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Abstract

We developed a biophysically detailed multiscale model of mouse primary motor cortex (M1) with
over 10,000 neurons and 35 million synapses. We focused on intratelencephalic (IT) and
pyramidal-tract (PT) neurons of layer 5 (L5), which were modeled at high multicompartment
resolution. Wiring densities were based on prior detailed measures from mouse slice, and depended on
cell class and cortical depth at sublaminar resolution. Prominent phase-amplitude-coupled delta and
gamma activity emerged from the network. Spectral Granger causality analysis revealed the dynamics
of information flow through populations at different frequencies. Stimulation of motor vs sensory
long-range inputs to M1 demonstrated distinct intra- and inter-laminar dynamics and PT output.
Manipulating PT I, altered PT activity, supporting the hypothesis that [;, neuromodulation is involved
in translating motor planning into execution. Our model sheds light on the multiscale dynamics of

cell-type-specific M1 circuits and how connectivity relates to dynamics.
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Understanding cortical function requires studying its components and interactions at different scales:
molecular, cellular, circuit, system and behavior. Biophysically detailed modeling provides a tool to
integrate, organize and interpret experimental data at multiple scales and translate isolated knowledge into
an understanding of brain function. Previous approaches have emphasized structural aspects based on
layers and the broad classification of excitatory and inhibitory neurons.'®® ** Modern anatomical,
physiological and genetic techniques allow an unprecedented level of detail to be brought to the analysis

7.1 In particular, several neuron classes can now be identified

and understanding of cortical microcircuits
based on distinct gene expression, morphology, physiology and connectivity. Excitatory neurons are
broadly classified by their axonal projection patterns into intratelencephalic (IT), pyramidal-tract (PT)
and corticothalamic (CT) types.* °'» *** Inhibitory neurons are organized into multiple genetically defined
classes, including those expressing Parvalbumin (PV), somatostatin (SOM) and vasoactive intestinal
peptide (VIP; also characterized as Htr3A-receptor class).?®: '™ 7 Recent research has also revealed that
connections are cell-type and location specific, often with connectivity differences at different cortical

depths within layers.® > !

Primary motor cortex (M1) plays a central role in motor control, but has to date only been modeled
to a limited extent.?® '°% 5% We and others have extensively studied mouse M1 circuits experimentally, and
characterized cell subclasses and many cell-type and sublaminar-specific local and long-range circuit
connections.*®® 2% %3 A major focus of these anatomical and physiological studies has been the distinct cell
classes of layer 5 (L5): L5B PT cells — the source of the corticospinal tract, and other pyramidal tract
projections, and L5 IT cells which project bilaterally to cortex and striatum. Both of these cell types play
a role in motor planning and execution and both have been implicated in motor-related diseases.'*
Morphology and physiology differs across the two types. L5 IT cells are thin-tufted and show spike
frequency adaptation. L5B PT cells are thick-tufted and show little spike frequency adaptation, but strong
sag potentials. In terms of their synaptic interconnectivity these types exhibit a strong asymmetry:
connections go from IT to PT cells, but not in the opposite direction.®® °* The strength of their local
excitatory input connections is also dependent on PT position within layer 5B, with cells in the upper
sublayer receiving the strongest input.® *> **3 These and several other highly specific local and long-range
wiring patterns are likely to have profound consequences in terms of understanding cortical dynamics,

information processing and function.

We have now developed, and have begun to explore, a multiscale model of mouse M1 incorporating
recent experimental data, simulating a cylindric cortical volume with over 10 thousand neurons and 29
million synapses. We attempted, as far as possible, to base parameters on data obtained from a single
species, strain and age range, and from our own experimental work. However, these data are necessarily
incomplete, and we have therefore combined additional data from multiple other sources. We focused
particularly on the role of L5 excitatory neurons, utilizing detailed models of layer 5 IT and PT neurons
with full dendritic morphologies of 700+ compartments based on anatomical cell reconstruction and ionic
channel distributions optimized to in wvitro experimental measures. The task of integrating experimental
data into the model required us to develop several novel methodological techniques for network simulation
design, including: 1. specifying connections as a function of normalized cortical depth (NCD) — from pia to
white matter — instead of by layer designations, with a 100-150 um resolution; 2. identifying and including
specific dendritic distributions associated with particular inputs using features extracted from subcellular
Channelrhodopsin-2- Assisted Circuit Mapping (SCRACM) studies *> **2; and 3. utilizing a high-level
declarative modeling tool, NetPyNE, to develop, simulate, optimize, analyze and visualize the model *".
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Our model exhibited spontaneous neural activity patterns and oscillations that depended on cell class,
layer and sublaminar location, consistent with M1 data. Local field potential (LFP) oscillations in the
delta and beta/gamma range emerged, with gamma amplitude modulated by delta phase. Information
theoretic measures (spectral Granger causality) showed that information flowed along particular routes at
frequencies in the high beta/low gamma band. Different output dynamics were seen when the network was
driven by brief activation of particular long-range inputs, or in the setting of different neuromodulatory
conditions. The simulations shed new light on how cell-type-specific circuits of M1 are associated with
dynamic aspects of activity, including physiological oscillations, neuromodulation and information flow.

1 Results

Figure 1: M1 microcircuit model 3D representation (5% of cells shown). Epifluorescence image of
a coronal brain slice of mouse showing M1 and S1 regions, and approximate anatomical location and volume
of simulated cylindrical tissue (left panel, adapted from **'). Representation of M1 network, showing 5% of
cells, demonstrates the location and 3D morphologies of model neurons, with one IT (red) and two PT cells

(blue and yellow) rendered in detail (middle and right panels).

We implemented a biophysically-realistic model of the mouse M1 microcircuit representing a
cylindrical volume of 300 pm diameter (Figs. 1 and 2). The model included over 10,000 neurons with 35
million synapses. Cell properties, locations, and local and long-range connectivity were largely derived
from a coherent set of experimental data obtained using the same techniques in a single lab and single
species, with a focus on two deep (L5) populations of particular interest: corticospinal cells and
corticostriatal cells. One innovative feature in the network presented here was the inclusion of a Layer 4 for
motor cortex, consistent with its recent characterization **» '* '°. The model was developed using
NEURON and NetPyNE 2% 37, Over 10,000 simulations were required to progressively construct and
improve the model. Simulations required over 4 million high performance computing (HPC) cluster
core-hours to arrive at the results shown, primarily during model building. One second of simulation
(model) time required approximately 48 core-hours of HPC time. We employed a grid search on
underconstrained connectivity parameters — e.g., inhibitory to excitatory weights — to identify simulations

that produced realistic activity patterns.

As expected from results in other systems, there was no single “right” model that produced these

patterns but rather a family of models (degenerate parameterization) that were within the parameter
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Figure 2: M1 microcircuit model connectivity, dimensions, and neuronal densities, classes and
morphologies. A. Cell classes modeled. IT5A and PT5B neurons are simulated in full morphological
reconstructions. Other excitatory types and inhibitory neurons use simplified models with 2-6 compartments.
All models are conductance-based with multiple ionic channels tuned to reproduce the cell’s electrophysiology.
B. Dimensions of simulated M1 cylindrical volume with overall cell density per layer designation (left),
and cell types and populations simulated (right). C. Schematic of main local and long-range excitatory
connections (thin line: medium; thick line: strong). Note the unidirectional projections from ITs to PTs,
with a particularly strong projection arising from L2/3. (IT: intratelencephalic cells — corticostriatal; PT:
pyramidal-tract cells — corticospinal; CT corticothalamic cells. PO: posterior nucleus of thalamus; VL:
ventrolateral thalamus; S1: primary somatosensory; S2: secondary somatosensory; cM1: contralateral M1;
M2: secondary motor; OC: orbital cortex; PV: parvalbumin basket cells, SOM: somatostatin interneurons;
number of cells in each population shown in brackets; left shows L1-L6 boundaries with normalized cortical
depth — NCD from 0 = pia to 1 = white matter.)

ranges identified by experiment *® *'° 4 From these, we selected one base model, representing a single
parameter set, to illustrate in this paper. This base model was tested for robustness by changing
randomization settings to provide a model set, with analysis of raw and mean data from 25 simulations: 5
random synaptic input seeds x 5 random connectivity seeds (based on connectivity density). The full
model set showed qualitatively similar results with low variance in bulk measures (population rates,

oscillation frequencies) for changes in randomization settings.

We used the base model and model set to characterize spontaneous firing and LFP patterns in
response to activity of long-range inputs. Results are presented both in terms of cell class and cell
population. We focused on three excitatory classes: intratelencephalic (IT), pyramidal-tract (PT),
corticothalamic (CT); and two inhibitory classes: parvalbumin-staining fast-spiking basket cells (PV),
somatostatin-staining, dendrite-targeting, low-threshold spiking cells (SOM). Cell populations are defined
by both class and by layer (e.g., IT5A, IT5B indicates class IT in layers 5A, 5B respectively; CT6 is class
CT in layer 6). Next, we evaluated model response to short pulses from different regions, and analyzed the
dynamical interactions resulting from paired activations. Results are presented in the context of different
levels of neuromodulation resulting in changing I, conductance in PT cells. We use our results to explain

and predict the response of the M1 network to long-range inputs.
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1.1 Spontaneous activity patterns
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Figure 3: Cell-type and location-specific firing during spontaneous activity A. Top: Raster plot
of mid-simulation activity (2s of base model simulation shown; cells grouped by population and ordered by
cortical depth within each population). Bottom: Example IT5 (red) and PT5B (blue) voltage traces. B.
Firing rates and ISI CV boxplots by cell class in a 50s simulation (IT, PV and SOM cell classes includes cells
across all layers). C. Distribution of IT and PT firing rates in a 50s simulation. D. PT rates by cortical
depth shows peak in superficial L5B in full model set of random wiring and inputs (dark blue: base model;

cyan: other 24 models).

In the base model, we characterized in vivo spontaneous activity based on expected background drive
of <5 Hz from all long-range inputs (Fig. 3) **% **. Excitatory cell time-averaged firing rates ranged up to
25 Hz for excitatory populations, and 60 Hz for inhibitory cell types, consistent with in vivo recordings
from sensorimotor cortical areas in mouse and rat °® 7% 0% 1. 6 Spiking irregularity (Fig. 3B), quantified
by mean interspike interval coefficient of variation (ISI CV), was 1.0-2.0 for excitatory neurons and 2.5-3.2
for inhibitory neurons 7. Additionally, the distribution of IT and PT cell average firing rates was highly
skewed and long tailed, i.e., approximating a normal distribution when plotted in log scale Fig. 3C')). The
log(rate) boxplot (not shown) was symmetric with the median approximately at the center and with
symmetric whiskers slightly longer than the subsections of the center box, which is indicative of data
coming from an approximately lognormal distribution.*® Firing rates observed in vivo across hippocampus

and neocortex exhibit approximately lognormal distributions ™% 7% 17> 71, 89,
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Activity patterns were not only dependent on cell class and cortical-layer location, but also sublaminar
location, demonstrating the importance of identifying connectivity and analyzing activity by normalized
cortical depth (NCD) in addition to layer ' ®. For example, PT cell activity was particularly high
superficially in L5B, with firing rates decreasing with cortical depth (Fig. 3D), consistent with
depth-weighted targeting from 1T2/3 projections * **°. This pattern of firing was consistent across network
variations with different wiring and input randomization seeds, displaying great variability in firing for
individual cells at a given depth (Fig. 3D dark blue), but a consistent pattern of rates by depth across all
25 simulations in the model set (Fig. 3D cyan). IT5A exhibited similar cortical-depth dependent activity.

IT2/3 and IT4 populations showed lower rates than IT5, consistent with weaker projections onto these

139, 141 83, 132, 141

populations from local M1 , and from long-range inputs . In particular, the main source of
IT4 input was thalamic, in correspondence with the well-described pattern in sensory cortex '*'. Within
L6, superficial cells of IT6 and CT6 populations were more active than deeper ones. This was due to
stronger intralaminar, L5B IT %% 2 (see Fig. 114, B) and long-range inputs, primarily from orbital and
contralateral motor cortices (see Fig. 11C) **. Weaker local projections onto CT6 compared to IT6 resulted

in firing rate differences between CT and IT.

1.2 Oscillations and cross-frequency coupling

We simulated recording of local field potentials (LFPs) in the model. LFP signal was calculated by
summing the extracellular potential contributed by each segment of each neuron (see Methods for
details)'*”. LFP revealed physiologically-realistic oscillations in delta (0.5-4 Hz) and high beta to low
gamma (25-40 Hz) ranges across layers and populations (Figs. 4,5). Oscillations occurred in the absence of
rhythmic external inputs, emergent from neuronal biophysical properties and circuit connectivity. The
large delta oscillation can be readily seen in the raw LFP (Fig. 44). Superimposed fast spikes from local
multi-unit activity (MUA) resembled in vivo recordings (e.g., '**). Filtering the LFP signal from the
electrode located in upper L5B revealed phase-amplitude coupling of fast oscillations on delta wave phase
(Fig. 4B). LFP spectrogram demonstrated that the fast oscillations occurred robustly throughout the time
course of simulation (Fig. 4C). Beta and gamma frequencies alternated, also coupled to delta phase, with
greater gamma at the delta peak, and greater beta at the delta trough (compare Fig. 4C with delta wave
in 4B). We examined LFP phase-amplitude coupling across the model set (N=25) and found a consistently
high modulation index ™* with average peak frequency for phase at 1 Hz and average peak frequency for
amplitude at 40 Hz (Fig. 4F).

Both LFP and population rate power spectral densities (PSDs) showed similar beta/gamma oscillatory
power coupled to delta phase (Figs. 4B, E and 5). Because the LFP is a secondary signal whose phase
reverses depending on electrode location, we used the population firing rate delta oscillations to more
clearly examine these coupling relationships. IT2/3, IT5A and upper PT5B fired strongly at the delta wave
crests and weakly during its troughs, i.e., in phase with delta; L5B IT and lower L5B PT exhibited the
opposite pattern, i.e., antiphase with delta (Fig. 4D, F). This sheds some light on why the gamma
frequency shifts along with delta phase: superficial IT and upper L5B PT cells — active during the crests —
oscillate at a higher frequency (~ 35 Hz); IT5B and lower PT5B cells — active during the troughs —
oscillate at a lower frequency (~ 29 Hz) (see Fig. 5D).

LFP PSD showed evidence that peak frequencies depend on depth (Fig. 54), consistent across
different simulation randomizations (Fig. 5B). Electrodes in 1L2/3 (300 pm) and L5A (600 pm) show peak
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Figure 4: LFP and firing rate oscillations during spontaneous activity A. LFP of base model 4s

@
8
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Frequency for phase

simulation at L5B (NCD=0.6) at cylinder center. Oscillations are emergent; model has no oscillatory inputs.
B. Gamma amplitude modulated by delta phase: 0-4 Hz filtered LFP ~1 Hz delta (top) modulating 30-40
Hz filtered gamma LFP (bottom). C. LFP spectrogram: strong high beta/low gamma peak (25-40Hz) mod-
ulated by delta phase. D. Spike time histogram (firing rate over time) of upper IT (IT2/3 and IT5A), IT5B,
PT5Bypper and PT5Bjower. E. Upper L5B LFP delta in-phase with IT2/3, IT5A, PT5B,pperpopulations
and out-of-phase with IT5B, PT5B)owerpopulations (low-pass filtered spike time histograms from D). F.
Strong coupling between gamma (36Hz) amplitude and delta (1 Hz) phase from full model set. Left: LFP
phase-amplitude coupling modulation index for phase at 1-4 Hz (1 Hz step), amplitude 20-80 Hz (2 Hz
step) Right: Model set statistics showing high modulation indices and significant z-scores (shuffle test) for

coupling.

frequencies at 29 and 35 Hz respectively, which could be explained by the influences of the different
populations, measured by population firing-rate oscillation frequencies (Fig. 5D): ~29 Hz from IT5A,
IT5B, lower PT5B versus ~35 Hz from 1T2/3 and upper PT5B. The difference between the
population-based frequencies and the LFP frequencies can be explained by noting that LFP signals result
from synaptic currents so do not directly reflect the population firing at their somatic location > ''*.
Instead these synaptic activations drive the population firing. For example, the 29 Hz measured in the

superficial electrode reflected postsynaptic currents in large apical and apical oblique dendrites from L5
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Figure 5: Power spectral density (PSD) of LFP and firing rates during spontaneous activity A.
LFP PSDs at different depths for base model simulation: peaks were in high beta / low gamma range (28-35
Hz). B. LFP PSDs across full model set (N=25) at upper L5B with mean (blue line) and interquartile
ranges (bars). After removing frequencies 1-5 Hz (for clarity), all peak values were between 30-40 Hz. C.
LFP PSDs statistics of peak power (top) and frequency (bottom) across model set. Average values match
trends in panel A. D. Population PSDs from spike time histograms. Dominant frequencies were comparable
to LFPs. E. PT5B population PSDs across model set with mean (blue line) and interquartile ranges (bars).
All peak values were between 30-40 Hz. F. Population PSDs statistics of peak power (top) and frequency
(bottom) across model set. Average values match trends in panel D.

populations: IT5A, I'T5B, lower PT5B. The PT5B population split into two groups with different
dominant frequencies, consistent with the upper part of L5B receiving a higher density of intrinsic
projections from 1.2/3 (Methods: Fig. 11A). The strong projection resulted not only in higher overall firing
rates, but also in distinct modulation of firing (Fig. 5D), with higher frequency when the faster-firing
upper PT5B cells were dominant, e.g., beginning and middle of Fig. 3A raster; and lower frequency when
lower PT5B activity increased e.g., towards end of Fig. 3A raster. These different frequencies are also

partly reflected in the LFPs, where the more clearcut results of population-based activity are smeared by
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volume conduction — for example, L5B LFP includes contributions from inhibitory neurons as well as

from both PT and IT excitatory cells. The overall trends in peak amplitude and frequency were conserved
across the model set (N=25) for both PSD (Fig. 5B, C) and population firing rates (Fig. 5E, F'), although
considerable variability between 28-40Hz was observed for the peak frequencies.

1.3 Effect of [;, modulation on LFP oscillations
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Figure 6: Effect of PT I, on network oscillatory dynamics during spontaneous activity. Average
LFP power in the beta (20-30 Hz; top row) and low gamma (30-40 Hz; bottom row) frequency range across
electrodes at different depths (y-axis) over 5 seconds. Richer dynamics and stronger beta and gamma are
observed with low (left column) vs high (right column) I,.

We have previously shown that alterations in [;,, modulatable via norepinephrine and other
neurohumoral factors ™, would alter resonance properties and activation in a model PT5B cell °. Here, we
examined whether such alteration in just one cell type would ramify throughout the network to produce
widespread dynamical changes. Indeed, reduction in Iy, in PT cells (low-I}, condition) produced richer
dynamics with stronger activity in the gamma band during spontaneous activity (Fig. 6). Higher beta and
gamma power was seen in LFPs across all cortical depths, except at 500 and 600 pum where oscillatory
activity was similarly muted in both low- and high-I}, conditions. LFP activity across depth also exhibited
richer dynamics, with both the amplitude and peak frequency of the beta/gamma oscillations varying over
time following the phase of the slower ~1 Hz delta wave, a cross-frequency modulation that was not
evident in the high I}, condition.

1.4 Information flow

Spectral Granger causality (SGC) identified asymmetrical patterns of information flow across the major
microcircuit populations (Fig. 7). Information flow in our base model revealed strong SGC at high
beta/low gamma frequencies from IT2/3 — IT5A,PT5B, but not in the opposite direction (Fig. 7A).
Although information flows from IT4 — IT2/3 and IT5A — PT5B were comparatively low, they were
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Figure 7: Information flow measure demonstrated by spectral Granger causality (SGC) A. Strong
SGC in IT2/3— IT5A; 1T2/3— PT5B; IT4— 1T2/3; IT5A— PT5B compared to opposite-direction SGC
for each case in the base model. B. Differential SGC to upper and lower PT5B: strong IT2/3— PT5Bypper,
compared to IT2/3— PT5Bjower- ITHA to both upper and lower PT5B were relatively low (base model).
C. Comparison of IT2/3— PT5B SGC across entire model set (gray lines; blue: mean with interquartile
ranges). All Granger peak values were between 30 and 35 Hz. D. Information flow matrix: peak spectral
Granger causality values averaged across model set for all populations pairs. The strongest projections
(e.g., IT2/3— IT5A, IT2/3— PT5B) match those in the network connectivity matrix (Methods: Fig. 11).
E. Boxplot statistics of peak Granger causality (top), shuffle test Z-score (middle) and frequency of peak
Granger causality (bottom) across model set for the top 15 projections (x-axis).

considerably higher than flows in the opposite directions. Both I'T2/3 and IT5A primarily drove the upper
portion of the PT5B population (Fig. 7B). The SGC peak for IT2/3 — upper PT5B (31 Hz) was higher
than for IT2/3 — IT5A (29 Hz), consistent with the higher dominant oscillatory frequency seen for the
upper PT5B vs IT5A populations (Fig. 5D).

We analyzed SGC across the model set with their different random inputs and connectivity to
investigate robustness of these results (Fig. 7C,D,E). As an example, IT2/3— PT5B SGC showed a
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similar profile across the model set, with peaks between 30 Hz and 35 Hz (Fig. 7C). We extended the
analysis to all pairs of populations (15 x 15 = 225) to create an information flow matriz of functional
connectivity with mean peak SGC values for each projection (Fig. 7D). This analysis revealed strong
projections from IT2/3 and SOM2 to IT5A, PV5A, upper PT5B and PV5B, as well as from PV5A, PV5B
and IT5B to upper PT5B. We explored the full model set for the 15 matrix projections with the highest
peak SGCs (Fig. 7TE). Although this revealed relatively large variability across amplitudes (Fig. 7E top
panel), shuffle test z-scores demonstrated peak-SGC significance (mean > 50 except for IT4— ITHA;

Fig. 7E middle panel). By contrast with amplitude, peak-SGC frequencies (Fig. 7FE bottom panel)
exhibited relatively low variability. Information flow from IT2/3— PT5Bpper was strongest at a higher
mean frequency than IT2/3— IT5A, consistent with the oscillatory frequencies of the target populations
(Fig. 5). All 15 strongest information flow projections targeted L5 cells, and exhibited lower mean peak
frequencies when originating from upper layers (L2/3 and L4; 32-34 Hz) than when originating from deeper
layers (L5 and L6; 35-36 Hz). This analysis extends the microcircuit description by providing specifics
about the cell classes, sublaminar regions and oscillation frequencies. Overall, these results are consistent
with the hypothesis of frequency band “labeled lines” differentiating information pathways in the cortical

microcircuit *3¢.

Comparing the functional connectivity matrix (Fig. 7D) to the anatomical connectivity matrix
(Fig. 11) revealed a major overlap but also some differing features. Certain populations had stronger
functional influences than would be predicted by anatomy. These included 1.2/3 IT to L5 PV cells, L2/3
SOM to L5 IT, PT, PV cells, and L5A PV to L5B PT cells. On the other hand, other projections reflected
less functional strength than suggested by anatomy: 1.2/3 PV to L2/3 and L4 IT cells, L5B PV to SOM
cells, and L6 PV to IT cells. These differences emphasize the importance of dynamics and multi-synaptic

pathways in relating circuit structure to function.

1.5 Input pathways and [;, modulation

Hypothesizing that differences in network dynamics would be reflected in input signal handling, we
compared responses to sensory- and motor-related inputs in both high and low PT I}, conditions (Figs.
8,9). Sensory inputs include similar projections from thalamic posterior nucleus (PO; a higher-order
sensorimotor nucleus), and from cortical areas (S1 and S2), all projecting primarily to excitatory cells in
superficial layers —IT2/3, IT4 and IT5A (Fig. 8A) 5% 3 9,125,105, 113 Thege IT populations in turn project
to L5B, where PT cells provide the major M1 output ® '*>. Sensory inputs from PO and S2 have also been
shown to provide direct, though weaker, projections to PT cells ** 2. We modeled circuit response to a
100 ms sensory input pulse at 10 Hz from PO. This produced an increase in superficial IT and PT5B
activity in both low and high I, conditions (Fig. 8B, C). Increased response in PT5B was mediated
indirectly via the strong superficial IT connections, and through weak direct PO projections. PT5B
activity was higher for low I, both pre- and post-stimulus (Fig. 8 B). Relative PT5B firing (post-stimulus
/ pre-stimulus) was similar in both I, conditions. This I;,-dependent increase in post-stimulus PT5B
response was significant across the full model set (Fig. 8C'). The increased PT activity may be explained as
a consequence of decreased I}, facilitating synaptic integration of inputs from superficial IT neurons ***.
CT6, firing rarely, increased activity after stimulation in the low Iy, case. IT5B decreased activity in both

high- and low-1,, potentially as a result of disynaptic inhibition mediated by the increased PT5B response.

By contrast with the superficial layer projections of sensory-related inputs, motor-related inputs
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Figure 8: M1 response to input from higher-order sensory thalamus (PO) at high and low PT I,
levels. A. PO input projects primarily to a broad zone of superficial layers, including IT2/3, IT4, IT5A and
inhibitory populations. B. Raster (top) and spike time histogram (bottom) with 10 Hz PO input (green)
for 100 ms with high (left) vs low (right) Ij,. Higher activity is seen with low I,. C. PT5B showed higher
post-stimulus average and peak firing rates for low PT5B I}, across model set.

(ventrolateral thalamus, VL; and motor cortical areas, cM1 and M2) project strongly to deep layers and
therefore directly excite the output (PT5B) cells (Fig. 9) * *** 5. Motor inputs elicited a PT5B response
that was similar to that elicited by sensory inputs in the I;-high condition. However, the response in the
I-low condition was stronger and longer-lasting than seen with the sensory-related input. Specifically, the
stimulation-related 35 Hz PT5B oscillation in the low I}, setting was more robust in the motor condition,
outlasted the duration of the stimulus, and showed spread to IT5B and IT5A despite less overall ITHA
response (compare Fig. 8B with 9B). The increase in both average and peak post-stimulus firing of PT5B
cells for low vs high I, was also statistically significant in this case (Fig. 9C). Weaker PT5B response to
sensory inputs compared to motor inputs may be partly due to the initial pulse activation reducing as it
propagated from superficial layers to the deeper PT5B cells.

2 Discussion

Our ambition was to develop a detailed multiscale computational model of the mouse M1 microcircuit. We
necessarily fell short due to lack of data on a number of key molecular, cellular, network and external
connectivity aspects, as will be described in Limitations below. Despite this, we believe that our model

constitutes the most biophysically detailed model of mouse M1 microcircuit currently available. In terms of
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Figure 9: M1 response to input from motor-related inputs (M2) for high vs. low PT I, levels.
A. M2 input to deep layers directly activates PT5B and CT cells, and other cell types in the indicated
layers, including inhibitory cells. B. Raster (top) and spike time histogram (bottom) of response to M2
input (blue) of 10 Hz for 100 ms: high (left) vs low (right) PT5B I;,. M2 input resulted in higher superficial
IT and PT activity, with PT5B exhibiting a stronger response for the lower I}, case. C. PT5B showed higher
post-stimulus average and peak firing rates for low PT5B I}, level in full model set.)

analysis, our focus has been on the internal dynamics driving cortical output pathways from L5. We
therefore have put the greatest effort into the modeling of the two types of L5 projection neurons: the
intratelencephalic (IT) and pyramidal-tract (PT) neurons (Fig. 2). Overall, our model incorporated
quantitative experimental data from 30 studies, with 11 of these coming from our experimental laboratory,
and 19 from other labs. Model development also benefited greatly from extended discussions between the
computational and experimental authors.

We used the model to explore a set of questions regarding emergent dynamics, as well as
neuromodulatory and dynamical control of input-output relations. The firing rate range generated by our
model for each cell type (Fig. 3) compared favorably to experimental results '** " and to other recent
models %% 8 ¢ 121 Fagt-on-slow oscillations emerged across multiple random wiring seeds and background
input seeds (Fig. 4), a characteristic oscillatory pattern found in biology ' #, and in neural models *** ¢,
LFP frequencies varied somewhat across cortical depth. A range of frequencies could also be assessed
across individual cell populations (Figures 5D and 4D, F'). Similar frequencies emerged as peaks in
measures of Granger causality from one population to another (Fig. 7).

Consistent with the anatomy of projections into M1,°* '*? we investigated long-range inputs targeting
superficial and deep layers. Response dynamics differed across these two input types, and were also altered

substantially by neuromodulatory state (Fig. 8,9). This revealed how these two different functional
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pathways could generate distinct corticospinal output. Sensory-related inputs from PO, S1 and S2 regions,
projecting primarily to superficial IT neurons, produced secondary activation, as well as weak direct
activation, in layer 5 corticospinal cells. The deep motor-related inputs from VL, cM1 or M2 regions
bypassed the upper M1 layers, projecting directly to the output layer and producing a more immediate and
more robust response in the corticospinal cells. I}, downregulation increased corticospinal response to both

types of inputs.

2.1 Limitations

This model was constructed over a period of three years. Over the course of that time we updated the
model periodically as data came in, but of course any neurobiological model is always in need of continuous
updating and improvement as new measurements become available. The situation is comparable to
weather models which are gradually improved over months and years even as they are daily updated with

current initial conditions to provide forecasts.

Of some concern is the relative lack of data on dendritic ion channel density, which will affect the
influence of distal synaptic inputs on L5 neurons. Cell models are precisely tuned to reproduce
experimental somatic responses, but limited data is available to characterize dendritic physiology. We have
also neglected within-class cellular diversity in our model — all the model neurons of the same cell class
have identical morphologies and identical channel parameters. This contrasts with other models which vary

both channel conductances and morphologies, the latter by slightly jittering angles and lengths.?*

Due to the nature of our LSPS and sCRACM data, our model used connection density based on
postsynaptic cell type and presynaptic locations. Our model’s normalized cortical-depth-dependent
connectivity provided greater resolution than traditional layer-based wiring, but still contained boundaries
where connection density changed and did not provide cell level point-to-point resolution. Other recent
models have used a sophisticated version of Peters’ principle (identifying overlap between axonal and
dendritic trees) to provide cell-to-cell resolution for selected cells, which must then still be replicated and

generalized across multiple instances to build a large network '** %4,

We are limited not only by lack of precise data for parameter determination, but also by
computational constraints. Often, network simulations use point neurons in order to avoid the
computational load of multicompartment neurons, but at the expense of accuracy. Here, we compromised
by using relatively small multicompartment models for most populations, with the exception of the neurons
of L5. In terms of norepinephrine influence, we focused here on one effect on once cell type, neglecting its

103

wide-ranging effects '°%, as well as the influence of second messenger cascades °*. Even with these

compromises, optimizing and exploring our large network model required millions of HPC core-hours.

2.2 Emergence of physiological oscillations and phase-amplitude coupling

Our model of M1 neocortex exhibits spontaneous physiological oscillations and cross-frequency coupling
without rhythmogenic synaptic input. Strong oscillations were observed in the delta and beta/gamma

ranges with specific frequency-dependence on cell class and cortical depth (Figs. 4 and 5). Strong LFP

24, 136

beta and gamma oscillations are characteristic of motor cortex activity in both rodents and primates

116,102 " and have been found to enhance signal transmission in mouse neocortex **. Both beta and gamma
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oscillations may play a role in information coding during preparation and execution of movements * 3¢,

More generally, these physiological oscillations are considered to be fundamental to the relation of brain
structure and function ?°. Phase-amplitude coupling of delta/beta and theta/gamma oscillations has also
been reported in motor and somatosensory cortices of rodents % 59> " 4 and primates ''® 32> 9°,

Cross-frequency coupling may help integrate information across temporal scales and across networks *'.

As the primary output, PT cells receive and integrate many local and long-range inputs. Their only
local connections to other L5 excitatory neurons are to other PT cells ®. However, by targeting inhibitory
cells in L.5,° they are able to reach across layers to influence other excitatory populations, either reducing
activity or entraining activity °®. These disynaptic E—~I—E pathways likely play a role in coupling

oscillations within and across layers, and in setting frequency bands.

2.3 Information flow

Spectral Granger causality (SGC) measures the ability of a time series X to predict the future values of
time series Y, beyond what is possible just with past values of Y. In our context, SGC can be best
described as a measure of information flow.'* ¢ Granger causality estimates, like other information
theoretic measures, may be severely biased or show high variance, leading to spurious and potentially
misleading results.”®® We partly addressed these concerns using shuffle-test z-scores, which showed high
significance for SGC measures compared to the data without the original time stamps. We were also able

to demonstrate fairly low variability across our model set of 25 randomized simulations (Fig. 7C,E).

Here we provide, for the first time, a full matrix of Granger causality across all projections in a
biophysically detailed circuit model (Fig. 7D). SGC analysis provided a tool to identify sub-networks of
importance, and to reconstruct functional networks that can be contrasted with the underlying anatomical
network. The majority of functionally strong projections were also present in the anatomical connectivity
matrix, suggesting how dynamics could be used to infer network wiring. For example, the projections from
L2/3—L5A and L2/3—L5B could be independently identified. Interestingly, some multi-step pathways
which could be identified anatomically showed evidence of not being frequency-coherent dynamically. In
this way, dynamical analysis can provide clues as to how different projections could be concatenated, kept

separate, or embedded, in the context of the labeling-by-frequency hypothesis ¢ 7.

Although functional connectivity largely followed structural excitatory connectivity, there were
exceptions that could be partly explained by the strong influences of multiple inhibitory interneuron
populations. SOM2, SOM6, PV5A, PV5B influenced both excitatory neurons and other inhibitory
neurons. These effects could be the source of interlaminar oscillatory coupling and synchronization through
both multi-synaptic inhibition and disinhibitory mechanisms. For example, considering just the strongest
projections, PT5B are inhibited by PV5A, PV5B and SOM2, but SOM2 also disinhibits PT5B via the
SOM2 — PV5B — PT5B chain. At the same time, the strong IT2/3 — PT5B pathway has a parallel
disynaptic inhibitory chain IT2/3 — PV5B — PT5B. Statistical analysis of the strongest projections
further revealed different information flow peak frequencies for superficial vs deep layers of origin
(Fig. 7F). Further analysis of these multiple interacting frequency-based interactions will require

development of new statistical and machine learning techniques.
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2.4 Effect of HCN current (I}, ) in PT cells

The concentration of HCN channels has been shown to be significantly higher in PT cells than in IT
cells.’®® 52 Downregulation of I, effected via norepinephrine and other neuromodulatory factors, has been
shown to increase PT activity as a consequence of enhanced temporal and spatial synaptic integration of
EPSPs.'?* ™ Paradoxically, I, downregulation has also been reported to reduce pyramidal cell activity in
some settings.** %8 We previously demonstrated the pro-excitatory effect, showing activation and altered
resonance properties in our isolated PT5B cell model °*. However, that model did not show for the

observed anti-excitatory effect.

In the current paper, we used a different I;, model®® in our network PT cells, which was able to
reconcile these observations: I, downregulation reduced PT response to weak inputs, while increasing the

88, 44,123, 73 Furthermore, the pro-excitatory effect seen with strong input,

cell response to strong inputs
although an isolated change, created widespread activity alterations in the network. We identified stronger
activity in the beta/gamma band with reduced Iy, in the resting network (Fig. 6), and increased circuit

response to long-range inputs (Figs. 8 and 9).

2.5 Preparatory activity vs motor commands

A key question in motor system research is how motor cortex activity gets dissociated from muscle
movement during motor planning or mental imagery, and is then shifted to produce commands for action
38,120 One hypothesis has been that this planning-to-execution switch might be triggered by
neuromodulation by norepinephrine ***. An additional hypothesis is that differential outputs would result
from distinct activation of different cells in L5 "% > 5. This hypothesis was given further support when a
recent study transcriptomically identified different PT subtypes in upper vs lower L5B *°. That study also
showed that PT5Bpper projected to thalamus and generated early preparatory activity, while PT5B1ower

projected to medulla and generated motor commands.

These two hypotheses are not incompatible, and indeed our simulations demonstrated how these
mechanisms might coexist: 1. Low-ih produced a dramatic increase in PT5B activity, largely triggered by
increased excitability of PT with activation via the unidirectional IT to PT projection °¢. This low-I;, PT
state, associated with norepinephrine activation, would be one factor producing motor action. 2. Already
in the resting condition, the simulation showed markedly different activity in PT5Bypper V8 PT5Bigwer,
with antiphase activity at delta frequency (Fig. 4D, E). PT5Bpper fired strongly in response to
sensory-area inputs, with little PT5Bower activity (Fig. 8). Motor-related inputs more strongly activated
activated PT5Bypper and produced some PT5B)ower activity (Fig. 9). We therefore predict that the
planning-to-execution transition might require both circuit-level routing of inputs and the neuromodulatory
prepared state. The effects of activation via both sensory and motor pathways remains to be tested.

2.6 Implications for experimental research and therapeutics

Our model integrates previously isolated experimental data at multiple scales into a unified simulation that
can be progressively extended as new data becomes available. This provides a useful tool for researchers in
the field, who can use this framework to evaluate hypotheses and guide the design of new experiments

using our freely-available model (see Methods). This in silico testbed can be systematically probed to
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study microcircuit dynamics, information flow and biophysical mechanisms with a level of resolution and
precision not available experimentally. Unraveling the non-intuitive multiscale interactions occurring in M1
circuits will help us understand disease and develop new pharmacological and neurostimulation treatments
for motor disorders 01 100, 97, 36, 7, 138, 50, 12, 119 " apd improve decoding methods for brain-machine interfaces

22, 124, 35, 67

3 Methods

The methods below describe model development with data provenance, and major aspects of the final
model. The full documentation of the final model is the source code itself, available for download at
http://modeldb.yale.edu/260015.

3.1 Morphology and physiology of neuron classes

Seven excitatory pyramidal cell and two interneuron cell models were employed in the network. Their
morphology and physiological responses are summarized in Figs. 24, B and 10. In previous work we
developed layer 5B PT corticospinal cell and L5 IT corticostriatal cell models that reproduced in vitro
electrophysiological responses to somatic current injections, including sub- and super-threshold voltage
trajectories and f-I curves °% **!. To achieve this, we optimized the parameters of the Hodgkin-Huxley
neuron model ionic channels — Na, Kdr, Ka, Kd, HCN, CaL, CaN, KCa — within a range of values
constrained by the literature. The corticospinal and corticostriatal cell model morphologies had 706 and
325 compartments, respectively, digitally reconstructed from 3D microscopy images. Morphologies are
available via NeuroMorpho.org ° (archive name “Suter_Shepherd”). For the current simulations, we further
improved the PT model by 1. increasing the concentration of Ca2+ channels (“hot zones”) between the
nexus and apical tuft, following parameters published in *?; 2. lowering dendritic Na+ channel density in
order to increase the threshold required to elicit dendritic spikes, which then required adapting the axon
sodium conductance and axial resistance to maintain a similar f-I curve; 3. replacing the HCN channel
model and distribution with a more recent implementation ®**.The new HCN channel reproduced a wider
range of experimental observations than our previous implementation %, including the change from
excitatory to inhibitory effect in response to synaptic inputs of increasing strength **. This was achieved by
including a shunting current proportional to I;,. We tuned the HCN parameters (Ik and v,ey,x) and passive

parameters to reproduce the findings noted above, while keeping a consistent f-I curve consistent '3'.

The network model includes five other excitatory cell classes: layer 2/3, layer 4, layer 5B and layer 6
IT neurons and layer 6 CT neurons. Since our focus was on the role of L5 neurons, other cell classes were
implemented using simpler models as a trade-off to enable running a larger number of exploratory network
simulations. Previously we had optimized 6-compartment neuron models to reproduce somatic current
clamp recordings from two IT cells in layers 5A and 5B. The layer 5A cell had a lower f-I slope (77 Hz/nA)
and higher rheobase (250 nA) than that in layer 5B (98 Hz/nA and 100 nA). Based on our own and
published data, we found two broad IT categories based on projection and intrinsic properties:
corticocortical IT cells found in upper layers 2/3 and 4 which exhibited a lower {-I slope (~72 Hz/nA) and
higher rheobase (~281 pA) than IT corticostriatal cells in deeper layers 5A, 5B and 6 (~96 Hz/nA and
~106 pA) ™t 13119 CT neurons’ {-I rheobase and slope (69 Hz/nA and 298 pA) was closer to that of
corticocortical neurons '°>. We therefore employed the layer 5A IT model for layers 2/3 and 4 IT neurons
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and layer 6 CT neurons, and the layer 5B IT model for layers 5A, 5B and 6 IT neurons. We further
adapted cell models by modifying their apical dendrite length to match the average cortical depth of the
layer, thus introducing small variations in the firing responses of neurons across layers.

We implemented models for two major classes of GABAergic interneurons °': parvalbumin-expressing
fast-spiking (PV) and somatostatin-expressing low-threshold spiking neurons (SOM). We employed existing
simplified 3-compartment (soma, axon, dendrite) models % and increased their dendritic length to better
match the average f-I slope and rheobase experimental values of cortical basket (PV) and Martinotti
(SOM) cells (Neuroelectro online database '**).

SOM

B Layer 2 Layer 4 Layer 5A Layer 5B Layer 6
PV
r
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Figure 10: Microcircuit layer composition and cell type f-I response. A. Proportion of cell classes per
layer; B. f-I curve for each excitatory and inhibitory cell types. All properties were derived from published
experimental data. Populations labels include the cell class and layer, e.g. 'IT2’ represents the IT class

neurons in layer 2/3.

3.2 Microcircuit composition: neuron locations, densities and ratios

We modeled a cylindric volume of the mouse M1 cortical microcircuit with a 300 pum diameter and 1350
wum height (cortical depth) at full neuronal density for a total of 10,073 neurons (Fig. 2). Cylinder diameter
was chosen to approximately match the horizontal dendritic span of a corticospinal neuron located at the
center, consistent with the approach used in the Human Brain Project model of the rat S1 microcircuit %°.
Mouse cortical depth and boundaries for layers 2/3, 4, 5A, 5B and 6 were based on our published
experimental data '*° % ' Although traditionally M1 has been considered an agranular area lacking layer
4, we recently identified M1 pyramidal neurons with the expected prototypical physiological, morphological
and wiring properties of layer 4 neurons *** (see also ** '), and therefore incorporated this layer in the
model.

Cell classes present in each layer were determined based on mouse M1 studies 5" '8! 3, 141, 105, 69,93 T
cell populations were present in all layers, whereas the PT cell population was confined to layer 5B, and
the CT cell population only occupied layer 6. SOM and PV interneuron populations were distributed in
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each layer. Neuronal densities (neurons per mm?) for each layer (Fig. 2B) were taken from a histological
and imaging study of mouse agranaular cortex '**. The proportion of excitatory to inhibitory neurons per
layer was obtained from mouse S1 data . The proportion of IT to PT and IT to CT cells in layers 5B and
6, respectively, were both estimated as 1:1 ®' '*'» '**_ The ratio of PV to SOM neurons per layer was
estimated as 2:1 based on mouse M1 and S1 studies ** **" (Fig. 10B). Since data for M1 layer 4 was not
available, interneuron populations labeled PV5A and SOM5A occupy both layers 4 and 5A. The number of
cells for each population was calculated based on the modeled cylinder dimensions, layer boundaries and
neuronal proportions and densities per layer.

3.3 Local connectivity
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Figure 11: M1 excitatory connectivity: local microcircuitry and and long-range inputs. A.
Strength of local excitatory connections as a function of pre- and post-synaptic normalized cortical depth
(NCD) and post-synaptic cell class; values used to construct the network. B. Convergence of long-range
excitatory inputs from seven thalamic and cortical regions as a function post-synaptic NCD and cell class;
values used to construct the network. C. Probability of connection matrix for excitatory (left) and inhibitory

(right) populations calculated from an instantiation of the base model network.

We calculated local connectivity between M1 neurons (Figures 2C and 11A4) by combining data from
multiple studies. Data on excitatory inputs to excitatory neurons (IT, PT and CT) was primarily derived
from mapping studies using whole-cell recording, glutamate uncaging-based laser-scanning
photostimulation (LSPS) and subcellular channelrhodopsin-2-assisted circuit mapping (SCRACM) analysis
139, 8, 141, 142 - Connectivity data was postsynaptic cell class-specific and employed normalized cortical depth
(NCD) instead of layers as the primary reference system. Unlike layer definitions which can be interpreted

differently between studies, NCD provides a well-defined, consistent and continuous reference system,
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depending only on two readily-identifiable landmarks: pia (NCD=0) and white matter (NCD=1).
Incorporating NCD-based connectivity into our model allowed us to capture wiring patterns down to a 100
wm spatial resolution, well beyond traditional layer-based cortical models. M1 connectivity varied
systematically within layers. For example, the strength of inputs from layer 2/3 to L5B corticospinal cells

depends significantly on cell soma depth, with upper neurons receiving much stronger input *.

Connection strength thus depended on presynaptic NCD and postsynaptic NCD and cell class. For
postsynaptic IT neurons with NCD ranging from 0.1 to 0.37 (layers 2/3 and 4) and 0.8 to 1.0 (layer 6) we
determined connection strengths based on data from ™° with cortical depth resolution of 140
um-resolution. For postsynaptic IT and PT neurons with NCD between 0.37 and 0.8 (layers 5A and 5B)
we employed connectivity strength data from ® with cortical depth resolution of 100 um. For postsynaptic
CT neurons in layer 6 we used the same connection strengths as for layer 6 IT cells **°, but reduced to 62%
of original values, following published data on the circuitry of M1 CT neurons '*>. Our data '** also
suggested that connection strength from layer 4 to layer 2/3 IT cells was similar to that measured in S1, so
for these projections we employed values from Lefort’s S1 connectivity strength matrix ™. Experimentally,
these connections were found to be four times stronger than in the opposite direction — from layer 2/3 to

layer 4 — so we decreased the latter in the model to match this ratio.

.7 we defined connection strength (Scon, in mV) between two

Following previous publications
populations, as the product of their probability of connection (p.on) and the unitary connection somatic
EPSP amplitude in mV (v.on), i.e. Scon = Peon X Ucon. We employed this equivalence to disentangle the
connection S, values provided by the above LSPS studies into peo, and v, values that we could use to
implement the model. First, we rescaled the LSPS raw current values in pA % 39 4% 142 to match s.,, data
from a paired recording study of mouse M1 L5 excitatory circuits ®¢. Next, we calculated the M1
NCD-based v, matrix by interpolating a layerwise unitary connection EPSP amplitude matrix of mouse
S1 7, and thresholding values between 0.3 and 1.0 mV. Finally, we calculated the probability of connection

matrix as Pcon = Scon/vcon'

To implement v.,, values in the model we calculated the required NEURON connection weight of an
excitatory synaptic input to generate a somatic EPSP of 0.5 mV at each neuron segment. This allowed us
to calculate a scaling factor for each segment that converted v.., values into NEURON weights, such that
the somatic EPSP response to a unitary connection input was independent of synaptic location. This is
consistent with experimental evidence showing synaptic conductances increased with distance from soma,
to normalize somatic EPSP amplitude of inputs within 300 pum of soma *2. Following this study, scaling
factor values above 4.0 — such as those calculated for PT cell apical tufts — were thresholded to avoid
overexcitability in the network context where each cell receives hundreds of inputs that interact nonlinearly
128, 11 For morphologically detailed cells (layer 5A IT and layer 5B PT), the number of synaptic contacts
per unitary connection (or simply, synapses per connection) was set to five, an estimated average consistent
with the limited mouse M1 data *° and rat S1 studies '® %°. Individual synaptic weights were calculated by
dividing the unitary connection weight (vcon) by the number of synapses per connection. Although the
method does not account for nonlinear summation effects '*® it provides a reasonable approximation and
enables employing a more realistic number and spatial distribution of synapses, which may be key for
dendritic computations "®. For the remaining cell models, all with six compartments or less, a single

synapse per connection was used.

For excitatory inputs to inhibitory cell types (PV and SOM) we started with the same values as for IT
cell types but adapted these based on the specific connectivity patterns reported for mouse M1
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interneurons * *? (Fig. 11A4). Following the layer-based description in these studies, we employed three
major subdivisions: layer 2/3 (NCD 0.12 to 0.31), layers 4, 5A and 5B (NCD 0.31 to 0.77) and layer 6
(NCD 0.77 to 1.0). We increased the probability of layer 2/3 excitatory connections to layers 4, 5A and 5B
SOM cells by 50% and decreased that to PV cells by 50% °. We implemented the opposite pattern for
excitatory connections arising from layer 4,5A 5B IT cells such that PV interneurons received stronger
intralaminar inputs than SOM cells ®*. The model also accounts for layer 6 CT neurons generating
relatively more inhibition than IT neurons **2. Inhibitory connections from interneurons (PV and SOM) to
other cell types were limited to neurons in the same layer °*, with layers 4, 5A and 5B combined into a
single layer °3. Probability of connection decayed exponentially with the distance between the pre- and

43,42 We introduced a correction factor to the

post-synaptic cell bodies with length constant of 100 um
distance-dependent connectivity measures to avoid the border effect, i.e., cells near the modeled volume

edges receiving less or weaker connections than those in the center.

For comparison with other models and experiments, we calculated the probability of connection
matrices arranged by population (instead of NCD) for the base model network instantiation used
throughout the results. (11B).

Excitatory synapses consisted of colocalized AMPA (rise, decay 7: 0.05, 5.3 ms) and NMDA (rise,
decay 7: 15, 150 ms) receptors, both with reversal potential of 0 mV. The ratio of NMDA to AMPA
receptors was 1.0 °2, meaning their weights were each set to 50% of the connection weight. NMDA
conductance was scaled by 1/(1+ 0.28 - Mg - exp (—0.062 - V)); Mg = 1mM . Inhibitory synapses from
SOM to excitatory neurons consisted of a slow GABA 4 receptor (rise, decay 7: 2, 100 ms) and GABAp
receptor, in a 90% to 10% proportion; synapses from SOM to inhibitory neurons only included the slow
GABA 4 receptor; and synapses from PV to other neurons consisted of a fast GABA 4 receptor (rise, decay
7: 0.07, 18.2). The reversal potential was -80 mV for GABA4 and -95 mV for GABAgp. The GABAg
synapse was modeled using second messenger connectivity to a G protein-coupled inwardly-rectifying
potassium channel (GIRK) %*. The remaining synapses were modeled with a double-exponential

mechanism.

Connection delays were estimated as 2 ms plus a variable delay depending on the distance between the

pre- and postsynaptic cell bodies assuming a propagation speed of 0.5 m/s.

3.4 Long-range input connectivity

We added long-range input connections from seven regions that are known to project to M1: thalamic
posterior nucleus (PO), ventro-lateral thalamus (VL), primary somatosensory cortex (S1), secondary
somatosensory cortex (S2), contralateral primary motor cortex (cM1), secondary motor cortex (M2) and
orbital cortex (OC). Each region consisted of a population of 1000 2* *¢ spike-generators (NEURON
VecStims) that generated independent random Poisson spike trains with uniform distributed rates between
0 and 5 Hz "% **; or 0 to 10 Hz *® °® when simulating increased input from a region. Previous studies
provided a measure of normalized input strength from these regions as a function of postsynaptic cell type
and layer or NCD. Broadly, PO ' 142 98 S1 8 and S2 '*2 projected strongly to IT cells in layers 2/3 and
5A (PO also to layer 4); VL projected strongly to PT cells and to layer 4 IT cells *** 42 93; ¢M1 and M2
projected strongly to IT and PT cells in layers 5B and 6 *°; and OC projected strongly to layer 6 CT and
IT cells **. We implemented these relations by estimating the maximum number of synaptic inputs from

each region and multiplying that value by the normalized input strength for each postsynaptic cell type
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and NCD range. This resulted in a convergence value — average number of synaptic inputs to each
postsynaptic cell — for each projection Fig. 11C. We fixed all connection weights (unitary connection

somatic EPSP amplitude) to 0.5 mV, consistent with rat and mouse S1 data °¢ 2%,

To estimate the maximum number of synaptic inputs per region, we made a number of assumptions
based on the limited data available (Fig. 11C and 2B). First, we estimated the average number of synaptic
contacts per cell as 8234 by rescaling rat S1 data %7 based on our own observations for PT cells *** and
contrasting with related studies '** *'; we assumed the same value for all cell types so we could use
convergence to approximate long-range input strength. We assumed 80 % of synaptic inputs were
excitatory vs. 20 % inhibitory % ®%; out of the excitatory inputs, 80 % were long-range vs. 20 % local
85, 129. and out of the inhibitory inputs, 30 % were long-range vs. 70 % local '*°. Finally, we estimated the

percentage of long-range synaptic inputs arriving from each region based on mouse brain mesoscale

104 and other studies 89 16, 87 146, 14

connectivity data

3.5 Dendritic distribution of synaptic inputs

Experimental evidence demonstrates the location of synapses along dendritic trees follows very specific
patterns of organization that depend on the brain region, cell type and cortical depth '°® '*?; these are
likely to result in important functional effects "> ™ 28, We employed sCRACM data to estimate the
synaptic density along the dendritic arbor — 1D radial axis — for inputs from PO, VL, M2 and OC to layers
2/3, 5A, 5B and 6 IT and CT cell ** (Fig. 124), and from layer 2/3 IT, VL, S1, S2, cM1 and M2 to PT
neurons **? (Fig. 12B). To approximate radial synaptic density we divided the sSCRACM map amplitudes
by the dendritic length at each grid location, and averaged across rows. Once all network connections had
been generated, synaptic locations were automatically calculated for each cell based on its morphology and
the pre- and postsynaptic cell type-specific radial synaptic density function (Fig. 12C). Synaptic inputs
from PV to excitatory cells were located perisomatically (50 um around soma); SOM inputs targeted
apical dendrites of excitatory neurons °* ¢¢; and all inputs to PV and SOM cells targeted apical dendrites.
For projections where no data synaptic distribution data was available — IT/CT, S1, S2 and ¢cM1 to IT/CT

cells — we assumed a uniform dendritic length distribution.

3.6 Model implementation, simulation and analysis

The model was developed using parallel NEURON (neuron.yale.edu)® and NetPyNE (www.netpyne.org)®”,
a Python package to facilitate the development of biological neuronal networks in the NEURON simulator.
NetPyNE emphasizes the incorporation of multiscale anatomical and physiological data at varying levels of
detail. It converts a set of simple, standardized high-level specifications in a declarative format into a
NEURON model. This high-level language enables, for example, defining connectivity as function of NCD,
and distributing synapses across neurons based on normalized synaptic density maps. NetPyNE facilitates
running parallel simulations by taking care of distributing the workload and gathering data across
computing nodes, and automates the submission of batches of simulations for parameter optimization and
exploration. It also provides a powerful set of analysis methods so the user can plot spike raster plots, LFP
power spectra, information transfer measures, connectivity matrices, or intrinsic time-varying variables (eg.
voltage) of any subset of cells. To facilitate data sharing, the package saves and loads the specifications,

network, and simulation results using common file formats (Pickle, Matlab, JSON or HDF5), and can
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Figure 12: Dendritic distribution of synaptic inputs. A. Average 2D sCRACM maps for VL -PT
and S2 —PT inputs (experimental data). B. Synaptic density profile (1D) along the dendritic arbor for
inputs from layer 2/3 IT, VL, S1, S2, cM1 and M2 to PT neurons. Calculated by normalizing sCRACM
maps by dendritic length at each grid location and averaging across rows. C. Synaptic density per neuron
segment automatically calculated for each neuron based on its morphology and the pre- and postsynaptic
cell type-specific radial synaptic density function. Here, VL. -PT and S2 —PT are compared and exhibit

partially complementary distributions.

convert to and from NeuroML *7 *¢ and SONATA *°, standard data formats for exchanging models in
computational neuroscience. Simulations were run on XSEDE supercomputers Comet and Stampede, using
the Neuroscience Gateway (NSG) and our own resource allocation, and on Google Cloud supercomputers.

NetPyNE facilitates optimization and exploration of network parameters through automated batch
simulations. The user specifies the range of parameters and parameter values to explore and the tool
automatically submits the jobs in multicore machines (using NEURON’s Bulletin board) or HPCs (using
SLURM/Torque). Multiple pre-defined batch simulation setups can be fully customized for different
environments. We ran batch simulations using NetPyNE’e automated SLURM job submission on San
Diego Supercomputer Center’s (SDSC) Comet supercomputer and on Google Cloud Platform.

The NetPyNE tool also includes the ability to simulate local field potentials (LFPs) obtained from

23


https://doi.org/10.1101/201707
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/201707; this version posted October 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1]

2]

aCC-BY-NC-ND 4.0 International license.

extracellular electrodes located at arbitrary 3D locations within the network. The LFP signal at each

7 10719, 77 " wwhich is based on the sum of the

electrode is obtained using the ”line source approximation
membrane current source generated at each cell segment divided by the distance between the segment and
the electrode. The calculation assumes that the electric conductivity and permittivity of the extracellular

medium are constant everywhere and do not depend on frequency.

Spectral Granger Causality analysis (Fig. 7) was also performed via the NetPyNE package, which
follows the formulation described in °* using a Python implementation adapted from the Matlab BSMART
package *°. This implementation of Spectral Granger Causality has previously bee used to analyze spiking
network models °.

Modulation index (Fig. 4) was used as a measure of cross-frequency coupling between the phase of a
slow frequency and the amplitude (or envelope) of a faster frequency. The modulation index calculation

133

was implemented in Python based on the method described in '** and making use of a set of functions to

filter the fast frequency at variable bandwidths 2.

To study the significance of spectral Granger casuality and modulation index (Figs. 4F and 7F)
results we generated 50 shuffled versions of the input data and then calculated the corresponding surrogate
measures (spectral Granger causality or modulation index), from which we could infer the chance
distribution. We then calculated the z-score of the original simulation results, which indicates the number
of standard deviations from the shuffled sample mean. Z-scores can be directly related to p-values, e.g.,

assuming a one-tailed hypothesis a z-score of 3.29 corresponds to a p-value < 0.0005.
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