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Abstract17

Individual cells in clonal populations often respond differently to environ-18

mental changes; for binary phenotypes, such as cell death, this can be mea-19

sured as a fractional response. These types of responses have been attributed20

to cell-intrinsic stochastic processes and variable abundances of biochemi-21

cal constituents, such as proteins, but the influence of organelles has yet22

to be determined. We use the response to TNF-related apoptosis inducing23

ligand (TRAIL) and a new statistical framework for determining param-24

eter influence on cell-to-cell variability through the inference of variance25

explained, DEPICTIVE, to demonstrate that variable mitochondria abun-26

dance correlates with cell survival and determines the fractional cell death27

response. By quantitative data analysis and modeling we attribute this ef-28

fect to variable effective concentrations at the mitochondria surface of the29

pro-apoptotic protein Bax. Further, we demonstrate that inhibitors of anti-30

apoptotic Bcl-2 family proteins, used in cancer treatment, may increase the31
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diversity of cellular responses, enhancing resistance to treatment.32

Isogenic populations of cells in homogeneous environments have the seemingly paradoxical33

capacity to generate many unique cell states. This ability is found in many, if not all, types of single34

celled organisms and in the distinct cell types of multicellular organisms. For example, B. subtilis35

cells were shown to independently and transiently switch between vegetative and competent states36

[1], hematopoietic progenitor cells can differentiate into either erythroid or myeloid lineages [2],37

and cancerous tissue maintain distinct sub-populations throughout the course of disease [3]. In38

all such cases, a cell’s propensity for a particular state is attributed to the intrinsic stochasticity39

of low-copy number biomolecular reactions [4–6], or extrinsic variations in the abundances of its40

components [7–9]. Taken together it is clear that stochastic transitions of cell state that are driven41

by non-genetic sources of cell-to-cell variability (CCV) are fundamental to the maintenance of42

single cell populations, the function of distinct tissues, and structure of clinical lesions in diseases43

such as cancer.44

One commonly studied source of CCV is protein abundance. Its premier status as a dominant45

source of non-genetic CCV is due to its stochastic production [6, 10], and the sensitivity of cellular46

decision-making machinery to variations in their components. For example, in biological signal47

transduction, information regarding the cell’s environment is processed by a cascade of biomolec-48

ular reactions. Variation from one cell to another in any one of the corresponding biomolecules49

varies the signal magnitude across the population, making unique the cell’s perception of environ-50

mental conditions and its corresponding response [11–14]. While it has been definitively shown51

that CCV in protein abundance influences cellular decisions, little attention has been given to other52

non-genetic sources of CCV.53

There are numerous examples in which non-genetic and non-protein sources of CCV are con-54

jectured to impact biological phenomena. For example, centrosome abundance [15], the size of55

the Golgi apparatus [16], and mitochondria abundance [17–20] all have been shown to vary from56

cell-to-cell. To determine if diversity in cell behaviors may be attributed to CCV in organelle abun-57

dance, our study focuses on the role of mitochondria in the context of TRAIL induced apoptosis.58
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Indeed, the abundance of mitochondria per cell has been shown to positively correlate with a59

cell’s propensity for apoptosis [20]. The mechanism of this phenomena was attributed to CCV in60

protein abundances, which were previously shown to correlate with mitochondria abundance [21].61

However, this correlation is unlikely to be the entire story as a well known study demonstrated that62

the time to TRAIL-induced cell death of individual sister HeLa cells concomitantly treated with63

a potent inhibitor of protein translation, cyclohexamide, became less correlated with time [12].64

As protein translation is inhibited, the cause for the depreciation of this correlation is unlikely to65

come from temporal fluctuations in protein abundance and may be attributed to the fluctuations in66

mitochondria abundances.67

Results68

Mitochondria density correlates with resistance to TRAIL69

To assess whether mitochondria abundance correlated with single cell sensitivity to TRAIL in-70

duced apoptosis (Figure 1A) we measured the binary life-or-death status and the abundance of71

mitochondria of individual cells by flow cytometry. During extrinsic apoptosis, TRAIL stimulates72

cell death by binding to its cognate death receptors on the cell surface forming a complex that73

activates Caspase 8 (Figure 1A), the so-called initiator caspase (IC). Active IC in turn causes Bax74

accumulation and polymerization on the outer membrane of mitochondria, forming pores [22, 23]75

which allow for the diffusion of pro-apoptotic molecules from the inter-membrane space of the mi-76

tochondria into the cytosol [24, 25]. These molecules activate a cascade which ultimately induces77

the activity of Caspase 3, the so-called executioner (EC) caspase [24, 25], which is responsible for78

triggering cell death. In effect, these molecules dynamically regulate each other’s activity so that79

the continuous values of TRAIL concentration can be converted to a binary dead-or-alive response.80

The human T-lymphoblastoid derived cells (Jurkat), a human breast adenocarcinoma cell line81

(MDA-MB-231), and HeLa cells were exposed to different doses of TRAIL for four hours, a time82

frame in which cells died readily but the single cell abundances per mitochondria remained largely83

unchanged (Supplementary Figures 1 and 2). For each dose of TRAIL we measured the abundance84
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of mitochondria and the cell state in single cells by concomitant labeling with a fluorescent An-85

nexin V and MitoTracker Deep Red in flow cytometry measurements (FCM). Living cells, Annexin86

V negative and MitoTracker high, are well separated from the dead cells, Annexin V positive and87

MitoTracker low and medium (Figure 1B, see Supplementary Figure 1 for complete gating strat-88

egy). Importantly, the fact that the living and apoptotic cell populations shared no MitoTracker89

population lead us to conclude that the apoptosis process corrupted MitoTracker signal. Conse-90

quently, the apoptosis process precludes assessment of mitochondria abundance by MitoTracker in91

Annexin V positive cells.92

From the FCM and our live cell gate we confirmed that Jurkat and MDA-MB-231 cell lines93

were sensitive to TRAIL (Figures 1C,F) but HeLa cells were not as responsive (see Supplementary94

Figure 9). Furthermore, from fitting the Hill model to each dose response we found that these95

cell lines had vastly different sensitivities (IC50) to TRAIL, 3.81±0.26 ng/mL for Jurkat cells,96

76.4±8.77 ng/mL for MDA-MAB-231 cells and more than 300 ng/mL for HeLa cells. Because of97

this observation, we color-coded the effective abundance of TRAIL dose so that we may track the98

mitochondria abundance with the effective, as opposed to the actual, dose of TRAIL (Figures 1C-H99

and Supplementary Figure 9).100

Next we found that mitochondria abundance of living cells is correlated with cell size, as mea-101

sured by forward scatter (Figures 1D,G). To eliminate analyzing effects due to cell size, as opposed102

to mitochondria, we focus our attention to the mitochondria density, ρ, defined as the MitoTracker103

signal normalized to FSC signal. With these data we estimated the probability density of single104

cell mitochondria density in live cells for each dose of TRAIL. Here we find that with successively105

increasing doses of TRAIL the probability distribution ρ becomes increasingly enriched for cells106

with high mitochondria density (Figures 1E,H). Moreover, we find that the degree of the enrich-107

ment is unique to each cell line - Jurkat cells are more readily biased in their mitochondria density108

than were the MDA-MB-231 and HeLa cells (for all HeLa cell analysis see Supplementary Note 6109

and Supplementary Figure 9).110

We hypothesize that the observed enrichment of cells with high mitochondria density is es-111
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tablished by a differential sensitivity of single-cells to TRAIL. An intuitive result considering that112

the sensitivity of a signaling pathway to its cognate ligand is tuned by the abundances of its com-113

ponents. In apoptosis for example, we would expect that the number of TRAIL receptors on a114

cell’s surface, the number of pro-caspase molecules, the number of Bax molecules, the number of115

mitochondria, etc contribute to that cell’s response to a single dose of TRAIL. If each one of these116

molecules varied from one cell to the next, the so-called cell-to-cell variability (CCV), we should117

expect that the individual response of cells to TRAIL are unique.118

Indeed, the probability density of ρ shows that the endogenous density of mitochondria vary119

from cell-to-cell (Figures 1E,H). If each cell’s sensitivity to TRAIL were anti-correlated with mi-120

tochondria abundance we would expect an enrichment of high mitochondria density cells with121

TRAIL stimulation. Such an effect can be quantitatively studied by using the rule of probability.122

By applying Bayes’ theorem we may associate the changes in the probability density ρ with the123

quantitative change of the fraction of living cells. From this simple property of probability, we124

were able to develop a quantitative strategy to gauge whether the observed endogenous variability125

of biological components are responsible for functional population diversity.126

Variability in all-or-none biological responses127

As found in other biological systems, e.g. MAPK and NFκB [26, 27], the conversion of a con-128

tinuous input to a binary response limits the influence of CCV in cellular components to CCV in129

sensitivity to perturbations. In apoptosis, each cell, with its unique concentrations of molecular130

components, should require a specific concentration of TRAIL to induce cell death. At the popu-131

lation level the diversity in single-cell sensitivities to TRAIL gives rise to the fractional control of132

cell death.133

As an example, consider two separate ensembles of cells, one with near identical biomolecu-134

lar composition (low CCV) and the other with variable numbers of its components (high CCV).135

In the scenario where all components are near equal, the individuals will undergo the life-death136

transition at nearly the same dose of ligand (Figure 2A). In contrast, when CCV is relatively high,137
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the individual cells of the ensemble will transition from live to dead at diverse doses of TRAIL138

(Figure 2B). The resulting fractional control of the population response to TRAIL would then take139

a steep or gradual sigmoid shape, respectively.140

This interpretation of the empirical dose response curve represents the cumulative distribution141

of single-cell sensitivities. From which, we may derive the corresponding probability density of142

single cell sensitivities. Indeed, from this simple interpretation, the empirical dose response curve143

of binary biological responses contains a complete statistical description of the functional diversity144

in the population. Fitting this dose response to a Hill function, we find that the mean sensitivity145

of single cells to a perturbation is simply the logarithm of the IC50, and the variance of single cell146

sensitivities to be inversely proportional to the squared Hill coefficient (Figure 2C).147

Matching the dose response parameters to statistical quantities is useful, because now we may148

use the tools of probability theory to analyze our data such as taking conditional moments. In149

context of TRAIL induced apoptosis we may ask what is the average sensitivity of cells given a150

specific mitochondria density. This statistical question is equivalent then to asking how does the151

IC50 of individual cells change with the mitochondria density. Or we may ask, what is the vari-152

ance of single cells sensitivities given that we measured mitochondria density. Which, intuitively,153

quantitatively measures the remaining diversity in the population once we remove the contribution154

of mitochondria density. With this information we may then compute the fraction of the functional155

relevant population diversity attributable to a measured component.156

Decomposing sources of cell-to-cell variability157

Lets assume that the sensitivity of cells to TRAIL is wholly dependent on the biological compo-158

nents of the apoptotic signaling pathway. For simplicity lets designate the mitochondria density159

ρ to be x0 and all other contributing components as x1, x2, . . . , xm. A priori any mathematical160

function that describes the intricate relationships of these components and the dose of TRAIL to161

the single cell sensitivity (κ) is unknown, however we may expand this a priori unknown function162

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/201160doi: bioRxiv preprint 

https://doi.org/10.1101/201160
http://creativecommons.org/licenses/by-nc-nd/4.0/


to an arbitrary order by,163

κ = log(IC50) +
m∑
i=0

kiδ log(xi) + · · · (1)

where ki = ∂κ/∂ log(xi)|〈xi〉 and δ log(xi) = log(xi) − log(〈xi〉) (see Supplementary Note 3164

for details). The order in which we expand to will dictate the degree of complexity we wish to165

understand. If we limit our understanding to first order, then the details of the specific pathway are166

bundled into phenomenological parameters ki. If then, we infer ki from data, we can estimate the167

extent in which each component contributes to a cell’s sensitivity to TRAIL.168

Indeed, Eq. 1 provides a framework for constructing a single cell interpretation of the Hill169

model, which incorporates the abundance of biological components with the stimulation strength.170

The biological species are introduced into the Hill model parameters by their influence on the171

first and second statistical moments of single cell sensitivities, κ. For example, incorporating our172

measurements of mitochondria density ρ to the IC50 amounts to computing the average sensitivity173

conditioned on mitochondria density,174

log(IC50(ρ)) = log(IC50) + kρδ log(ρ). (2)

Then, in like fashion, the resulting Hill coefficient comes from estimating the variance of sensitiv-175

ities conditioned on mitochondria density,176

nρ =
π√

3
∑m

i=1 σ
2
κ|i

with σ2
κ|i = k2i σ

2
i (3)

and σ2
i representing the variance of the ith biological component. If we apply the moments from177

our first-order expansion (Eqs. 2,3) to the Hill model we arrive at our single cell Hill model,178

P (alive|ρ, T ) = (ρ/ 〈ρ〉)kρnρ
(ρ/ 〈ρ〉)kρnρ + ([T]/IC50)nρ

. (4)

Eq. 4 gives us a detailed understanding on the influence of mitochondria density, or in general179

any measured components. If, for example, mitochondria density does not contribute to the cell’s180

sensitivity to TRAIL then kρ = 0 and Eq. 4 reduces to the standard dose response Hill function. If181
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however kρ is not zero and positive, then mitochondria density effectively promotes cell survival,182

and if kρ is negative then it increases the effectiveness of TRAIL. Together we can probe the influ-183

ence of each measured component at unprecedented resolution. We call this strategy DEPICTIVE,184

which is an acronym for DEtermining Parameter Influence on Cell-to-cell variability Through the185

Inference of Variance Explained.186

To see this in detail, lets consider an example of an arbitrary pathway consisting of three com-187

ponents that takes s as input and provides a binary output y (Figure 3A). We then make a synthetic188

data set representing virtual single cell flow cytometry measurements for different doses of s (Fig-189

ure 3B). Using these data, we can compute the populations response to the stimulation, and due to190

the single cell nature of the data can interrogate the influence of each molecular constituent. The191

distribution of biological species x does not change whether we subset single cells upon their state192

y (Figure 3C). Consequently, x must not contribute to each cells sensitivity to s, a fact corrobo-193

rated by P (y = 1|x, s) being invariant to the abundance of x. Unlike species x, species z and q194

do influence the cell’s behavior, which is apparent in analyzing the single cell data. Intuitively, the195

changes of the distribution of molecular components conditioned by cell state is the signal required196

for inferring each parameter ki from (Eq.1).197

Inferring each of the ki in the simulation data is trivial, because we have measurements of198

each biological component for each cell state y. Uniquely, our experimental data consists of Mito-199

Tracker measurements from live cells exclusively. This was because MitoTracker Deep Red signal200

is dependent on the electro-chemical properties of the mitochondria, which are different for live201

and dead cells. To infer the values of k from such data we developed a new inference strategy202

for semi-supervised logistic regression and embed it as module within the DEPICTIVE statistical203

framework (see Supplementary Note 3.3 for details). We apply our method to the synthetic data204

that is analogous to our measurements, that is the measurements associated with each virtual cell205

with a binary label y = 1. The filled regions of the curves in P (y = 1|u, s) for u = x, z, or q (Fig-206

ure 3C) represent the model predictions from inferred ku ± 3 standard deviations. These inferred207

parameters were then used to infer the single cell dose functions (Figure 3D) with qualitatively208
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excellent agreement. Quantitatively, we see that we can infer the conditional Hill coefficients (Fig-209

ure 3E), the corresponding variances explained (Figure 3F), and lastly the dependence of the single210

cell sensitivities on each biological component (Figure 3G).211

Mitochondria density is a source of cell-to-cell variability212

We apply our new statistical framework, DEPICTIVE, to quantitatively dissect the dependence213

of single cell sensitivities to TRAIL with mitochondria density (Figures 1E,H). We see that the214

fractional response of the Jurkat cells to each dose of TRAIL, P (alive|ρ, T ), is strongly dependent215

on mitochondria density (Figure 4A, see Supplementary Figures 3-5 for goodness-of-fit analy-216

sis). Moreover, we see that the single cell dose response curve translates from low TRAIL to217

high TRAIL doses with increasing mitochondria density (Figure 4B). The MDA-MB-231 cells218

fractional response (Figures 4C,D) is less steep than that of Jurkat, indicating that the single cell219

sensitivities of MDA-MB-231 cells to TRAIL are not as sensitive to CCV in mitochondria density220

as Jurkat (see Supplementary Figures 6-8 for goodness-of-fit analysis). A result that can be sum-221

marized by plotting the IC50(ρ) for each cell line (Figure 4E). Moreover, we find that 30% and222

2% of the diversity in single-cell sensitivities to TRAIL may be attributed to mitochondria density223

in Jurkat and MDA-MB-231 cells, respectively (Figure 4F).224

Bax concentration dependence on mitochondria surface area225

To gain mechanistic insight in the functional role of mitochondria density in the cell death decision,226

we developed a coarse-grained dynamic model of apoptosis (Figure 5A). Our description aims to227

reproduce the dominant dynamical features of initiator caspase reporter protein (IC-RP) first mea-228

sured and published by [24]. These being a slow but accelerating initial increase of IC followed by229

a fast increase in both IC and EC. To such end our model includes: i) a slow auto-catalytic increase230

in IC activation, ii) a quasi-steady-state approximation for Bax pore formation dynamics and mi-231

tochondrial outer membrane permeabilization (MOMP), and iii) the strong positive feedback from232

EC to IC (see Supplementary Note 5 for details).233

We conjectured that TRAIL induced activation of IC in Jurkat and MDA-MB-231 cells match234
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the biphasic increase of IC-RP measured in HeLa cells (Albeck et al. 2008b), but differ in their235

propensity to form Bax pores (Figures 5B,C). Specifically, we consider unique susceptibilities of236

Bax pore formation to Bcl-2 mediated inhibition for each cell line. As Bax pores reside in the mi-237

tochondria, the effective Bax concentration for a given amount of Bax decreases with mitochondria238

density. Implementing this insight into the model equations we see that the influence of mitochon-239

dria density can be understood through the corresponding bifurcation diagrams (Figures 5D,E).240

The dynamic properties of IC in MDA-MB-231 cells in the absence of TRAIL are either241

bistable or monostable depending on mitochondria density. In these diagrams, the high IC fixed242

point corresponds to cells that have integrated sufficient signal for MOMP and consequently repre-243

sent apoptotic cells. Cells with relatively low mitochondria density are bistable and may undergo244

apoptosis only if their IC abundance exceeds a critical amount designated by the dashed line (Fig-245

ure 5D). This bistable region does not preclude cell death - cells may acquire sufficient abundances246

of IC for death by fluctuations in biomolecular reactions. Indeed, the likelihood of such an event247

decreases with the difference of IC abundance between the unstable fixed point (dashed line) and248

low IC stable fixed point (solid line). Meanwhile, cells with relatively high mitochondria den-249

sity only have a single fixed point of low IC, indicating that these cells will never spontaneously250

undergo apoptosis in the absence of TRAIL.251

In contrast, the bifurcation diagram representing Jurkat cells shows three distinct regions (Fig-252

ure 5E). These being cells with: 1) low density of mitochondria having a single fixed point of253

high IC and consequently all die; 2) medium density of mitochondria are bistable, for which, the254

fractional response to TRAIL decreases with the concomitant increase in the IC unstable fixed255

point and mitochondria density; and 3) high density of mitochondria are monostable with low IC256

abundances, hence all cells survive. Next, we extend these analyses to the full range of TRAIL257

doses.258

The influence of increasing TRAIL dose in each cell type specific parameterized model is ev-259

ident in their bifurcation diagrams. MDA-MB-231 cells respond to TRAIL by increasing the IC260

abundance of the lower fixed point (Figure 5F). In doing so, cells with mitochondria density in the261
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bistable region equally increase their susceptibility to cell death from fluctuations in IC abundance.262

The Jurkat model’s response to TRAIL exhibits an increase of the density of mitochondria that sep-263

arates the monostable high and bistable IC abundance regions (Figure 5G). Therefore, an individual264

cell’s mitochondria density determines its sensitivity to TRAIL induced cell death. Together, these265

model-based observations propose an explanation for how CCV in mitochondria density influences266

the response of Jurkat but to a lesser extent MDA-MB-231 cells to TRAIL (Figures 5H,I).267

Sensitizing MDA-MB-231 cells to CCV in mitochondria density268

In inspecting the model parameters associated with each cell type, we noticed that MDA-MB-231269

cells were more susceptible to Bcl-2 mediated inhibition of Bax pore formation than Jurkat. We270

hypothesized that this effect would be abated by incorporating a small molecule inhibitor to Bcl-2271

in MDA-MB-231 cells (Figure 6A, see Supplementary Note 5.1 for derivation). By incorporating272

Bcl-2 inhibition, we found that the sensitivity of the fractional response of the cell population to273

TRAIL increases (Figure 6B). Furthermore, and as intuited, Bcl-2 inhibition increased the depen-274

dence of single-cell sensitivities to TRAIL on mitochondria density (Figure 6D). We corroborated275

these theoretical predictions by measuring the influence of the clinically relevant small molecule276

inhibitor of Bcl-2 family proteins ABT-263 [28] (Figures 6C,E, see Supplementary Figures 6-8 for277

goodness-of-fit analysis). Remarkably, Bcl-2 inhibition alone increased the variance of sensitivi-278

ties attributable to mitochondria density from 0% to 40% (Figure 6F).279

Discussion280

We have unveiled a connection in the cell-to-cell variability of mitochondria density to the frac-281

tional control of TRAIL induced cell death. Importantly, we find that the dependency of single282

cell sensitivities to CCV in mitochondria abundance is cell line dependent. Presumably this depen-283

dence originates in the unique composition of components across cell lines. In that, the functional284

manifestation of CCV in mitochondria on the sensitivity of single cells to TRAIL induced apop-285

tosis is dependent on the relative abundance and diversity of mitochondria in relation to the other286
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biological constituents in the apoptosis pathway. Indeed, Jurkat cells readily responded to TRAIL287

and its IC50 scaled with mitochondria abundance, MDA-MB-231 cells showed scaling and re-288

sponded readily to TRAIL only in the presence of a pan-Bcl-2 inhibitor, while scaling was never289

observed and only a minority of HeLa cells responded to TRAIL even during Bcl-2 inhibition.290

Consequently, the seemingly contradictory results of our study and that of Márquez-Jurado [20]291

are manifestations of the unique biological systems being studied. In particular, we think that292

our observations are highlighting a different phenomenon than Márquez-Jurado et al. who are293

measuring a mitochondrial dependence of cell death in HeLa cells regardless of TRAIL dose (see294

Supplementary Note 6 and Supplementary Figure 9).295

Our findings were established by a new statistical framework, DEtermining Parameter Influ-296

ence on Cell-to-cell variability Through the Inference of Variance Explained, namely DEPICTIVE,297

we developed to measure the impact of CCV on the binary response of cells to perturbation. It is298

composed of two parts, the first part is to infer the parameters of the logistic regression model when299

data from one or both of the binary cell state labels are available. While the second part provides300

the mathematical bases for interpreting the logistic regression model parameters to compute useful301

quantities.302

Indeed, inferring the parameters of a logistic regression model from data is commonplace.303

However, it is only commonplace when data representative of both of the corresponding binary304

states is well established. To our knowledge, there is no method to infer these parameters from305

data where only one of the binary classes is readily available. In our study data from live and dead306

cells were unavailable because our experimental label of mitochondria abundance, MitoTracker307

DeepRed, was not reliable for dead cells.308

The second part of DEPICTIVE statistical framework is to use the logistic model parameters to309

estimate the contribution of the measured biological component(s) to the variable binary response310

of single cells. Applying this tool, we found that mitochondria density accounts for nearly 30% of311

the variable response to TRAIL in Jurkat cells and varies from 2% to up to 40% in MDA-MB-231312

cells when Bcl-2 is inhibited. Conversely HeLa cells showed no mitochondrial density dependence.313

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/201160doi: bioRxiv preprint 

https://doi.org/10.1101/201160
http://creativecommons.org/licenses/by-nc-nd/4.0/


Together, the two parts of the DEPICTIVE statistical framework can extract quantitative insights314

to sources of cell-to-cell variability.315

We attribute the measured connection of TRAIL sensitivity and mitochondria density to the di-316

lution of Bax on the outer mitochondrial membrane in cells by mathematical modeling. From the317

quantitative insights of DEPICTIVE, we found that the functional manifestation of mitochondrial318

CCV is plastic - readily and predictably tunable by small molecule inhibitors of Bcl-2. It is plau-319

sible that this plasticity is a tool accessible to cells, and therefore may be co-opted by pathological320

cellular populations. For example, high mitochondria abundance can be a non-genetic mechanism321

of resistance to pro-apoptotic therapeutics. Incorporation of such knowledge may be an important322

consideration in developing therapeutic strategies.323

The observed advantage of cells with high mitochondria densities may manifest in time-scales324

much longer than the life span of a single cell or the disease in a human, but propagate to the long325

time-scales of evolution. To date, the evolutionary hypothesis of mitochondria is as a symbiotic326

bacterium inside a proto-eukaryotic cell [29], exchanging safety for energy. However, another327

such evolutionary advantage may be expected, that this symbiosis would create a survival advan-328

tage such as the one described here. These results suggest that environmental constraints can329

select subpopulations not only based on genetic composition, protein abundances, but also CCV in330

organelle abundances.331
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Methods332

Cell culture333

Jurkat E6-1 cells originate from a male human acute T cell Leukemia and were purchased from334

ATCC (TIP-152). Cells were cultured in RPMI-1640 medium (Corning cat. 10-040-CV) sup-335

plemented with 10% heat inactivated fetal bovine serum (Corning cat. 35-011-CV), 2mM L-336

Glutamine (Corning cat. 25-005-CI) and 1mM sodium pyruvate (Corning cat. 25-000-CI). Cells337

were cultured at 37◦ C in 5% CO2 in a humidified incubator and maintained at cell density not338

exceeding 3 x 106 by addition of fresh medium, or by centrifugation with subsequent resuspension339

at 1 x 105 cells/mL.340

MDA-MB-231 cells originate from a human female adenocarcinoma that were harvested from a341

metastatic cite in the breast. Cells were cultured in DMEM medium (Corning cat. 10-017-CV)342

supplemented with 10% fetal bovine serum and 2mM L-Glutamine (Corning cat. 25-005-CI). Cell343

were cultured at 37◦ C in 5% CO2 in a humidified incubator and subcultured every 2-3 days with344

0.25% trypsin (Corning cat. 25-053-CI) to maintain sub-confluent density.345

HeLa cells were purchased from ATCC (ATCC CCL2). Cells were cultured in DMEM medium346

(Corning cat. 10-017-CV) supplemented with 10% fetal bovine serum and 2mM L-Glutamine347

(Corning cat. 25-005-CI). Cell were cultured at 37◦ C in 5% CO2 in a humidified incubator and348

subcultured every 2-3 days with 0.25% trypsin (Corning cat. 25-053-CI) to maintain sub-confluent349

density.350

Apoptosis assay and Data acquisition351

Jurkat cells were pelleted by centrifugation for 5 minutes at 100 x g, and then resuspended in 1x352

PBS and stained with 200 nM MitoTracker Deep Red (Life Technologies, cat. M22426) for 10353

minutes at 37◦ C. MitoTracker staining was quenched with full cell culture medium, followed by354

centrifugation for 5 minutes at 100 x g. Cells were resuspended in cell culture media at a density355

of 1 x 106 per mL, in which 1 x 105 were transferred to each experimental well of a flat-bottom356

96-well plate. Cells were then incubated at 37◦ C for 4 hours with different doses of Superkiller357
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TRAIL (Enzo Life Sciences cat. ALX-201-115) and/or ABT263 (ApexBio cat. A3007). After358

drug treatment, cells were transferred to a v-bottom 96-well plate, pelleted by centrifugation at359

1,000 x g, stained with FITC-conjugated Annexin V (Biolegend cat. 640945), and then measured360

by flow cytometry.361

MDA-MB-231 or HeLa cells were seeded on 12-well plates at 5 x 105 cells per well in 400 µL,362

incubated overnight at 37 C in 5% CO2 in a humidified incubator until 80% confluent. Cells363

were then washed once with PBS and stained with 200 nM MitoTracker Deep Red (Life Tech-364

nologies, cat. M22426) for 10 minutes at 37 C. MitoTracker staining was quenched with full cell365

culture medium, and then incubated at 37 C for 4 hours with different doses of Superkiller TRAIL366

(Enzo Life Sciences cat. ALX-201-115) and/or ABT263 (ApexBio cat. A3007). After drug treat-367

ment, supernatant containing floating cells was collected, and the remaining adherent cells were368

trypsinized, pooled with the supernatant, and pelleted by centrifugation for 5 minutes at 1,000 x369

g. Cells were then stained with FITC-conjugated Annexin V (Biolegend cat. 640945), and then370

measured by flow cytometry.371

Flow cytometry measurements were conducted on a BD LSRII mainted by the Icahn School of372

Medicine at Mount Sinai flow cytometry core facility.373

FCM gating374

FCM measurements were gated as follows: to exclude debris (Supplementary Figure 1A), then375

gated for singlets (Supplementary Figure 1B), MitoTracker Deep Red positive (Supplementary376

Figure 1C), and lastly for living cells by Annexin V (Supplementary Figure 1D). The fraction of377

cells alive was computed by dividing the number of cells in the Annexin-V-negative gate by the378

number of cells of the MitoTracker Deep Red positive gate. Subsequent single cell analysis was379

then conducted exclusively using cells from the Annexin-V-negative gate.380

Code availability381

DEPICTIVE: Detailed derivation of the DEPICTIVE strategy can be found in Supplementary382

Note 3. We developed a user friendly Python package to run the DEPICTIVE analysis strat-383
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egy. The code is freely available as a GitHub repository, https://github.com/robert-vogel/depictive.384

Along with these tools we provide two tutorials that demonstrates how to generate synthetic data385

and to apply DEPICTIVE analysis. These tutorials can be found on the repositories wiki pages,386

https://github.com/robert-vogel/depictive/wiki.387

Dynamics Simulations: Detailed derivations and parameter values of model equations for simu-388

lation can be found in Supplementary Note 5. We developed a user friendly Python package to389

run, plot, and perform basic analysis of our model. The code is freely available as a GitHub repos-390

itory, https://github.com/robert-vogel/mito sims. Along with these tools we provide a a series of391

tutorials that demonstrates the use of our tools by examples. These tutorials can be found on the392

repositories wiki pages, https://github.com/robert-vogel/mito sims/wiki.393

Data availability394

The data presented in the main-text of this paper can be found on Mendeley data [30–35].395

Modeling and Statistical analysis396

Detailed derivations of our DEPICTIVE statistical framework, application of DEPICTIVE to data,397

dynamics models, and inference of dynamic model parameters can be found in Supplementary398

Notes 3, 4, 5, and 5.4, respectively.399
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Figure 1: TRAIL administration enriches for cells with high density of mitochondria (A) An
overview of TRAIL induced apoptosis. (B) Flow cytometry measurements (FCM) of mitochon-
dria (MitoTracker Deep Red) and phosphatidylserine (FITC conjugated Annexin V) in Jurkat cells.
Complete flow cytometry gating strategy can be seen in Supplementary Figure 1. The fractional
response of Jurkat cells (C) to TRAIL. Each color corresponds to a unique fractional response to
a specific TRAIL dose. Cell size measurements (FSC-A) in Jurkat cells (D) are correlated with
mitochondria abundance (MitoTracker Deep Red). The inset shows that the Pearson correlation
marginally changes for each TRAIL dose. The probability density of mitochondria density (ρ) for
each dose of TRAIL that elicits a unique response in Jurkat cells (E). The fractional response of
MDA-MB-231 cells to TRAIL (F). Cell size measurements (FSC-A) in MDA-MB-231 cell (G)
are correlated with mitochondria abundance (MitoTracker Deep Red). The inset shows that the
Pearson correlation marginally changes for each TRAIL dose. The probability density of mito-
chondria density (ρ) for each dose of TRAIL that elicits a unique response in MDA-MB-231 cells
(H). In (E) and (H) the single cell measurements from each of the lowest three doses of TRAIL are
aggregated prior to probability density estimation (Violet). Visual inspection of the respective dose
response curves suggest that these three doses of TRAIL are effectively identical. Data presented
with errorbars represent the mean ± one standard error of the mean over triplicate experiments.
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Figure 2: Cell-to-cell variability in the binary response to TRAIL Hill response function with
respect to TRAIL dose (blue) and the corresponding probability density of the single-cell sensi-
tivities (orange) for populations with (A) low CCV and (B) high CCV. (C) The theoretical corre-
spondence between the variance of single-cell sensitivities to TRAIL (σ) and the Hill coefficient n.
Here, (nA, σA) and (nB, σB) represent the Hill coefficient and corresponding single-cell variances
from (A) and (B), respectively.
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Figure 3: Decomposing sources of cell-to-cell variability (A) Schema for a simple cellular re-
sponse, y ∈ {0, 1}, to the activation of pathway components x, y, q subject to the ith dose of a
stimulus si. (B) Single cell data were simulated to demonstrate the feasibility of CCV decompo-
sition by sampling virtual cells (see Supplementary Note 3.2.3 for details). (C) The dose response
of N = 1000 simulated cells and n = 100 replicate experiments in which kx = 0.25, kz = 1.25,
and kq = 2. Error bars represent ± three standard deviations about the mean. The histograms
normalized by cell count of live or dead cells reveals how each biological entity correlates with
cell state (left column). We may make the dependence of cell survival to TRAIL by examining the
probability of the cell state, y = 1, given the dose and abundance of each biological component
(right column). In the right column, the circles represent the true conditional probability, while
the blue line and shaded region represents the DEPICTIVE inferred dependence ± three standard
deviations. (D) If we eliminate each individual source of CCV, the dose response is less uncertain.
A phenomena that is well parameterized by the Hill coefficient (E), and the corresponding variance
explained (F). Error bars represent ± one standard deviation. (G) The scaling of the IC50(u) with
u.
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Figure 4: CCV in mitochondria
density influences fractional re-
sponse to TRAIL. The inferred
fractional response of Jurkat cells
(A) or an MDA-MB-231 cells (C)
as a function of ρ given TRAIL
dose. The inferred fractional re-
sponse of Jurkat cells (B) or an
MDA-MB-231 cells (D) as a func-
tion of TRAIL dose given ρ. (E)
The dose of TRAIL normalized by
the population IC50 (y-axis) and
the inferred density of mitochon-
dria (ρ) in which the fractional re-
sponse is 0.5 (x-axis). The blue
markers represent triplicate aver-
ages in Jurkat cells while the error
bars represent ± the standard er-
ror of the mean. The orange mark-
ers represent duplicate averages
in MDA-MB-231 cells and stan-
dard error of the mean, while the
y-axis represents triplicate statis-
tics. We report duplicate statis-
tic in MDA-MB-231, because in
one replicate experiment there is
no correlation between the IC50

and ρ, including these values of ρ
would lead to misleadingly large
error bars. Lastly, dashed blue
and orange lines represent the in-
ferred values of ρ for each repli-
cate data set for Jurkat and MDA-
MB-231 cells, respectively. (F)
The fraction of the variance in sin-
gle cell TRAIL sensitivities (σ) ex-
plained by CCV in mitochondria
density from (σκ|ρ). Error bars rep-
resent standard error of the mean
of experimental triplicates. De-
tailed analysis of each replicate
set are presented in Supplementary
Figures 3-5.
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Figure 5: Mechanism of IC50 dependence on mitochondria density. (A) Simple model of apop-
tosis. The dynamics of initiator caspase reporter protein (IC-RP) from [24] and the model-inferred
dynamics corresponding to (B) MDA-MB-231 and (C) Jurkat cell lines. The model bifurcation
diagrams for [TRAIL] = 0 ng/mL in (D) MDA-MB-231 and (E) Jurkat cells. The influence of
TRAIL dose on the model fixed points for (F) MDA-MB-231 and (G) Jurkat cells. The depen-
dence of single cell sensitivities to TRAIL on ρ for (H) MDA-MB-231 and (I) Jurkat cells. The
IC50 was estimated from Hill function fits of simulated data (blue circles), and which were then fit
to a power law (black line). Simulations consisted of 100 cells per each of the 20 doses of TRAIL
and 12 densities of mitochondria considered.
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Figure 6: Plasticity in fractional response to TRAIL. (A) Bcl-2 inhibitor reduces the effective
abundance of Bcl-2 by formation of Bcl-2:Bcl-2 inhibitor complex. (B) Simulation results of
the population IC50

TRAIL response to Bcl-2 inhibition in MDA-MB-231 cells. (C) Experimental
measurement sets - uniquely represented by a square, circle or triangle marker - of the population
IC50

TRAIL response to Bcl-2 inhibition for MDA-MB-231 cells. (D) Estimated IC50 for changing
ρ from MDA-MB-231 parameterized model simulations. (E) The experimental dependence of
IC50 on ρ, from a single representative experiment of three replicate experiments (Supplmenetary
Figures 6-8), as computed in Figure 4E for [0, 1, 3, 10] µM doses of the Bcl-2 Inhibitor ABT-263.
(F) The fraction of variance in single-cell sensitivities (σ) explained by mitochondria density CCV
in E (σρ). Note that all simulations were conducted with 100 cells for each of the 20 doses of
TRAIL, 12 densities of mitochondria, and 9 doses of inhibitor. Detailed analysis of each replicate
data set are presented in Supplementary Figures 6-8.
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