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7 Abstract

18 Individual cells in clonal populations often respond differently to environ-
19 mental changes; for binary phenotypes, such as cell death, this can be mea-
20 sured as a fractional response. These types of responses have been attributed
21 to cell-intrinsic stochastic processes and variable abundances of biochemi-
2 cal constituents, such as proteins, but the influence of organelles has yet
23 to be determined. We use the response to TNF-related apoptosis inducing
24 ligand (TRAIL) and a new statistical framework for determining param-
25 eter influence on cell-to-cell variability through the inference of variance
26 explained, DEPICTIVE, to demonstrate that variable mitochondria abun-
27 dance correlates with cell survival and determines the fractional cell death
28 response. By quantitative data analysis and modeling we attribute this ef-
29 fect to variable effective concentrations at the mitochondria surface of the
30 pro-apoptotic protein Bax. Further, we demonstrate that inhibitors of anti-
31 apoptotic Bcl-2 family proteins, used in cancer treatment, may increase the
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32 diversity of cellular responses, enhancing resistance to treatment.

3 Isogenic populations of cells in homogeneous environments have the seemingly paradoxical
s capacity to generate many unique cell states. This ability is found in many, if not all, types of single
35 celled organisms and in the distinct cell types of multicellular organisms. For example, B. subtilis
s cells were shown to independently and transiently switch between vegetative and competent states
a7 [1], hematopoietic progenitor cells can differentiate into either erythroid or myeloid lineages [2],
ss and cancerous tissue maintain distinct sub-populations throughout the course of disease [3]. In
s all such cases, a cell’s propensity for a particular state is attributed to the intrinsic stochasticity
s of low-copy number biomolecular reactions [4—6], or extrinsic variations in the abundances of its
41 components [7-9]. Taken together it is clear that stochastic transitions of cell state that are driven
22 by non-genetic sources of cell-to-cell variability (CCV) are fundamental to the maintenance of
43 single cell populations, the function of distinct tissues, and structure of clinical lesions in diseases
s« such as cancer.

45 One commonly studied source of CCV is protein abundance. Its premier status as a dominant
46 source of non-genetic CCV is due to its stochastic production [6, 10], and the sensitivity of cellular
47 decision-making machinery to variations in their components. For example, in biological signal
s transduction, information regarding the cell’s environment is processed by a cascade of biomolec-
4o ular reactions. Variation from one cell to another in any one of the corresponding biomolecules
so varies the signal magnitude across the population, making unique the cell’s perception of environ-
st mental conditions and its corresponding response [11-14]. While it has been definitively shown
s2 that CCV in protein abundance influences cellular decisions, little attention has been given to other
ss non-genetic sources of CCV.

54 There are numerous examples in which non-genetic and non-protein sources of CCV are con-
55 jectured to impact biological phenomena. For example, centrosome abundance [15], the size of
ss the Golgi apparatus [16], and mitochondria abundance [17-20] all have been shown to vary from
57 cell-to-cell. To determine if diversity in cell behaviors may be attributed to CCV in organelle abun-

ss dance, our study focuses on the role of mitochondria in the context of TRAIL induced apoptosis.
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59 Indeed, the abundance of mitochondria per cell has been shown to positively correlate with a
s cell’s propensity for apoptosis [20]. The mechanism of this phenomena was attributed to CCV in
st protein abundances, which were previously shown to correlate with mitochondria abundance [21].
s2 However, this correlation is unlikely to be the entire story as a well known study demonstrated that
s the time to TRAIL-induced cell death of individual sister HeLa cells concomitantly treated with
e« a potent inhibitor of protein translation, cyclohexamide, became less correlated with time [12].
es As protein translation is inhibited, the cause for the depreciation of this correlation is unlikely to
es come from temporal fluctuations in protein abundance and may be attributed to the fluctuations in

67 mitochondria abundances.

« Results

o Mitochondria density correlates with resistance to TRAIL

70 To assess whether mitochondria abundance correlated with single cell sensitivity to TRAIL in-
71 duced apoptosis (Figure 1A) we measured the binary life-or-death status and the abundance of
72 mitochondria of individual cells by flow cytometry. During extrinsic apoptosis, TRAIL stimulates
73 cell death by binding to its cognate death receptors on the cell surface forming a complex that
7+ activates Caspase 8 (Figure 1A), the so-called initiator caspase (IC). Active IC in turn causes Bax
75 accumulation and polymerization on the outer membrane of mitochondria, forming pores [22, 23]
76 which allow for the diffusion of pro-apoptotic molecules from the inter-membrane space of the mi-
77 tochondria into the cytosol [24, 25]. These molecules activate a cascade which ultimately induces
78 the activity of Caspase 3, the so-called executioner (EC) caspase [24, 25], which is responsible for
79 triggering cell death. In effect, these molecules dynamically regulate each other’s activity so that
so the continuous values of TRAIL concentration can be converted to a binary dead-or-alive response.
81 The human T-lymphoblastoid derived cells (Jurkat), a human breast adenocarcinoma cell line
g2 (MDA-MB-231), and HeLa cells were exposed to different doses of TRAIL for four hours, a time
ss frame in which cells died readily but the single cell abundances per mitochondria remained largely

s« unchanged (Supplementary Figures 1 and 2). For each dose of TRAIL we measured the abundance
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ss of mitochondria and the cell state in single cells by concomitant labeling with a fluorescent An-
ss nexin V and MitoTracker Deep Red in flow cytometry measurements (FCM). Living cells, Annexin
&7V negative and MitoTracker high, are well separated from the dead cells, Annexin V positive and
ss MitoTracker low and medium (Figure 1B, see Supplementary Figure 1 for complete gating strat-
s egy). Importantly, the fact that the living and apoptotic cell populations shared no MitoTracker
% population lead us to conclude that the apoptosis process corrupted MitoTracker signal. Conse-
o1 quently, the apoptosis process precludes assessment of mitochondria abundance by MitoTracker in
2 Annexin V positive cells.

o From the FCM and our live cell gate we confirmed that Jurkat and MDA-MB-231 cell lines
s« were sensitive to TRAIL (Figures 1C,F) but HeLa cells were not as responsive (see Supplementary
os Figure 9). Furthermore, from fitting the Hill model to each dose response we found that these
o6 cell lines had vastly different sensitivities (ICsy) to TRAIL, 3.81+£0.26 ng/mL for Jurkat cells,
o7 76.4%8.77 ng/mL for MDA-MAB-231 cells and more than 300 ng/mL for HeLa cells. Because of
ss this observation, we color-coded the effective abundance of TRAIL dose so that we may track the
99 mitochondria abundance with the effective, as opposed to the actual, dose of TRAIL (Figures 1C-H
100 and Supplementary Figure 9).

101 Next we found that mitochondria abundance of living cells is correlated with cell size, as mea-
12 sured by forward scatter (Figures 1D,G). To eliminate analyzing effects due to cell size, as opposed
103 to mitochondria, we focus our attention to the mitochondria density, p, defined as the MitoTracker
104 signal normalized to FSC signal. With these data we estimated the probability density of single
105 cell mitochondria density in live cells for each dose of TRAIL. Here we find that with successively
106 increasing doses of TRAIL the probability distribution p becomes increasingly enriched for cells
107 with high mitochondria density (Figures 1E,H). Moreover, we find that the degree of the enrich-
108 ment is unique to each cell line - Jurkat cells are more readily biased in their mitochondria density
100 than were the MDA-MB-231 and HeLa cells (for all HeLa cell analysis see Supplementary Note 6
110 and Supplementary Figure 9).

111 We hypothesize that the observed enrichment of cells with high mitochondria density is es-
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12 tablished by a differential sensitivity of single-cells to TRAIL. An intuitive result considering that
113 the sensitivity of a signaling pathway to its cognate ligand is tuned by the abundances of its com-
114 ponents. In apoptosis for example, we would expect that the number of TRAIL receptors on a
ns  cell’s surface, the number of pro-caspase molecules, the number of Bax molecules, the number of
116 mitochondria, etc contribute to that cell’s response to a single dose of TRAIL. If each one of these
117 molecules varied from one cell to the next, the so-called cell-to-cell variability (CCV), we should
1s  expect that the individual response of cells to TRAIL are unique.

119 Indeed, the probability density of p shows that the endogenous density of mitochondria vary
120 from cell-to-cell (Figures 1E,H). If each cell’s sensitivity to TRAIL were anti-correlated with mi-
121 tochondria abundance we would expect an enrichment of high mitochondria density cells with
122 TRAIL stimulation. Such an effect can be quantitatively studied by using the rule of probability.
123 By applying Bayes’ theorem we may associate the changes in the probability density p with the
124 quantitative change of the fraction of living cells. From this simple property of probability, we
125 were able to develop a quantitative strategy to gauge whether the observed endogenous variability

126 of biological components are responsible for functional population diversity.

7 Variability in all-or-none biological responses

128 As found in other biological systems, e.g. MAPK and NFxB [26, 27], the conversion of a con-
129 tinuous input to a binary response limits the influence of CCV in cellular components to CCV in
130 sensitivity to perturbations. In apoptosis, each cell, with its unique concentrations of molecular
131 components, should require a specific concentration of TRAIL to induce cell death. At the popu-
122 lation level the diversity in single-cell sensitivities to TRAIL gives rise to the fractional control of
133 cell death.

134 As an example, consider two separate ensembles of cells, one with near identical biomolecu-
135 lar composition (low CCV) and the other with variable numbers of its components (high CCV).
136 In the scenario where all components are near equal, the individuals will undergo the life-death

137 transition at nearly the same dose of ligand (Figure 2A). In contrast, when CCV is relatively high,
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138 the individual cells of the ensemble will transition from live to dead at diverse doses of TRAIL
139 (Figure 2B). The resulting fractional control of the population response to TRAIL would then take
120 a steep or gradual sigmoid shape, respectively.

141 This interpretation of the empirical dose response curve represents the cumulative distribution
142 of single-cell sensitivities. From which, we may derive the corresponding probability density of
13 single cell sensitivities. Indeed, from this simple interpretation, the empirical dose response curve
1a¢  of binary biological responses contains a complete statistical description of the functional diversity
1s 1n the population. Fitting this dose response to a Hill function, we find that the mean sensitivity
1s of single cells to a perturbation is simply the logarithm of the ICsy, and the variance of single cell
147 sensitivities to be inversely proportional to the squared Hill coefficient (Figure 2C).

148 Matching the dose response parameters to statistical quantities is useful, because now we may
19 use the tools of probability theory to analyze our data such as taking conditional moments. In
150 context of TRAIL induced apoptosis we may ask what is the average sensitivity of cells given a
151 specific mitochondria density. This statistical question is equivalent then to asking how does the
152 ICs¢ of individual cells change with the mitochondria density. Or we may ask, what is the vari-
153 ance of single cells sensitivities given that we measured mitochondria density. Which, intuitively,
154 quantitatively measures the remaining diversity in the population once we remove the contribution
155 of mitochondria density. With this information we may then compute the fraction of the functional

156 relevant population diversity attributable to a measured component.

v Decomposing sources of cell-to-cell variability

s Lets assume that the sensitivity of cells to TRAIL is wholly dependent on the biological compo-
159 nents of the apoptotic signaling pathway. For simplicity lets designate the mitochondria density
160 p to be xy and all other contributing components as i, s, ..., Z,,. A priori any mathematical
st function that describes the intricate relationships of these components and the dose of TRAIL to

162 the single cell sensitivity () is unknown, however we may expand this a priori unknown function
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163 to an arbitrary order by,

k= 1og(ICs0) + » _ kb log(a;) + - - - (1)

i=0

1es Where k; = Or/0log(x;)|(,) and dlog(x;) = log(z;) — log((x;)) (see Supplementary Note 3
165 for details). The order in which we expand to will dictate the degree of complexity we wish to
1es understand. If we limit our understanding to first order, then the details of the specific pathway are
17 bundled into phenomenological parameters k;. If then, we infer k; from data, we can estimate the
18 extent in which each component contributes to a cell’s sensitivity to TRAIL.
169 Indeed, Eq. 1 provides a framework for constructing a single cell interpretation of the Hill
170 model, which incorporates the abundance of biological components with the stimulation strength.
171 The biological species are introduced into the Hill model parameters by their influence on the
172 first and second statistical moments of single cell sensitivities, x. For example, incorporating our
172 measurements of mitochondria density p to the ICsy amounts to computing the average sensitivity

174 conditioned on mitochondria density,

log(ICso(p)) = log(ICsp) + k0 log(p). 2)

175 Then, in like fashion, the resulting Hill coefficient comes from estimating the variance of sensitiv-

176 ities conditioned on mitochondria density,

™ .
Ny = —F/7/—7—7—7—m—— with 0'2

Kl
m 2
\/ 32 i Oli

77 and o? representing the variance of the 7" biological component. If we apply the moments from

— k2o? 3)

17¢ our first-order expansion (Egs. 2,3) to the Hill model we arrive at our single cell Hill model,

(p/ (p))Fe"e
(p/ (p))keme 4 ([T]/ICs)" "

P(alive|p, T) = 4)

179 Eq. 4 gives us a detailed understanding on the influence of mitochondria density, or in general
180 any measured components. If, for example, mitochondria density does not contribute to the cell’s

181 sensitivity to TRAIL then £, = 0 and Eq. 4 reduces to the standard dose response Hill function. If


https://doi.org/10.1101/201160
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/201160; this version posted April 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

12 however £k, is not zero and positive, then mitochondria density effectively promotes cell survival,
183 and if &, is negative then it increases the effectiveness of TRAIL. Together we can probe the influ-
e« ence of each measured component at unprecedented resolution. We call this strategy DEPICTIVE,
1s5s which i1s an acronym for DEtermining Parameter Influence on Cell-to-cell variability Through the
186 Inference of Variance Explained.

187 To see this in detail, lets consider an example of an arbitrary pathway consisting of three com-
188 ponents that takes s as input and provides a binary output y (Figure 3A). We then make a synthetic
180 data set representing virtual single cell flow cytometry measurements for different doses of s (Fig-
190 ure 3B). Using these data, we can compute the populations response to the stimulation, and due to
191 the single cell nature of the data can interrogate the influence of each molecular constituent. The
192 distribution of biological species = does not change whether we subset single cells upon their state
13y (Figure 3C). Consequently, x must not contribute to each cells sensitivity to s, a fact corrobo-
194 rated by P(y = 1|z, s) being invariant to the abundance of z. Unlike species z, species z and ¢
1es do influence the cell’s behavior, which is apparent in analyzing the single cell data. Intuitively, the
196 changes of the distribution of molecular components conditioned by cell state is the signal required
17 for inferring each parameter k; from (Eq.1).

198 Inferring each of the k; in the simulation data is trivial, because we have measurements of
199 each biological component for each cell state . Uniquely, our experimental data consists of Mito-
200 Tracker measurements from live cells exclusively. This was because MitoTracker Deep Red signal
201 18 dependent on the electro-chemical properties of the mitochondria, which are different for live
202 and dead cells. To infer the values of £ from such data we developed a new inference strategy
203 for semi-supervised logistic regression and embed it as module within the DEPICTIVE statistical
204 framework (see Supplementary Note 3.3 for details). We apply our method to the synthetic data
205 that is analogous to our measurements, that is the measurements associated with each virtual cell
206 With a binary label y = 1. The filled regions of the curves in P(y = 1|u, s) for u = z, z, or ¢ (Fig-
207 ure 3C) represent the model predictions from inferred k&, 4 3 standard deviations. These inferred

208 parameters were then used to infer the single cell dose functions (Figure 3D) with qualitatively
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200 excellent agreement. Quantitatively, we see that we can infer the conditional Hill coefficients (Fig-
210 ure 3E), the corresponding variances explained (Figure 3F), and lastly the dependence of the single

211 cell sensitivities on each biological component (Figure 3G).

= Mitochondria density is a source of cell-to-cell variability

213 We apply our new statistical framework, DEPICTIVE, to quantitatively dissect the dependence
214 of single cell sensitivities to TRAIL with mitochondria density (Figures 1E,H). We see that the
215 fractional response of the Jurkat cells to each dose of TRAIL, P(alive|p, T'), is strongly dependent
216 on mitochondria density (Figure 4A, see Supplementary Figures 3-5 for goodness-of-fit analy-
217 sis). Moreover, we see that the single cell dose response curve translates from low TRAIL to
218 high TRAIL doses with increasing mitochondria density (Figure 4B). The MDA-MB-231 cells
219 fractional response (Figures 4C,D) is less steep than that of Jurkat, indicating that the single cell
220 sensitivities of MDA-MB-231 cells to TRAIL are not as sensitive to CCV in mitochondria density
221 as Jurkat (see Supplementary Figures 6-8 for goodness-of-fit analysis). A result that can be sum-
222 marized by plotting the ICs(p) for each cell line (Figure 4E). Moreover, we find that 30% and
223 2% of the diversity in single-cell sensitivities to TRAIL may be attributed to mitochondria density

224 1n Jurkat and MDA-MB-231 cells, respectively (Figure 4F).

»s Bax concentration dependence on mitochondria surface area

226 'To gain mechanistic insight in the functional role of mitochondria density in the cell death decision,
227 we developed a coarse-grained dynamic model of apoptosis (Figure SA). Our description aims to
228 reproduce the dominant dynamical features of initiator caspase reporter protein (IC-RP) first mea-
220 sured and published by [24]. These being a slow but accelerating initial increase of IC followed by
230 a fast increase in both IC and EC. To such end our model includes: i) a slow auto-catalytic increase
231 1n IC activation, ii) a quasi-steady-state approximation for Bax pore formation dynamics and mi-
232 tochondrial outer membrane permeabilization (MOMP), and iii) the strong positive feedback from
233 EC to IC (see Supplementary Note 5 for details).

234 We conjectured that TRAIL induced activation of IC in Jurkat and MDA-MB-231 cells match

9
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235 the biphasic increase of IC-RP measured in HeLa cells (Albeck et al. 2008b), but differ in their
236 propensity to form Bax pores (Figures 5B,C). Specifically, we consider unique susceptibilities of
237 Bax pore formation to Bcl-2 mediated inhibition for each cell line. As Bax pores reside in the mi-
23 tochondria, the effective Bax concentration for a given amount of Bax decreases with mitochondria
230 density. Implementing this insight into the model equations we see that the influence of mitochon-
20 dria density can be understood through the corresponding bifurcation diagrams (Figures 5D,E).

241 The dynamic properties of IC in MDA-MB-231 cells in the absence of TRAIL are either
2.2 bistable or monostable depending on mitochondria density. In these diagrams, the high IC fixed
243 point corresponds to cells that have integrated sufficient signal for MOMP and consequently repre-
224 sent apoptotic cells. Cells with relatively low mitochondria density are bistable and may undergo
2e5  apoptosis only if their IC abundance exceeds a critical amount designated by the dashed line (Fig-
2e6 ure SD). This bistable region does not preclude cell death - cells may acquire sufficient abundances
2a7 of IC for death by fluctuations in biomolecular reactions. Indeed, the likelihood of such an event
25 decreases with the difference of IC abundance between the unstable fixed point (dashed line) and
2e9 low IC stable fixed point (solid line). Meanwhile, cells with relatively high mitochondria den-
250 sity only have a single fixed point of low IC, indicating that these cells will never spontaneously
251 undergo apoptosis in the absence of TRAIL.

252 In contrast, the bifurcation diagram representing Jurkat cells shows three distinct regions (Fig-
253 ure S5E). These being cells with: 1) low density of mitochondria having a single fixed point of
254 high IC and consequently all die; 2) medium density of mitochondria are bistable, for which, the
255 fractional response to TRAIL decreases with the concomitant increase in the IC unstable fixed
256 point and mitochondria density; and 3) high density of mitochondria are monostable with low IC
257 abundances, hence all cells survive. Next, we extend these analyses to the full range of TRAIL
258 doses.

259 The influence of increasing TRAIL dose in each cell type specific parameterized model is ev-
260 1ident in their bifurcation diagrams. MDA-MB-231 cells respond to TRAIL by increasing the IC

261 abundance of the lower fixed point (Figure 5F). In doing so, cells with mitochondria density in the

10
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262 bistable region equally increase their susceptibility to cell death from fluctuations in IC abundance.
263 The Jurkat model’s response to TRAIL exhibits an increase of the density of mitochondria that sep-
264 arates the monostable high and bistable IC abundance regions (Figure 5G). Therefore, an individual
265 cell’s mitochondria density determines its sensitivity to TRAIL induced cell death. Together, these
266 model-based observations propose an explanation for how CCV in mitochondria density influences

267 the response of Jurkat but to a lesser extent MDA-MB-231 cells to TRAIL (Figures SH,I).

s Sensitizing MDA-MB-231 cells to CCV in mitochondria density

260 In inspecting the model parameters associated with each cell type, we noticed that MDA-MB-231
270 cells were more susceptible to Bcl-2 mediated inhibition of Bax pore formation than Jurkat. We
21 hypothesized that this effect would be abated by incorporating a small molecule inhibitor to Bcl-2
22 in MDA-MB-231 cells (Figure 6A, see Supplementary Note 5.1 for derivation). By incorporating
273 Bcl-2 inhibition, we found that the sensitivity of the fractional response of the cell population to
274 TRAIL increases (Figure 6B). Furthermore, and as intuited, Bcl-2 inhibition increased the depen-
275 dence of single-cell sensitivities to TRAIL on mitochondria density (Figure 6D). We corroborated
276 these theoretical predictions by measuring the influence of the clinically relevant small molecule
277 inhibitor of Bcl-2 family proteins ABT-263 [28] (Figures 6C,E, see Supplementary Figures 6-8 for
278 goodness-of-fit analysis). Remarkably, Bcl-2 inhibition alone increased the variance of sensitivi-

279 ties attributable to mitochondria density from 0% to 40% (Figure 6F).

= DIscussion

251 We have unveiled a connection in the cell-to-cell variability of mitochondria density to the frac-
252 tional control of TRAIL induced cell death. Importantly, we find that the dependency of single
283 cell sensitivities to CCV in mitochondria abundance is cell line dependent. Presumably this depen-
284 dence originates in the unique composition of components across cell lines. In that, the functional
285 manifestation of CCV in mitochondria on the sensitivity of single cells to TRAIL induced apop-

286 tosis is dependent on the relative abundance and diversity of mitochondria in relation to the other

11
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257 biological constituents in the apoptosis pathway. Indeed, Jurkat cells readily responded to TRAIL
288 and its ICsy scaled with mitochondria abundance, MDA-MB-231 cells showed scaling and re-
289 sponded readily to TRAIL only in the presence of a pan-Bcl-2 inhibitor, while scaling was never
200 observed and only a minority of HeLa cells responded to TRAIL even during Bcl-2 inhibition.
201 Consequently, the seemingly contradictory results of our study and that of Marquez-Jurado [20]
202 are manifestations of the unique biological systems being studied. In particular, we think that
203 our observations are highlighting a different phenomenon than Marquez-Jurado et al. who are
20+ measuring a mitochondrial dependence of cell death in HeLa cells regardless of TRAIL dose (see
205 Supplementary Note 6 and Supplementary Figure 9).

296 Our findings were established by a new statistical framework, DEtermining Parameter Influ-
207 ence on Cell-to-cell variability Through the Inference of Variance Explained, namely DEPICTIVE,
205 we developed to measure the impact of CCV on the binary response of cells to perturbation. It is
209 composed of two parts, the first part is to infer the parameters of the logistic regression model when
a0 data from one or both of the binary cell state labels are available. While the second part provides
s the mathematical bases for interpreting the logistic regression model parameters to compute useful
32 quantities.

303 Indeed, inferring the parameters of a logistic regression model from data is commonplace.
s« However, it is only commonplace when data representative of both of the corresponding binary
a5 states is well established. To our knowledge, there is no method to infer these parameters from
ss data where only one of the binary classes is readily available. In our study data from live and dead
a7 cells were unavailable because our experimental label of mitochondria abundance, MitoTracker
as DeepRed, was not reliable for dead cells.

309 The second part of DEPICTIVE statistical framework is to use the logistic model parameters to
a0 estimate the contribution of the measured biological component(s) to the variable binary response
air of single cells. Applying this tool, we found that mitochondria density accounts for nearly 30% of
sz the variable response to TRAIL in Jurkat cells and varies from 2% to up to 40% in MDA-MB-231

a3 cells when Bcl-2 is inhibited. Conversely HeLa cells showed no mitochondrial density dependence.
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ats  Together, the two parts of the DEPICTIVE statistical framework can extract quantitative insights
a5 to sources of cell-to-cell variability.

316 We attribute the measured connection of TRAIL sensitivity and mitochondria density to the di-
317 lution of Bax on the outer mitochondrial membrane in cells by mathematical modeling. From the
ais quantitative insights of DEPICTIVE, we found that the functional manifestation of mitochondrial
ste CCV is plastic - readily and predictably tunable by small molecule inhibitors of Bcl-2. It is plau-
320 sible that this plasticity is a tool accessible to cells, and therefore may be co-opted by pathological
a1 cellular populations. For example, high mitochondria abundance can be a non-genetic mechanism
a2 of resistance to pro-apoptotic therapeutics. Incorporation of such knowledge may be an important
223 consideration in developing therapeutic strategies.

324 The observed advantage of cells with high mitochondria densities may manifest in time-scales
s much longer than the life span of a single cell or the disease in a human, but propagate to the long
a6 time-scales of evolution. To date, the evolutionary hypothesis of mitochondria is as a symbiotic
227 bacterium inside a proto-eukaryotic cell [29], exchanging safety for energy. However, another
328 such evolutionary advantage may be expected, that this symbiosis would create a survival advan-
a9 tage such as the one described here. These results suggest that environmental constraints can
a0  select subpopulations not only based on genetic composition, protein abundances, but also CCV in

ss1  organelle abundances.
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<« Methods

s Cell culture

s« Jurkat E6-1 cells originate from a male human acute T cell Leukemia and were purchased from
a5 ATCC (TIP-152). Cells were cultured in RPMI-1640 medium (Corning cat. 10-040-CV) sup-
s plemented with 10% heat inactivated fetal bovine serum (Corning cat. 35-011-CV), 2mM L-
37 Glutamine (Corning cat. 25-005-CI) and 1mM sodium pyruvate (Corning cat. 25-000-CI). Cells
ass were cultured at 37° C in 5% CO, in a humidified incubator and maintained at cell density not
w0 exceeding 3 x 10° by addition of fresh medium, or by centrifugation with subsequent resuspension
a0 at 1 x 10° cells/mL.

s MDA-MB-231 cells originate from a human female adenocarcinoma that were harvested from a
a2 metastatic cite in the breast. Cells were cultured in DMEM medium (Corning cat. 10-017-CV)
a3 supplemented with 10% fetal bovine serum and 2mM L-Glutamine (Corning cat. 25-005-CI). Cell
aaa  were cultured at 37° C in 5% CO2 in a humidified incubator and subcultured every 2-3 days with
a5 0.25% trypsin (Corning cat. 25-053-CI) to maintain sub-confluent density.

ss  HeLa cells were purchased from ATCC (ATCC CCL2). Cells were cultured in DMEM medium
a7 (Corning cat. 10-017-CV) supplemented with 10% fetal bovine serum and 2mM L-Glutamine
as  (Corning cat. 25-005-CI). Cell were cultured at 37° C in 5% CO?2 in a humidified incubator and
a9 subcultured every 2-3 days with 0.25% trypsin (Corning cat. 25-053-CI) to maintain sub-confluent

a0 density.

1 Apoptosis assay and Data acquisition

352 Jurkat cells were pelleted by centrifugation for 5 minutes at 100 x g, and then resuspended in 1x
s PBS and stained with 200 nM MitoTracker Deep Red (Life Technologies, cat. M22426) for 10
s« minutes at 37° C. MitoTracker staining was quenched with full cell culture medium, followed by
355 centrifugation for 5 minutes at 100 x g. Cells were resuspended in cell culture media at a density
6 of 1 x 10° per mL, in which 1 x 10° were transferred to each experimental well of a flat-bottom

7 96-well plate. Cells were then incubated at 37° C for 4 hours with different doses of Superkiller
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sss TRAIL (Enzo Life Sciences cat. ALX-201-115) and/or ABT263 (ApexBio cat. A3007). After
359 drug treatment, cells were transferred to a v-bottom 96-well plate, pelleted by centrifugation at
o 1,000 x g, stained with FITC-conjugated Annexin V (Biolegend cat. 640945), and then measured
st by flow cytometry.

sz MIDA-MB-231 or HeLa cells were seeded on 12-well plates at 5 x 10° cells per well in 400 uL,
ss incubated overnight at 37 C in 5% CO2 in a humidified incubator until 80% confluent. Cells
s« were then washed once with PBS and stained with 200 nM MitoTracker Deep Red (Life Tech-
35 nologies, cat. M22426) for 10 minutes at 37 C. MitoTracker staining was quenched with full cell
a6 culture medium, and then incubated at 37 C for 4 hours with different doses of Superkiller TRAIL
37 (Enzo Life Sciences cat. ALX-201-115) and/or ABT263 (ApexBio cat. A3007). After drug treat-
ss ment, supernatant containing floating cells was collected, and the remaining adherent cells were
se trypsinized, pooled with the supernatant, and pelleted by centrifugation for 5 minutes at 1,000 x
a0 g. Cells were then stained with FITC-conjugated Annexin V (Biolegend cat. 640945), and then
a7 measured by flow cytometry.

372 Flow cytometry measurements were conducted on a BD LSRII mainted by the Icahn School of

a3 Medicine at Mount Sinai flow cytometry core facility.

s FCM gating

a7s. FCM measurements were gated as follows: to exclude debris (Supplementary Figure 1A), then
are  gated for singlets (Supplementary Figure 1B), MitoTracker Deep Red positive (Supplementary
a77 Figure 1C), and lastly for living cells by Annexin V (Supplementary Figure 1D). The fraction of
ars  cells alive was computed by dividing the number of cells in the Annexin-V-negative gate by the
aro number of cells of the MitoTracker Deep Red positive gate. Subsequent single cell analysis was

a0 then conducted exclusively using cells from the Annexin-V-negative gate.

w1 Code availability

a2 DEPICTIVE: Detailed derivation of the DEPICTIVE strategy can be found in Supplementary

sss Note 3. We developed a user friendly Python package to run the DEPICTIVE analysis strat-
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s« egy. The code is freely available as a GitHub repository, https://github.com/robert-vogel/depictive.
ass  Along with these tools we provide two tutorials that demonstrates how to generate synthetic data
sss and to apply DEPICTIVE analysis. These tutorials can be found on the repositories wiki pages,
ss7  https://github.com/robert-vogel/depictive/wiki.

sss  Dynamics Simulations: Detailed derivations and parameter values of model equations for simu-
ass0 lation can be found in Supplementary Note 5. We developed a user friendly Python package to
a0 run, plot, and perform basic analysis of our model. The code is freely available as a GitHub repos-
se1  itory, https://github.com/robert-vogel/mito_sims. Along with these tools we provide a a series of
302 tutorials that demonstrates the use of our tools by examples. These tutorials can be found on the

a3 repositories wiki pages, https://github.com/robert-vogel/mito_sims/wiki.

w2« Data availability

ses The data presented in the main-text of this paper can be found on Mendeley data [30-35].

s Modeling and Statistical analysis

a7 Detailed derivations of our DEPICTIVE statistical framework, application of DEPICTIVE to data,
ss dynamics models, and inference of dynamic model parameters can be found in Supplementary

a9 Notes 3, 4, 5, and 5.4, respectively.
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Figure 1: TRAIL administration enriches for cells with high density of mitochondria (A) An
overview of TRAIL induced apoptosis. (B) Flow cytometry measurements (FCM) of mitochon-
dria (MitoTracker Deep Red) and phosphatidylserine (FITC conjugated Annexin V) in Jurkat cells.
Complete flow cytometry gating strategy can be seen in Supplementary Figure 1. The fractional
response of Jurkat cells (C) to TRAIL. Each color corresponds to a unique fractional response to
a specific TRAIL dose. Cell size measurements (FSC-A) in Jurkat cells (D) are correlated with
mitochondria abundance (MitoTracker Deep Red). The inset shows that the Pearson correlation
marginally changes for each TRAIL dose. The probability density of mitochondria density (p) for
each dose of TRAIL that elicits a unique response in Jurkat cells (E). The fractional response of
MDA-MB-231 cells to TRAIL (F). Cell size measurements (FSC-A) in MDA-MB-231 cell (G)
are correlated with mitochondria abundance (MitoTracker Deep Red). The inset shows that the
Pearson correlation marginally changes for each TRAIL dose. The probability density of mito-
chondria density (p) for each dose of TRAIL that elicits a unique response in MDA-MB-231 cells
(H). In (E) and (H) the single cell measurements from each of the lowest three doses of TRAIL are
aggregated prior to probability density estimation (Violet). Visual inspection of the respective dose
response curves suggest that these three doses of TRAIL are effectively identical. Data presented
with errorbars represent the mean =+ one standard error of the mean over triplicate experiments.
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Figure 2: Cell-to-cell variability in the binary response to TRAIL Hill response function with
respect to TRAIL dose (blue) and the corresponding probability density of the single-cell sensi-
tivities (orange) for populations with (A) low CCV and (B) high CCV. (C) The theoretical corre-
spondence between the variance of single-cell sensitivities to TRAIL (o) and the Hill coefficient n.

Here, (n4, 04) and (np, op) represent the Hill coefficient and corresponding single-cell variances
from (A) and (B), respectively.
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Figure 3: Decomposing sources of cell-to-cell variability (A) Schema for a simple cellular re-
sponse, y € {0, 1}, to the activation of pathway components x, v, ¢ subject to the i’ dose of a
stimulus s;. (B) Single cell data were simulated to demonstrate the feasibility of CCV decompo-
sition by sampling virtual cells (see Supplementary Note 3.2.3 for details). (C) The dose response
of N = 1000 simulated cells and n = 100 replicate experiments in which k, = 0.25, k, = 1.25,
and k, = 2. Error bars represent + three standard deviations about the mean. The histograms
normalized by cell count of live or dead cells reveals how each biological entity correlates with
cell state (left column). We may make the dependence of cell survival to TRAIL by examining the
probability of the cell state, y = 1, given the dose and abundance of each biological component
(right column). In the right column, the circles represent the true conditional probability, while
the blue line and shaded region represents the DEPICTIVE inferred dependence + three standard
deviations. (D) If we eliminate each individual source of CCV, the dose response is less uncertain.
A phenomena that is well parameterized by the Hill coefficient (E), and the corresponding variance
explained (F). Error bars represent + one standard deviation. (G) The scaling of the 1Csy(u) with
u.
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Figure 4: CCV in mitochondria
density influences fractional re-
sponse to TRAIL. The inferred
fractional response of Jurkat cells
(A) or an MDA-MB-231 cells (C)
as a function of p given TRAIL
dose. The inferred fractional re-
sponse of Jurkat cells (B) or an
MDA-MB-231 cells (D) as a func-
tion of TRAIL dose given p. (E)
The dose of TRAIL normalized by
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Figure 5: Mechanism of ICs, dependence on mitochondria density. (A) Simple model of apop-
tosis. The dynamics of initiator caspase reporter protein (IC-RP) from [24] and the model-inferred
dynamics corresponding to (B) MDA-MB-231 and (C) Jurkat cell lines. The model bifurcation
diagrams for [TRAIL] = 0 ng/mL in (D) MDA-MB-231 and (E) Jurkat cells. The influence of
TRAIL dose on the model fixed points for (F) MDA-MB-231 and (G) Jurkat cells. The depen-
dence of single cell sensitivities to TRAIL on p for (H) MDA-MB-231 and (I) Jurkat cells. The
IC5o was estimated from Hill function fits of simulated data (blue circles), and which were then fit
to a power law (black line). Simulations consisted of 100 cells per each of the 20 doses of TRAIL
and 12 densities of mitochondria considered.
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Figure 6: Plasticity in fractional response to TRAIL. (A) Bcl-2 inhibitor reduces the effective
abundance of Bcl-2 by formation of Bcl-2:Bcl-2 inhibitor complex. (B) Simulation results of
the population ICs5y™AIL response to Bcl-2 inhibition in MDA-MB-231 cells. (C) Experimental
measurement sets - uniquely represented by a square, circle or triangle marker - of the population
ICso ™AL response to Bcl-2 inhibition for MDA-MB-231 cells. (D) Estimated ICs, for changing
p from MDA-MB-231 parameterized model simulations. (E) The experimental dependence of
ICsy on p, from a single representative experiment of three replicate experiments (Supplmenetary
Figures 6-8), as computed in Figure 4E for [0, 1, 3, 10] M doses of the Bcl-2 Inhibitor ABT-263.
(F) The fraction of variance in single-cell sensitivities (o) explained by mitochondria density CCV
in E (0,). Note that all simulations were conducted with 100 cells for each of the 20 doses of
TRAIL, 12 densities of mitochondria, and 9 doses of inhibitor. Detailed analysis of each replicate
data set are presented in Supplementary Figures 6-8.
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