
Practical computational reproducibility in the life sciences
BJORN GRUNING1, JOHN CHILTON2, JOHANNES KÖSTER3, RYAN DALE4, JEREMY GOECKS5, ROLF
BACKOFEN6, ANTON NEKRUTENKO7, JAMES TAYLOR8.

1Albert-Ludwigs-University, Freiburg Germany. orcid.org/0000-0002-3079-6586.  
2The Pennsylvania State University, University Park PA USA. orcid.org/0000-0002-6794-0756.  
3University of Duisburg-Essen, Essen Germany. orcid.org/0000-0001-9818-9320.  
4National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda MD USA. orcid.org/
0000-0003-2664-3744  
5Oregon Health & Sciences University, Portland Oregon USA. orcid.org/0000-0002-4583-5226  
6Albert-Ludwigs-University, Freiburg Germany. orcid.org/0000-0001-8231-3323  
7The Pennsylvania State University, University Park PA USA. orcid.org/0000-0002-5987-8032  
8Johns Hopkins University, Baltimore MD USA. orcid.org/0000-0003-4285-6985.

Correspondence should be addressed to JT (james@taylorlab.org), AN (anton@nekrut.org), and RB
(backofen@informatik.uni-freiburg.de).

Many areas of research suffer from poor reproducibility. This problem is particularly acute in

computationally intensive domains where results rely on a series of complex methodological decisions
that are not well captured by traditional publication approaches. Various guidelines have emerged for

achieving reproducibility, but practical implementation of these practices remains difficult. This is
because reproducing published computational analyses requires installing many software tools plus
associated libraries, connecting tools together into the complete pipeline, and specifying parameters.

Here we present a suite of recently emerged technologies which make computational reproducibility
not just possible, but, finally, practical in both time and effort. By combining a system for building

highly portable packages of bioinformatics software, containerization and virtualization technologies
for isolating reusable execution environments for these packages, and an integrated workflow system
that automatically orchestrates the composition of these packages for entire pipelines, an

unprecedented level of computational reproducibility can be achieved.  

 1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

Reproducible computational practices are critical to continuing progress within the life sciences.

Reproducibility assures the high quality of published research by facilitating the review process that
involves replication and validation of results by independent investigators. Further, reproducibility speeds
up research progress by promoting reuse and repurposing of published analyses to different datasets or

even to other disciplines. The importance of these benefits is clear, and vigorous discourse in the literature
over the past several years1–7 has led to reproducibility guidelines at the level of individual journals as well

as funding agencies.

However, achieving reproducibility on a practical, day-to-day level (and thus following these guidelines)
still requires overcoming substantial technical challenges that are beyond the abilities of most life sciences

researchers. There have been successful efforts aimed at addressing some of these challenges: Galaxy8,
GenePattern9, Jupyter10, R Markdown11, and VisTrails12. These environments automatically record details of

analyses as they progress and therefore implicitly make them reproducible. Yet they still fall short from
achieving full reproducibility because they fail to preserve the full computing environment in which
analyses have been performed. For example, consider an analysis executed on Galaxy, a Web-based

scientific workbench used throughout the world. An analysis executed on a particular Galaxy server might
include tools not found elsewhere, and therefore cannot be reproduced outside that server. Another

example is a Jupyter notebook that includes tools specific to a particular platform and a distinct set of
software libraries. There is absolutely no guarantee that such a notebook will produce the same results on a
different computer. Here we introduce a solution that addresses all aspects of computational

reproducibility by preserving the exact environment in which an analysis has been performed and
enabling that environment to be recreated and used on other computing platforms.

While the need for reproducibility is clear and initial guidelines are beginning to emerge, research
practices will not change until reproducible analysis becomes fast and automated. To make reproducibility
practical, we have developed a three-layer technology stack composed of open, well-tested, and

community supported components (Fig. 1). This three-layer design reflects steps necessary to make an
analysis fully reproducible: (1) managing software dependencies, (2) isolating analyses from the

idiosyncrasies of local computational environments, and (3) virtualizing entire analyses for complete
portability and preservation against time.

The first step, managing software dependencies, ensures that one can obtain the exact versions of all

software used in a given analysis. Because most software tools rely on external libraries and analysis
workflows use multiple tools, it is necessary to record versions of multiple tools and libraries. Given a

multitude of operating systems and local configurations, ensuring the consistency of analysis software is a

 2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://paperpile.com/c/fsf71K/aTs9+bdKH+BVy9+rhFV+oWyu+h4r2+gnpR
https://paperpile.com/c/fsf71K/AD0DK
https://paperpile.com/c/fsf71K/yWCHG
https://paperpile.com/c/fsf71K/j5UmG
https://paperpile.com/c/fsf71K/GcpCV
https://paperpile.com/c/fsf71K/zL7LJ
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

considerable challenge. Conda (https://conda.io), a powerful and robust open source package and
environment manager, has been developed to address this issue. It is programming language and operating

system independent, does not require administrative privileges, and provides isolated virtual execution
environments. These features make Conda exceptionally well-suited for use on existing high-performance
computing (HPC) environments as well as cloud infrastructure because precise control over the execution

environment does not depend on system-level configuration or access. Conda explicitly supports
installation of specific tool versions, even old ones, and allows the creation of “environments” where

specific tool versions are installed and run. It is straightforward to create and maintain Conda package
definitions, and this feature has led to rapid uptake of Conda by the scientific community. Leveraging
Conda, Bioconda (https://Bioconda.github.io) is a community project dedicated to data analysis in life

sciences that contains over 2,700 tool packages. Bioconda provides the top layer of our reproducibility
stack. Bioconda packages are well maintained and include a testing system to ensure their quality. They are

built in a minimal environment to allow maximum portability and are provided as compiled binaries
which are archived, ensuring the exact executables used for an analysis can always be obtained. Conda
environments and package management are agnostic to the underlying operating system. In contrast to

other solutions such as Debian-Med13 or linuxbrew (http://linuxbrew.sh), Conda allows multiple versions
of any software tool at the same time, provides isolated environments, and runs on all major Linux

distributions, MacOS, and Windows.

While Conda and Bioconda provide an excellent solution for packaging software components and their
dependencies, archiving them, and recreating analysis environments, they are still dependent on and can

be influenced by the host computer system14. An additional level of isolation to solve this problem is
provided by containerization platforms (or, simply, containers) such as Docker, Singularity, or rkt.

Containers are run directly on the host operating system’s “kernel” but encapsulate every other aspect of
the runtime environment, providing a level of isolation that is far beyond of what Conda environments
can provide. From inside a container it is very difficult to access other containers or the host system itself.

Containers are easy to create, which is a great strength of this technology. Yet it is also its Achilles heel,
because the ways in which containers are created need to be trusted and, again, reproducible. This is why

we generate containers automatically from Bioconda packages, and these automatically-created containers
form the second layer of our reproducibility stack (Fig. 1). This has several advantages. First, container
creation requires no user intervention, every container is created automatically and consistently using

exactly the same process. A user of the container knows exactly what the container will include and how to
use it. Second, this approach allows creation of large numbers of containers; in particular we automatically

generate and archive a container for every Bioconda package. Third, this approach can easily target
multiple container types. We currently build containers for Docker, rkt, and Singularity, and register them
with Quay (https://quay.io). Since we build standard containers, other registries (e.g. DockerHub 15,

 3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://conda.io/
https://bioconda.github.io/
https://paperpile.com/c/fsf71K/HKG7
http://linuxbrew.sh/
https://paperpile.com/c/fsf71K/YMW5
https://quay.io/
https://paperpile.com/c/fsf71K/lDhj
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

BioShaDock16 or Dockstore17) can also be used. Because this container creation approach does not rely on
the specification format of any particular system, additional container platforms and registries can easily

be added as they become available. Finally, in addition to creating containers for single Bioconda packages,
it is possible to automatically create containers for combinations of packages. This is useful when a step in
an analysis workflow has multiple dependencies. Given any combination of packages with version, we can

generate a uniquely named container which contains all of the required dependencies. When the
combinations of dependencies required are known in advance these containers can be created

automatically as well, for example we can create containers for all tool dependencies used in the Galaxy
ToolShed (https://galaxyproject.org/toolshed)18.

Containers provide isolated and reproducible compute environments but still depend on the operating

system kernel and underlying hardware. An even greater isolation can be achieved through virtualization,
which runs analysis within an emulated virtual machine (VM) with precisely defined hardware

specifications. Virtualization, which provides the third layer of our reproducibility stack (Fig. 1), can be
achieved via commercial clouds, on public clouds such as Jetstream (https://jetstream-cloud.org), or by
using virtual machine applications on a local computer (such as VirtualBox). While introducing this layer

adds complexity and overhead, it provides maximal isolation, security, and resistance to time as emulated
environments can be recreated in the future, regardless of whether the physical hardware still exists.

To make it easy for analysis environments and workflow engines to adopt this solution, we have
implemented it in a Python library called galaxy-lib. Given a set of required software packages and
versions, galaxy-lib provides utilities to either create a Conda environment with the required packages

available, or to run the analysis with an appropriate container. Thus, a workflow can be executed in which
every step of the analysis runs either using a dedicated conda environment or an isolated container.

Support for this reproducibility stack has been integrated into the Galaxy platform, the Common
Workflow Language reference implementation19 as well as Snakemake workflow engine20. Additional
isolation and reproducibility can be achieved by running in a virtualized or cloud environment, for

example using Galaxy CloudMan21 to run Galaxy on Amazon or Jetstream.

Reproducibility in computational life sciences is now truly possible. It is no longer a technological issue of

“How do we achieve reproducibility?” Instead it is now an educational (or even sociological) issue of “How
to make sure that the community uses existing practices?” In other words, how do we set a typical
researcher (i.e., a graduate student or a post-doc) performing data analyses on the path of performing

them reproducibly? While there are now several platforms that enable reproducibility, the technologies we
describe here are both very general and easy to use. Thus, we offer the following recommendations:

1. Carefully define a set of tools for a given analysis. In many cases such as variant discovery, DNA/
Protein interactions assays, and transcriptome analyses, best practice tool sets have been established by

 4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://paperpile.com/c/fsf71K/cUdP
https://paperpile.com/c/fsf71K/21OZ
https://galaxyproject.org/toolshed/
https://paperpile.com/c/fsf71K/q6YL
https://jetstream-cloud.org/
https://paperpile.com/c/fsf71K/c6aC
https://paperpile.com/c/fsf71K/s5Hd
https://paperpile.com/c/fsf71K/UiIG
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

consortia such as 1000 Genomes, ENCODE, and modENCODE. In other, less common cases,
selection of appropriate tools must be done by consulting published studies, Q&A sites, and trusted,

community supported blogs. There is no escape from this ‒ methodological decision are as much a
part of research as deciding on what cell lines to use or how to fine tune a qPCR assay. Because
methodological decisions are vital to today’s biomedical research, it is essential to capture them so they

can be shared with the scientific community. Recommendations 2-4 summarize our best practices for
capturing and sharing these methodological decisions. To put this discussion on a practical footing,

consider the simplest possible analysis of RNAseq data in which one needs to map reads against a
genome, assemble transcripts, and estimate their abundance. The most basic set of tool for an analysis
like this might include Trimmomatic22 to trim the reads, HISAT223 to map the reads to a genome,

StringTie24 to assemble and quantify transcripts, and Ballgown25 to perform differential expression
testing.

2. Use tools from the Bioconda registry and help it grow. The registry at https://Bioconda.github.io
provides the list of available packages. The three tools from our example are all available in Bioconda
and can be used directly (Fig. 1). If a tool is not already available, one can either write a Bioconda

recipe for the tool in question or request the tool to be wrapped by the Bioconda community by
opening an issue at the project’s GitHub page. Note that using Bioconda-enabled tools is not just “good

behavior for enabling reproducibility”. It is the easiest way to use these tools. First, it makes installation
easy. Conda automatically obtains and installs all necessary dependencies, so the only requirement for

installing, say, StringTie is opening a shell and typing “conda install stringtie”. Second, it

makes analyses reproducible. Simply providing the output of “conda env export” with a

manuscript allows anyone to easily obtain the exact version of the software used as well as all its
dependencies.

3. Adopt containers to guarantee consistency of results. Analysis tools installed with Bioconda can be

used directly. However the consistency of results (ability to guarantee that the same version of a tool
gives exactly the same output every time it is run on a given input dataset) can be influenced by local

computational environment. Because every Bioconda package is automatically packaged as a container
the tools can be run from within the container in isolation providing a guarantee of result consistency.
An example of this process for our RNA-seq example is shown in Fig. 1. As container technologies

become widely available, we see this as the preferred way to use analysis tools in the majority of
research scenarios.

4. Use virtualization to make analyses “resistant to time”. Containers still depend on the host
operating system, which will become outdated with time along with the hardware. To make an analysis
“time proof ” it is possible to use virtualization by encapsulating all tools, their dependencies, and

 5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://paperpile.com/c/fsf71K/JCtv
https://paperpile.com/c/fsf71K/BZcy
https://paperpile.com/c/fsf71K/1f8n
https://paperpile.com/c/fsf71K/5ZAk
https://bioconda.github.io/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

operating system with a virtual machine image (VM). Virtualization has a higher barrier to entry and
VMs alone have been criticized as being a "black box". However virtualization enables time

independence. Thus we recommend at least recording exactly the OS and hardware environment used
for analysis so it can be recreated using VM technologies in the future. Executing analysis within a
archived VM will always afford maximum reproducibility, and this will become easier as more

compute resources move towards cloud-style operations.

In conclusion, we are reaching the point where not performing data analyses reproducibly becomes

unjustifiable and inexcusable. Aside from hardening the software, the main challenges ahead are in
education and outreach that will be critical for fostering the next generation of researchers. There are also
substantial “cultural” differences among research fields in the degree of software openness that will need to

be tackled. For example, genomics (which the authors represent and therefore are biased toward) has
traditionally been quick in adopting new paradigms, while, for example, proteomics has been much

slower26. We believe that this work is the first step toward making computational life sciences as robust as
well established quantitative and engineering disciplines. After all ‒ our health depends on it!

Acknowledgements
The authors are grateful to Bioconda, BioContainers, and Galaxy communities as without these resources

this work would not be possible. Nate Coraor provided critical advice on the project and edited the
manuscript. This project was supported by NIH Grants U41 HG006620 and R01 AI134384-01 as well as
NSF Grant 1661497 to JT, AN, and JG. RD was supported by the Intramural Program of the National

Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health. Additional funding
is provided by German Federal Ministry of Education and Research (BMBF grants 031A538A &

031L0101C de.NBI-RBC & de.NBI-epi) to RB and BG.

References
1. Nekrutenko, A. & Taylor, J. Next-generation sequencing data interpretation: enhancing reproducibility

and accessibility. Nature Publishing Group 13, 667–672 (2012).

2. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).
3. McNutt, M. Reproducibility. Science 343, 229 (2014).
4. Glenn Begley, C. Reproducibility: Six red flags for suspect work. Nature 497, 433–434 (2013).

5. Begley, C. G., Buchan, A. M. & Dirnagl, U. Robust research: Institutions must do their part for
reproducibility. Nature 525, 25–27 (2015).

6. Leek, J. T. & Peng, R. D. Opinion: Reproducible research can still be wrong: adopting a prevention
approach. Proc. Natl. Acad. Sci. U. S. A. 112, 1645–1646 (2015).

7. Leek, J. T. & Peng, R. D. Statistics. What is the question? Science 347, 1314–1315 (2015).

 6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://paperpile.com/c/fsf71K/O4pw
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/gnpR
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

8. Goecks, J., Nekrutenko, A., Taylor, J. & Team, G. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11,

R86 (2010).
9. Reich, M., Liefeld, T., Gould, J., Lerner, J. & Tamayo, P. GenePattern 2.0 - Nature Genetics. Nat. Genet.

(2006).

10. Kluyver, T. et al. Jupyter Notebooks-a publishing format for reproducible computational workflows. in
ELPUB 87–90 (books.google.com, 2016).

11. Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L. & Horton, N. J. R Markdown: Integrating A
Reproducible Analysis Tool into Introductory Statistics. arXiv [stat.OT] (2014).

12. Scheidegger, C. E., Vo, H. T., Koop, D., Freire, J. & Silva, C. T. Querying and Re-using Workflows with

VsTrails. in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
1251–1254 (ACM, 2008).

13. Möller, S. et al. Community-driven computational biology with Debian Linux. BMC Bioinformatics 11
Suppl 12, S5 (2010).

14. Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is automated using

continuous analysis. Nat. Biotechnol. 35, 342–346 (2017).
15. Cook, J. Docker Hub. in Docker for Data Science 103–118 (Apress, Berkeley, CA, 2017).

16. Moreews, F. et al. BioShaDock: a community driven bioinformatics shared Docker-based tools
registry. F1000Res. 4, 1443 (2015).

17. O’Connor, B. D. et al. The Dockstore: enabling modular, community-focused sharing of Docker-based

genomics tools and workflows. F1000Res. 6, 52 (2017).
18. Blankenberg, D. et al. Dissemination of scientific software with Galaxy ToolShed. Genome Biol. 15, 403

(2014).
19. Amstutz, P. et al. Common Workflow Language, v1.0. (2016). doi:10.6084/m9.figshare.3115156.v2
20. Köster, J. & Rahmann, S. Snakemake--a scalable bioinformatics workflow engine. Bioinformatics 28,

2520–2522 (2012).
21. Afgan, E. et al. Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinformatics 11, S4

(2010).
22. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.

Bioinformatics 30, 2114–2120 (2014).

23. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements.
Nat. Methods 1–6 (2015).

24. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nat. Biotechnol. 33, 290–295 (2015).

 7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/lDhj
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/c6aC
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://paperpile.com/b/fsf71K/s5Hd
http://paperpile.com/b/fsf71K/s5Hd
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

25. Frazee, A. C. et al. Ballgown bridges the gap between transcriptome assembly and expression analysis.
Nat. Biotechnol. 33, 243–246 (2015).

26. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for
rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).

Figure Legends

Figure 1. Software stack of interconnected technologies that enables complete computational
reproducibility. It uses an example of the most basic RNA-seq analysis involving four tools. Our stack
includes three components: (1) the cross-platform package manager Conda (https://conda.io) for

installing analysis tools across operating systems, including virtualized environments that include all tools
and dependencies at specified versions for performing a computational analysis; (2) lightweight software

containers such as Docker or Singularity for using virtual environments and tool installations across
different computing clusters both local and in the cloud; and (3) Hardware virtualization to achieve
complete isolation and reproducibility. We have implemented this stack in the Galaxy scientific workbench

(https://galaxyproject.org), enabling any Galaxy server to easily and automatically install all requirements
for each Galaxy analysis workflow. This stack is also integrated into the Common Workflow Language

(CWL; http://www.commonwl.org) reference implementation. Integration of our reproducibility stack into
Galaxy and CWL demonstrates, for the first time, how analysis workflows can be shared, rerun, and
reproduced across platforms with no manual setup. VENV = virtual environment, VM = virtual machine.

 8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
https://conda.io/
https://galaxyproject.org/
http://www.commonwl.org/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

 9

O
S

VE
N

V
(C

on
da

)

Co
nt

ai
ne

r

VM

O
bt

ai
n

so
ur

ce
 c

od
e

of
 th

e
to

ol
 a

nd
 it

s
de

pe
nd

en
ci

es
Co

m
pi

le
In

st
al

l
Co

nf
ig

ur
e

$P
AT

H
Ru

n

In
st

al
l p

ac
ka

ge

Ru
n

to
ol

Ru
n

to
ol

 w
ith

in
 c

on
ta

in
er

In
st

an
tia

te
 V

M
Ru

n
th

e
en

tir
e

an
al

ys
is

 w
ith

in
 th

e
VM

>

g
i
t

c
l
o
n
e

h
i
s
a
t
2

>

m
a
k
e

>

s
u
d
o

m
a
k
e

i
n
s
t
a
l
l

>

h
i
s
a
t
2

-
-
v
e
r
s
i
o
n

>

c
o
n
d
a

i
n
s
t
a
l
l

h
i
s
a
t
2

>

h
i
s
a
t
2

-
-
v
e
r
s
i
o
n

>

d
o
c
k
e
r

r
u
n

-
-
r
m

q
u
a
y
.
i
o
/
b
i
o
c
o
n
t
a
i
n
e
r
s
/

h
i
s
a
t
2

-
-
v
e
r
s
i
o
n

Reproducibility stack

Le
as

t
re

pr
od

uc
ib

le
M

os
t

re
pr

od
uc

ib
le

>

V
B
o
x
M
a
n
a
g
e

s
t
a
r
t
v
m

"
r
n
a
s
e
q
"

-
-
t
y
p
e

h
e
a
d
l
e
s
s
;

s
s
h

u
s
e
r
@
h
o
s
t

"
h
i
s
a
t
2

-
-
v
e
r
s
i
o
n
"

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

