 

revealed that AML-like T-ALLs had elevated expression of genes involved in cell cycle 191 

and mitochondrial, amino-acid and pyruvate metabolism, and high levels of interferon-192 

related genes, MYC, HOXA, MEIS1 and GATA2 targets (Figure 1B). Gene-sets that were 193 

previously reported to be upregulated in AML in independent datasets were also 194 

significantly over-represented. In contrast, TCR, NOTCH1 and TNF signaling were all 195 

downregulated.  196 

We then sought to better characterize AML-like T-ALLs similarity to normal stem and 197 

progenitor cells, by performing GSEA using normal umbilical cord blood (UCB) 198 

hematopoietic progenitor transcriptional signatures that we previously reported (38). 199 

AML-like T-ALLs were significantly enriched for megakaryocytic-erythroid progenitor 200 

(MEP) and granulocyte-monocyte progenitor (GMP), but not hematopoietic stem cells 201 

(HSC) signatures. These leukemias were also enriched for a GMP signature from an 202 

independent data-set (23), and resembled lymphoid-mono-dendritic progenitors 203 

(LMDP) from an UCB-derived humanized murine model of early lymphoid development 204 

(24) (Figure 1C). To confirm transcriptional similarity to myeloid progenitors, we 205 

combined the gene expression of the T-ALL samples with that of highly purified stem 206 

and progenitor populations (38) on a 2D PCA map. Consistent with the GSEA results, 207 

AML-like T-ALLs localized in the HSPC differentiation space, near GMPs (Figure 1D). 208 

209 
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AML-like T-ALL transcriptionally resembles immature thymic progenitors 210 

While previous analyses of ETP-ALL have evaluated transcriptional proximity to normal 211 

ETP cells (9), comprehensive transcriptional comparisons of T-ALL and normal thymic 212 

subpopulations are lacking. We performed transcriptional profiling of six 213 

phenotypically defined T-lymphoid progenitor groups isolated from a series of human 214 

thymi (Supplementary Figure S2A).  215 

The genes most differentially expressed in each subpopulation (Supplementary Figure 216 

S2B and Supplementary Table S4) were consistent with known T-lymphopoietic 217 

transcriptional patterns. PCA also reflected this developmental progression 218 

(Supplementary Figure S2C), which was similar to an in-vitro system of human 219 

thymocyte differentiation from UCB CD34+ cells (39) (Supplementary Figure S2D). 220 

PCA identified 3 main clusters: a rare (Supplementary Figure S2A)  ‘early’ thymic group 221 

comprising CD34+CD1a-CD7- samples, a ‘middle’ thymic group comprising CD34+CD1a-222 

CD7+, CD34+CD1a+ and CD4+ ISP samples and a ‘late’ thymic group encompassing the 223 

transcriptionally similar CD4+CD8+DP/TRLow and CD4+CD8+DP/TRHigh samples. We 224 

derived specific gene expression signatures for each of these clusters and used these in 225 

GSEAs to assess the transcriptional similarity of AML-like T-ALLs to normal thymocyte 226 

subsets. Strikingly, AML-like T-ALLs were strongly positively enriched for genes that 227 

were specifically expressed by the most immature CD34+CD1a-CD7- thymic 228 

subpopulation (Figure 1C). Of note, this signature differed from an ETP transcriptional 229 

profile that we previously reported, which was derived by comparison to CB stem and 230 

progenitor cells (38) (Supplemental Figure 2E-2G).  Conversely, when compared with 231 

the rest of the T-ALL cohort, AML-like T-ALL samples were negatively enriched for ‘late’ 232 
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thymic discriminating genes (Figure 1C). Taken together, these results indicate that 233 

AML-like T-ALLs share gene expression programs with both UCB-derived myeloid-234 

competent progenitors and the most immature thymic precursors, which also retain 235 

myeloid differentiation potential (27).  236 

Iterative Clustering and Guide Gene Selection analysis identifies a continuum of 237 

leukemic differentiation arrest  238 

The recently described ICGS method employs serial iterative clustering with pattern-239 

specific guide genes to define coherent transcriptional patterns between samples and 240 

then groups these samples into cellular states that recapitulate developmental 241 

trajectories (31). We reasoned this method could help resolve stages of differentiation 242 

arrest in leukemia. To test the feasibility of applying this approach to leukemic datasets, 243 

we initially used ICGS to analyze two published series of adult (33) and pediatric (32) T-244 

ALL. For both cohorts, the ICGS algorithm unbiasedly identified guide gene modules 245 

enriched for human stem and progenitor cells (HSPCs, CD34+), myeloid cells and 246 

thymocytes (Supplementary Figure S3A and S3C and Supplementary Table S5), and 247 

ordered the T-ALL samples in clusters along a continuum of expression of these genes.  248 

Along this spectrum, adult T-ALLs attributed to ICGS clusters with the lowest expression 249 

of thymic-associated genes (Groups A and B), but with high expression of HSPC and 250 

myeloid genes, were enriched for the ETP-ALL immunophenotype (10, 12-14). For the 251 

pediatric cohort (32), ICGS ordering recapitulated in an unsupervised manner the 252 

classification the authors had derived linking mutations to thymic developmental stages 253 

(Supplementary Figure S3C and S3D).  We thus concluded that ICGS allows unbiased 254 

classification of leukemic samples according to their stage of differentiation arrest. 255 
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We then used ICGS to analyze our patient cohort. ICGS classified these leukemias into 256 

five developmental clusters that were defined by the levels of expression of a limited 257 

number of guide genes (Figure 2A and Supplementary Table S5) that again 258 

predominantly comprised transcripts that discriminate hematopoietic cell types. The 259 

proportions of different leukemic phenotypes within each cluster are shown in Figure 260 

2B. Cluster 1 was defined by high expression of thymic- and lymphoid-related genes 261 

(e.g. TCF7, LCK, BCL11B), and comprised T-ALL cases exclusively. Conversely, Clusters 4 262 

and 5 were effectively restricted to AML cases, with concentration of Core Binding 263 

Factor (CBF)-AMLs in cluster 5. These clusters exhibited increased expression of factors 264 

that define myeloid transcriptional modules (e.g. MPO, CEBPE, CSF3R). The intermediate 265 

Clusters 2 and 3 were characterized by heterogeneous guide gene expression, and 266 

included one third of T-ALL cases (16/48, 33.3%). Notably, the most immature M0 267 

subtype AMLs were predominantly found in these two clusters (24/28, 85.7%), as 268 

compared with 14/48 (29.2%, p<0.001 by Fisher test) of non-M0-AML. Also, virtually all 269 

AML-like T-ALL samples that were defined by HC (7/8, 87.5%) were found in either 270 

Cluster 2 (n=4) or 3 (n=3). ICGS therefore provides a means of classifying leukemias 271 

along a spectrum of hematopoietic ontogeny, which in our cohort included a significant 272 

number of cases at the interface between T-lymphoid and myeloid lineages. Broadly, 273 

these ‘interface’ acute leukemias (IAL) either showed no clear evidence of mature T-274 

lymphoid or mature myeloid identity (Cluster 2), or had a partial HSPC/mature myeloid 275 

signature (Cluster 3). 276 

Mutational analysis of ICGS-defined clusters 277 

We performed targeted next generation sequencing (NGS) of the 79/124 cases (34 T-278 

ALLs and 45 AMLs) where diagnostic material was available. The NGS panel 279 
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(Supplementary Table S6) had a predominance of genes that are more often altered in 280 

T-ALL, including mutations typically found in the immature subgroup that overlap with 281 

those seen in AML (9, 10, 12, 40). Comprehensive results are in Supplementary Table 282 

S7, and all mutations detected in ≥ 2 patients are shown in Figure 2C. 283 

Some results were in keeping with the spectrum of differentiation observed. Cluster 1 284 

was enriched for T-ALL type NOTCH pathway-activating mutations (p<0.0001, all 285 

comparisons below by Fisher test), while KIT mutations correlated with the 286 

concentration of CBF-AMLs in Cluster 5 (p=0.0007). However, Cluster 1 was also 287 

enriched for mutations in SUZ12 (p=0.004), WT1 (p=0.0044) and genes encoding 288 

IL7R/JAK/STAT pathway members (p=0.0364), which are normally more frequent in 289 

immature T-ALLs (9, 10, 41). Other mutations usually found in less differentiated 290 

leukemias (13, 42, 43) were more common in interface cases. Notably, T-ALLs with 291 

alterations in DNA methylating factors DNMT3A, IDH1 and IDH2 (including 4 with 292 

double DNMT3A/IDH mutations) were confined to cluster 2 (p=0.0267). RUNX1-293 

mutated AMLs were restricted to interface clusters 2 and 3 (p=0.0015). Surprisingly, 294 

AML-like T-ALLs in clusters 1 and 2 had frequent PTEN mutations, which are usually 295 

found in more differentiated T-ALLs (44). Overall, AML-like T-ALLs were significantly 296 

more likely to have PTEN mutations than the rest of the T-ALL cases analyzed by NGS 297 

(3/6, 50% v 2/28, 7.1%, p=0.0287). Taken together, these results suggest that the 298 

spectrum of differentiation arrest defined by ICGS is not directly paralleled by 299 

underlying mutational genotype, but may throw light on the stage of arrest associated 300 

with well-recognized somatic mutation patterns. 301 

ICGS identifies myeloid leukemias with early lymphoid transcriptional signatures 302 
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Having found that ICGS permits classification of acute leukemias along a spectrum of 303 

hematopoietic differentiation, we went on to more precisely characterize the 304 

transcriptional identity of individual clusters by GSEA. Analysis of the two published T-305 

ALL cohorts (32, 33) revealed that the least differentiated clusters were enriched for 306 

transcriptional signatures from a series of immature myeloid and lymphoid progenitor 307 

populations, in addition to HSCs (Supplementary Figure S3F). 308 

Within our cohort, Cluster 1 T-ALLs were strongly enriched for mid- and late-thymic 309 

expression profiles, and negatively enriched for both early thymic and UCB HSC and 310 

myeloid progenitor signatures. AMLs in Clusters 4 and 5 had broadly converse patterns 311 

of positive and negative enrichment (Figure 3A). 312 

Transcriptional differences in IAL Clusters 2 and 3 were less clear-cut. Cluster 2 IAL 313 

(comprising 7 T-ALL, 16 M0-AML and 4 non-M0 AML) were enriched for both HSC and a 314 

series of lymphoid progenitor signatures, including MLP, LMDP, early B-cell 315 

progenitors, T-oriented CD127- Early Lymphoid Precursors (ELPs) and CD34+CD1a-316 

CD7- early thymic cells (Figure 3A . Cluster 3 cases (9 T-ALL, 8 M0-AML and 10 non-M0-317 

AML) were more likely to be enriched for myeloid profiles (MEP, GMP and UC-derived 318 

monocyte-dendritic cell progenitors, MDCP), but also showed transcriptional 319 

resemblance to several lymphoid subpopulations, including LMDP and both early and 320 

mid-thymic signatures (Figure 3A).  321 

We considered whether this heterogeneity might be driven by differing transcriptional 322 

contributions of T-ALLs and AMLs within each cluster. Further analysis of Cluster 2 323 

revealed the surprising finding that while T-ALLs were mostly negatively enriched for 324 

lymphoid signatures, AMLs had expression patterns that resembled several lymphoid-325 
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competent populations, including MLPs, T-oriented CD127- and B-oriented CD127+ 326 

ELPs and early B-cell progenitors (Figure 3B). Similarly, Cluster 3 AMLs showed 327 

significant enrichment for LMDP and mid-thymic signatures, while T-ALLs in the same 328 

group were more likely to resemble myeloid populations, including GMPs and MDCPs 329 

(Figure 3C). These data suggest that interface AMLs demonstrate significant lymphoid 330 

orientation, which can be more pronounced than the T-ALLs with which they co-cluster 331 

by ICGS. Enrichment for B-lymphoid transcription was particularly evident when 332 

expression of genes related to B-cell development was compared in interface and non-333 

interface AMLs (Figure 3D). 334 

ICGS-defined interface AMLs transcriptionally resemble mixed phenotype leukemia 335 

Further GSEA revealed that interface Cluster 2 was significantly enriched for a myeloid 336 

leukemic stem cell (LSC) transcriptional signature (34), and that this enrichment was 337 

shared by both T-ALLs and AMLs in this group (Figures 3E and 3F). AMLs in interface 338 

Cluster 3 (Figure 3G), and AML-like T-ALLs (NES=1.92; FWER=0.003) were also 339 

enriched for the LSC signature, suggesting that expression of leukemia stemness genes 340 

is a common feature of IAL cases.  341 

As interface leukemias share expression profiles with a range of progenitors of 342 

multipotent lineage capacity, we next tested whether there was any transcriptional 343 

similarity to MPALs of either T-lymphoid/myeloid (T/M MPAL) or B-lymphoid/ 344 

myeloid (B/M MPAL) phenotype in children (35) and adults (36). We found that 345 

interface Clusters 2 and 3 were enriched for B/M MPAL and T/M MPAL signatures 346 

respectively, and that enrichment was driven by the AML cases in each group (Figures 347 

3F and 3G). Therefore, in keeping with the results observed in normal progenitor 348 
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comparisons, transcriptional resemblance to the earliest stages of lymphoid orientation 349 

appears to be driven by interface AMLs rather than T-ALLs. 350 

Interface AMLs have poor outcomes 351 

The fact that interface AMLs exhibit markedly different transcription to other AML cases 352 

led us to speculate that these leukemias may have specific biology which in turn might 353 

affect clinical behavior. We therefore evaluated the outcome of interface AMLs in two 354 

independent studies (45, 46). To identify these cases, we calculated an interface AML 355 

(IAL) score based on gene expression differences between interface and non-interface 356 

AMLs in our cohort (Supplementary Methods and Table S8). Outcome analyses revealed 357 

that AMLs with high IAL scores had significantly shorter survival in both studies 358 

(Figures 4A and 4B). Within the ALFA-1701 group, we found that high IAL scores 359 

predicted lack of response to gemtuzumab ozogamicin (Figure 4C), which in keeping 360 

with our previous results (47), correlated with reduced expression of CD33 in high IAL 361 

cases (Figure 4D). Importantly, multivariate analysis of the ALFA-0701 cohort (46) 362 

revealed that IAL score predicted outcome independently of other prognostic variables, 363 

including cytogenetic classification and the recently described LSC17 score (34) (Table 364 

1). Consistent with this, our IAL signature had almost no overlap with the LSC17 365 

signature, or the extended 48 gene signature that was reported in the same paper (34) 366 

(Supplementary Figure S4A and S4B). Full comparison of clinicobiological and 367 

mutational profiles of ALFA-0701 patients with high and low IAL scores is shown in 368 

Supplementary Table S9. Finally, we evaluated whether IAL High cases had evidence of 369 

lymphoid transcriptional activation. In keeping with our earlier results (Figure 3), we 370 

found that IAL High cases in both AML cohorts were significantly enriched for both MLP 371 

signatures and B-lymphoid gene expression (Supplementary Figure S4C-S4G). 372 
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Discussion: 373 

In keeping with modern concepts of a hematopoietic progenitor framework that 374 

comprises a spectrum of differentiation potential, integrated transcriptional analysis of 375 

AMLs and T-ALLs revealed a continuum of leukemic developmental arrest. While AMLs 376 

and T-ALLs at either end of the spectrum were specifically enriched for the 377 

transcriptional signatures of the corresponding lineage, interface leukemias had 378 

evidence of both myeloid and lymphoid precursor gene expression, with early lymphoid 379 

signature enrichment being driven by interface AML cases. Specifically, while interface 380 

Cluster 3 AMLs had T-lymphoid transcriptional enrichment, interface Cluster 2 AMLs 381 

more closely resembled B-oriented lymphoid precursors including early B progenitors, 382 

MLPs and CD127+ ELPs (24, 38), and B/Myeloid MPAL (35, 36). This cluster comprised 383 

a high proportion of RUNX1-mutated M0-AMLs, reported to show B-cell gene activation 384 

(48). Overall, these results suggest that these leukemias may be more likely to arise 385 

from lymphoid-oriented progenitors and/or be arrested at an early stage of lymphoid 386 

orientation (prior to CD19 expression) than is currently recognized. 387 

ICGS clustering presented several important differences with accepted methods of T-388 

ALL categorization by phenotype, immunogenotype or mutational profile (9, 14, 37). 389 

For example, the majority of immature T-ALLs defined by TR rearrangement (37) 390 

(16/26, 61.5%) or ETP-ALL phenotype (12/20, 60%) (14) were in Cluster 1, including 391 

those with JAK-STAT pathway mutations (Supplementary Table S7). In addition, IALs 392 

had low percentages of WT1 and SUZ12 mutations that are typical of ETP-ALLs (9, 10) 393 

and positive enrichment for PTEN alterations that are more frequent in mature T-ALLs 394 

(44, 49). We also noted differences in mutational cooccurrence in these groups. While 395 

PHF6 mutations were always accompanied by NOTCH1 alterations in Cluster 1, 3/5 396 
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PHF6-mutated IALs (1/3 T-ALL and 2/2 AML) were NOTCH1 wild-type. This pattern 397 

was also reported in MPAL (35, 50), and suggests that the leukemic phenotype of PHF6 398 

mutation may correlate with co-expression of other oncogenes, as shown for TLX3 (51). 399 

Interestingly, PHF6 has been shown to regulate B/T lineage plasticity, at least on a BCR-400 

ABL leukemic background (52). Interface AMLs were also not restricted to 401 

immunophenotypically immature M0 cases, since they included 29% of non-M0 AMLs.  402 

Our description of myeloid/T-lymphoid IALs provides support for recent proposals to 403 

define acute myeloid/T-lymphoblastic leukemia (AMTL) as a distinct diagnostic entity 404 

(11), but our results also indicate that this group comprises significant molecular and 405 

lineage heterogeneity, particularly with regard to lymphoid gene expression. It is also 406 

striking that B-lymphoid transcription correlated with poor response to AML treatment 407 

regimens. RUNX1-mutated AML-M0 cases in our cohort showed B-lymphoid identity, 408 

which is consistent with previous reports (48). Intriguingly, RUNX1-mutated AMLs have 409 

recently been shown to be sensitive to glucocorticoids (53), which form the backbone of 410 

ALL induction treatment. Our findings therefore suggest that the poor response of these 411 

cases to AML therapy in both adults (54) and children (55) might be improved by better 412 

treatment allocation, and would plead against the recent provisional classification of 413 

RUNX1-mutated AML-M0 with AML (2). Finally, we hope that these data will provide 414 

further impetus to include these and other IALs in shared myeloid/lymphoid protocols 415 

that might provide better treatment options for patients with these poor-risk leukemias. 416 

417 
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 616 

Table 1. Prognostic impact of IAL score on Overall Survival in the ALFA-0701 trial. 617 

Covariates selected for multivariate analyses were selected based on the results of 618 

univariate analyses (full results in Supplementary Table S10), with additional retention 619 

of GO (gemtuzumab ozogamicin) treatment arm. *The LSC17 score was described in Ng 620 

et al (34). HR = Hazard Ratio. Statistically significant differences are shown in bold.   621 

622 

Variable 
Univariate 

 
Multivariate 

HR 95% CI p   HR 95% CI p 

GO Arm 0.82 0.61-1.10 0.19 
 

0.85 0.59-1.22 0.38 

Adverse cytogenetics 2.89 2.06-4.06 <0.001 
 

2.17 1.41-3.36 <0.001 

High LSC17 score* 2.45 1.71-3.53 <0.001  2.11 1.42-3.15 <0.001 

NPM1 mutation 0.67 0.48-0.94 0.019 
 

1.24 0.78-1.97 0.37 

High IAL score 1.73 1.21-2.46 0.002 
 

1.58 1.07-2.32 0.021 
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Figure 1: Transcriptional profiling identifies AML-like T-ALLs that are enriched 623 

for immature myeloid and thymic progenitor transcriptional signatures. (A) 624 

Unsupervised hierarchical clustering (HC) of the transcriptional profiles of 124 acute 625 

leukemias, comprising 48 T-ALLs and 76 AMLs. A subset of T-ALL cases segregates with 626 

the AML cluster. (B) GSEA analysis of pathways significantly enriched in AML-like T-627 

ALLs vs the rest of the T-ALL cohort. The MSigDB C2 collection of genesets was used and 628 

only selected genesets with FDR < 0.05 are shown. NES = Normalized Enrichment Score. 629 

(C) Enrichment of selected normal hematopoietic progenitor transcriptional signatures 630 

derived from the indicated published datasets or our own analysis of thymic 631 

subpopulations (genesets provided in Supplementary Table S4) in AML-like T-ALLs by 632 

GSEA. NES = Normalized Enrichment Score, crossed out boxes indicate genesets that are 633 

not significantly enriched (FDR > 0.05). HSC = Hematopoietic Stem Cell, CMP = Common 634 

Myeloid Progenitor, GMP = Granulocyte-Monocyte Progenitor, MEP = Megakaryocytic-635 

Erythroid Progenitor, MLP = Multi-Lymphoid Progenitor, LMPP = Lymphoid-Primed 636 

Multipotent Progenitor, MDCP = Monocyte-Dendritic cell Progenitor, LMDP = 637 

Lymphoid-Mono-Dendritic Progenitor, ELP = Early Lymphoid Precursor. (D) 2D PCA 638 

map of umbilical cord blood stem and progenitor populations and T-ALL gene 639 

expression patterns  (38); distribution of AML-like T-ALLs (blue squares) is significantly 640 

different to that of other T-ALLs (PC1: p= 0.003; PC2: p= 4.1x10-5 by two-sided t-test).  641 

642 
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Figure 2: Iterative Clustering and Guide Gene Selection (ICGS) analysis identifies a 643 

continuum of leukemic differentiation arrest. (A-B) ICGS analysis of adult and 644 

pediatric T-ALLs (n=48 samples) and AMLs (n=76 samples) identifies 5 acute leukemia 645 

clusters (top). (A)  Heatmap of expression of guide genes selected by ICGS. Columns 646 

represent individual samples. Bars on the top identify ICGS clusters. Rows represent 647 

genes, and bars on the side represent blocks of correlated genes. Selected enriched gene 648 

ontology groups are shown. Full gene lists are provided in Supplementary Table S5. 649 

Leukemic phenotypes are indicated in the bars below the heatmap. (B) Proportions of 650 

leukemic phenotypic groups in each ICGS cluster. (C) Mutations observed in T-ALL 651 

(n=34) and AML (n=45) samples ordered according to ICGS analysis in (A). Only 652 

mutations found in at least 2 samples are shown.   653 

654 
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Figure 3: Transcriptional characterization of ICGS-defined clusters. GSEAs using 655 

normal hematopoietic precursor transcriptional signatures of (A) all clusters, (B) 656 

interface cluster 2 and (C) interface cluster 3. Analyses restricted to either T-ALL, AML-657 

like T-ALL, non-M0-AML and M0-AML are shown. Crossed out boxes indicate genesets 658 

that are not significantly enriched (FDR > 0.05). (D) Comparison of expression of genes 659 

related to B-cell development in interface and non-interface AMLs. (E) – (G) Enrichment 660 

of leukemic stem cell (LSC) (34) and mixed phenotype acute leukemia (MPAL) (35, 36) 661 

transcriptional signatures by GSEA of (E) all clusters, (F) interface cluster 2 and (G) 662 

interface cluster 3. Analyses restricted to either T-ALL, AML-like T-ALL, non-M0-AML 663 

and M0-AML are shown. 664 

665 
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Figure 4: Interface IALs have poor outcomes. Survival comparisons of AMLs with 666 

high and low IAL scores in independent cohorts, (A) Metzeler et al (45) and (B) ALFA-667 

1701 (46). OS = Overall Survival. EFS = Event-free Survival. Hazard ratios (HR) and 95% 668 

Confidence Intervals for each event and p values are indicated.  (C) Outcome 669 

comparisons according to IAL score and treatment with gemtuzumab ozogamicin (GO) 670 

in the ALFA-1701 cohort. (D) Comparison of CD33 expression in IAL High and Low 671 

cases in the ALFA-1701 cohort. Boxes indicate median, interquartile range and whiskers 672 

the 95 percentile.  673 

 674 
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