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Synonymous codon choice can have dramatic effects on ribosome speed, RNA stability, and
protein expression. Ribosome profiling experiments have underscored that ribosomes do
not move uniformly along mRNAs, exposing a need for models of coding sequences that
capture the full range of empirically observed variation. We present a method, Iynos, that
models this variation in translation elongation using a feedforward neural network to
predict the translation elongation rate at each codon as a function of its sequence
neighborhood. Our approach revealed sequence features affecting translation elongation
and quantified the impact of large technical biases in ribosome profiling. We applied our
model to design synonymous variants of a fluorescent protein spanning the range of
possible translation speeds predicted with our model. We found that levels of the
fluorescent protein in yeast closely tracked the predicted translation speeds across their
full range. We therefore demonstrate that our model captures information determining
translation dynamics in vivo, and that control of translation elongation alone is sufficient

to produce large, quantitative differences in protein output.

As the ribosome moves along a transcript, it encounters diverse codons, tRNAs, and amino acids. This
diversity affects translation elongation and, ultimately, gene expression. For instance, exogenous gene
expression can be seriously hampered by a mismatch between the choice of synonymous codons and the
availability of tRNAs. The consequences of endogenous variation in codon use have been more elusive, but
new methods have revealed that changes in translation speed due to synonymous coding mutations,
upregulation of tRNAs, or mutations within tRNAs can have dramatic effects on protein expression,
folding, or stability' 3. However, translation initiation has been considered the rate-limiting step in
translation, implying that changes in elongation speed should have limited effects*. Recent work has

suggested a relationship between codon use and RNA stability; slower translation may destabilize mRNAs
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and thus decrease protein expression®®. These opposing viewpoints have yet to be fully reconciled, leaving

us with an incomplete understanding of what defines a favorable sequence for translation.

With the advent of high-throughput methods to measure translation elongation in vivo, we can
understand the functional implications of codon usage. Ribosome profiling measures translation
transcriptome-wide by capturing and sequencing the regions of mRNA protected within ribosomes, called
ribosome footprints’. Each footprint reflects the position of an individual ribosome on a transcript, and
we can reliably infer the A site codon — the site of tRNA decoding — in each footprint (Fig. 1A). This
codon-level resolution yields the distribution of ribosomes along mRNAs from each gene. We can use the
counts of footprints on each codon to infer translation elongation rates: slowly translated codons yield
more footprints, and quickly translated codons yield fewer (Fig. 1B). Analyses of ribosome profiling data
have shown a relationship between translation elongation rate and biochemical features like tRNA
abundance, wobble base pairing, amino acid polarity, and mRNA structure®—5. Expanded probabilistic
and neural network models have shown that the sequence context of a ribosome contributes to its
elongation rate, both directly and through higher order features such as nascent protein sequence!>'47°,
Computational modeling has also indicated that technical artifacts and biases contribute to the
distribution of ribosome footprints'3'%', It remains a challenge to separate experimental artifacts from the
biological determinants of elongation rate. Here, we have used neural networks to model ribosome
distribution along transcripts. The model captured biological variation in translation elongation speed
and also quantified technical biases affecting footprint count, which we confirmed experimentally. We
applied our model to design coding sequences spanning a range of translation elongation speeds, and
found that the predicted elongation speeds accurately tracked protein expression. This indicates that the

elongation phase of translation contributes to overall gene expression.

First we developed a regression framework, Ixnos, to model the translation elongation rates along
transcripts as a function of local sequence features. As our measure of elongation rate, we calculated
scaled footprint counts by dividing the raw footprint count at each codon position by the average footprint
count on its transcript (Fig. 1B). This normalization controls for variable mRNA abundances and
translation initiation rates across transcripts. We used a sequence neighborhood around the A site as the
predictive region for scaled counts. Then we learned a regression function with a feedforward neural
network, trained on a large, high quality ribosome profiling data set from Saccharomyces cerevisiae'. We
chose the top 500 genes by footprint density and coverage criteria, and sorted these into training and test

sets of 333 and 167 genes, respectively.

We determined the sequence neighborhood that best predicted local translation elongation rate by
comparing a series of models ranging from an A-site-only model to a model spanning codon positions -7

to +5 (Fig. 1B). The identity of the A site codon alone did not accurately predict ribosome distribution
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(MSE = 0.83). Expanding the sequence context around the A site steadily improved the predictive
performance, up to the full span of a ribosome footprint (-5 to +4; MSE = 0.66). Additional sequence
context beyond the boundaries of the ribosome did not affect performance. We also observed a large boost
in predictive performance by including redundant nucleotide features in addition to codon features over
the same sequence neighborhood, especially near the ends of the ribosome footprint (Fig. 1C). Linear
regression models that only included codon features performed similarly to the neural networks we
tested, but they did not improve with the inclusion of nucleotide features. This suggests that the neural
network models learn a meaningful and nonlinear predictive relationship in nucleotide features,

particularly toward the flanking ends of footprints, that makes them more successful than linear models.

Next we assessed the contribution of local mRNA structure to elongation rates. We computed mRNA
folding energies in sliding 30 nt windows over all transcripts, and trained a series of models that each
included one window from nucleotide positions -45 to +72 relative to the A site. Performance improved
upon including structure scores at nucleotide positions -17, -16, and -15, i.e., the windows that span the
actual ribosome footprint (Fig. 1C, Supp. Fig. 1). No individual windows downstream of the footprint
improved our predictions, nor did the maximum structure score over 30 sliding windows downstream of
the ribosome (Fig. 1C). Thus, our approach does not capture a large effect of downstream mRNA structure
on elongation rate. In our final model, we retained only the structure scores from windows spanning the
sequence of a footprint. We were surprised to see an effect of structure within the ribosome, so we tested
the direction of the effect and found that more structure in these windows led to lower predicted footprint
counts. This suggests that stable mRNA structure in the footprint fragments themselves is inhibiting their
in vitro recovery in ribosome profiling experiments, and our model is capturing the bias that this

introduces to the data.

Our final model incorporated a sequence window from codons -7 to +5 represented as both codons and
nucleotides, as well as structure features spanning the footprint. It captured sufficient information to
accurately predict translation elongation on individual genes (Fig. 1E). We observed an overall correlation
of 0.56 (Pearson’s r) between predicted and true scaled counts, and an overall mean squared error (MSE)
of 0.64 (Fig. 1D). Our predictions were most accurate on the 90% of codons with scaled counts no greater
than 2, i.e., codons at which translation was no more than twice as slow as a typical codon on its gene
(MSE = 0.31, Fig. 1F). We note that some positions with very high scaled footprint counts may represent
ribosome stalling that is determined by biological factors encoded outside of this local sequence

neighborhood™.

To quantify the influence of distinct sequence positions on elongation rate, we trained a series of
leave-one-out models that excluded individual codon positions from the input sequence neighborhood.

We found that the A site codon contributed the most to predictive performance (AMSE = 0.10), but we
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also saw contributions from the surrounding sequence context, particularly the P and E sites (AMSE =
0.03 and 0.025) (Fig. 2A). Each codon position from -5 to +4, the span of a typical 28 nt ribosome
footprint, improved performance, whereas positions outside the span of a footprint decreased
performance. Contributions from the E and P sites suggest that the continued presence of tRNAs at these
positions modulates elongation rate. In contrast, the large contribution of the +3 codon (AMSE = 0.05), at
the 3” end of the footprint, likely reflects artifactual biases arising from the ribosome profiling process,

corroborating previous reports of fragment end biases'®".

Next, we examined what our model had learned about the relationship between sequence and elongation
rate. The raw parameters of a neural network can be difficult to interpret, so we determined a score for
each codon at each position by computing the mean increase in predicted scaled counts due to that codon
(Fig. 2B; Supp. Table 1). Time spent finding the correct tRNA is considered to be a main driver of
elongation speed®. Indeed, the A site codon scores exhibited the widest range, and these scores correlated
with tRNA Adaptation Index (tAl), a measure of tRNA availability*° (Fig. 2C). Our results highlighted the
well-characterised slow translation of CCG (Pro), CGA (Arg), and CGG (Arg) codons at the A site*.

Our data also underscore that sequences in the P site contribute to elongation speed. The CGA codon
showed a particularly strong inhibitory effect in the P site, in keeping with recent results**>2. We noted
that this codon forms a disfavored I:A wobble pair with its cognate tRNA, distorting the anticodon loop?3,
while the four fastest P site codons all form I:C wobble pairs (Fig. 2D). Overall, I:C base pairs in the P site
contributed to faster translation (Mann-Whitney p = 0.02 after Bonferroni correction; Fig. 2D). From
this, we concluded that the conformation of the tRNA:mRNA duplex can influence its passage through the

ribosome, not just initial recognition in the A site.

We also observed strong sequence preferences at the 3 end of ribosome footprints. Sequence bias has
previously been noted in the 5” and 3 ends of ribosome footprints, and this has been suggested to arise
from ligase preferences during library preparation'®”. To compare features of ribosome profiling data
generated in different experiments, we applied our model to a large ribosome profiling dataset that we
generated from yeast using a standard ribosome profiling protocol?4. Models trained on these data learned
disconcertingly high weights for both the -5 and +3 codon positions (Fig. 2E). The -5 codon, i.e., the 5°
end of a footprint, was the single strongest predictor of footprint counts, exceeding even the A site. We
found similarly large 5 end contributions in published yeast and human datasets generated using similar
protocols?2® (Supp. Fig. 2). These experiments, like our own, made use of CircLigase enzymes to
circularize ribosome footprints after reverse transcription. In contrast, the experiment we first modeled
used T4 RNA ligase to attach 5” linkers directly onto ribosome footprint fragments’®. Comparing the T4
ligase yeast data with CircLigase yeast data, we observed no relationship between the scores learned at

footprint ends (Spearman’s p = 0.04), but high correlation of A site scores (Spearman’s p = 0.73). In
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contrast, we observed a near-perfect correlation at the -5 position between CircLigase yeast data and the
CircLigase-generated human data set (Spearman's p = 0.87, Fig. 2F), but no relationship at the A site (Fig.
2G). This suggested that the fragment end scores reflected experimental artifacts rather than in vivo

biology.

To directly test the impact of enzyme biases on recovery of ribosome-protected fragments, we measured
the relative ligation efficiencies of synthetic oligonucleotides with end sequences shown to be favored or
disfavored in our model. The relative ligation efficiencies of each substrate closely mirrored the end
sequence scores learned by our model for both CircLigase I and CircLigase II (Fig. 2H,I; Supp. Fig. 3). The
least-favored sequences were ligated by CircLigase IT with only 20% the efficiency of the most-favored
sequences, meaning that some ribosome footprints would be represented at five times the frequency of
other footprints for purely technical reasons. This biased recovery of fragments could skew the results of
ribosome profiling experiments, affecting estimates of elongation and overall per-gene translation. Our
method faithfully captured the enzyme sequence preferences, allowing us to distinguish the effects of end

biases from the true biological signal.

We reasoned that, if our model were capturing biological aspects of translation elongation, we could use
the parameters learned by the model to design sequences that would be expressed at different levels. To
test our model’s ability to predict translation, we expressed synonymous variants of the yellow fluorescent
protein eCitrine in yeast (Fig. 3A). First, using the yeast ribosome profiling data from Weinberg et al., we
trained a neural network model with a sequence neighborhood extending from codon positions -3 to +2,
chosen to exclude bias regions at the flanking ends of footprints. We designed a dynamic programming
algorithm to compute the maximum- and minimum-translation-time synonymous versions of eCitrine.
We also generated and scored a set of 100,000 random synonymous eCitrine CDSs and selected the
sequences at the oth, 33rd, 67th, and 100th percentiles of predicted translation time within that set (Fig.
3B). We used flow cytometry to measure the fluorescence of diploid yeast, each containing an eCitrine
variant along with the red fluorescent protein mCherry as a control, and calculated relative fluorescence of

each variant (Fig. 3C).

The expression of eCitrine in each yeast strain closely tracked its predicted elongation rate, with the
predicted fastest sequence producing six-fold higher fluorescence than the predicted slowest sequence
(Fig. 3C). However, the existing yeast-optimized yECitrine sequence® produced three-fold higher
fluorescence than our predicted fastest sequence (Supp. Fig. 4A). To understand the source of this
discrepancy, we measured mRNA from selected strains and found that sequences designed by our method

had equivalent mRNA levels, while yECitrine had five-fold more mRNA (Supp. Fig. 4B). Calculating
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translation efficiencies, or protein produced per mRNA, reconciled this disagreement. We observed a

clear linear relationship between predicted elongation rate and translation efficiency (Fig. 3D).

These experiments demonstrate that our model is able to predict large, quantitative differences in protein
production, based only on information about translation elongation. This result is surprising, as initiation
rather than elongation is usually thought to be rate limiting for protein production®. Although codon
choice can affect mRNA stability and thus total protein output®, our fast and slow predicted sequences
have equal steady-state mRNA. Further, an effect arising purely from mRNA stability would affect protein
output but not translation efficiency, counter to our observations. Instead, our results indicate that
optimized elongation rates do result in more protein per mRNA, and this does not depend entirely on
mRNA stability. The increased mRNA level of the existing yeast-optimized yECitrine could reflect
sequence constraints unrelated to translation elongation, although we cannot rule out the possibility of a
stability difference. It remains to determine how translation speed can control translation efficiency. One
contribution could come from pileups behind stalled or slow-moving ribosomes, diminishing the
maximum throughput of protein production®. The landscape of factors affecting codon optimality is
complex?®, and codon preferences vary across species, tissues, and conditions. Our approach can capture
empirical information about codon preferences in any system where translation can be measured by

ribosome profiling, and apply it to design sequences for quantitative expression in that system.
Methods

All Ixnos software and analysis scripts, including a complete workflow of analyses in this paper, can be

found at https://github.com/lareaulab/iXnos.
Ribosome profiling

Yeast ribosome profiling was performed exactly according to McGlincy & Ingolia** with the following

modifications:

250 mL of YEPD media was inoculated from an overnight culture of BY474 to an OD600 of 0.1. Yeast
were grown to mid-log phase and harvested at an OD600 of 0.565. Lysis proceeded according to McGlincy
& Ingolia** except with no cycloheximide in the lysis buffer (20 mM Tris pH 7.4, 150 mM NaCl, 5 mM
MgCl2, 1 mM DTT, 1% v/v Triton X-1000, 25 U/ml Turbo DNase I). To quantify RNA content of the
lysate, total RNA was purified from 200 pL of lysate using the Direct-zol RNA MiniPrep kit (Zymo
Research) and the concentration of RNA was measured with a NanoDrop 2000 spectrophotometer

(ThermoFisher).

Lysate containing 30 pg of total RNA was thawed on ice and diluted to 200 pL with polysome buffer with
no cycloheximide (20 mM Tris pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT). 0.1 ul (1 U) of RNase I
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(Epicentre) was added to the diluted cell lysate and then incubated at room temperature for 45 minutes.
Digestion and monosome isolation proceeded according to McGlincy & Ingolia*, except with no

cycloheximide in the sucrose cushion.

Purified RNA was separated on a 15% TBE/Urea gel, and fragments of 18-34 nt were gel extracted. Size
was determined relative to RNA size markers NI-NI-800 and NI-NI-801*4 and NEB microRNA size
marker (New England Biolabs). Library preparation proceeded according to McGlincy & Ingolia®. The
library was made with downstream linker NI-NI-811
(/5Phos/NNNNNAGCTAAGATCGGAAGAGCACACGTCTGAA/3ddC/) and a modified RT primer with a
preferred CircLigase II substrate (AG) at the 5" end (oLFLo075,
5’-/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/GTGACTGGAGTTCAGACGTGTGCTC).
Library amplification PCR used primers NI-NI-798 and NI-NI-825 (Illumina index ACAGTG). The
resulting library was sequenced as single-end 51 nt reads on an Illumina HiSeq4000 according to the
manufacturer’s protocol by the Vincent J. Coates Genomics Sequencing Laboratory at the University of

California, Berkeley.
Sequencing data processing and mapping

A custom yeast transcriptome file was generated based on all chromosomal ORF coding sequences in
orf_coding.fasta from the Saccharomyces Genome Database reference genome version R64-2-1 for
Saccharomyces cerevisiae strain S288C. A human transcriptome file was generated from GRCh38.p2,
Gencode v. 22, to include one transcript per gene based on the ENSEMBL ‘canonical transcript’ tag. For
both human and yeast, the transcriptome file included 13 nt of 5° UTR sequence and 10 nt of 3° UTR
sequence to accommodate footprint reads from ribosomes at the first and last codons. For yeast
transcripts with no annotated UTR, the flanking genomic sequence was included. For human transcripts

with no annotated UTR, or UTRs shorter than 13 or 10 nt, the sequence was padded with N.

Yeast ribosome profiling reads from Weinberg et al.®® (SRR1049521) were trimmed to remove the ligated
3’ linker (TCGTATGCCGTCTTCTGCTTG) off of any read that ended with any prefix of that string, and to
remove 8 random nucleotides at the 5” end (added as part of the 5 linker). Yeast ribosome profiling
reads generated in our own experiments (GEO upload pending; available at
http://data.lareaulab.org/lareaulab/iXnos/LLMG004_S31_L007_Ri1_o0o01.fastq.gz and
http://data.lareaulab.org/lareaulab/iXnos/LMGo05_S1_L001_R1_oo01.fastq.gz) were trimmed to
remove the ligated 3” linker, which included 5 random nucleotides and a 5-nt index of AGCTA
(NNNNNIIIITAGATCGGAAGAGCACACGTCTGAAC). Human ribosome profiling reads from Iwasaki et
al.*s (SRR2075925, SRR2075926) were trimmed to remove the ligated 3 linker
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(CTGTAGGCACCATCAAT). Yeast ribosome profiling reads from Schuller et al.?® (SRR5008134,
SRR5008135) were trimmed to remove the ligated 3” linker (CTGTAGGCACCATCAAT).

Trimmed fastq sequences of longer than 10 nt were aligned to yeast or human ribosomal and noncoding
RNA sequences using bowtie v. 1.2.1.1*, with options “bowtie -v 2 -S”. Reads that did not match rRNA or
ncRNA were mapped to the transcriptome with options “bowtie -a --norc -v 2 -S”. Mapping weights for

multimapping reads were computed using RSEM v. 1.2.31%°.
Assignment of A sites

A site codons were identified in each footprint using simple rules for the offset of the A site from the 5°
end of the footprint. These rules were based on the length of the footprint and the frame of the 5" terminal
nucleotide. For each data set, the set of lengths that included appreciable footprint counts was determined
(e.g. Weinberg 27-31 nt.). For each length, the counts of footprints mapping to each frame were computed.
The canonical 28 nucleotide footprint starts coherently in frame o, with the 5” end 15 nt upstream of the A
site (citation). For all other lengths, rules were defined if footprints mapped primarily to 1 or 2 frames,
and offsets were chosen to be consistent with over digestion or under digestion relative to a 28 nucleotide

footprint. Footprints mapping to other frames were discarded.
Scaled counts

For each codon, the raw footprint counts were computed by summing the RSEM mapping weights of each
footprint with its A site at that codon. Scaled footprint counts were computed by dividing the raw counts
at each codon by the average raw counts over all codons in its transcript. This controlled for variable
initiation rates and copy numbers across transcripts. The resulting scaled counts are mean centered at 1,
with scaled counts higher than 1 indicating slower than average translation. The first 20 and last 20
codons in each gene were excluded from all computations and data sets, to avoid the atypical footprint

counts observed at the beginning and end of genes.

Genes were excluded from analysis if they had fewer than 200 raw footprint counts in the truncated CDS,
or fewer than 100 codons with mapped footprints in this region. Then the top 500 genes were selected by
footprint density (average footprint counts/codon). 2/3 of these genes were selected at random as the

training set, and the remaining 1/3 of genes were used as the test set.
Input Features

The model accepts user defined sets of codon and nucleotide positions around the A site to encode as
input features for predicting translation speed. The A site is indexed as the oth codon, and its first

nucleotide is indexed as the oth nucleotide, with negative indices in the 5 direction, and positive indices
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in the 3 direction. Sequence features were one-hot encoded to input into regression models. The model
also accepts RNA folding energies from the RNAfold package over a set of user defined positions and

window sizes.

In our final model, codons -7 to +5 and nucleotides -21 to +17 were chosen, as well as folding energies

from 3 30-nt windows starting at nucleotides -17 to -15.
Model Construction

All models were constructed as feedforward artificial neural networks, using the Python packages Lasagne
v. 0.2.dev13* and Theano v. 0.9.0%2. Each network contained one fully connected hidden layer of 200 units
with a tanh activation function, and an output layer of one unit with a ReLU activation function. Models

were trained using mini-batch stochastic gradient descent with Nesterov momentum (batch size 500).
Feature Importance Measurements

A series of leave-one-out models was trained, excluding one codon position at a time from the sequence
neighborhood. The importance of each codon position to predictive performance was computed as the

difference in MSE between the reduced and full models.

The contribution of codon c at position i to predicted scaled counts was calculated as the average increase
in predicted scaled counts due to having that codon at that position, over all instances where codon ¢ was
observed at position i in the test set. This increase was computed relative to the expected predicted scaled
counts when the codon at position i was varied according to its empirical frequency in the test set

(Supplementary Materials).
Sequence Optimization

The overall translation time of a coding sequence was computed as the sum of the predicted scaled counts
over all codons in that coding sequence. This quantity corresponds to total translation time in arbitrary
units. A dynamic programming algorithm was developed to find the fastest and slowest translated coding
sequences in the set of synonymous coding sequences for a given protein, under a predictive model of
scaled counts (Supplementary Materials). This algorithm runs in O(CM*) time, where C is the length of
the coding sequence in codons, M is the maximum multiplicity of synonymous codons (i.e. 6), and L is the
length in codons of the predictive model’s sequence neighborhood. This achieves considerable efficiency
over the naive O(C*) model, by assuming that only codons within the sequence neighborhood influence

scaled counts.

This algorithm was used to determine the fastest and slowest translating coding sequences for eCitrine,

under a predictive model using a sequence window from codons -3 to +2, and using no structure features.
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Then 100,000 random synonymous coding sequences for eCitrine were generated and scored, and the

sequences at the oth, 33rd, 67th, and 100th percentiles were selected.
Measuring circularization efficiency

We designed oligonucleotides that mimic the structure of the single-stranded cDNA molecule that is
circularized by CircLigase during the M°Glincy & Ingolia (2017) ribosome profiling protocol. These

oligonucleotides have the structure:

/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/GTGACTGGAGTTCAGACGTGTGCTCTTC
CGATCACAGTCATCGTTCGCATTACCCTGTTATCCCTAAJJJ,

where /5Phos/ indicates a 5 phosphorylation; /iSP18/ indicates an 18-atom hexa-ethyleneglycol spacer;
and JJJ indicates the reverse complement of the nucleotides at the 5 of the footprint favored or
disfavored under the model (oligos defined in Supp. Table 2). Circularization reactions were performed
using CircLigase I or II (Epicentre) as described in the manufacturer’s instructions, using 1 pmol
oligonucleotide in each reaction. Circularization reactions were diluted 1/20 before being subjected to
qPCR using DyNAmo HS SYBR Green qPCR Kit (Thermo Scientific) on a CFX96 Touch Real Time PCR
Detection System (Biorad). For each circularization reaction, two qPCR reactions were performed: one
where the formation of a product was dependent upon oligo circularization, and one where it was not
(oligos defined in Supp. Table 2). qPCR data was analyzed using custom R scripts whose core functionality
is based on the packages qpcR3? & dpcR3* (qper_functions.R, available on github). The signal from the
circularization dependent amplicon was normalized to that from the circularization independent
amplicon, and then expressed as a fold-change compared to the mean of the oligonucleotide with the most

favored sequence under the model.
Plasmid and yeast strain construction

Yeast integrating plasmids expressing either mCherry or a differentially optimized version of eCitrine
were constructed. The differentially optimized versions of eCitrine were synthesized as gBlocks by
Integrated DNA Technologies inserted into the plasmid backbone by Gibson assembly?®. Transcription of
both mCherry and eCitrine is directed by a PGK1 promoter and an ADH1 terminator. To enable yeast
transformants to grow in the absence of leucine, the plasmids contain the LEU2 expression cassette from
Kluyveromyces lactis taken from pUG733¢, which was obtained from EUROSCAREF. To enable integration
into the yeast genome, the plasmids contain two 300 bp sequences from the his3A1 locus of BY4742.
Genbank files describing the plasmids are provided in Supp. File 2. To construct yeast strains expressing
these plasmids, the plasmids were linearized at the AvrlII site and ~1 g linearized plasmid was used to

transform yeast by the high efficiency lithium acetate/single-stranded carrier DNA/PEG method, as
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described?”. Transformants were selected by growth on SCD -LEU plates, and plasmid integration into the
genome was confirmed by yeast colony PCR with primers flanking both the upstream and downstream
junctions between the plasmid sequence and the genome (oligos defined in Supp. Table 2). PCR was
performed using GoTaq DNA polymerase (Promega M8295). Haploid BY4742 and BY4741 strains
expressing the eCitrine variants and mCherry, respectively, were then mated. For each eCitrine variant,
eight transformants were mated to a single mCherry transformant. Diploids were isolated by their ability
to grow on SCD -MET-LYS plates. Strains with sequence-confirmed mutations or copy number variation

were excluded from further analysis.
Assessing fluorescent protein expression by flow cytometry

Overnight cultures of diploid yeast in YEPD were diluted in YEPD so that their optical density at 600 nm
(ODg,,) was equal to 0.1 in a 1 mL culture, and then grown for six hours in a 2 mL deep-well plate
supplemented with a sterile glass bead, at 30 °C with shaking at 250 rpm. This culture was pelleted by five
minutes centrifugation at 3000 x g and fixed by resuspension in 16% paraformaldehyde followed by 30
minutes incubation in the dark at room temperature. Cells were washed twice in DPBS (Gibco 14190-44)
and stored in DPBS at 4 °C until analysis. Upon analysis, cells were diluted ca. 1:4 in DPBS and subject to
flow cytometry measurements on a BD Biosciences (San Jose, CA) LSR Fortessa X20 analyzer. Forward
Light Scatter measurements (FSC) for relative size, and Side-Scatter measurements (SSC) for intracellular
refractive index were made using the 488nm laser. eCitrine fluorescence was measured using the 488 nm
(Blue) laser excitation and detected using a 505 nm Long Pass optical filter, followed by 530/30 nm
optical filter with a bandwidth of 3onm (530/30, or 515 nm-545 nm). mCherry fluorescence was
measured using a 561 nm (yellow-green) laser, for excitation and a 595 nm long-pass optical filter,
followed by 610/20 nm band-pass optical filter with a bandwidth of 20 nm (or 600 nm — 620 nm). PMT
values for each color channel were adjusted such that the mean of a sample of BY4743 yeast was 100.
50000 events were collected for each sample. Flow cytometry data was analyzed using a custom R script
(gateFlowData.R, available on github) whose core functionality is based on the Bioconductor packages
flowCore3®, flowStats®®, and flowViz*°. In summary, for each sample, events that had values for red or
yellow fluorescence that were less that one had those values set to one. Then, in order to select events that
represented normal cells, we used the curvafilter method to extract events that had FSC and side-scatter
SSC values within the values of the region of highest local density of all events as considered by their FSC
and SSC values. For these events the red fluorescence intensity was considered a measure of mCherry

protein expression and yellow fluorescence intensity a measure of eCitrine protein expression.

Measuring eCitrine and mCherry mRNA expression by qRT-PCR
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Overnight cultures of diploid yeast in YEPD were diluted in YEPD so that their OD,, was equal to 0.1in a
20 mL culture, and then grown at 30 °C with shaking at 250 rpm until their OD,,, reached 0.4 - 0.6. 10
mL of culture was then pelleted by centrifugation for 5 minutes at 3000 x g and snap frozen in liquid
nitrogen. Total RNA was extracted from pelleted yeast cultures according to the method of Ares*.
Thereafter, 10 pg of this RNA was treated with Turbo DNase I (ambion) according to the manufacturer's
instructions, then 1 pg DNase treated RNA was reverse transcribed using anchored oligo dT and
Protoscript IT (NEB) according to the manufacturer's instructions. 1/20™ of this reaction was then
subjected to qPCR using the DyNAmo HS SYBR Green qPCR Kit (Thermo Scientific) on a CFX96 Touch
Real Time PCR Detection System (Biorad). For each reverse transcription reaction, two qPCR reactions
were performed: one with primers specific to the mCherry ORF, and one with primers specific to the
eCitrine variant ORF in question (oligos defined in Supp. Table 2). qPCR data was analyzed using custom
R scripts whose core functionality is based on the packages qpcR3** & dpcR3* (qper_functions.R,
available on github). Allowing for the measured differences in PCR efficiency between the eCitrine variant
specific primer pairs, the signal from the eCitrine variant ORF was normalized to that from the mCherry
ORF, and then expressed as a fold-change compared to the median of these values for the parental

eCitrine variant.
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Figure captions

Figure 1 A Each ribosome protects an mRNA footprint of approximately 28-29 nt. Sequence coordinates
in a neighborhood around a ribosome are indexed relative to the codon in the A site of the ribosome. B
Read count rescaling. For each gene, the counts of footprints assigned to each A site codon are divided by
the average counts per codon over that gene. The resulting scaled footprint counts are used for model
training and prediction. C Model performances (MSE) for neural network and linear regression models
over a range of sequence neighborhoods, with and without nucleotide features, as well as MSEs for
models that also incorporate structure scores of the three 30-nt windows overlapping the footprint region,
or the maximum structure score within 59 nt downstream of the ribosome. Dashed line shows the
performance of the best model. D Scatter plot of test set true vs. predicted scaled counts under a model
with codon and nucleotide features spanning codon positions -7 to +5. Color scale shows density of data
points. E True scaled counts (gray bars) and predicted scaled counts (red line) for a highly translated
gene. F Binned local MSEs of test set codons, sorted in order of true scaled counts. Scaled count values

corresponding to bins are annotated at top.
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Figure 2 A Predictive value of codon positions in a yeast ribosome profiling dataset from Weinberg et
al.®®, measured by the difference between test MSEs of the full model and a leave-one-out model excluding
that codon and associated nucleotides from the feature set. B Mean contributions to scaled counts by
codon identity and position. C Correlation between tAI and contribution to scaled counts, by codon
position. Dark grey indicates p < 0.05 after Bonferroni correction. D P site codon contributions grouped
by the codon:anticodon base pair formed by the third nucleotide of each codon. Asterisks indicate p <
0.05 after Bonferroni correction, unpaired two-sided Mann-Whitney U test between each group and all
other codons. E Predictive value of codon positions as in A, from a yeast ribosome profiling library we
constructed using CircLigase II as described by McGlincy and Ingolia*. F,G Contributions from (F)
codon position -5, at the 5” ends of footprints, and (G) the A site, in human ribosome profiling from
Iwasaki et al.?> versus our yeast ribosome profiling. Analysis was limited to 28-nt footprints to avoid frame
biases. Fragment end codons that contribute to recovery bias are highly correlated, whereas A site codons
that contribute strongly to translation elongation rate are not correlated between species. H, I Ligation
efficiency of CircLigase II (H) and I (I) enzymes. Oligonucleotide substrates resembling ribosome
footprints at the circularization step of the protocol, with different three-nucleotide end sequences, were
ligated by both enzymes. Circularization was assayed by qPCR using primers spanning the ligation as
compared to primers in a contiguous region of the oligo. Ligation was calculated relative to the median of

three qPCR replicates measuring CircLigase I ligation of the best-ligated substrate.
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Figure 3 A Six reporter constructs with distinct synonymous eCitrine coding sequences were inserted
into the his3A1 locus of BY4742 (a-type) yeast, and an equivalent construct with a constant mCherry
coding sequence was inserted into the his3A1 locus of BY4741 (a-type) yeast. Up to eight isolates for each
eCitrine strain, representing biological replicates of the insertion, were chosen for further analysis. The
haploids were mated to produce diploid yeast with eCitrine and mCherry reporters, whose fluorescence
was then measured with flow cytometry. B The synonymous eCitrine sequences included the fastest and
slowest predicted sequences under our model (purple and red), as well as sequences with predicted
translation speed scores at the oth, 33rd, 67th, and 100th percentiles of a randomly generated set of
100,000 synonymous eCitrine sequences (blue, cyan, green, and orange, respectively). The distribution of
scores of 100,000 random eCitrine sequences is shown in grey. C eCitrine:mCherry fluorescence ratio, as
measured by flow cytometry, versus score of each sequence in our model. Each data point represents the
median ratio of yellow and red fluorescence from one biological replicate of the given eCitrine strain (an
independent integration of the reporter construct). Colors as in (B). D Translation efficiency, or median
eCitrine:mCherry fluorescence ratio divided by relative eCitrine:mCherry mRNA ratio (median of three
qPCR replicates), for four eCitrine variants, versus the score of each sequence in our model. Magenta,
yECitrine sequence; other colors as in (B). Each point represents one biological replicate of the given

eCitrine strain.
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