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Synonymous​ ​codon​ ​choice​ ​can​ ​have​ ​dramatic ​ ​effects​ ​on​ ​ribosome​ ​speed, ​ ​RNA ​ ​stability, ​ ​and 

protein​ ​expression. ​ ​Ribosome​ ​profiling​ ​experiments​ ​have​ ​underscored​ ​that ​ ​ribosomes​ ​do 

not ​ ​move​ ​uniformly​ ​along​ ​mRNAs, ​ ​exposing​ ​a​ ​need​ ​for​ ​models​ ​of ​ ​coding​ ​sequences​ ​that 

capture​ ​the​ ​full ​ ​range​ ​of ​ ​empirically​ ​observed​ ​variation. ​ ​We​ ​present ​ ​a​ ​method, ​ ​Iχnos, ​ ​that 

models​ ​this​ ​variation​ ​in​ ​translation​ ​elongation​ ​using​ ​a​ ​feedforward​ ​neural ​ ​network​ ​to 

predict ​ ​the​ ​translation​ ​elongation​ ​rate​ ​at ​ ​each​ ​codon​ ​as​ ​a​ ​function​ ​of ​ ​its​ ​sequence 

neighborhood. ​ ​Our​ ​approach​ ​revealed​ ​sequence​ ​features​ ​affecting​ ​translation​ ​elongation 

and​ ​quantified​ ​the​ ​impact ​ ​of ​ ​large​ ​technical ​ ​biases​ ​in​ ​ribosome​ ​profiling. ​ ​We​ ​applied​ ​our 

model ​ ​to​ ​design​ ​synonymous​ ​variants​ ​of ​ ​a​ ​fluorescent ​ ​protein​ ​spanning​ ​the​ ​range​ ​of 

possible​ ​translation​ ​speeds​ ​predicted​ ​with​ ​our​ ​model. ​ ​We​ ​found​ ​that ​ ​levels​ ​of ​ ​the 

fluorescent ​ ​protein​ ​in​ ​yeast ​ ​closely​ ​tracked​ ​the​ ​predicted​ ​translation​ ​speeds​ ​across​ ​their 

full ​ ​range. ​ ​We​ ​therefore​ ​demonstrate​ ​that ​ ​our​ ​model ​ ​captures​ ​information​ ​determining 

translation​ ​dynamics​ ​​in​ ​vivo​, ​ ​and​ ​that ​ ​control ​ ​of ​ ​translation​ ​elongation​ ​alone​ ​is​ ​sufficient 

to​ ​produce​ ​large, ​ ​quantitative​ ​differences​ ​in​ ​protein​ ​output. 

As ​ ​the ​ ​ribosome ​ ​moves ​ ​along ​ ​a​ ​transcript,​ ​it ​ ​encounters ​ ​diverse ​ ​codons,​ ​tRNAs,​ ​and ​ ​amino​ ​acids.​ ​This 

diversity ​ ​affects ​ ​translation​ ​elongation​ ​and,​ ​ultimately,​ ​gene ​ ​expression.​ ​For​ ​instance,​ ​exogenous ​ ​gene 

expression​ ​can​ ​be ​ ​seriously ​ ​hampered ​ ​by ​ ​a​ ​mismatch​ ​between​ ​the ​ ​choice ​ ​of ​ ​synonymous ​ ​codons ​ ​and ​ ​the 

availability ​ ​of ​ ​tRNAs.​ ​The ​ ​consequences ​ ​of ​ ​endogenous ​ ​variation​ ​in​ ​codon​ ​use ​ ​have ​ ​been​ ​more ​ ​elusive,​ ​but 

new ​ ​methods ​ ​have ​ ​revealed ​ ​that ​ ​changes ​ ​in​ ​translation​ ​speed ​ ​due ​ ​to​ ​synonymous ​ ​coding ​ ​mutations, 

upregulation​ ​of ​ ​tRNAs,​ ​or​ ​mutations ​ ​within​ ​tRNAs ​ ​can​ ​have ​ ​dramatic ​ ​effects ​ ​on​ ​protein​ ​expression, 

folding,​ ​or​ ​stability ​1–3 ​.​ ​However,​ ​translation​ ​initiation​ ​has ​ ​been​ ​considered ​ ​the ​ ​rate-limiting ​ ​step ​ ​in 

translation,​ ​implying ​ ​that ​ ​changes ​ ​in​ ​elongation​ ​speed ​ ​should ​ ​have ​ ​limited ​ ​effects ​4​.​ ​Recent ​ ​work​ ​has 

suggested ​ ​a​ ​relationship ​ ​between​ ​codon​ ​use ​ ​and ​ ​RNA​ ​stability;​ ​slower​ ​translation​ ​may ​ ​destabilize ​ ​mRNAs 
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and ​ ​thus ​ ​decrease ​ ​protein​ ​expression​5,6 ​.​ ​These ​ ​opposing ​ ​viewpoints ​ ​have ​ ​yet ​ ​to​ ​be ​ ​fully ​ ​reconciled,​ ​leaving 

us ​ ​with​ ​an​ ​incomplete ​ ​understanding ​ ​of ​ ​what ​ ​defines ​ ​a​ ​favorable ​ ​sequence ​ ​for​ ​translation. 

With​ ​the ​ ​advent ​ ​of ​ ​high-throughput ​ ​methods ​ ​to​ ​measure ​ ​translation​ ​elongation​ ​​in​ ​vivo ​,​ ​we ​ ​can 

understand ​ ​the ​ ​functional ​ ​implications ​ ​of ​ ​codon​ ​usage.​ ​Ribosome ​ ​profiling ​ ​measures ​ ​translation 

transcriptome-wide ​ ​by ​ ​capturing ​ ​and ​ ​sequencing ​ ​the ​ ​regions ​ ​of ​ ​mRNA​ ​protected ​ ​within​ ​ribosomes,​ ​called 

ribosome ​ ​footprints ​7 ​.​ ​Each​ ​footprint ​ ​reflects ​ ​the ​ ​position​ ​of ​ ​an​ ​individual ​ ​ribosome ​ ​on​ ​a​ ​transcript,​ ​and 

we ​ ​can​ ​reliably ​ ​infer​ ​the ​ ​A​ ​site ​ ​codon​ ​–​ ​the ​ ​site ​ ​of ​ ​tRNA​ ​decoding ​ ​–​ ​in​ ​each​ ​footprint ​ ​(Fig.​ ​1A).​ ​This 

codon-level ​ ​resolution​ ​yields ​ ​the ​ ​distribution​ ​of ​ ​ribosomes ​ ​along ​ ​mRNAs ​ ​from​ ​each​ ​gene.​ ​We ​ ​can​ ​use ​ ​the 

counts ​ ​of ​ ​footprints ​ ​on​ ​each​ ​codon​ ​to​ ​infer​ ​translation​ ​elongation​ ​rates:​ ​slowly ​ ​translated ​ ​codons ​ ​yield 

more ​ ​footprints,​ ​and ​ ​quickly ​ ​translated ​ ​codons ​ ​yield ​ ​fewer​ ​(Fig.​ ​1B).​ ​Analyses ​ ​of ​ ​ribosome ​ ​profiling ​ ​data 

have ​ ​shown​ ​a​ ​relationship ​ ​between​ ​translation​ ​elongation​ ​rate ​ ​and ​ ​biochemical ​ ​features ​ ​like ​ ​tRNA 

abundance,​ ​wobble ​ ​base ​ ​pairing,​ ​amino​ ​acid ​ ​polarity,​ ​and ​ ​mRNA​ ​structure ​8–15 ​.​ ​Expanded ​ ​probabilistic 

and ​ ​neural ​ ​network​ ​models ​ ​have ​ ​shown​ ​that ​ ​the ​ ​sequence ​ ​context ​ ​of ​ ​a​ ​ribosome ​ ​contributes ​ ​to​ ​its 

elongation​ ​rate,​ ​both​ ​directly ​ ​and ​ ​through​ ​higher​ ​order​ ​features ​ ​such​ ​as ​ ​nascent ​ ​protein​ ​sequence ​12,14–16 ​. 

Computational ​ ​modeling ​ ​has ​ ​also​ ​indicated ​ ​that ​ ​technical ​ ​artifacts ​ ​and ​ ​biases ​ ​contribute ​ ​to​ ​the 

distribution​ ​of ​ ​ribosome ​ ​footprints ​13,16,17 ​.​ ​It ​ ​remains ​ ​a​ ​challenge ​ ​to​ ​separate ​ ​experimental ​ ​artifacts ​ ​from​ ​the 

biological ​ ​determinants ​ ​of ​ ​elongation​ ​rate.​ ​Here,​ ​we ​ ​have ​ ​used ​ ​neural ​ ​networks ​ ​to​ ​model ​ ​ribosome 

distribution​ ​along ​ ​transcripts.​ ​The ​ ​model ​ ​captured ​ ​biological ​ ​variation​ ​in​ ​translation​ ​elongation​ ​speed 

and ​ ​also​ ​quantified ​ ​technical ​ ​biases ​ ​affecting ​ ​footprint ​ ​count,​ ​which​ ​we ​ ​confirmed ​ ​experimentally.​ ​We 

applied ​ ​our​ ​model ​ ​to​ ​design​ ​coding ​ ​sequences ​ ​spanning ​ ​a​ ​range ​ ​of ​ ​translation​ ​elongation​ ​speeds,​ ​and 

found ​ ​that ​ ​the ​ ​predicted ​ ​elongation​ ​speeds ​ ​accurately ​ ​tracked ​ ​protein​ ​expression.​ ​This ​ ​indicates ​ ​that ​ ​the 

elongation​ ​phase ​ ​of ​ ​translation​ ​contributes ​ ​to​ ​overall ​ ​gene ​ ​expression. 

First ​ ​we ​ ​developed ​ ​a​ ​regression​ ​framework,​ ​Iχnos,​ ​to​ ​model ​ ​the ​ ​translation​ ​elongation​ ​rates ​ ​along 

transcripts ​ ​as ​ ​a​ ​function​ ​of ​ ​local ​ ​sequence ​ ​features.​ ​As ​ ​our​ ​measure ​ ​of ​ ​elongation​ ​rate,​ ​we ​ ​calculated 

scaled ​ ​footprint ​ ​counts ​ ​by ​ ​dividing ​ ​the ​ ​raw ​ ​footprint ​ ​count ​ ​at ​ ​each​ ​codon​ ​position​ ​by ​ ​the ​ ​average ​ ​footprint 

count ​ ​on​ ​its ​ ​transcript ​ ​(Fig.​ ​1B).​ ​This ​ ​normalization​ ​controls ​ ​for​ ​variable ​ ​mRNA​ ​abundances ​ ​and 

translation​ ​initiation​ ​rates ​ ​across ​ ​transcripts.​ ​We ​ ​used ​ ​a​ ​sequence ​ ​neighborhood ​ ​around ​ ​the ​ ​A​ ​site ​ ​as ​ ​the 

predictive ​ ​region​ ​for​ ​scaled ​ ​counts.​ ​Then​ ​we ​ ​learned ​ ​a​ ​regression​ ​function​ ​with​ ​a​ ​feedforward ​ ​neural 

network,​ ​trained ​ ​on​ ​a​ ​large,​ ​high​ ​quality ​ ​ribosome ​ ​profiling ​ ​data​ ​set ​ ​from​ ​​Saccharomyces ​ ​cerevisiae​18 ​.​ ​We 

chose ​ ​the ​ ​top ​ ​500​ ​genes ​ ​by ​ ​footprint ​ ​density ​ ​and ​ ​coverage ​ ​criteria,​ ​and ​ ​sorted ​ ​these ​ ​into​ ​training ​ ​and ​ ​test 

sets ​ ​of ​ ​333​ ​and ​ ​167 ​ ​genes,​ ​respectively. 

We ​ ​determined ​ ​the ​ ​sequence ​ ​neighborhood ​ ​that ​ ​best ​ ​predicted ​ ​local ​ ​translation​ ​elongation​ ​rate ​ ​by 

comparing ​ ​a​ ​series ​ ​of ​ ​models ​ ​ranging ​ ​from​ ​an​ ​A-site-only ​ ​model ​ ​to​ ​a​ ​model ​ ​spanning ​ ​codon​ ​positions ​ ​-7 

to​ ​+5 ​ ​(Fig.​ ​1B).​ ​The ​ ​identity ​ ​of ​ ​the ​ ​A​ ​site ​ ​codon​ ​alone ​ ​did ​ ​not ​ ​accurately ​ ​predict ​ ​ribosome ​ ​distribution 
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(MSE ​ ​=​ ​0.83).​ ​Expanding ​ ​the ​ ​sequence ​ ​context ​ ​around ​ ​the ​ ​A​ ​site ​ ​steadily ​ ​improved ​ ​the ​ ​predictive 

performance,​ ​up ​ ​to​ ​the ​ ​full ​ ​span​ ​of ​ ​a​ ​ribosome ​ ​footprint ​ ​(-5 ​ ​to​ ​+4;​ ​MSE ​ ​=​ ​0.66).​ ​Additional ​ ​sequence 

context ​ ​beyond ​ ​the ​ ​boundaries ​ ​of ​ ​the ​ ​ribosome ​ ​did ​ ​not ​ ​affect ​ ​performance.​ ​We ​ ​also​ ​observed ​ ​a​ ​large ​ ​boost 

in​ ​predictive ​ ​performance ​ ​by ​ ​including ​ ​redundant ​ ​nucleotide ​ ​features ​ ​in​ ​addition​ ​to​ ​codon​ ​features ​ ​over 

the ​ ​same ​ ​sequence ​ ​neighborhood,​ ​especially ​ ​near​ ​the ​ ​ends ​ ​of ​ ​the ​ ​ribosome ​ ​footprint ​ ​(Fig.​ ​1C).​ ​Linear 

regression​ ​models ​ ​that ​ ​only ​ ​included ​ ​codon​ ​features ​ ​performed ​ ​similarly ​ ​to​ ​the ​ ​neural ​ ​networks ​ ​we 

tested,​ ​but ​ ​they ​ ​did ​ ​not ​ ​improve ​ ​with​ ​the ​ ​inclusion​ ​of ​ ​nucleotide ​ ​features.​ ​This ​ ​suggests ​ ​that ​ ​the ​ ​neural 

network​ ​models ​ ​learn​ ​a​ ​meaningful ​ ​and ​ ​nonlinear​ ​predictive ​ ​relationship ​ ​in​ ​nucleotide ​ ​features, 

particularly ​ ​toward ​ ​the ​ ​flanking ​ ​ends ​ ​of ​ ​footprints,​ ​that ​ ​makes ​ ​them​ ​more ​ ​successful ​ ​than​ ​linear​ ​models. 

Next ​ ​we ​ ​assessed ​ ​the ​ ​contribution​ ​of ​ ​local ​ ​mRNA​ ​structure ​ ​to​ ​elongation​ ​rates.​ ​We ​ ​computed ​ ​mRNA 

folding ​ ​energies ​ ​in​ ​sliding ​ ​30​ ​nt ​ ​windows ​ ​over​ ​all ​ ​transcripts,​ ​and ​ ​trained ​ ​a​ ​series ​ ​of ​ ​models ​ ​that ​ ​each 

included ​ ​one ​ ​window ​ ​from​ ​nucleotide ​ ​positions ​ ​-45 ​ ​to​ ​+72​ ​relative ​ ​to​ ​the ​ ​A​ ​site.​ ​Performance ​ ​improved 

upon​ ​including ​ ​structure ​ ​scores ​ ​at ​ ​nucleotide ​ ​positions ​ ​-17,​ ​-16,​ ​and ​ ​-15,​ ​i.e.,​ ​the ​ ​windows ​ ​that ​ ​span​ ​the 

actual ​ ​ribosome ​ ​footprint ​ ​(Fig.​ ​1C,​ ​Supp.​ ​Fig.​ ​1).​ ​No​ ​individual ​ ​windows ​ ​downstream​ ​of ​ ​the ​ ​footprint 

improved ​ ​our​ ​predictions,​ ​nor​ ​did ​ ​the ​ ​maximum​ ​structure ​ ​score ​ ​over​ ​30​ ​sliding ​ ​windows ​ ​downstream​ ​of 

the ​ ​ribosome ​ ​(Fig.​ ​1C).​ ​Thus,​ ​our​ ​approach​ ​does ​ ​not ​ ​capture ​ ​a​ ​large ​ ​effect ​ ​of ​ ​downstream​ ​mRNA​ ​structure 

on​ ​elongation​ ​rate.​ ​In​ ​our​ ​final ​ ​model,​ ​we ​ ​retained ​ ​only ​ ​the ​ ​structure ​ ​scores ​ ​from​ ​windows ​ ​spanning ​ ​the 

sequence ​ ​of ​ ​a​ ​footprint.​ ​We ​ ​were ​ ​surprised ​ ​to​ ​see ​ ​an​ ​effect ​ ​of ​ ​structure ​ ​within​ ​the ​ ​ribosome,​ ​so​ ​we ​ ​tested 

the ​ ​direction​ ​of ​ ​the ​ ​effect ​ ​and ​ ​found ​ ​that ​ ​more ​ ​structure ​ ​in​ ​these ​ ​windows ​ ​led ​ ​to​ ​lower​ ​predicted ​ ​footprint 

counts.​ ​This ​ ​suggests ​ ​that ​ ​stable ​ ​mRNA​ ​structure ​ ​in​ ​the ​ ​footprint ​ ​fragments ​ ​themselves ​ ​is ​ ​inhibiting ​ ​their 

in​ ​vitro ​ ​​recovery ​ ​in​ ​ribosome ​ ​profiling ​ ​experiments,​ ​and ​ ​our​ ​model ​ ​is ​ ​capturing ​ ​the ​ ​bias ​ ​that ​ ​this 

introduces ​ ​to​ ​the ​ ​data. 

Our​ ​final ​ ​model ​ ​incorporated ​ ​a​ ​sequence ​ ​window ​ ​from​ ​codons ​ ​-7 ​ ​to​ ​+5 ​ ​represented ​ ​as ​ ​both​ ​codons ​ ​and 

nucleotides,​ ​as ​ ​well ​ ​as ​ ​structure ​ ​features ​ ​spanning ​ ​the ​ ​footprint.​ ​It ​ ​captured ​ ​sufficient ​ ​information​ ​to 

accurately ​ ​predict ​ ​translation​ ​elongation​ ​on​ ​individual ​ ​genes ​ ​(Fig.​ ​1E).​ ​We ​ ​observed ​ ​an​ ​overall ​ ​correlation 

of ​ ​0.56​ ​(Pearson’s ​ ​​r ​)​ ​between​ ​predicted ​ ​and ​ ​true ​ ​scaled ​ ​counts,​ ​and ​ ​an​ ​overall ​ ​mean​ ​squared ​ ​error​ ​(MSE) 

of ​ ​0.64​ ​(Fig.​ ​1D).​ ​Our​ ​predictions ​ ​were ​ ​most ​ ​accurate ​ ​on​ ​the ​ ​90% ​ ​of ​ ​codons ​ ​with​ ​scaled ​ ​counts ​ ​no​ ​greater 

than​ ​2,​ ​i.e.,​ ​codons ​ ​at ​ ​which​ ​translation​ ​was ​ ​no​ ​more ​ ​than​ ​twice ​ ​as ​ ​slow ​ ​as ​ ​a​ ​typical ​ ​codon​ ​on​ ​its ​ ​gene 

(MSE ​ ​=​ ​0.31,​ ​Fig.​ ​1F).​ ​We ​ ​note ​ ​that ​ ​some ​ ​positions ​ ​with​ ​very ​ ​high​ ​scaled ​ ​footprint ​ ​counts ​ ​may ​ ​represent 

ribosome ​ ​stalling ​ ​that ​ ​is ​ ​determined ​ ​by ​ ​biological ​ ​factors ​ ​encoded ​ ​outside ​ ​of ​ ​this ​ ​local ​ ​sequence 

neighborhood ​12​. 

To​ ​quantify ​ ​the ​ ​influence ​ ​of ​ ​distinct ​ ​sequence ​ ​positions ​ ​on​ ​elongation​ ​rate,​ ​we ​ ​trained ​ ​a​ ​series ​ ​of 

leave-one-out ​ ​models ​ ​that ​ ​excluded ​ ​individual ​ ​codon​ ​positions ​ ​from​ ​the ​ ​input ​ ​sequence ​ ​neighborhood. 

We ​ ​found ​ ​that ​ ​the ​ ​A​ ​site ​ ​codon​ ​contributed ​ ​the ​ ​most ​ ​to​ ​predictive ​ ​performance ​ ​(ΔMSE ​ ​=​ ​0.10),​ ​but ​ ​we 
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also​ ​saw ​ ​contributions ​ ​from​ ​the ​ ​surrounding ​ ​sequence ​ ​context,​ ​particularly ​ ​the ​ ​P​ ​and ​ ​E ​ ​sites ​ ​(ΔMSE ​ ​= 

0.03​ ​and ​ ​0.025)​ ​(Fig.​ ​2A).​ ​Each​ ​codon​ ​position​ ​from​ ​-5 ​ ​to​ ​+4,​ ​the ​ ​span​ ​of ​ ​a​ ​typical ​ ​28 ​ ​nt ​ ​ribosome 

footprint,​ ​improved ​ ​performance,​ ​whereas ​ ​positions ​ ​outside ​ ​the ​ ​span​ ​of ​ ​a​ ​footprint ​ ​decreased 

performance.​ ​Contributions ​ ​from​ ​the ​ ​E ​ ​and ​ ​P​ ​sites ​ ​suggest ​ ​that ​ ​the ​ ​continued ​ ​presence ​ ​of ​ ​tRNAs ​ ​at ​ ​these 

positions ​ ​modulates ​ ​elongation​ ​rate.​ ​In​ ​contrast,​ ​the ​ ​large ​ ​contribution​ ​of ​ ​the ​ ​+3​ ​codon​ ​(ΔMSE ​ ​=​ ​0.05),​ ​at 

the ​ ​3 ​́ ​end ​ ​of ​ ​the ​ ​footprint,​ ​likely ​ ​reflects ​ ​artifactual ​ ​biases ​ ​arising ​ ​from​ ​the ​ ​ribosome ​ ​profiling ​ ​process, 

corroborating ​ ​previous ​ ​reports ​ ​of ​ ​fragment ​ ​end ​ ​biases ​16,17 ​. 

Next,​ ​we ​ ​examined ​ ​what ​ ​our​ ​model ​ ​had ​ ​learned ​ ​about ​ ​the ​ ​relationship ​ ​between​ ​sequence ​ ​and ​ ​elongation 

rate.​ ​The ​ ​raw ​ ​parameters ​ ​of ​ ​a​ ​neural ​ ​network​ ​can​ ​be ​ ​difficult ​ ​to​ ​interpret,​ ​so​ ​we ​ ​determined ​ ​a​ ​score ​ ​for 

each​ ​codon​ ​at ​ ​each​ ​position​ ​by ​ ​computing ​ ​the ​ ​mean​ ​increase ​ ​in​ ​predicted ​ ​scaled ​ ​counts ​ ​due ​ ​to​ ​that ​ ​codon 

(Fig.​ ​2B;​ ​Supp.​ ​Table ​ ​1).​ ​Time ​ ​spent ​ ​finding ​ ​the ​ ​correct ​ ​tRNA​ ​is ​ ​considered ​ ​to​ ​be ​ ​a​ ​main​ ​driver​ ​of 

elongation​ ​speed ​19​.​ ​Indeed,​ ​the ​ ​A​ ​site ​ ​codon​ ​scores ​ ​exhibited ​ ​the ​ ​widest ​ ​range,​ ​and ​ ​these ​ ​scores ​ ​correlated 

with​ ​tRNA​ ​Adaptation​ ​Index​ ​(tAI),​ ​a​ ​measure ​ ​of ​ ​tRNA​ ​availability ​20​​ ​(Fig.​ ​2C).​ ​Our​ ​results ​ ​highlighted ​ ​the 

well-characterised ​ ​slow ​ ​translation​ ​of ​ ​CCG​ ​(Pro),​ ​CGA​ ​(Arg),​ ​and ​ ​CGG​ ​(Arg)​ ​codons ​ ​at ​ ​the ​ ​A​ ​site ​21​. 

Our​ ​data​ ​also​ ​underscore ​ ​that ​ ​sequences ​ ​in​ ​the ​ ​P​ ​site ​ ​contribute ​ ​to​ ​elongation​ ​speed.​ ​The ​ ​CGA​ ​codon 

showed ​ ​a​ ​particularly ​ ​strong ​ ​inhibitory ​ ​effect ​ ​in​ ​the ​ ​P​ ​site,​ ​in​ ​keeping ​ ​with​ ​recent ​ ​results ​21,22​.​ ​We ​ ​noted 

that ​ ​this ​ ​codon​ ​forms ​ ​a​ ​disfavored ​ ​I:A​ ​wobble ​ ​pair​ ​with​ ​its ​ ​cognate ​ ​tRNA,​ ​distorting ​ ​the ​ ​anticodon​ ​loop ​23​, 

while ​ ​the ​ ​four​ ​fastest ​ ​P​ ​site ​ ​codons ​ ​all ​ ​form​ ​I:C​ ​wobble ​ ​pairs ​ ​(Fig.​ ​2D).​ ​Overall,​ ​I:C​ ​base ​ ​pairs ​ ​in​ ​the ​ ​P​ ​site 

contributed ​ ​to​ ​faster​ ​translation​ ​(Mann-Whitney ​ ​​p ​​ ​=​ ​0.02​ ​after​ ​Bonferroni​ ​correction;​ ​Fig.​ ​2D).​ ​From 

this,​ ​we ​ ​concluded ​ ​that ​ ​the ​ ​conformation​ ​of ​ ​the ​ ​tRNA:mRNA​ ​duplex​ ​can​ ​influence ​ ​its ​ ​passage ​ ​through​ ​the 

ribosome,​ ​not ​ ​just ​ ​initial ​ ​recognition​ ​in​ ​the ​ ​A​ ​site. 

We ​ ​also​ ​observed ​ ​strong ​ ​sequence ​ ​preferences ​ ​at ​ ​the ​ ​3 ​́ ​end ​ ​of ​ ​ribosome ​ ​footprints.​ ​Sequence ​ ​bias ​ ​has 

previously ​ ​been​ ​noted ​ ​in​ ​the ​ ​5 ​́ ​and ​ ​3 ​́ ​ends ​ ​of ​ ​ribosome ​ ​footprints,​ ​and ​ ​this ​ ​has ​ ​been​ ​suggested ​ ​to​ ​arise 

from​ ​ligase ​ ​preferences ​ ​during ​ ​library ​ ​preparation​16,17 ​.​ ​To​ ​compare ​ ​features ​ ​of ​ ​ribosome ​ ​profiling ​ ​data 

generated ​ ​in​ ​different ​ ​experiments,​ ​we ​ ​applied ​ ​our​ ​model ​ ​to​ ​a​ ​large ​ ​ribosome ​ ​profiling ​ ​dataset ​ ​that ​ ​we 

generated ​ ​from​ ​yeast ​ ​using ​ ​a​ ​standard ​ ​ribosome ​ ​profiling ​ ​protocol ​24​.​ ​Models ​ ​trained ​ ​on​ ​these ​ ​data​ ​learned 

disconcertingly ​ ​high​ ​weights ​ ​for​ ​both​ ​the ​ ​-5 ​ ​and ​ ​+3​ ​codon​ ​positions ​ ​(Fig.​ ​2E).​ ​The ​ ​-5 ​ ​codon,​ ​i.e.,​ ​the ​ ​5´ 

end ​ ​of ​ ​a​ ​footprint,​ ​was ​ ​the ​ ​single ​ ​strongest ​ ​predictor​ ​of ​ ​footprint ​ ​counts,​ ​exceeding ​ ​even​ ​the ​ ​A​ ​site.​ ​We 

found ​ ​similarly ​ ​large ​ ​5 ​́ ​end ​ ​contributions ​ ​in​ ​published ​ ​yeast ​ ​and ​ ​human​ ​datasets ​ ​generated ​ ​using ​ ​similar 

protocols ​25,26​​ ​(Supp.​ ​Fig.​ ​2).​ ​These ​ ​experiments,​ ​like ​ ​our​ ​own,​ ​made ​ ​use ​ ​of ​ ​CircLigase ​ ​enzymes ​ ​to 

circularize ​ ​ribosome ​ ​footprints ​ ​after​ ​reverse ​ ​transcription.​ ​In​ ​contrast,​ ​the ​ ​experiment ​ ​we ​ ​first ​ ​modeled 

used ​ ​T4​ ​RNA​ ​ligase ​ ​to​ ​attach​ ​5 ​́ ​linkers ​ ​directly ​ ​onto​ ​ribosome ​ ​footprint ​ ​fragments ​18 ​.​ ​Comparing ​ ​the ​ ​T4 

ligase ​ ​yeast ​ ​data​ ​with​ ​CircLigase ​ ​yeast ​ ​data,​ ​we ​ ​observed ​ ​no​ ​relationship ​ ​between​ ​the ​ ​scores ​ ​learned ​ ​at 

footprint ​ ​ends ​ ​(Spearman’s ​ ​​ρ​​ ​=​ ​0.04),​ ​but ​ ​high​ ​correlation​ ​of ​ ​A​ ​site ​ ​scores ​ ​(Spearman’s ​ ​​ρ​​ ​=​ ​0.73).​ ​In 
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contrast,​ ​we ​ ​observed ​ ​a​ ​near-perfect ​ ​correlation​ ​at ​ ​the ​ ​-5 ​ ​position​ ​between​ ​CircLigase ​ ​yeast ​ ​data​ ​and ​ ​the 

CircLigase-generated ​ ​human​ ​data​ ​set ​ ​(Spearman's ​ ​​ρ​​ ​=​ ​0.87,​ ​Fig.​ ​2F),​ ​but ​ ​no​ ​relationship ​ ​at ​ ​the ​ ​A​ ​site ​ ​(Fig. 

2G).​ ​This ​ ​suggested ​ ​that ​ ​the ​ ​fragment ​ ​end ​ ​scores ​ ​reflected ​ ​experimental ​ ​artifacts ​ ​rather​ ​than​ ​​in​ ​vivo 

biology.  

To​ ​directly ​ ​test ​ ​the ​ ​impact ​ ​of ​ ​enzyme ​ ​biases ​ ​on​ ​recovery ​ ​of ​ ​ribosome-protected ​ ​fragments,​ ​we ​ ​measured 

the ​ ​relative ​ ​ligation​ ​efficiencies ​ ​of ​ ​synthetic ​ ​oligonucleotides ​ ​with​ ​end ​ ​sequences ​ ​shown​ ​to​ ​be ​ ​favored ​ ​or 

disfavored ​ ​in​ ​our​ ​model.​ ​The ​ ​relative ​ ​ligation​ ​efficiencies ​ ​of ​ ​each​ ​substrate ​ ​closely ​ ​mirrored ​ ​the ​ ​end 

sequence ​ ​scores ​ ​learned ​ ​by ​ ​our​ ​model ​ ​for​ ​both​ ​CircLigase ​ ​I​ ​and ​ ​CircLigase ​ ​II​ ​(Fig.​ ​2H,I;​ ​Supp.​ ​Fig.​ ​3).​ ​The 

least-favored ​ ​sequences ​ ​were ​ ​ligated ​ ​by ​ ​CircLigase ​ ​II​ ​with​ ​only ​ ​20% ​ ​the ​ ​efficiency ​ ​of ​ ​the ​ ​most-favored 

sequences,​ ​meaning ​ ​that ​ ​some ​ ​ribosome ​ ​footprints ​ ​would ​ ​be ​ ​represented ​ ​at ​ ​five ​ ​times ​ ​the ​ ​frequency ​ ​of 

other​ ​footprints ​ ​for​ ​purely ​ ​technical ​ ​reasons.​ ​This ​ ​biased ​ ​recovery ​ ​of ​ ​fragments ​ ​could ​ ​skew ​ ​the ​ ​results ​ ​of 

ribosome ​ ​profiling ​ ​experiments,​ ​affecting ​ ​estimates ​ ​of ​ ​elongation​ ​and ​ ​overall ​ ​per-gene ​ ​translation.​ ​Our 

method ​ ​faithfully ​ ​captured ​ ​the ​ ​enzyme ​ ​sequence ​ ​preferences,​ ​allowing ​ ​us ​ ​to​ ​distinguish​ ​the ​ ​effects ​ ​of ​ ​end 

biases ​ ​from​ ​the ​ ​true ​ ​biological ​ ​signal. 

We ​ ​reasoned ​ ​that,​ ​if ​ ​our​ ​model ​ ​were ​ ​capturing ​ ​biological ​ ​aspects ​ ​of ​ ​translation​ ​elongation,​ ​we ​ ​could ​ ​use 

the ​ ​parameters ​ ​learned ​ ​by ​ ​the ​ ​model ​ ​to​ ​design​ ​sequences ​ ​that ​ ​would ​ ​be ​ ​expressed ​ ​at ​ ​different ​ ​levels.​ ​To 

test ​ ​our​ ​model’s ​ ​ability ​ ​to​ ​predict ​ ​translation,​ ​we ​ ​expressed ​ ​synonymous ​ ​variants ​ ​of ​ ​the ​ ​yellow ​ ​fluorescent 

protein​ ​eCitrine ​ ​in​ ​yeast ​ ​(Fig.​ ​3A).​ ​First,​ ​using ​ ​the ​ ​yeast ​ ​ribosome ​ ​profiling ​ ​data​ ​from​ ​Weinberg ​ ​​et ​ ​al.​,​ ​we 

trained ​ ​a​ ​neural ​ ​network​ ​model ​ ​with​ ​a​ ​sequence ​ ​neighborhood ​ ​extending ​ ​from​ ​codon​ ​positions ​ ​-3​ ​to​ ​+2, 

chosen​ ​to​ ​exclude ​ ​bias ​ ​regions ​ ​at ​ ​the ​ ​flanking ​ ​ends ​ ​of ​ ​footprints.​ ​We ​ ​designed ​ ​a​ ​dynamic ​ ​programming 

algorithm​ ​to​ ​compute ​ ​the ​ ​maximum-​ ​and ​ ​minimum-translation-time ​ ​synonymous ​ ​versions ​ ​of ​ ​eCitrine. 

We ​ ​also​ ​generated ​ ​and ​ ​scored ​ ​a​ ​set ​ ​of ​ ​100,000​ ​random​ ​synonymous ​ ​eCitrine ​ ​CDSs ​ ​and ​ ​selected ​ ​the 

sequences ​ ​at ​ ​the ​ ​0th,​ ​33rd,​ ​67th,​ ​and ​ ​100th​ ​percentiles ​ ​of ​ ​predicted ​ ​translation​ ​time ​ ​within​ ​that ​ ​set ​ ​(Fig. 

3B).​ ​We ​ ​used ​ ​flow ​ ​cytometry ​ ​to​ ​measure ​ ​the ​ ​fluorescence ​ ​of ​ ​diploid ​ ​yeast,​ ​each​ ​containing ​ ​an​ ​eCitrine 

variant ​ ​along ​ ​with​ ​the ​ ​red ​ ​fluorescent ​ ​protein​ ​mCherry ​ ​as ​ ​a​ ​control,​ ​and ​ ​calculated ​ ​relative ​ ​fluorescence ​ ​of 

each​ ​variant ​ ​(Fig.​ ​3C). 

The ​ ​expression​ ​of ​ ​eCitrine ​ ​in​ ​each​ ​yeast ​ ​strain​ ​closely ​ ​tracked ​ ​its ​ ​predicted ​ ​elongation​ ​rate,​ ​with​ ​the 

predicted ​ ​fastest ​ ​sequence ​ ​producing ​ ​six-fold ​ ​higher​ ​fluorescence ​ ​than​ ​the ​ ​predicted ​ ​slowest ​ ​sequence 

(Fig.​ ​3C).​ ​However,​ ​the ​ ​existing ​ ​yeast-optimized ​ ​yECitrine ​ ​sequence ​27 ​​ ​produced ​ ​three-fold ​ ​higher 

fluorescence ​ ​than​ ​our​ ​predicted ​ ​fastest ​ ​sequence ​ ​(Supp.​ ​Fig.​ ​4A).​ ​To​ ​understand ​ ​the ​ ​source ​ ​of ​ ​this 

discrepancy,​ ​we ​ ​measured ​ ​mRNA​ ​from​ ​selected ​ ​strains ​ ​and ​ ​found ​ ​that ​ ​sequences ​ ​designed ​ ​by ​ ​our​ ​method 

had ​ ​equivalent ​ ​mRNA​ ​levels,​ ​while ​ ​yECitrine ​ ​had ​ ​five-fold ​ ​more ​ ​mRNA​ ​(Supp.​ ​Fig.​ ​4B).​ ​Calculating 
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translation​ ​efficiencies,​ ​or​ ​protein​ ​produced ​ ​per​ ​mRNA,​ ​reconciled ​ ​this ​ ​disagreement.​ ​We ​ ​observed ​ ​a 

clear​ ​linear​ ​relationship ​ ​between​ ​predicted ​ ​elongation​ ​rate ​ ​and ​ ​translation​ ​efficiency ​ ​(Fig.​ ​3D).  

These ​ ​experiments ​ ​demonstrate ​ ​that ​ ​our​ ​model ​ ​is ​ ​able ​ ​to​ ​predict ​ ​large,​ ​quantitative ​ ​differences ​ ​in​ ​protein 

production,​ ​based ​ ​only ​ ​on​ ​information​ ​about ​ ​translation​ ​elongation.​ ​This ​ ​result ​ ​is ​ ​surprising,​ ​as ​ ​initiation 

rather​ ​than​ ​elongation​ ​is ​ ​usually ​ ​thought ​ ​to​ ​be ​ ​rate ​ ​limiting ​ ​for​ ​protein​ ​production​4​.​ ​Although​ ​codon 

choice ​ ​can​ ​affect ​ ​mRNA​ ​stability ​ ​and ​ ​thus ​ ​total ​ ​protein​ ​output ​5,6 ​,​ ​our​ ​fast ​ ​and ​ ​slow ​ ​predicted ​ ​sequences 

have ​ ​equal ​ ​steady-state ​ ​mRNA.​ ​Further,​ ​an​ ​effect ​ ​arising ​ ​purely ​ ​from​ ​mRNA​ ​stability ​ ​would ​ ​affect ​ ​protein 

output ​ ​but ​ ​not ​ ​translation​ ​efficiency,​ ​counter​ ​to​ ​our​ ​observations.​ ​Instead,​ ​our​ ​results ​ ​indicate ​ ​that 

optimized ​ ​elongation​ ​rates ​ ​do​ ​result ​ ​in​ ​more ​ ​protein​ ​per​ ​mRNA,​ ​and ​ ​this ​ ​does ​ ​not ​ ​depend ​ ​entirely ​ ​on 

mRNA​ ​stability.​ ​The ​ ​increased ​ ​mRNA​ ​level ​ ​of ​ ​the ​ ​existing ​ ​yeast-optimized ​ ​yECitrine ​ ​could ​ ​reflect 

sequence ​ ​constraints ​ ​unrelated ​ ​to​ ​translation​ ​elongation,​ ​although​ ​we ​ ​cannot ​ ​rule ​ ​out ​ ​the ​ ​possibility ​ ​of ​ ​a 

stability ​ ​difference.​ ​It ​ ​remains ​ ​to​ ​determine ​ ​how ​ ​translation​ ​speed ​ ​can​ ​control ​ ​translation​ ​efficiency.​ ​One 

contribution​ ​could ​ ​come ​ ​from​ ​pileups ​ ​behind ​ ​stalled ​ ​or​ ​slow-moving ​ ​ribosomes,​ ​diminishing ​ ​the 

maximum​ ​throughput ​ ​of ​ ​protein​ ​production​15 ​.​ ​The ​ ​landscape ​ ​of ​ ​factors ​ ​affecting ​ ​codon​ ​optimality ​ ​is 

complex​28 ​,​ ​and ​ ​codon​ ​preferences ​ ​vary ​ ​across ​ ​species,​ ​tissues,​ ​and ​ ​conditions.​ ​Our​ ​approach​ ​can​ ​capture 

empirical ​ ​information​ ​about ​ ​codon​ ​preferences ​ ​in​ ​any ​ ​system​ ​where ​ ​translation​ ​can​ ​be ​ ​measured ​ ​by 

ribosome ​ ​profiling,​ ​and ​ ​apply ​ ​it ​ ​to​ ​design​ ​sequences ​ ​for​ ​quantitative ​ ​expression​ ​in​ ​that ​ ​system. 

Methods 

All ​ ​Iχnos ​ ​software ​ ​and ​ ​analysis ​ ​scripts,​ ​including ​ ​a​ ​complete ​ ​workflow ​ ​of ​ ​analyses ​ ​in​ ​this ​ ​paper,​ ​can​ ​be 

found ​ ​at ​ ​https://github.com/lareaulab/iXnos. 

Ribosome​ ​profiling 

Yeast ​ ​ribosome ​ ​profiling ​ ​was ​ ​performed ​ ​exactly ​ ​according ​ ​to​ ​McGlincy ​ ​& ​ ​Ingolia​24​​ ​with​ ​the ​ ​following 

modifications: 

250​ ​mL​ ​of ​ ​YEPD​ ​media​ ​was ​ ​inoculated ​ ​from​ ​an​ ​overnight ​ ​culture ​ ​of ​ ​BY474​ ​to​ ​an​ ​OD600​ ​of ​ ​0.1.​ ​Yeast 

were ​ ​grown​ ​to​ ​mid-log ​ ​phase ​ ​and ​ ​harvested ​ ​at ​ ​an​ ​OD600​ ​of ​ ​0.565.​ ​Lysis ​ ​proceeded ​ ​according ​ ​to​ ​McGlincy 

& ​ ​Ingolia​24​​ ​except ​ ​with​ ​no​ ​cycloheximide ​ ​in​ ​the ​ ​lysis ​ ​buffer​ ​(20​ ​mM ​ ​Tris ​ ​pH​ ​7.4,​ ​150​ ​mM ​ ​NaCl,​ ​5 ​ ​mM 

MgCl2,​ ​1​ ​mM ​ ​DTT,​ ​1% ​ ​v/v​ ​Triton​ ​X-1000,​ ​25 ​ ​U/ml ​ ​Turbo​ ​DNase ​ ​I).​ ​To​ ​quantify ​ ​RNA​ ​content ​ ​of ​ ​the 

lysate,​ ​total ​ ​RNA​ ​was ​ ​purified ​ ​from​ ​200​ ​μL​ ​of ​ ​lysate ​ ​using ​ ​the ​ ​Direct-zol ​ ​RNA​ ​MiniPrep ​ ​kit ​ ​(Zymo 

Research)​ ​and ​ ​the ​ ​concentration​ ​of ​ ​RNA​ ​was ​ ​measured ​ ​with​ ​a​ ​NanoDrop ​ ​2000​ ​spectrophotometer 

(ThermoFisher).  

Lysate ​ ​containing ​ ​30​ ​μg ​ ​of ​ ​total ​ ​RNA​ ​was ​ ​thawed ​ ​on​ ​ice ​ ​and ​ ​diluted ​ ​to​ ​200​ ​μL​ ​with​ ​polysome ​ ​buffer​ ​with 

no​ ​cycloheximide ​ ​(20​ ​mM ​ ​Tris ​ ​pH​ ​7.4,​ ​150​ ​mM ​ ​NaCl,​ ​5 ​ ​mM ​ ​MgCl2,​ ​1​ ​mM ​ ​DTT).​ ​0.1​ ​μl ​ ​(1​ ​U)​ ​of ​ ​RNase ​ ​I 
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(Epicentre)​ ​was ​ ​added ​ ​to​ ​the ​ ​diluted ​ ​cell ​ ​lysate ​ ​and ​ ​then​ ​incubated ​ ​at ​ ​room​ ​temperature ​ ​for​ ​45 ​ ​minutes. 

Digestion​ ​and ​ ​monosome ​ ​isolation​ ​proceeded ​ ​according ​ ​to​ ​McGlincy ​ ​& ​ ​Ingolia​24​,​ ​except ​ ​with​ ​no 

cycloheximide ​ ​in​ ​the ​ ​sucrose ​ ​cushion. 

Purified ​ ​RNA​ ​was ​ ​separated ​ ​on​ ​a​ ​15% ​ ​TBE/Urea​ ​gel,​ ​and ​ ​fragments ​ ​of ​ ​18-34​ ​nt ​ ​were ​ ​gel ​ ​extracted.​ ​Size 

was ​ ​determined ​ ​relative ​ ​to​ ​RNA​ ​size ​ ​markers ​ ​NI-NI-800​ ​and ​ ​NI-NI-801​24​​ ​and ​ ​NEB​ ​microRNA​ ​size 

marker​ ​(New ​ ​England ​ ​Biolabs).​ ​Library ​ ​preparation​ ​proceeded ​ ​according ​ ​to​ ​McGlincy ​ ​& ​ ​Ingolia​24​.​ ​The 

library ​ ​was ​ ​made ​ ​with​ ​downstream​ ​linker​ ​NI-NI-811 

(/5Phos/NNNNNAGCTAAGATCGGAAGAGCACACGTCTGAA/3ddC/)​ ​and ​ ​a​ ​modified ​ ​RT​ ​primer​ ​with​ ​a 

preferred ​ ​CircLigase ​ ​II​ ​substrate ​ ​(AG)​ ​at ​ ​the ​ ​5 ​́ ​end ​ ​(oLFL075, 

5′-/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/GTGACTGGAGTTCAGACGTGTGCTC). 

Library ​ ​amplification​ ​PCR​ ​used ​ ​primers ​ ​NI-NI-798 ​ ​and ​ ​NI-NI-825 ​ ​(Illumina​ ​index​ ​ACAGTG).​ ​The 

resulting ​ ​library ​ ​was ​ ​sequenced ​ ​as ​ ​single-end ​ ​51​ ​nt ​ ​reads ​ ​on​ ​an​ ​Illumina​ ​HiSeq4000​ ​according ​ ​to​ ​the 

manufacturer’s ​ ​protocol ​ ​by ​ ​the ​ ​Vincent ​ ​J.​ ​Coates ​ ​Genomics ​ ​Sequencing ​ ​Laboratory ​ ​at ​ ​the ​ ​University ​ ​of 

California,​ ​Berkeley. 

Sequencing​ ​data​ ​processing​ ​and​ ​mapping 

A​ ​custom​ ​yeast ​ ​transcriptome ​ ​file ​ ​was ​ ​generated ​ ​based ​ ​on​ ​all ​ ​chromosomal ​ ​ORF ​ ​coding ​ ​sequences ​ ​in 

orf_coding.fasta​ ​from​ ​the ​ ​Saccharomyces ​ ​Genome ​ ​Database ​ ​reference ​ ​genome ​ ​version​ ​R64-2-1​ ​for 

Saccharomyces ​ ​cerevisiae​​ ​strain​ ​S288C.​ ​A​ ​human​ ​transcriptome ​ ​file ​ ​was ​ ​generated ​ ​from​ ​GRCh38.p2, 

Gencode ​ ​v.​ ​22,​ ​to​ ​include ​ ​one ​ ​transcript ​ ​per​ ​gene ​ ​based ​ ​on​ ​the ​ ​ENSEMBL​ ​‘canonical ​ ​transcript’​ ​tag.​ ​For 

both​ ​human​ ​and ​ ​yeast,​ ​the ​ ​transcriptome ​ ​file ​ ​included ​ ​13​ ​nt ​ ​of ​ ​5 ​́ ​UTR​ ​sequence ​ ​and ​ ​10​ ​nt ​ ​of ​ ​3 ​́ ​UTR 

sequence ​ ​to​ ​accommodate ​ ​footprint ​ ​reads ​ ​from​ ​ribosomes ​ ​at ​ ​the ​ ​first ​ ​and ​ ​last ​ ​codons.​ ​For​ ​yeast 

transcripts ​ ​with​ ​no​ ​annotated ​ ​UTR,​ ​the ​ ​flanking ​ ​genomic ​ ​sequence ​ ​was ​ ​included.​ ​For​ ​human​ ​transcripts 

with​ ​no​ ​annotated ​ ​UTR,​ ​or​ ​UTRs ​ ​shorter​ ​than​ ​13​ ​or​ ​10​ ​nt,​ ​the ​ ​sequence ​ ​was ​ ​padded ​ ​with​ ​N. 

Yeast ​ ​ribosome ​ ​profiling ​ ​reads ​ ​from​ ​Weinberg ​ ​et ​ ​al.​18 ​​ ​(SRR1049521)​ ​were ​ ​trimmed ​ ​to​ ​remove ​ ​the ​ ​ligated 

3 ​́ ​linker​ ​(TCGTATGCCGTCTTCTGCTTG)​ ​off ​ ​of ​ ​any ​ ​read ​ ​that ​ ​ended ​ ​with​ ​any ​ ​prefix​ ​of ​ ​that ​ ​string,​ ​and ​ ​to 

remove ​ ​8 ​ ​random​ ​nucleotides ​ ​at ​ ​the ​ ​5 ​́ ​end ​ ​(added ​ ​as ​ ​part ​ ​of ​ ​the ​ ​5 ​́ ​linker).​ ​Yeast ​ ​ribosome ​ ​profiling 

reads ​ ​generated ​ ​in​ ​our​ ​own​ ​experiments ​ ​(GEO ​ ​upload ​ ​pending;​ ​available ​ ​at 

http://data.lareaulab.org/lareaulab/iXnos/LLMG004_S31_L007_R1_001.fastq.gz​ ​and 

http://data.lareaulab.org/lareaulab/iXnos/LMG005_S1_L001_R1_001.fastq.gz)​ ​were ​ ​trimmed ​ ​to 

remove ​ ​the ​ ​ligated ​ ​3 ​́ ​linker,​ ​which​ ​included ​ ​5 ​ ​random​ ​nucleotides ​ ​and ​ ​a​ ​5-nt ​ ​index​ ​of ​ ​AGCTA 

(NNNNNIIIIIAGATCGGAAGAGCACACGTCTGAAC).​ ​Human​ ​ribosome ​ ​profiling ​ ​reads ​ ​from​ ​Iwasaki​ ​et 

al.​25 ​​ ​(SRR2075925,​ ​SRR2075926)​ ​were ​ ​trimmed ​ ​to​ ​remove ​ ​the ​ ​ligated ​ ​3 ​́ ​linker 
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(CTGTAGGCACCATCAAT).​ ​Yeast ​ ​ribosome ​ ​profiling ​ ​reads ​ ​from​ ​Schuller​ ​et ​ ​al.​26​​ ​(SRR5008134, 

SRR5008135)​ ​were ​ ​trimmed ​ ​to​ ​remove ​ ​the ​ ​ligated ​ ​3 ​́ ​linker​ ​(CTGTAGGCACCATCAAT). 

Trimmed ​ ​fastq​ ​sequences ​ ​of ​ ​longer​ ​than​ ​10​ ​nt ​ ​were ​ ​aligned ​ ​to​ ​yeast ​ ​or​ ​human​ ​ribosomal ​ ​and ​ ​noncoding 

RNA​ ​sequences ​ ​using ​ ​bowtie ​ ​v.​ ​1.2.1.1​29​,​ ​with​ ​options ​ ​“bowtie ​ ​-v​ ​2​ ​-S”.​ ​Reads ​ ​that ​ ​did ​ ​not ​ ​match​ ​rRNA​ ​or 

ncRNA​ ​were ​ ​mapped ​ ​to​ ​the ​ ​transcriptome ​ ​with​ ​options ​ ​“bowtie ​ ​-a​ ​--norc ​ ​-v​ ​2​ ​-S”.​ ​Mapping ​ ​weights ​ ​for 

multimapping ​ ​reads ​ ​were ​ ​computed ​ ​using ​ ​RSEM ​ ​v.​ ​1.2.31​30​. 

Assignment ​ ​of ​ ​A ​ ​sites 

A​ ​site ​ ​codons ​ ​were ​ ​identified ​ ​in​ ​each​ ​footprint ​ ​using ​ ​simple ​ ​rules ​ ​for​ ​the ​ ​offset ​ ​of ​ ​the ​ ​A​ ​site ​ ​from​ ​the ​ ​5´ 

end ​ ​of ​ ​the ​ ​footprint.​ ​These ​ ​rules ​ ​were ​ ​based ​ ​on​ ​the ​ ​length​ ​of ​ ​the ​ ​footprint ​ ​and ​ ​the ​ ​frame ​ ​of ​ ​the ​ ​5 ​́ ​terminal 

nucleotide.​ ​For​ ​each​ ​data​ ​set,​ ​the ​ ​set ​ ​of ​ ​lengths ​ ​that ​ ​included ​ ​appreciable ​ ​footprint ​ ​counts ​ ​was ​ ​determined 

(e.g.​ ​Weinberg ​ ​27-31​ ​nt.).​ ​For​ ​each​ ​length,​ ​the ​ ​counts ​ ​of ​ ​footprints ​ ​mapping ​ ​to​ ​each​ ​frame ​ ​were ​ ​computed. 

The ​ ​canonical ​ ​28 ​ ​nucleotide ​ ​footprint ​ ​starts ​ ​coherently ​ ​in​ ​frame ​ ​0,​ ​with​ ​the ​ ​5 ​́ ​end ​ ​15 ​ ​nt ​ ​upstream​ ​of ​ ​the ​ ​A 

site ​ ​(citation).​ ​For​ ​all ​ ​other​ ​lengths,​ ​rules ​ ​were ​ ​defined ​ ​if ​ ​footprints ​ ​mapped ​ ​primarily ​ ​to​ ​1​ ​or​ ​2​ ​frames, 

and ​ ​offsets ​ ​were ​ ​chosen​ ​to​ ​be ​ ​consistent ​ ​with​ ​over​ ​digestion​ ​or​ ​under​ ​digestion​ ​relative ​ ​to​ ​a​ ​28 ​ ​nucleotide 

footprint.​ ​Footprints ​ ​mapping ​ ​to​ ​other​ ​frames ​ ​were ​ ​discarded. 

Scaled​ ​counts 

For​ ​each​ ​codon,​ ​the ​ ​raw ​ ​footprint ​ ​counts ​ ​were ​ ​computed ​ ​by ​ ​summing ​ ​the ​ ​RSEM ​ ​mapping ​ ​weights ​ ​of ​ ​each 

footprint ​ ​with​ ​its ​ ​A​ ​site ​ ​at ​ ​that ​ ​codon.​ ​Scaled ​ ​footprint ​ ​counts ​ ​were ​ ​computed ​ ​by ​ ​dividing ​ ​the ​ ​raw ​ ​counts 

at ​ ​each​ ​codon​ ​by ​ ​the ​ ​average ​ ​raw ​ ​counts ​ ​over​ ​all ​ ​codons ​ ​in​ ​its ​ ​transcript.​ ​This ​ ​controlled ​ ​for​ ​variable 

initiation​ ​rates ​ ​and ​ ​copy ​ ​numbers ​ ​across ​ ​transcripts.​ ​The ​ ​resulting ​ ​scaled ​ ​counts ​ ​are ​ ​mean​ ​centered ​ ​at ​ ​1, 

with​ ​scaled ​ ​counts ​ ​higher​ ​than​ ​1​ ​indicating ​ ​slower​ ​than​ ​average ​ ​translation.​ ​The ​ ​first ​ ​20​ ​and ​ ​last ​ ​20 

codons ​ ​in​ ​each​ ​gene ​ ​were ​ ​excluded ​ ​from​ ​all ​ ​computations ​ ​and ​ ​data​ ​sets,​ ​to​ ​avoid ​ ​the ​ ​atypical ​ ​footprint 

counts ​ ​observed ​ ​at ​ ​the ​ ​beginning ​ ​and ​ ​end ​ ​of ​ ​genes.  

Genes ​ ​were ​ ​excluded ​ ​from​ ​analysis ​ ​if ​ ​they ​ ​had ​ ​fewer​ ​than​ ​200​ ​raw ​ ​footprint ​ ​counts ​ ​in​ ​the ​ ​truncated ​ ​CDS, 

or​ ​fewer​ ​than​ ​100​ ​codons ​ ​with​ ​mapped ​ ​footprints ​ ​in​ ​this ​ ​region.​ ​Then​ ​the ​ ​top ​ ​500​ ​genes ​ ​were ​ ​selected ​ ​by 

footprint ​ ​density ​ ​(average ​ ​footprint ​ ​counts/codon).​ ​2/3​ ​of ​ ​these ​ ​genes ​ ​were ​ ​selected ​ ​at ​ ​random​ ​as ​ ​the 

training ​ ​set,​ ​and ​ ​the ​ ​remaining ​ ​1/3​ ​of ​ ​genes ​ ​were ​ ​used ​ ​as ​ ​the ​ ​test ​ ​set.  

Input ​ ​Features 

The ​ ​model ​ ​accepts ​ ​user​ ​defined ​ ​sets ​ ​of ​ ​codon​ ​and ​ ​nucleotide ​ ​positions ​ ​around ​ ​the ​ ​A​ ​site ​ ​to​ ​encode ​ ​as 

input ​ ​features ​ ​for​ ​predicting ​ ​translation​ ​speed.​ ​The ​ ​A​ ​site ​ ​is ​ ​indexed ​ ​as ​ ​the ​ ​0th​ ​codon,​ ​and ​ ​its ​ ​first 

nucleotide ​ ​is ​ ​indexed ​ ​as ​ ​the ​ ​0th​ ​nucleotide,​ ​with​ ​negative ​ ​indices ​ ​in​ ​the ​ ​5 ​́ ​direction,​ ​and ​ ​positive ​ ​indices 
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in​ ​the ​ ​3 ​́ ​direction.​ ​Sequence ​ ​features ​ ​were ​ ​one-hot ​ ​encoded ​ ​to​ ​input ​ ​into​ ​regression​ ​models.​ ​The ​ ​model 

also​ ​accepts ​ ​RNA​ ​folding ​ ​energies ​ ​from​ ​the ​ ​RNAfold ​ ​package ​ ​over​ ​a​ ​set ​ ​of ​ ​user​ ​defined ​ ​positions ​ ​and 

window ​ ​sizes.  

In​ ​our​ ​final ​ ​model,​ ​codons ​ ​-7 ​ ​to​ ​+5 ​ ​and ​ ​nucleotides ​ ​-21​ ​to​ ​+17 ​ ​were ​ ​chosen,​ ​as ​ ​well ​ ​as ​ ​folding ​ ​energies 

from​ ​3​ ​30-nt ​ ​windows ​ ​starting ​ ​at ​ ​nucleotides ​ ​-17 ​ ​to​ ​-15.  

Model ​ ​Construction 

All ​ ​models ​ ​were ​ ​constructed ​ ​as ​ ​feedforward ​ ​artificial ​ ​neural ​ ​networks,​ ​using ​ ​the ​ ​Python​ ​packages ​ ​Lasagne 

v.​ ​0.2.dev1​31​​ ​and ​ ​Theano​ ​v.​ ​0.9.0​32​.​ ​Each​ ​network​ ​contained ​ ​one ​ ​fully ​ ​connected ​ ​hidden​ ​layer​ ​of ​ ​200​ ​units 

with​ ​a​ ​tanh​ ​activation​ ​function,​ ​and ​ ​an​ ​output ​ ​layer​ ​of ​ ​one ​ ​unit ​ ​with​ ​a​ ​ReLU ​ ​activation​ ​function.​ ​Models 

were ​ ​trained ​ ​using ​ ​mini-batch​ ​stochastic ​ ​gradient ​ ​descent ​ ​with​ ​Nesterov​ ​momentum​ ​(batch​ ​size ​ ​500). 

Feature​ ​Importance​ ​Measurements 

A​ ​series ​ ​of ​ ​leave-one-out ​ ​models ​ ​was ​ ​trained,​ ​excluding ​ ​one ​ ​codon​ ​position​ ​at ​ ​a​ ​time ​ ​from​ ​the ​ ​sequence 

neighborhood.​ ​The ​ ​importance ​ ​of ​ ​each​ ​codon​ ​position​ ​to​ ​predictive ​ ​performance ​ ​was ​ ​computed ​ ​as ​ ​the 

difference ​ ​in​ ​MSE ​ ​between​ ​the ​ ​reduced ​ ​and ​ ​full ​ ​models.  

The ​ ​contribution​ ​of ​ ​codon​ ​​c​​ ​at ​ ​position​ ​​i ​​ ​to​ ​predicted ​ ​scaled ​ ​counts ​ ​was ​ ​calculated ​ ​as ​ ​the ​ ​average ​ ​increase 

in​ ​predicted ​ ​scaled ​ ​counts ​ ​due ​ ​to​ ​having ​ ​that ​ ​codon​ ​at ​ ​that ​ ​position,​ ​over​ ​all ​ ​instances ​ ​where ​ ​codon​ ​​c​​ ​was 

observed ​ ​at ​ ​position​ ​​i ​​ ​in​ ​the ​ ​test ​ ​set.​ ​This ​ ​increase ​ ​was ​ ​computed ​ ​relative ​ ​to​ ​the ​ ​expected ​ ​predicted ​ ​scaled 

counts ​ ​when​ ​the ​ ​codon​ ​at ​ ​position​ ​​i ​​ ​was ​ ​varied ​ ​according ​ ​to​ ​its ​ ​empirical ​ ​frequency ​ ​in​ ​the ​ ​test ​ ​set 

(Supplementary ​ ​Materials).  

Sequence​ ​Optimization 

The ​ ​overall ​ ​translation​ ​time ​ ​of ​ ​a​ ​coding ​ ​sequence ​ ​was ​ ​computed ​ ​as ​ ​the ​ ​sum​ ​of ​ ​the ​ ​predicted ​ ​scaled ​ ​counts 

over​ ​all ​ ​codons ​ ​in​ ​that ​ ​coding ​ ​sequence.​ ​This ​ ​quantity ​ ​corresponds ​ ​to​ ​total ​ ​translation​ ​time ​ ​in​ ​arbitrary 

units.​ ​A​ ​dynamic ​ ​programming ​ ​algorithm​ ​was ​ ​developed ​ ​to​ ​find ​ ​the ​ ​fastest ​ ​and ​ ​slowest ​ ​translated ​ ​coding 

sequences ​ ​in​ ​the ​ ​set ​ ​of ​ ​synonymous ​ ​coding ​ ​sequences ​ ​for​ ​a​ ​given​ ​protein,​ ​under​ ​a​ ​predictive ​ ​model ​ ​of 

scaled ​ ​counts ​ ​(Supplementary ​ ​Materials).​ ​This ​ ​algorithm​ ​runs ​ ​in​ ​O(​CM ​L​)​ ​time,​ ​where ​ ​​C​​ ​is ​ ​the ​ ​length​ ​of 

the ​ ​coding ​ ​sequence ​ ​in​ ​codons,​ ​​M ​​ ​is ​ ​the ​ ​maximum​ ​multiplicity ​ ​of ​ ​synonymous ​ ​codons ​ ​(i.e.​ ​6),​ ​and ​ ​​L​​ ​is ​ ​the 

length​ ​in​ ​codons ​ ​of ​ ​the ​ ​predictive ​ ​model’s ​ ​sequence ​ ​neighborhood.​ ​This ​ ​achieves ​ ​considerable ​ ​efficiency 

over​ ​the ​ ​naive ​ ​O(​C​L​)​ ​model,​ ​by ​ ​assuming ​ ​that ​ ​only ​ ​codons ​ ​within​ ​the ​ ​sequence ​ ​neighborhood ​ ​influence 

scaled ​ ​counts.  

This ​ ​algorithm​ ​was ​ ​used ​ ​to​ ​determine ​ ​the ​ ​fastest ​ ​and ​ ​slowest ​ ​translating ​ ​coding ​ ​sequences ​ ​for​ ​eCitrine, 

under​ ​a​ ​predictive ​ ​model ​ ​using ​ ​a​ ​sequence ​ ​window ​ ​from​ ​codons ​ ​-3​ ​to​ ​+2,​ ​and ​ ​using ​ ​no​ ​structure ​ ​features. 
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Then​ ​100,000​ ​random​ ​synonymous ​ ​coding ​ ​sequences ​ ​for​ ​eCitrine ​ ​were ​ ​generated ​ ​and ​ ​scored,​ ​and ​ ​the 

sequences ​ ​at ​ ​the ​ ​0th,​ ​33rd,​ ​67th,​ ​and ​ ​100th​ ​percentiles ​ ​were ​ ​selected.  

Measuring​ ​circularization​ ​efficiency 

We ​ ​designed ​ ​oligonucleotides ​ ​that ​ ​mimic ​ ​the ​ ​structure ​ ​of ​ ​the ​ ​single-stranded ​ ​cDNA​ ​molecule ​ ​that ​ ​is 

circularized ​ ​by ​ ​CircLigase ​ ​during ​ ​the ​ ​M ​c ​Glincy ​ ​& ​ ​Ingolia​ ​(2017)​ ​ribosome ​ ​profiling ​ ​protocol.​ ​These 

oligonucleotides ​ ​have ​ ​the ​ ​structure:  

/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/GTGACTGGAGTTCAGACGTGTGCTCTTC

CGATCACAGTCATCGTTCGCATTACCCTGTTATCCCTAAJJJ,  

where ​ ​/5Phos/​ ​indicates ​ ​a​ ​5 ​́ ​phosphorylation;​ ​/iSP18/​ ​indicates ​ ​an​ ​18-atom​ ​hexa-ethyleneglycol ​ ​spacer; 

and ​ ​JJJ​ ​indicates ​ ​the ​ ​reverse ​ ​complement ​ ​of ​ ​the ​ ​nucleotides ​ ​at ​ ​the ​ ​5 ​́ ​of ​ ​the ​ ​footprint ​ ​favored ​ ​or 

disfavored ​ ​under​ ​the ​ ​model ​ ​(oligos ​ ​defined ​ ​in​ ​Supp.​ ​Table ​ ​2).​ ​Circularization​ ​reactions ​ ​were ​ ​performed 

using ​ ​CircLigase ​ ​I​ ​or​ ​II​ ​(Epicentre)​ ​as ​ ​described ​ ​in​ ​the ​ ​manufacturer’s ​ ​instructions,​ ​using ​ ​1​ ​pmol 

oligonucleotide ​ ​in​ ​each​ ​reaction.​ ​Circularization​ ​reactions ​ ​were ​ ​diluted ​ ​1/20​ ​before ​ ​being ​ ​subjected ​ ​to 

qPCR​ ​using ​ ​DyNAmo​ ​HS​ ​SYBR​ ​Green​ ​qPCR​ ​Kit ​ ​(Thermo​ ​Scientific)​ ​on​ ​a​ ​CFX96​ ​Touch​ ​Real ​ ​Time ​ ​PCR 

Detection​ ​System​ ​(Biorad).​ ​For​ ​each​ ​circularization​ ​reaction,​ ​two​ ​qPCR​ ​reactions ​ ​were ​ ​performed:​ ​one 

where ​ ​the ​ ​formation​ ​of ​ ​a​ ​product ​ ​was ​ ​dependent ​ ​upon​ ​oligo​ ​circularization,​ ​and ​ ​one ​ ​where ​ ​it ​ ​was ​ ​not 

(oligos ​ ​defined ​ ​in​ ​Supp.​ ​Table ​ ​2).​ ​qPCR​ ​data​ ​was ​ ​analyzed ​ ​using ​ ​custom​ ​R​ ​scripts ​ ​whose ​ ​core ​ ​functionality 

is ​ ​based ​ ​on​ ​the ​ ​packages ​ ​qpcR​33​​ ​& ​ ​dpcR​34​​ ​(qpcr_functions.R,​ ​available ​ ​on​ ​github).​ ​The ​ ​signal ​ ​from​ ​the 

circularization​ ​dependent ​ ​amplicon​ ​was ​ ​normalized ​ ​to​ ​that ​ ​from​ ​the ​ ​circularization​ ​independent 

amplicon,​ ​and ​ ​then​ ​expressed ​ ​as ​ ​a​ ​fold-change ​ ​compared ​ ​to​ ​the ​ ​mean​ ​of ​ ​the ​ ​oligonucleotide ​ ​with​ ​the ​ ​most 

favored ​ ​sequence ​ ​under​ ​the ​ ​model. 

Plasmid​ ​and​ ​yeast ​ ​strain​ ​construction 

Yeast ​ ​integrating ​ ​plasmids ​ ​expressing ​ ​either​ ​mCherry ​ ​or​ ​a​ ​differentially ​ ​optimized ​ ​version​ ​of ​ ​eCitrine 

were ​ ​constructed.​ ​The ​ ​differentially ​ ​optimized ​ ​versions ​ ​of ​ ​eCitrine ​ ​were ​ ​synthesized ​ ​as ​ ​gBlocks ​ ​by 

Integrated ​ ​DNA​ ​Technologies ​ ​inserted ​ ​into​ ​the ​ ​plasmid ​ ​backbone ​ ​by ​ ​Gibson​ ​assembly ​35 ​.​ ​Transcription​ ​of 

both​ ​mCherry ​ ​and ​ ​eCitrine ​ ​is ​ ​directed ​ ​by ​ ​a​ ​PGK1​ ​promoter​ ​and ​ ​an​ ​ADH1​ ​terminator.​ ​To​ ​enable ​ ​yeast 

transformants ​ ​to​ ​grow ​ ​in​ ​the ​ ​absence ​ ​of ​ ​leucine,​ ​the ​ ​plasmids ​ ​contain​ ​the ​ ​LEU2​ ​expression​ ​cassette ​ ​from 

Kluyveromyces ​ ​lactis ​​ ​taken​ ​from​ ​pUG73​36​,​ ​which​ ​was ​ ​obtained ​ ​from​ ​EUROSCARF.​ ​To​ ​enable ​ ​integration 

into​ ​the ​ ​yeast ​ ​genome,​ ​the ​ ​plasmids ​ ​contain​ ​two​ ​300​ ​bp ​ ​sequences ​ ​from​ ​the ​ ​his3Δ1​ ​locus ​ ​of ​ ​BY4742. 

Genbank​ ​files ​ ​describing ​ ​the ​ ​plasmids ​ ​are ​ ​provided ​ ​in​ ​Supp.​ ​File ​ ​2.​ ​To​ ​construct ​ ​yeast ​ ​strains ​ ​expressing 

these ​ ​plasmids,​ ​the ​ ​plasmids ​ ​were ​ ​linearized ​ ​at ​ ​the ​ ​​AvrII​​ ​site ​ ​and ​ ​~1​ ​µg ​ ​linearized ​ ​plasmid ​ ​was ​ ​used ​ ​to 

transform​ ​yeast ​ ​by ​ ​the ​ ​high​ ​efficiency ​ ​lithium​ ​acetate/single-stranded ​ ​carrier​ ​DNA/PEG​ ​method,​ ​as 
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described ​37 ​.​ ​Transformants ​ ​were ​ ​selected ​ ​by ​ ​growth​ ​on​ ​SCD​ ​-LEU ​ ​plates,​ ​and ​ ​plasmid ​ ​integration​ ​into​ ​the 

genome ​ ​was ​ ​confirmed ​ ​by ​ ​yeast ​ ​colony ​ ​PCR​ ​with​ ​primers ​ ​flanking ​ ​both​ ​the ​ ​upstream​ ​and ​ ​downstream 

junctions ​ ​between​ ​the ​ ​plasmid ​ ​sequence ​ ​and ​ ​the ​ ​genome ​ ​(oligos ​ ​defined ​ ​in​ ​Supp.​ ​Table ​ ​2).​ ​PCR​ ​was 

performed ​ ​using ​ ​GoTaq​ ​DNA​ ​polymerase ​ ​(Promega​ ​M8295).​ ​Haploid ​ ​BY4742​ ​and ​ ​BY4741​ ​strains 

expressing ​ ​the ​ ​eCitrine ​ ​variants ​ ​and ​ ​mCherry,​ ​respectively,​ ​were ​ ​then​ ​mated.​ ​For​ ​each​ ​eCitrine ​ ​variant, 

eight ​ ​transformants ​ ​were ​ ​mated ​ ​to​ ​a​ ​single ​ ​mCherry ​ ​transformant.​ ​Diploids ​ ​were ​ ​isolated ​ ​by ​ ​their​ ​ability 

to​ ​grow ​ ​on​ ​SCD​ ​-MET-LYS​ ​plates.​ ​Strains ​ ​with​ ​sequence-confirmed ​ ​mutations ​ ​or​ ​copy ​ ​number​ ​variation 

were ​ ​excluded ​ ​from​ ​further​ ​analysis. 

Assessing​ ​fluorescent ​ ​protein​ ​expression​ ​by​ ​flow ​ ​cytometry 

Overnight ​ ​cultures ​ ​of ​ ​diploid ​ ​yeast ​ ​in​ ​YEPD​ ​were ​ ​diluted ​ ​in​ ​YEPD​ ​so​ ​that ​ ​their​ ​optical ​ ​density ​ ​at ​ ​600​ ​nm 

(OD​600​)​ ​was ​ ​equal ​ ​to​ ​0.1​ ​in​ ​a​ ​1​ ​mL​ ​culture,​ ​and ​ ​then​ ​grown​ ​for​ ​six​ ​hours ​ ​in​ ​a​ ​2​ ​mL​ ​deep-well ​ ​plate 

supplemented ​ ​with​ ​a​ ​sterile ​ ​glass ​ ​bead,​ ​at ​ ​30​ ​°C ​ ​with​ ​shaking ​ ​at ​ ​250​ ​rpm.​ ​This ​ ​culture ​ ​was ​ ​pelleted ​ ​by ​ ​five 

minutes ​ ​centrifugation​ ​at ​ ​3000​ ​x​ ​​g​​ ​and ​ ​fixed ​ ​by ​ ​resuspension​ ​in​ ​16% ​ ​paraformaldehyde ​ ​followed ​ ​by ​ ​30 

minutes ​ ​incubation​ ​in​ ​the ​ ​dark​ ​at ​ ​room​ ​temperature.​ ​Cells ​ ​were ​ ​washed ​ ​twice ​ ​in​ ​DPBS​ ​(Gibco​ ​14190-44) 

and ​ ​stored ​ ​in​ ​DPBS​ ​at ​ ​4​ ​°C ​ ​until ​ ​analysis.​ ​Upon​ ​analysis,​ ​cells ​ ​were ​ ​diluted ​ ​ca.​ ​1:4​ ​in​ ​DPBS​ ​and ​ ​subject ​ ​to 

flow ​ ​cytometry ​ ​measurements ​ ​on​ ​a​ ​BD​ ​Biosciences ​ ​(San​ ​Jose,​ ​CA)​ ​LSR​ ​Fortessa​ ​X20​ ​analyzer.​ ​Forward 

Light ​ ​Scatter​ ​measurements ​ ​(FSC)​ ​for​ ​relative ​ ​size,​ ​and ​ ​Side-Scatter​ ​measurements ​ ​(SSC)​ ​for​ ​intracellular 

refractive ​ ​index​ ​were ​ ​made ​ ​using ​ ​the ​ ​488nm​ ​laser.​ ​eCitrine ​ ​fluorescence ​ ​was ​ ​measured ​ ​using ​ ​the ​ ​488 ​ ​nm 

(Blue)​ ​laser​ ​excitation​ ​and ​ ​detected ​ ​using ​ ​a​ ​505 ​ ​nm​ ​Long ​ ​Pass ​ ​optical ​ ​filter,​ ​followed ​ ​by ​ ​530/30​ ​nm 

optical ​ ​filter​ ​with​ ​a​ ​bandwidth​ ​of ​ ​30nm​ ​(530/30,​ ​or​ ​515 ​ ​nm-545 ​ ​nm).​ ​mCherry ​ ​fluorescence ​ ​was 

measured ​ ​using ​ ​a​ ​561​ ​nm​ ​(yellow-green)​ ​laser,​ ​for​ ​excitation​ ​and ​ ​a​ ​595 ​ ​nm​ ​long-pass ​ ​optical ​ ​filter, 

followed ​ ​by ​ ​610/20​ ​nm​ ​band-pass ​ ​optical ​ ​filter​ ​with​ ​a​ ​bandwidth​ ​of ​ ​20​ ​nm​ ​(or​ ​600​ ​nm​ ​–​ ​620​ ​nm).​ ​PMT 

values ​ ​for​ ​each​ ​color​ ​channel ​ ​were ​ ​adjusted ​ ​such​ ​that ​ ​the ​ ​mean​ ​of ​ ​a​ ​sample ​ ​of ​ ​BY4743​ ​yeast ​ ​was ​ ​100. 

50000​ ​events ​ ​were ​ ​collected ​ ​for​ ​each​ ​sample.​ ​Flow ​ ​cytometry ​ ​data​ ​was ​ ​analyzed ​ ​using ​ ​a​ ​custom​ ​R​ ​script 

(gateFlowData.R,​ ​available ​ ​on​ ​github)​ ​whose ​ ​core ​ ​functionality ​ ​is ​ ​based ​ ​on​ ​the ​ ​Bioconductor​ ​packages 

flowCore ​38 ​,​ ​flowStats ​39​,​ ​and ​ ​flowViz​40​.​ ​In​ ​summary,​ ​for​ ​each​ ​sample,​ ​events ​ ​that ​ ​had ​ ​values ​ ​for​ ​red ​ ​or 

yellow ​ ​fluorescence ​ ​that ​ ​were ​ ​less ​ ​that ​ ​one ​ ​had ​ ​those ​ ​values ​ ​set ​ ​to​ ​one.​ ​Then,​ ​in​ ​order​ ​to​ ​select ​ ​events ​ ​that 

represented ​ ​normal ​ ​cells,​ ​we ​ ​used ​ ​the ​ ​curv2filter​ ​method ​ ​to​ ​extract ​ ​events ​ ​that ​ ​had ​ ​FSC ​ ​and ​ ​side-scatter 

SSC ​ ​values ​ ​within​ ​the ​ ​values ​ ​of ​ ​the ​ ​region​ ​of ​ ​highest ​ ​local ​ ​density ​ ​of ​ ​all ​ ​events ​ ​as ​ ​considered ​ ​by ​ ​their​ ​FSC 

and ​ ​SSC ​ ​values.​ ​For​ ​these ​ ​events ​ ​the ​ ​red ​ ​fluorescence ​ ​intensity ​ ​was ​ ​considered ​ ​a​ ​measure ​ ​of ​ ​mCherry 

protein​ ​expression​ ​and ​ ​yellow ​ ​fluorescence ​ ​intensity ​ ​a​ ​measure ​ ​of ​ ​eCitrine ​ ​protein​ ​expression. 

Measuring​ ​eCitrine​ ​and​ ​mCherry​ ​mRNA ​ ​expression​ ​by​ ​qRT-PCR 
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Overnight ​ ​cultures ​ ​of ​ ​diploid ​ ​yeast ​ ​in​ ​YEPD​ ​were ​ ​diluted ​ ​in​ ​YEPD​ ​so​ ​that ​ ​their​ ​OD​600​​ ​was ​ ​equal ​ ​to​ ​0.1​ ​in​ ​a 

20​ ​mL​ ​culture,​ ​and ​ ​then​ ​grown​ ​at ​ ​30​ ​°C ​ ​with​ ​shaking ​ ​at ​ ​250​ ​rpm​ ​until ​ ​their​ ​OD​600​ ​​reached ​ ​0.4​ ​-​ ​0.6.​ ​10 

mL​ ​of ​ ​culture ​ ​was ​ ​then​ ​pelleted ​ ​by ​ ​centrifugation​ ​for​ ​5 ​ ​minutes ​ ​at ​ ​3000​ ​x​ ​​g​​ ​and ​ ​snap ​ ​frozen​ ​in​ ​liquid 

nitrogen.​ ​Total ​ ​RNA​ ​was ​ ​extracted ​ ​from​ ​pelleted ​ ​yeast ​ ​cultures ​ ​according ​ ​to​ ​the ​ ​method ​ ​of ​ ​Ares ​41​. 

Thereafter,​ ​10​ ​µg ​ ​of ​ ​this ​ ​RNA​ ​was ​ ​treated ​ ​with​ ​Turbo​ ​DNase ​ ​I​ ​(ambion)​ ​according ​ ​to​ ​the ​ ​manufacturer's 

instructions,​ ​then​ ​1​ ​µg ​ ​DNase ​ ​treated ​ ​RNA​ ​was ​ ​reverse ​ ​transcribed ​ ​using ​ ​anchored ​ ​oligo​ ​dT​ ​and 

Protoscript ​ ​II​ ​(NEB)​ ​according ​ ​to​ ​the ​ ​manufacturer's ​ ​instructions.​ ​1/20​th ​​ ​of ​ ​this ​ ​reaction​ ​was ​ ​then 

subjected ​ ​to​ ​qPCR​ ​using ​ ​the ​ ​DyNAmo​ ​HS​ ​SYBR​ ​Green​ ​qPCR​ ​Kit ​ ​(Thermo​ ​Scientific)​ ​on​ ​a​ ​CFX96​ ​Touch 

Real ​ ​Time ​ ​PCR​ ​Detection​ ​System​ ​(Biorad).​ ​For​ ​each​ ​reverse ​ ​transcription​ ​reaction,​ ​two​ ​qPCR​ ​reactions 

were ​ ​performed:​ ​one ​ ​with​ ​primers ​ ​specific ​ ​to​ ​the ​ ​mCherry ​ ​ORF,​ ​and ​ ​one ​ ​with​ ​primers ​ ​specific ​ ​to​ ​the 

eCitrine ​ ​variant ​ ​ORF ​ ​in​ ​question​ ​(oligos ​ ​defined ​ ​in​ ​Supp.​ ​Table ​ ​2).​ ​qPCR​ ​data​ ​was ​ ​analyzed ​ ​using ​ ​custom 

R​ ​scripts ​ ​whose ​ ​core ​ ​functionality ​ ​is ​ ​based ​ ​on​ ​the ​ ​packages ​ ​qpcR​33,41​​ ​& ​ ​dpcR​34​​ ​(qpcr_functions.R, 

available ​ ​on​ ​github).​ ​Allowing ​ ​for​ ​the ​ ​measured ​ ​differences ​ ​in​ ​PCR​ ​efficiency ​ ​between​ ​the ​ ​eCitrine ​ ​variant 

specific ​ ​primer​ ​pairs,​ ​the ​ ​signal ​ ​from​ ​the ​ ​eCitrine ​ ​variant ​ ​ORF ​ ​was ​ ​normalized ​ ​to​ ​that ​ ​from​ ​the ​ ​mCherry 

ORF,​ ​and ​ ​then​ ​expressed ​ ​as ​ ​a​ ​fold-change ​ ​compared ​ ​to​ ​the ​ ​median​ ​of ​ ​these ​ ​values ​ ​for​ ​the ​ ​parental 

eCitrine ​ ​variant. 
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Figure​ ​captions 

Figure​ ​1​ ​A ​ ​​Each​ ​ribosome ​ ​protects ​ ​an​ ​mRNA​ ​footprint ​ ​of ​ ​approximately ​ ​28-29​ ​nt.​ ​Sequence ​ ​coordinates 

in​ ​a​ ​neighborhood ​ ​around ​ ​a​ ​ribosome ​ ​are ​ ​indexed ​ ​relative ​ ​to​ ​the ​ ​codon​ ​in​ ​the ​ ​A​ ​site ​ ​of ​ ​the ​ ​ribosome.​ ​​B 

Read ​ ​count ​ ​rescaling.​ ​For​ ​each​ ​gene,​ ​the ​ ​counts ​ ​of ​ ​footprints ​ ​assigned ​ ​to​ ​each​ ​A​ ​site ​ ​codon​ ​are ​ ​divided ​ ​by 

the ​ ​average ​ ​counts ​ ​per​ ​codon​ ​over​ ​that ​ ​gene.​ ​The ​ ​resulting ​ ​scaled ​ ​footprint ​ ​counts ​ ​are ​ ​used ​ ​for​ ​model 

training ​ ​and ​ ​prediction.​ ​​C ​​ ​Model ​ ​performances ​ ​(MSE)​ ​for​ ​neural ​ ​network​ ​and ​ ​linear​ ​regression​ ​models 

over​ ​a​ ​range ​ ​of ​ ​sequence ​ ​neighborhoods,​ ​with​ ​and ​ ​without ​ ​nucleotide ​ ​features,​ ​as ​ ​well ​ ​as ​ ​MSEs ​ ​for 

models ​ ​that ​ ​also​ ​incorporate ​ ​structure ​ ​scores ​ ​of ​ ​the ​ ​three ​ ​30-nt ​ ​windows ​ ​overlapping ​ ​the ​ ​footprint ​ ​region, 

or​ ​the ​ ​maximum​ ​structure ​ ​score ​ ​within​ ​59​ ​nt ​ ​downstream​ ​of ​ ​the ​ ​ribosome.​ ​ ​​Dashed ​ ​line ​ ​shows ​ ​the 

performance ​ ​of ​ ​the ​ ​best ​ ​model.​ ​​D​​ ​Scatter​ ​plot ​ ​of ​ ​test ​ ​set ​ ​true ​ ​vs.​ ​predicted ​ ​scaled ​ ​counts ​ ​under​ ​a​ ​model 

with​ ​codon​ ​and ​ ​nucleotide ​ ​features ​ ​spanning ​ ​codon​ ​positions ​ ​-7 ​ ​to​ ​+5.​ ​Color​ ​scale ​ ​shows ​ ​density ​ ​of ​ ​data 

points.​ ​​E ​ ​​True ​ ​scaled ​ ​counts ​ ​(gray ​ ​bars)​ ​and ​ ​predicted ​ ​scaled ​ ​counts ​ ​(red ​ ​line)​ ​for​ ​a​ ​highly ​ ​translated 

gene.​ ​​F ​​ ​Binned ​ ​local ​ ​MSEs ​ ​of ​ ​test ​ ​set ​ ​codons,​ ​sorted ​ ​in​ ​order​ ​of ​ ​true ​ ​scaled ​ ​counts.​ ​Scaled ​ ​count ​ ​values 

corresponding ​ ​to​ ​bins ​ ​are ​ ​annotated ​ ​at ​ ​top.  
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Figure​ ​2 ​ ​A ​ ​​Predictive ​ ​value ​ ​of ​ ​codon​ ​positions ​ ​in​ ​a​ ​yeast ​ ​ribosome ​ ​profiling ​ ​dataset ​ ​from​ ​Weinberg ​ ​et 

al.​18 ​,​ ​measured ​ ​by ​ ​the ​ ​difference ​ ​between​ ​test ​ ​MSEs ​ ​of ​ ​the ​ ​full ​ ​model ​ ​and ​ ​a​ ​leave-one-out ​ ​model ​ ​excluding 

that ​ ​codon​ ​and ​ ​associated ​ ​nucleotides ​ ​from​ ​the ​ ​feature ​ ​set.​ ​​B ​​ ​Mean​ ​contributions ​ ​to​ ​scaled ​ ​counts ​ ​by 

codon​ ​identity ​ ​and ​ ​position.​​ ​C ​ ​​Correlation​ ​between​ ​tAI​ ​and ​ ​contribution​ ​to​ ​scaled ​ ​counts,​ ​by ​ ​codon 

position.​ ​Dark​ ​grey ​ ​indicates ​ ​​p ​​ ​<​ ​0.05 ​ ​after​ ​Bonferroni​ ​correction.​ ​​D​​ ​P​ ​site ​ ​codon​ ​contributions ​ ​grouped 

by ​ ​the ​ ​codon:anticodon​ ​base ​ ​pair​ ​formed ​ ​by ​ ​the ​ ​third ​ ​nucleotide ​ ​of ​ ​each​ ​codon.​ ​Asterisks ​ ​indicate ​ ​​p ​​ ​< 

0.05 ​ ​after​ ​Bonferroni​ ​correction,​ ​unpaired ​ ​two-sided ​ ​Mann-Whitney ​ ​​U ​​ ​test ​ ​between​ ​each​ ​group ​ ​and ​ ​all 

other​ ​codons.​ ​​E ​​ ​Predictive ​ ​value ​ ​of ​ ​codon​ ​positions ​ ​as ​ ​in​ ​A,​ ​from​ ​a​ ​yeast ​ ​ribosome ​ ​profiling ​ ​library ​ ​we 

constructed ​ ​using ​ ​CircLigase ​ ​II​ ​as ​ ​described ​ ​by ​ ​McGlincy ​ ​and ​ ​Ingolia​24​.​​ ​F,G ​​ ​Contributions ​ ​from​ ​​(F) 

codon​ ​position​ ​-5,​ ​at ​ ​the ​ ​5 ​́ ​ends ​ ​of ​ ​footprints,​ ​and ​ ​(​G)​ ​​the ​ ​A​ ​site,​ ​in​ ​human​ ​ribosome ​ ​profiling ​ ​from 

Iwasaki​ ​et ​ ​al.​25 ​​ ​versus ​ ​our​ ​yeast ​ ​ribosome ​ ​profiling.​ ​Analysis ​ ​was ​ ​limited ​ ​to​ ​28-nt ​ ​footprints ​ ​to​ ​avoid ​ ​frame 

biases.​ ​Fragment ​ ​end ​ ​codons ​ ​that ​ ​contribute ​ ​to​ ​recovery ​ ​bias ​ ​are ​ ​highly ​ ​correlated,​ ​whereas ​ ​A​ ​site ​ ​codons 

that ​ ​contribute ​ ​strongly ​ ​to​ ​translation​ ​elongation​ ​rate ​ ​are ​ ​not ​ ​correlated ​ ​between​ ​species.​ ​​H, ​ ​I​​ ​Ligation 

efficiency ​ ​of ​ ​CircLigase ​ ​II​ ​(H)​ ​and ​ ​I​ ​(I)​ ​enzymes.​ ​Oligonucleotide ​ ​substrates ​ ​resembling ​ ​ribosome 

footprints ​ ​at ​ ​the ​ ​circularization​ ​step ​ ​of ​ ​the ​ ​protocol,​ ​with​ ​different ​ ​three-nucleotide ​ ​end ​ ​sequences,​ ​were 

ligated ​ ​by ​ ​both​ ​enzymes.​ ​Circularization​ ​was ​ ​assayed ​ ​by ​ ​qPCR​ ​using ​ ​primers ​ ​spanning ​ ​the ​ ​ligation​ ​as 

compared ​ ​to​ ​primers ​ ​in​ ​a​ ​contiguous ​ ​region​ ​of ​ ​the ​ ​oligo.​ ​Ligation​ ​was ​ ​calculated ​ ​relative ​ ​to​ ​the ​ ​median​ ​of 

three ​ ​qPCR​ ​replicates ​ ​measuring ​ ​CircLigase ​ ​I​ ​ligation​ ​of ​ ​the ​ ​best-ligated ​ ​substrate.  
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Figure​ ​3​ ​A ​​ ​Six​ ​reporter​ ​constructs ​ ​with​ ​distinct ​ ​synonymous ​ ​eCitrine ​ ​coding ​ ​sequences ​ ​were ​ ​inserted 

into​ ​the ​ ​his3Δ1​ ​locus ​ ​of ​ ​BY4742​ ​(α-type)​ ​yeast,​ ​and ​ ​an​ ​equivalent ​ ​construct ​ ​with​ ​a​ ​constant ​ ​mCherry 

coding ​ ​sequence ​ ​was ​ ​inserted ​ ​into​ ​the ​ ​his3Δ1​ ​locus ​ ​of ​ ​BY4741​ ​(​a​-type)​ ​yeast.​ ​Up ​ ​to​ ​eight ​ ​isolates ​ ​for​ ​each 

eCitrine ​ ​strain,​ ​representing ​ ​biological ​ ​replicates ​ ​of ​ ​the ​ ​insertion,​ ​were ​ ​chosen​ ​for​ ​further​ ​analysis.​ ​The 

haploids ​ ​were ​ ​mated ​ ​to​ ​produce ​ ​diploid ​ ​yeast ​ ​with​ ​eCitrine ​ ​and ​ ​mCherry ​ ​reporters,​ ​whose ​ ​fluorescence 

was ​ ​then​ ​measured ​ ​with​ ​flow ​ ​cytometry.​ ​​B ​​ ​The ​ ​synonymous ​ ​eCitrine ​ ​sequences ​ ​included ​ ​the ​ ​fastest ​ ​and 

slowest ​ ​predicted ​ ​sequences ​ ​under​ ​our​ ​model ​ ​(purple ​ ​and ​ ​red),​ ​as ​ ​well ​ ​as ​ ​sequences ​ ​with​ ​predicted 

translation​ ​speed ​ ​scores ​ ​at ​ ​the ​ ​0th,​ ​33rd,​ ​67th,​ ​and ​ ​100th​ ​percentiles ​ ​of ​ ​a​ ​randomly ​ ​generated ​ ​set ​ ​of 

100,000​ ​synonymous ​ ​eCitrine ​ ​sequences ​ ​(blue,​ ​cyan,​ ​green,​ ​and ​ ​orange,​ ​respectively).​ ​The ​ ​distribution​ ​of 

scores ​ ​of ​ ​100,000​ ​random​ ​eCitrine ​ ​sequences ​ ​is ​ ​shown​ ​in​ ​grey.​ ​​C ​ ​​eCitrine:mCherry ​ ​fluorescence ​ ​ratio,​ ​as 

measured ​ ​by ​ ​flow ​ ​cytometry,​ ​versus ​ ​score ​ ​of ​ ​each​ ​sequence ​ ​in​ ​our​ ​model.​ ​Each​ ​data​ ​point ​ ​represents ​ ​the 

median​ ​ratio​ ​of ​ ​yellow ​ ​and ​ ​red ​ ​fluorescence ​ ​from​ ​one ​ ​biological ​ ​replicate ​ ​of ​ ​the ​ ​given​ ​eCitrine ​ ​strain​ ​(an 

independent ​ ​integration​ ​of ​ ​the ​ ​reporter​ ​construct).​ ​Colors ​ ​as ​ ​in​ ​(B).​ ​​D​ ​​Translation​ ​efficiency,​ ​or​ ​median 

eCitrine:mCherry ​ ​fluorescence ​ ​ratio​ ​divided ​ ​by ​ ​relative ​ ​eCitrine:mCherry ​ ​mRNA​ ​ratio​ ​(median​ ​of ​ ​three 

qPCR​ ​replicates),​ ​for​ ​four​ ​eCitrine ​ ​variants,​ ​versus ​ ​the ​ ​score ​ ​of ​ ​each​ ​sequence ​ ​in​ ​our​ ​model.​ ​Magenta, 

yECitrine ​ ​sequence;​ ​other​ ​colors ​ ​as ​ ​in​ ​(B).​ ​Each​ ​point ​ ​represents ​ ​one ​ ​biological ​ ​replicate ​ ​of ​ ​the ​ ​given 

eCitrine ​ ​strain. 
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