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Abstract

The functions of numerous bacterial proteins remain unknown because of the variety of their
sequences. The performances of existing prediction methods are highly weak toward these proteins,
leading to the annotation of “hypothetical protein” deposited in NCBI database. Elucidating the
functions of these unannotated proteins is an urgent task in computational biology. We report a
method about secondary structure element alignment called SSEalign based on an effective training
dataset extracting from 20 well-studied bacterial genomes. The experimentally validated same genes
in different species were selected as training positives, while different genes in different species were
selected as training negatives. Moreover, SSEalign used a set of well-defined basic alignment
elements with the backtracking line search algorithm to derive the best parameters for accurate
prediction. Experimental results showed that SSEalign achieved 91.2% test accuracy, better than
existing prediction methods. SSEalign was subsequently applied to identify the functions of those
unannotated proteins in the latest published minimal bacteria genome JCVI-syn3.0. Results indicated
that At least 99 proteins out of 149 unannotated proteins in the JCVI-syn3.0 genome could be
annotated by SSEalign. In conclusion, our method is effective for the identification of protein

homology and the annotation of uncharacterized proteins in the genome.

1 Introduction

Because of the recent advance of DNA sequencing technology, abundant protein sequences are
deposited in the NCBI RefSeq database and EBI UniProt database [1]. Unfortunately, the annotations
remain unknown for a large amount of these sequences. Elucidating the function of the unannotated
protein is an important topic of research in computational biology. It is a common task to annotate
newly identified proteins by homology search in protein sequence databases of known other species.
In molecular biology, homology is described as a relationship where two genes share a common
ancestor, such as the relationship of human p53 gene and the mouse p53 gene. Homology can be
divided into orthology and paralogy according to whether they are present in the same species. In this
study, we mainly focused on the homology in different species, i.e. orthology.

Protein sequence comparison is the primary way for establishing homology. The routine method for
annotation of protein-coding genes is identification of homologs by sequence alignment. For closely

related proteins, homolog can easily be detected using conventional BLAST algorithm [2]. However, a
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remarkable challenge exists in the field because many evolutionarily distantly related proteins may
vary highly at the amino acid level, especially for bacterial proteins. The failure of homology detection
of a protein will lead to “hypothetical protein” or “uncharacterized protein” in its annotation.

In this study, we report a method that is specifically designed for homology identification of
hypothetical proteins. Many tools are currently available for the detection of distantly related homology
[3-5]. The two well-established tools are phmmer [4] and HHpred [5], both of which are widely used in
homology identification in different species. Although these tools are supposed to be highly sensitive
for remote homology detection, their performance in detecting protein homology in bacteria is sub-
optimal. This problem is particularly important in the novel genome annotation, which relies on
sequence alignment to annotate the function of translated proteins. The reason for their failures is that
they have used datasets of protein homology with a wide range of identities but not datasets within
bacteria, whose alignment identity of protein homology often fall into the twilight zone (=35%) [6]. To
overcome this shortcoming, we strictly restricted the training dataset to be protein homology in the
bacteria and specifically optimized parameters for detecting homology in this situation.

In synthetic biology, one of the key focuses is how to build a minimal artificial cell which can provide
suitable chassis for basic functional study. In 2010, the first version of minimal bacterial genome
JCVI-syn1.0 had been reported by Gibson group with completely chemical synthesis, subsequently,
this genome had been transplanted into the cell of Mycoplasma capricolum whose nucleus has been
removed. This artificial genome had finally been demonstrated to possess the potential to self-
replication and alive in the basic culture medium [7]. Later, transposon mutagenesis technique [8] was
applied to the genes of JCVI-synl.0 to identify dispensable genes. Finally, a more compressed
genome JCVI-syn3.0, which is smaller than any genomes of autonomously replicating cells reported
before, was obtained [9]. The JCVI-syn3.0 genome is approximately 531kbp in size and consists of
473 essential genes (438 protein-coding and 35 RNA-coding genes). The 438 protein-coding genes
were then annotated by searching against TIGRfam database [10] and divided into two groups:

(@) kno3.0 genes: 289 genes whose functions are clearly known, including those genes whose
functions are extensively studied and can be supported by multiple aspects of the evidence, such as
genomic context and the structure information.

(b) unk3.0 genes: 149 genes whose functions are ambiguous and even completely unknown. As all
these genes are essential for living organisms, we hypothesize that the 149 encoded proteins with
unknown function should share homology with proteins in other bacteria.

Previous studies have suggested that the evolution rate of the protein secondary structure (SS) is
much slower than that of the amino acid [11]. After the evolution of million years, the amino acid
sequences have greatly changed but their structures have not been disrupted. The protein secondary
structure is also the basis of the tertiary structure of a protein and it can serve as a bridge that links
the primary sequence and the tertiary structure for the functional analysis.

The tools for protein secondary structure prediction have been extensively studied since the 1990s.
These tools can be typically divided into two different categories: template-based prediction and ab
initio prediction. Many of these computational methods are based on the close templates but a few for
ab initio prediction. Among these tools, three of them (JPRED4 [12], PsiPred [13] and SSpro [14])
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have been widely used for protein secondary structure prediction. JPRED4 is a web-based tool and
the query sequence has a limit of protein length (<800 amino acids), making it not suitable for SS
prediction in this study. PsiPred is a template-based tool for secondary structure prediction.
Considering that close templates could not be available for the protein homology in the twilight zone,
PsiPred is also not suitable for SSEalign. Recently, a study reported a comparison of the prediction
accuracy of these tools using third-party datasets. They found that SSpro has the best prediction
accuracy for CullPDB and CB513 datasets [15]. Furthermore, the ab initio prediction method had
been highly improved recently, which makes it possible to predict the secondary structure of those
proteins in the twilight zone. Therefore, SSpro with ab initio strategy was employed to conduct
secondary structure prediction in SSEalign.

In this study, we first trained our method in 20 well-studied bacteria to show the performance of the
SSEalign. The line search optimization approach was used to derive the best scoring matrix for this
application. The derived parameters were then applied to identify the homology among JCVI-syn3.0
genome and several other well-annotated bacteria. Lastly, six variables were used to evaluate our

homology results.

2 Materials and Methods
2.1 Benchmark Dataset

The main objective of this work is to investigate how secondary structure information can be used
to identify the corresponding homology for a set of protein sequences in bacteria. We need a set of
protein sequences (benchmark dataset) with known homology information to train and to test our
method. Thus, the protein-coding genes in following 20 well-studied bacteria [16] were selected as
benchmark dataset: Bacillus anthracis, Bacillus subtilis, Bifidobacterium longum, Clostridium
botulinum, Clostridium tetani, Escherichia coli, Haemophilus influenzae, Helicobacter pylori,
Lactobacillus acidophilus, Mycobacterium tuberculosis, Mycoplasma genitalium, Pseudomonas
aeruginosa, Rickettsia prowazekii, Salmonella typhimurium, Staphylococcus aureus, Streptococcus
pneumoniae, Streptococcus thermophilus, Thermotoga maritima, Vibrio cholerae, Yersinia pestis.
Genome annotation files of these 20 bacteria were obtained in Ensembl database [17].

The benchmark dataset consisted overall positive and negative samples. The positive samples
were composed of all homologous protein pairs in different species, for example, protein rpiL in E. coli
and B. subtilis. After applying this criterion, 75,206 protein pairs were deposited into the positive
dataset. If we select all the protein pairs as negative controls, the number of samples will be
extremely large, leading to an extreme imbalance when compared with the positive dataset. Such
imbalance will in turn dramatically affect the performance evaluation of model training in this type of
machine learning problem [18, 19]. Therefore, only 75,206 non-homologous protein pairs were
randomly picked to constitute negative dataset. To validate the robustness of our method, we
repeatedly conducted this procedure of random sampling for 100 times to obtain different negative

dataset for the downstream analysis.
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In literature, the benchmark dataset usually divided into a training and a testing dataset: the former
is for the training the model, while the latter is for testing it. We randomly divided the benchmark
dataset into training and test datasets using the ratio of 9:1 (10-fold cross-validation). Thus, the
training dataset consisted of 67685 homologous (TRN-POS) and 67685 non-homologous (TRN-NEG)
pairs, which the testing dataset consisted of 7521 homologous (TST-POS) and 7521 non-homologous
(TST-NEG) pairs.

2.2 The Basic Alignment Elements (BAES) in SSEalign

After obtaining the training dataset, the SSpro toolkits were used to conduct the protein secondary
structure prediction using the ab initio prediction model with default parameters. The training dataset
containing information of secondary structure element (SSE) was then created (Figure 1). To better
show the actual performance of our method, the sequence with simple repeats were excluded. It has
long been recognized that three different types of protein secondary structure are present in nature. In
this study, the one-character alphabet was used to represent these secondary structures:

H = Helix (mainly alpha helix);

E = Sheet (mainly beta sheet);

C = Random coil;
To better evaluate the performance of our method, sequences with simple repeats were excluded.
The EMBOSS-stretcher tool [20] was used to conduct the global sequence alignment of the SSEs of
protein pairs. EMBOSS (European Molecular Biology Open Software Suite) is a free open source
software for molecular biology. Within the EMBOSS, the stretcher tool is an effective package for
global alignment. After finishing this process, the alignments were segregated into eight basic

alignment elements.

Eight possible BAEs could be found in the secondary structure alignment generated by SSEalign:

HH = H coordinates with H in the SSEalign
EE = E coordinates with E in the SSEalign
CC = C coordinates with C in the SSEalign
HE = H coordinates with E, or E coordinates with H in the SSEalign
HC = H coordinates with C, or C coordinates with H in the SSEalign
EC = E coordinates with C, or C coordinates with E in the SSEalign

GN = number of gaps in the SSEalign
GO = number of gap openings in the SSEalign

2.3 Scoring system of SSEalign

It is very probable that the contribution of eight BAEs was very different in the sequence alignment.

To optimize the performance of the SSEalign, we developed a customized evaluation index: Widen
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(Weighted identity), to evaluate the alignment. The Widen value varies in the range [0%, 100%] and it
can be recognized as the analog of “alignment score” generated by BLAST. Then, similarity of a two-
sequence alignment can be described by the index Widen: Widen = 0%, totally different; Widen =
100%, completely identical. The formula of Widen is shown in formula (1)
2 AN,
Widen = 1S x100% (1)
Z |ﬂ1| Ni +|Zco NGO +|ﬂGN|(NGN - NGO)

ieSyec

S, IS the set of all the possible BAEs consisted of three types of secondary structures in the

sequence alignment, i.e.S .. ={HH, EE,CC, HE, HC, EC}'

S

is the set of all the identical matches of BAEs , i.e.s.

iden o ={HH,EE,CC}
Ajis the coefficient of BAES, i.e. 4 =[ 4., Aee» Aoe s Aue s e s Aec ]

Ni is the number of correspondent BAESs in the alignment.

/1GN is the coefficient of gap, i.e. penalty for gap extension.

NGN is the number of gaps in the alignments.

/160 is the coefficient of gap openings, i.e. penalty for opening the first gap in the alignment

NGO is the number of gap openings excluding those gaps at both ends.

2.4 Optimization method in training dataset

In this optimization process, we try to minimize the overlap of Widen values of positive and negative
dataset: The Widen values of the positive dataset could be as large as possible meanwhile the Widen
values of negative dataset could be as small as possible. Thus, we defined the following formula (2)
to indicate the separation degree of the positive and negative dataset:

Separation Degree D(A) = Heos ~ Hnes @
Opos 1 Ones

Moo is the mean of Widen values in the positive dataset.

Hyeg is the mean of Widen value of values in the negative dataset.

Opps IS the standard deviation of Widen values in the positive dataset.

O\gg is the standard deviation of Widen values in the negative dataset.

To maximize the separation degree in our study, the backtracking line search approach was applied

to derive the best scoring coefficient A to separate the positive and negative dataset. The

backtracking line search approach is an efficient iterative method to find extreme points based on a
start point. In this optimization process, we used the following A, as a start point to derive the best

scoring matrix.
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;lo :[AHH’AEEvﬂcc’ﬂHE!;LHc”lEcv/’lGNvﬂco]:[LLJ-’_L_L_L_L_l]
2.5 Criterion for homology identification

False discovery rate (FDR) was introduced to identify the appropriate threshold of Widen value for
homology identification. The FDR is defined as the expected ratio of false positives among the
predicted significant results and serves as a more convincing scale than p-value scale because of its
directly useful interpretation [21]. The FDR will be 0.5 if identifying homology by random selection.
FDR value was defined in the following formula (3).

_ IENEG (VXO)
I:POS (WO) + FPOS (WO)

False Discovery Rate R(W,) = (3)

W is the given Widen value.

bos IS the complementary cumulative distribution function of Widen values of the positive dataset.

F\es is the complementary cumulative distribution function of Widen values of the negative dataset.

The FDR values towards different Widen values were calculated. The criterion FDR=0.01 was
frequently used as a cutoff in previous biological studies [22-24]. Thus, this cutoff was also adopted in

the study for the homology identification.
2.6 The performance of SSEaligh and compared methods on testing dataset

Currently, several tools were published for distantly related homology identification, such as
phmmer and HHpred . The phmmer is a toolkit of HMMER3 which detect the homology via sequence
profile comparison while the HHpred is a toolkit of HHsuite which detect the homology by HMM-HMM
comparison. These tools were benchmarked with our SSEalign tool based on testing datasets. For
phmmer, a cutoff e-value<<le-5 was used in the all-against-all strategy in the testing dataset. For
HHpred, each protein was searching against the testing dataset with HHBIits as the HMM generation
method.

To illustrate the performance of SSEalign and compared methods, the ROC (Receiver Operating
Characteristic) curves were plotted. The ROC curve plots true positive rate (Sensitivity) against the

false positive rate (1-Specficity) and their definitions were shown in formulas (4) and (5)
e TN
Specificity = ————x100% 4
P Y TN + FP X

Sensitivity = _TP x100% ©)
TP+FN

In the formulas, TP: true positives; FN: false negatives; TN: true negatives; and FP: false positives.
The best prediction model could produce a point with the coordinate (0,1), which indicates 100%
true positive rate and 0% false positive rate. To avoid the threshold setting bias, the area under the

curve (AUC) was frequently used to show the performance quality of binary classification methods [25,
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26]. A completely random guess will yield the AUC value 0.5, while a perfect model will yield the AUC

value 1.0.
2.7 SSEalign Application: JCVI-syn3.0 genome annotation

Very recently, Gibson group has published the latest minimal bacterial genome JCVI-syn3.0 which
was only consisted of 473 genes (438 protein-coding genes and 35 RNA-coding genes). The 438
protein-coding genes can be divided into 289 proteins with clear function (kno3.0 dataset) and 149
proteins with unknown functions (unk3.0 dataset).

The method of pairwise BLAST with the cutoff E-value<le-5 was applied in the kno3.0 dataset to
identify the homology among the genomes of JCVI-syn3.0 and the 20 selected bacteria. The numbers
of shared genes in the 20 bacteria were further enumerated. The top three species (E. coli, B. subtilis
and H. influenzae) sharing the highest number of genes with JCVI-syn3.0 were selected for SSEalign
analysis. The secondary structures of unk3.0 protein and proteins in these three selected bacteria
were then predicted by the toolkit SSpro. The pairwise global sequence alignments of the generated
secondary structure elements were conducted by EMBOSS-stretcher with the scoring matrix derived
from the process of “Optimization Method”. The hitting sequences with FDR < 0.01 were designated
as homologous protein candidates.

To evaluate the prediction accuracy of our method, the following six parameters of homologous
protein candidates were applied.

(a) Protein domain: We hypothesize that homologous proteins tend to share the same protein
domains. The domain information of these proteins was predicted by Pfam [27] and InterProScan [13]
by using the default parameters. If the protein pairs of homology candidates share the same domains,
then the two homologous protein candidates were considered supported in the parameter of protein
domain.

(b) Feature binding site: We hypothesize that feature binding sites, such as ATP-binding site and
metal binding site, are conserved in homologous proteins during evolution. The homologs of unk3.0
proteins in E. coli, B. subtilis and H. influenzae were singled out to conduct the multiple sequence
alignments by CLUSATLX using default parameters. The feature binding sites of these proteins in the
three species were then retrieved from the UniProt database. If the corresponding featured binding
sites could be found in unk3.0 proteins, the homologous protein pairs were considered supported in
the parameter of feature binding sites.

(c) Gene synteny: We hypothesize that homologs tend to share the same gene synteny in different
genomes, which means the upstream and downstream genes were the same for a certain gene in
different species [28]. The gene loci of proteins in each genome were identified by searching against
the corresponding genome with tBLASTn. It has been reported that average length of synteny block
among distant species is about 150kbp [29]. Thus, the neighboring genes within 75kbp upstream and
75kbp downstream of a certain gene were compared in each species. The homologous protein pairs
with the same corresponding gene synteny were considered supported in the parameter of gene

synteny.
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(d) Protein-protein interaction: As these genes were known as minimal essential genes, we
hypothesize that their encoded proteins tend to interact with each other [30]. The protein-protein
interaction (PPI) datasets of E. coli were obtained from BioGrid database, which includes PPI network
of E. coli genes curated from most recently published papers [31]. The PPI network of homologous
proteins of JCVI-syn3.0 predicted by BLAST (kno3.0) and SSEalign (unk3.0) in E. coli were then
constructed by Cytoscape [24]. If the homologous proteins predicted by SSEalign in E. coli can
interact with those predicted by BLAST, the homologous protein pairs were considered supported in
the parameter of protein-protein interaction.

(e) Essential gene: We hypothesize that the genes in JCVI-syn3.0 are also essential genes in other
species. We collected 296, 271 and 431 essential genes of E. coli, B. subtilis and H. influenzae,
respectively, from previous studies [32-34]. If the homologous genes were also essential genes in E.
coli, B. subtilis or H. influenzae, these homologous gene pairs were considered supported in the
parameter of essential gene.

(f) Phylogenetic topology: We hypothesize that homologous proteins tend to cluster with each other
in the phylogenetic tree [35]. The unk3.0 proteins and their homologs in other bacteria were selected
to construct phylogenetic trees by CLUSTALX and MEGA [36]. If the unk3.0 protein and its homologs
can be clustered in a single branch in the phylogenetic tree, the homologous protein pair was
considered supported in the parameter of phylogenetic tree topology.

The rigorous criteria for these parameters were applied to the homologous protein candidates to
check if they were supported in each parameter. The number of supported parameters for each
homologous protein pair was then calculated and the cumulative distribution was plotted. The
homologous protein candidates which have support in at least three parameters were considered as

homologs in this study.

3 Results and Discussion
3.1 The performance of SSEalign and compared method

After screening proteins within 20 well-studied bacteria, 75,206 homologous protein pairs (positive
samples) and 75,206 randomly selected non-homologous protein pairs (negative samples) were
selected as the benchmark dataset. The benchmark dataset was divided into training datasets
(67,685 homologous and 67,685 non-homologous pairs) and testing datasets (7,521 homologous and
7,521 non-homologous pairs) by the 10-fold cross-validation. The secondary structure elements
(SSEs) of training dataset were then predicted by the SSpro toolkits to get the Training-SSE dataset.

Subsequently, the global alignment was applied to the protein pairs in positive and negative
datasets. The numbers of basic alignment elements (BAEs) of each alignment were then recorded
and transformed into the alignment information matrix. This alignment information matrix and the

initial values of scoring matrix 4, =[1,1,1,—-1,—1,—1,—1 —1]were inputted into the backtracking line

search script in MATLAB software to derive the best scoring matrix for SSEalign. After many

thousands of iterations, we obtained the best scoring matrix for each BAE of the global alignment. We
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found that the prediction accuracy was not affected by the random selection of negative dataset,
indicating that the SSEalign is robust in the different negative datasets.

The best scoring matrix for each BAE of the global alignment were showed in following equation:

Ao =[1.796,2.374,0.351,-2.478,-0.557,-0.460,-1.157,-2.737]

In this equation, the indicated values were the correspondent coefficients of [HH, EE, CC, HE, HC,
EC, GN, GO], respectively. As expected, the helix (H) and sheet (E) are more indicative in sequence
than the random coil (C), with identity coefficients of 1.796 and 2.374, respectively. Thus, the penalty
scores of "HC" and "EC" are obviously smaller than that of "HE". A “GO” penalty score of -2.737 and
“GN” score of -1.157 indicate that sequences differ greatly in length will not be homologous because
abundant gaps will be present in the global alignment. Such gaps will significantly reduce the Widen
value and alignments containing large numbers of gaps will be neglected during the homology
identification.

Figure 2 shows the FDR of homology identification by different Widen values. Based on these
results, the Widen value of 59.18% when FDR is 0.01 was identified. This indicated that the false
possibility to identify two homologous sequences in the region of Widen=59.18%, was lower than 1%.
This Widen value was used as the significance cutoff in subsequent analysis.

The comparison of performance of SSEalign and other available tools for homology identification
based on the testing dataset were shown in Figure 3. For this dataset, the AUC values for three tools
(SSEalign, HHpred and phmmer) were 0.912, 0.841 and 0.804, respectively. The SSEalign has an
obvious better performance when compared with HHpred and phmmer, implying that our method is
robust for homology identification in different species. The prominent performance of SSEalign will
help us to re-annotate those proteins with unknown functions, especially for the bacterial proteins

because their diversities were much higher than proteins of higher organisms.

3.3 Annotation of the genome JCVI-syn3.0

The genome JCVI-syn3.0 consisted of 438 protein-coding genes and 35 RNA-coding genes. The
protein-coding genes could further be divided into kno3.0 dataset whose function was known and
unk3.0 dataset whose function was unknown. A total of 289 proteins were present in the kno3.0
dataset and their identities could be easily identified by BLAST with a cutoff e-value<<le-5. We found
that the kno3.0 proteins shared 268 homologs with predicted proteins of E. coli. The numbers of
homologs of the kno3.0 dataset in B. subtilis and H. influenzae were also very high (243 and 231,
respectively).

Clustering of these 289 proteins showed that the top categories were 50S ribosomal proteins, 30S
ribosomal proteins and DNA polymerases, which constituted 11.2% (30/289), 7.4% (20/289) and
3.3% (9/289), respectively (Table 1). The 50S and 30S ribosomal proteins are the basic components
of prokaryotic ribosomes and they are highly conserved among all the species. Thus, these proteins
can be easily annotated by conventional methods.

We then identified homologs of the unk3.0 proteins in three bacteria (E. coli, B. subtilis and H.
influenzae) using the SSEalign. Homologs with an FDR cutoff<0.01 were selected as homology

candidates for further evaluation. The performance of SSEalign is satisfactory because homology
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candidates could be found in 91.3% (136/149) of the unk3.0 proteins. We then assigned these 136
proteins into different functional categories by DAVID enrichment analysis and the results were shown
in Table 2. The two largest groups of proteins were nucleotide-binding proteins (45 members, 30.2%
of unk3.0) and ATP-binding proteins (43 members, 28.9% of unk3.0). The nucleotide-binding was a
critical step for gene replication and transcription while ATP-binding was the determinant process for
energy production and utilization in metabolic processes. Thus, it is not surprising that these proteins
are essential for living cells. A relatively small group of proteins was transferases (40 proteins, 26.8%
of unk3.0), which were commonly used for transferring the acetyl, methyl and phosphate group during
the cell cycle, making them indispensable in the minimal bacterial genome It is well known that
transferases and proteins for binding were highly diverse in different species [37], leading to the
failure in previous homology identification because they fell into the twilight zone when searching
against the TIGRfam database. However, the secondary structures of these proteins were highly
conserved in all species, explaining why SSEalign has such an excellent performance for the
annotation of these proteins.

Subsequently, the identified homologs were further evaluated using six parameters (protein domain,
feature binding site, gene synteny, protein interaction, essential gene and phylogenetic topology) to
validate the reliability of our method. Such parameters are independent functional supports of
homology pairs identified by SSEalign. We found that 94.1% (128/136) of homologous proteins were
supported by at least two parameters and 72.8% (99/136) of them were even supported by three or
more parameters (Figure 4). Table 3 showed the identified homologs of the unk3.0 dataset with the
top 10 Widen value in E. coli. Among these proteins, most of them were supported by at least four
parameters, including MMSYN_0371 (annotated as cydC) and MMSYN1_0039 (annotated as ftsH).

The cydC and ftsH proteins are two kinds of highly diverse proteins in bacteria and the homology
identifications of these two proteins in the new species by previous published computational biology
method is very challenging [38, 39]. But their secondary structure is extremely conserved so our
method can successfully detect it in JCVI-syn3.0.

The MMSYN1 0371 and MMSYN1_0039 shared extremely low FDR values, 3.2E-6 and 6.4E-6,
with E. coli proteins cydC and ftsH, respectively. The multiple sequence alignment of ftsH proteins in
4 genomes (JCVI-syn3.0, E. coli, B. subtilis and H. influenzae) showed that 191 amino acids were
exactly conserved. For the gene synteny analysis of ftsH, the gyrA is in its adjacent upstream region
and the lysS is in its adjacent downstream region, which is consistent with their loci in the B. subtilis
(Figure 5). In summary, these evaluation results further suggested that our annotation results of

unk3.0 proteins by SSEalign were very convincing.

4 Conclusion

In conclusion, we developed a novel method to identify protein homology in the bacteria. The
optimization method of backtracking line search was applied to obtain the best scoring matrix for
secondary structure element alignment. Performance results on testing dataset showed that the
SSEalign achieved a ROC value as high as 0.912, obviously better than existing prediction methods.

The SSEalign was then applied to the minimal bacterial genome JCVI-syn3.0 to identify homologs of
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proteins that cannot be annotated using previous methods. Among these proteins, 99 members of

them were considered homologous between the JCVI-syn3.0 genome and other well-studied bacteria.

These genes have not been annotated in this genome before and may reveal new information about

the essential mechanisms in living organisms. We have the confidence that the SSEalign and the

evaluation strategy reported in this study are also useful for re-annotation of those proteins with the

annotation of "hypothetical proteins" or "uncharacterized proteins” in the NCBI RefSeq database or

EBI UniProt database. In conclusion, our method can remarkably fill the gaps in genome biology and

expand the territory of systems biology.
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Captions for Figures and Tables

Figure 1 — The flowchart of the SSEalign pipeline. SSE: secondary structure element; TRN-POS:
positive samples in training dataset; TRN-NEG: negative samples in training dataset; BAESs: basic
alignment elements, i.e. [HH, EE, CC, HE, HC, EC, GN, GOJ; SD: Standard Deviation.

Figure 2 —-The FDR of homology identification by different Widen value. The dashed line shows the
Widen value to achieve FDR=0.01

Figure 3 - performance of SSEalign and compared method on the testing dataset. The red, blue and

black curves indicate the performance of SSEalign, HHpred and phmmer, respectively.

Figure 4 — The numbers of proteins supported by different parameters. The x-axis indicated the
number of six parameters: protein domain, feature binding site, gene synteny, protein-protein
interaction, essential gene and phylogenetic topology. The y-axis indicates the number of proteins

supported by the number of parameters in the correspondent x-axis.

Figure 5 — Gene synteny analysis of ftsH in genomes of JCVI-syn3.0 and B.subtilis. The numbers are
the correspondent gene loci of in the genome. For the ftsH, its upstream and downstream genes are

gyrA and lysS, respectively, in both JCVI-syn3.0 and B. subtilis genome

Table 1 — The main categories of identified proteins of kno3.0 dataset
Table 2 — The main categories of identified proteins of unk3.0 dataset

Table 3 — The top 10 identified protein of unk3.0 protein in E.coli genome. The p-value indicated that
the possibility to achieve a correspondent Widen value by random selection. The FDR value indicated

that the expected false discovery rate of claimed homology of these two proteins
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Figure 1 — The flowchart of the SSEalign pipeline.
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Figure 2- The FDR of homology identification by different Widen value
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Figure 3 - performance of SSEaligh and compared method on the testing dataset.
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Figure 4 — The numbers of proteins supported by different parameters.
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Figure 5 — Gene synteny analysis of ftsH in genomes of JCVI-syn3.0 and B.subitilis.
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Table 1 — The main categories of identified proteins of kno3.0 dataset

No. Category rl:/luenr]nbt;err (I;’fr?(;r)](())gt.:)on Genes

1 50S ribosomal protein 30 11.20% rplA~rplX, rpmA~rplJ
2 30S ribosomal protein 20 7.40% rpsB~rpsyU

3 DNA polymerase 9 3.30% dnaA~dnaX

4 ATP synthase 8 3.00% atpA~atpH

5 RNA polymerase 5 1.70% rpoA~rpoE

6 Protein translocase 5 1.70% secA~secY

Table 2 — The main categories of identified proteins of unk3.0 dataset

No. Group name Member Proportion  Enrichment
number of unk3.0 p-value
1 Nucleotide-binding protein 45 30.2% 2.1E-14
2 ATP-binding protein 43 28.9% 3.6E-14
3 Transferase 40 26.8% 9.5E-07
4 Hydrolase 26 17.4% 9.8E-06
5 Transport protein 21 14.1% 2.8E-05
6 Metal-binding 20 13.4% 2.2E-06
7 Lyase 19 12.8% 1.6E-07
8 Ligase 18 12.1% 7.6E-09
9 Nucleotidyltransferase 12 8.1% 8.4E-07
10 Helicase 11 7.4% 6.3E-09

Table 3 — The top 10 identified protein of unk3.0 protein in E.coli genome
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Homolog

Query ID inE. coli Description Widen% FDR

MMSYN1_0350 hupA DNA-binding protein HU-alpha 96.32 4.8E-07

MMSYN1_0504  rsml ATP-binding/permease protein 91.65 2.8E-06
CydC

MMSYN1 0371 cydC Ribosomal RNA small subunit 91.33 3.2E-06
methyltransferase |

MMSYNI_0872  ychF Ribosome-binding ATPase YchF 90.39 4.5E-06

MMSYN1_0372 cydD ATP-binding/permease protein 89.75 5.6E-06
CydD

MMSYN1_0039  fitsH ATP-dependent zinc 89.4 6.4E-06
metalloprotease FtsH

MMSYN1_ 0054  bcp . . 89.38 6.4E-06
Peroxiredoxin bcp

MMSYN1 0326 znuB High-affinity zinc uptake system 87.68 1.2E-05
membrane protein ZnuB

MMSYN1_0166 oppC Oligopeptide transport system 86.84 1.6E-05
permease protein OppC

MMSYN1 0164 mreD Rod shape-determining protein 83.04 5.4E-05

MreD
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