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Abstract

Background: Summary data furnishing a two-sample Mendelian randomization
study are often visualized with the aid of a scatter plot, in which single nucleotide
polymorphism (SNP)-outcome associations are plotted against the SNP-exposure as-
sociations to provide an immediate picture of the causal effect estimate for each indi-
vidual variant. It is also convenient to overlay the standard inverse variance weighted
(IVW) estimate of causal effect as a fitted slope, to see whether an individual SNP
provides evidence that supports, or conflicts with, the overall consensus. Unfortu-
nately, the traditional scatter plot is not the most appropriate means to achieve this
aim whenever SNP-outcome associations are estimated with varying degrees of preci-
sion and this is reflected in the analysis.

Methods: We propose instead to use a small modification of the scatter plot - the
Galbraith radial plot - for the presentation of data and results from an MR study,
which enjoys many advantages over the original method. On a practical level it
removes the need to recode the genetic data and enables a more straightforward de-
tection of outliers and influential data points. Its use extends beyond the purely
aesthetic, however, to suggest a more general modelling framework to operate within
when conducting an MR study, including a new form of MR-Egger regression.

Results: We illustrate the methods using data from a two-sample Mendelian ran-
domization study to probe the causal effect of systolic blood pressure on coronary
heart disease risk, allowing for the possible effects of pleiotropy. The radial plot is
shown to aid the detection of a single outlying variant which is responsible for large
differences between IVW and MR-Egger regression estimates. Several additional plots
are also proposed for informative data visualisation

Conclusion: The radial plot should be considered in place of the scatter plot for
visualising, analysing and interpreting data from a two-sample summary data MR
study. Software is provided to help facilitate its use.
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Background

Mendelian randomization (MR) [I] is a methodological framework for probing ques-
tions of causality in observational epidemiology using genetic data - typically in the
form of single nucleotide polymorphisms (SNPs) - to infer whether a modifiable risk
factor truly influences a health outcome. A particular MR study design gaining in
popularity combines publically available data on SNP-exposure and SNP-outcome as-
sociations from separate but homogeneous studies for large numbers of uncorrelated
SNPs. Each SNP is used to estimate the causal effect under the primary assumption
that it is a valid instrumental variable (IV), by dividing its SNP-outcome association
by its SNP-exposure association to yield the ratio estimate. Secondary modelling as-
sumptions are also required in order for this estimate to be consistent. Ratio estimates
are then combined into an overall estimate of causal effect using an inverse variance
weighted (IVW) fixed effect meta-analysis. This is referred to as the IVW estimate
and the general framework as two-sample summary data MR [2,3]. For further details
see Box 1.

Different formualae for the inverse variance weights can be employed, the most popular
being simple ‘1st-order’ weights, which assume the uncertainty in the SNP-exposure
association estimates is negligible. Although more sophisticated weighting approaches
have recently been proposed [4], for simplicity we will use 1st order weights throughout
this paper.

The scatter plot

Figure (1] (left) shows a traditional scatter plot of summary data estimates for the as-
sociations of 26 genetic variants with systolic blood pressure (SBP, the exposure) and
coronary heart disease (CHD, the outcome). SNP-exposure association estimates were
obtained from the International Consortium for Blood Pressure consortium (ICBP)
[5]. SNP-CHD association odds ratios were collected from Coronary ARtery Disease
Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) consortium [6], and
then transformed to the log-scale for subsequent model fitting. These data have pre-
viously been analysed and interpreted by Lawlor et al [7] and Bowden et al [4]. They
are included here for the purposes of illustration, rather than to draw any new epi-
demiological conclusions.

The ratio estimate for any individual variant is the slope joining its data point to
the origin, as shown for a single variant in Figure (1| (left). The IVW estimate for
these data, which represents the causal effect of a ImmHg increase in SBP on the log-
odds ratio of CHD, is 0.053. This is shown as the slope of a solid black line passing
through the origin. The data point contributed by SNP rs17249754 is highlighted in
red, as it will be subsequently discussed. It has become conventional to fix the sign of
the SNP-exposure association estimates in these plots to be uniformly positive. This
would naturally be achieved if each SNP had been coded to reflect the number of
exposure increasing alleles. SNP-outcome association estimates must also be checked
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and altered to account for this change (see Box 2 for further details). This does not
alter the result of the IVW analysis, but makes it easier to interpret the IVW estimate
as a best fitting line through the data points.

Scatter plot

0.15

| =— IVW slope ®
—— MR-Egger slope
= = Individual ratio estimate

-0.05

Figure 1: Traditional scatter plot of SNP-outcome associations fj versus SNP-
exposure assoctations 7;, with IVW slope shown as a solid black line. SNP 1517249754
18 haghlighted in red.

Detecting and adjusting for heterogeneity in two-sample MR

Within the meta-analytical framework underpinning the standard IVW estimate, het-
erogeneity observed amongst the ratio estimates can be assessed via Cochran’s @)
statistic. If the necessary modelling assumptions hold for two-sample summary data
MR and all SNPs are valid IVs, then Cochran’s @) should follow, asymptotically, a
Chi-squared distribution, with degrees of freedom (df) equal to the number of SNPs
minus 1. Excessive heterogeneity therefore points to a meaningful violation of some
or all of these assumptions. Much attention has focused on detecting and adjusting
for one specific source of violation referred to as horizontal pleiotropy [8, 9). This
occurs when SNPs exert a direct effect the outcome through pathways other than the
exposure. For brevity we refer to this simply as ‘pleiotropy’ from now on. We will
focus solely on this source heterogeneity for the rest of the paper, but return the topic
of other sources of heterogeneity in the discussion.

Del Greco et. al. [I0] first proposed the use of Cochran’s @ to detect pleiotropy
in a Mendelian randomization context. However, the presence of heterogeneity due
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to pleiotropy does not automatically invalidate the IVW estimate. For example, if
across all variants:

e (i) Its magnitude is independent of instrument strength (the so-called ‘InSIDE’
assumption [11]);

e (ii) It has a zero mean (i.e. it is ‘balanced’);

then a random effects meta-analysis can be used in lieu of the standard fixed effects
IVW meta-analysis to reliably estimate the causal effect accounting for the additional
uncertainty due to pleiotropy. If (i) holds but not (ii) then MR-Egger regression can
instead be used to reliably estimate the mean directional pleiotropic effect and causal
effect. [II, B]. For the blood pressure data in Figure , and assuming pleiotropy
is the source of heterogeneity, MR-Egger regression estimates the mean pleiotropic
effect (i.e. the intercept) to be 0.033 and the causal effect adjusted for pleiotropy
(i.e. the slope) to be virtually zero. Thus, MR-Egger infers that the effect detected
by the IVW approach is spurious, and due to bias rather than any underlying causal
mechanism.

An extended version of Cochran’s Q statistic (Riicker’s Q" [12, B]) can be used to
assess heterogeneity about the MR-Egger fit. See Box 2 for further details. The
size of @ and @’ in relation to one another (specifically the difference Q-Q') gives an
indication as to the relative goodness of fit of the IVW and MR-Egger models. For
this reason, Bowden et al [3] suggest reporting the statistic Qr = Q'/Q to aid the
interpretation of study results from an MR-analysis. A Qg close to 1 indicates the
IVW and MR-Egger models fit the data equally well, whereas a )z much less than 1
indicates MR-Egger is best fitting. They also adapt the hierarchical model selection
framework outlined by Riicker et al [12] for guiding which approach is appropriate for
a given analysis. See Box 3 for further details. In essence this framework favours
the use of the IVW model over MR-Egger regression a priori because it yields causal
estimates with higher precision, but recommends MR-Egger regression only when it
provides a demonstratively better fit to the data.

Aligning the SNP-exposure association estimates is irrelevant to IVW analysis since
the IVW estimate remains constant whichever coding is used. However, it is actually
a necessary step for the standard implementation of MR-Egger regression. This can
be understood by viewing MR-Egger as a method for detecting and adjusting for any
systematic trend in the causal estimates according to the ‘weight’ each one receives
in the IVW analysis, with weight being a strictly positive quantity.

Limitations of the scatter plot for MR analysis

Although it has become the standard tool for visualizing summary data in an MR
analysis, the scatter plot has a major limitation, which lies at the heart of this paper:
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The scatter plot does not give the most transparent representation as to
the weight each genetic variant receives in the MR analysis, whenever the
weights are not solely determined by the SNP-exposure associations.
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Figure 2: Top: Individual variant contributions to Cochran’s heterogeneity statistic.
The contribution of SNP rs17249754 (labelled Qs) is highlighted in red. Bottom left:
Cook’s distance for each genetic variant in the SBP-CHD data, with standard in-
fluence threshold (4/#SNPs) indicated by a dashed line. Bottom right: Studentized
residuals for each variant in the SBP-CHD data with standard 5% signifance thresh-
olds (solid black lines) and bonferroni corrected significance thresholds (5% /#SNPs,
dashed lines). SNP rs17249754 is again shown in red.
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This is the case for the IVW estimate calculated using standard 1st order weight-
ing, and shown as a fitted slope in Figure [1 since they depend additionally on the
SNP-outcome association standard error. This lack of transparency hampers the vi-
sual detection of outliers and influential data points in the analysis, for example SNP
rs17249754 highlighted in red, which is illustrated further in Figure 2] In Figure
(top) we plot the value of each individual variant’s contribution to Cochran’s () statis-
tic, which is approximately Chi-squared distributed with 1 df under the previously
stated assumptions. For these data @) = 67.09 (df = 25), indicating substantial het-
erogeneity, but the individual contribution of SNP rs17249754 (the eighth variant in
our data frame highlighted in red) is 28.34. It is therefore responsible for the vast
majority of excess heterogeneity amongst the 26 ratio estimates.

Figure [2| (Bottom-left and -right) shows the Cook’s distance and Studentized residual
measures for each variant, that were first used by Corbin et. al. [I3] to look for
influential SNPs in an MR context. Both measures also confirm rs17249754 as the
major outlier for these data. However, this fact would not be immediately obvious
from a visual inspection of the scatter plot alone.

Methods

The Radial MR plot

The Galbraith radial plot [14], [I5] was proposed as a graphical tool to visualise es-
timates of the same quantity with varying precisions. Specifically it plots the Z-
statistics for each estimate (i.e. the point estimate divided by its standard error)
on the vertical axis versus the inverse standard error on the horizontal axis. It has
been used extensively in meta-analysis to detect heterogeneity and small study bias
[12, 16, 17]. We believe that, when translated to the MR-setting, it offers a simple
solution to the inherent deficiencies of the standard scatter plot. The horizontal axis
of the radial plot is the square root of the actual inverse variance weight each SNP
receives in the IVW analysis. Its vertical axis scale represents the ratio estimate for
each SNP multiplied by the same square root weight. Since the square root weight on
the horizontal axis is naturally positive, and the vertical axis is a function of this same
weight and the ratio estimate (which is coding invariant), the radial plot removes the
need to manually re-orient the summary data estimates. Figure [3| (left) shows the
blood pressure data, this time represented on the radial MR plot. The IVW estimate
is again overlaid on top.

The radial plot still enables the slope joining each data point to the origin to be
interpreted as a ratio estimate. A second vertical axis is usually drawn on the right
hand side of the radial plot as an arc to accentuate this point. We leave this out in
this instance in order to focus attention on the new scale of the horizontal and vertical
axes only. An additional helpful property of the radial plot is that the absolute verti-
cal distance from each data point to the fitted IVW slope is equal to the square-root
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of its contribution to Cochran’s @) statistic. From the radial plot we can instantly
see that SNP rs17249754 is the most influential variant in the IVW analysis for two
reasons:

(a) It gets the most weight because of its position on the horizontal axis;
(b) It has the largest contribution to Cochran’s @) statistic because it is furthest away
from the IVW slope.

I 7] == 1storder IVW fit

—— 1st order radial MR-Egger fit
T T T T T T T T T T T
0 10 20 30 40 50 -0.05 0.00 0.05 0.10 0.15

i ;

Figure 3: Left: Radial MR plot of the blood pressure data. IVW and radial MR-
Egger regression slopes calculated using 1st order weights are overlaid. The square
root contribution of SNP rs1724975/ to Cochran’s Q statistic (v/Qg) is denoted by the
vertical dashed line from the IVW slope. The square root contribution of a separate
SNP to Riicker’s Q" statistic (/Q11) is denoted by the vertical dashed line from the
radial MR-FEqgger slope. Right: Generalized funnel plot of same data with 1st order
IVW and radial MR-Egger regression slopes (and 95% confidence intervals) shown.
SNP rs17249754 is highlighted red.

MR analysis via radial regression

Although the standard meta-analysis formula can be used to derive the IVW estimate
(Box 1), in practice it is often convenient to obtain the estimate by fitting a linear
regression model. This is a simple command in any software package, and allows the
user to benefit from the host of summary and diagnostic tools that compliment it.
For example, regressing the SNP-outcome associations on the SNP-exposure associ-
ations with the intercept constrained to zero, and weighting the regression by the
SNP-outcome association standard error will yield the IVW estimate using 1st order
weights. More generally, we can interpret the IVW estimate calculated using any set
of user-defined weights as a best fitting line through the data points on the radial
plot under the constraint that the line goes through the origin. See Box 4 for further
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details.

Just as for the IVW estimate, MR-Egger regression can also be implemented as a
linear regression directly on the radial plot, but with the intercept left unconstrained.
We call this radial MR-FEqgger regression. Radial MR-Egger regression is different from
traditional MR-Egger regression, even when 1st order weights are used, because the
intercept parameter is estimated on a different scale. Estimates obtained from a ra-
dial MR-Egger regression will be consistent for the causal effect as long as the InSIDE
assumption is satisfied on this new scale (see Box 4).

Figure (3| (left) shows the radial MR-Egger regression slope, estimated assuming 1st
order weights. Just as for the IVW method, the absolute distance from any data
point to the radial MR-Egger slope is equal to the square root of its contribution
to the overall heterogeneity after adjustment for pleiotropy - which is measured for
MR-Egger by Riicker’s Q" statistic. This is illustrated in Figure [3 for a single SNP.
Note that the definition of Riicker’s Q" also changes under this analysis (Box 4). The
radial plot can therefore be used to simultaneously assess whether individual variants
are outliers with respect to either the IVW or radial MR-Egger regression models.

Generalized funnel plots

Figure |3| (right) shows the blood pressure data represented on the funnel plot. It plots
the ratio estimate for each variant on the horizontal axis against its square root preci-
sion (or weight) on the vertical axis. In this instance, 1st order weights were used to
scale the vertical axis and to calculate the IVW and radial MR-Egger regression slope
estimates which are overlaid on top. Under 1st order weighting, Figure [3| (right) is
equivalent to the funnel plot first used by Bowden et al [11] to visualise MR analyses,
and to look for asymmetry as a sign of pleiotropy. However, we label the vertical axis
generically to stress that a generalized funnel plot can be produced, and will natu-
rally compliment its corresponding radial plot, when any given set of weights are used.

Although it is possible to interpret the radial plot simultaneously for IVW and radial
MR-Egger regression, the funnel plot in Figure |3| (right) is predominately informative
about the IVW analysis. Specifically, the IVW estimate intuitively lies in the ‘centre
of mass’ of the data when the mass of each ratio estimate is equated with its weight.
This is explained in detail by Bowden and Jackson [I§]. In order to produce a fun-
nel plot with this same property for radial MR-Egger, we must apply a transform
to the ratio estimate of each data point in the funnel plot, by subtracting the radial
MR-Egger intercept estimate divided by the ratio estimates’ square root weight [18§]
(see Box 4). This is shown by the horizontal dashed lines in Figure 4, Because it
is inversely proportional to the square root weight, the correction will be larger for
imprecise ratio estimates and smaller for precise estimates. The correction factor for
the least precise (11th) ratio estimate, Bll is explicitly labeled. We can relate and
cross-reference this to the corresponding radial plot in Figure |3| (left), where the 11th
ratio estimate is also labelled. It is not an outlier in the IVW analysis because of its
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proximity to the IVW slope, but its distance from the radial MR-Egger slope is far
greater.

50

40
|

Figure 4: Left: Radial MR-Egger funnel plot. Horizontal dashed lines link the position
of data in the standard funnel plot (black) to their implied position under a radial MR-
Egger analysis (blue).

Results

Table [1] shows results of our re-analysis of the blood pressure data using IVW and
MR-Egger regression, first with all 26 SNPs and then with SNP rs17249754 removed.
For comparison we show results for both the standard and radial implementation
of MR-Egger regression. All analyses were carried out using 1st order weights, and
assuming a multiplicative random effects model if any residual heterogeneity was de-
tected.

The IVW estimate for the causal effect of a ImmHg increase in SBP on the log-odds
ratio of CHD is 0.053. Large heterogeneity is present amongst the 26 ratio estimates,
as identified by Cochran’s @, which is sufficiently extreme (p=1x107") to opt for a
random effect IVW model instead. Standard and radial MR-Egger regression yield
qualitatively similar results and suggest a causal effect close to zero. Both models
represent a better fit to the data at well below the conventional 5% threshold since in
each case @ — Q' is much larger than 3.84 (the 95 percentile of a Chi-squared distribu-
tion on 1 df). Since a large amount of residual heterogeneity was still present around

10
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both the standard and radial MR-Egger fits (as detected by Q"), their standard errors
were also inflated to allow for overdispersion.

When the three analysis methods are repeated this time with variant rs17249754
removed, IVW and MR-Egger causal estimates are virtually identical, especially with
those of radial MR-Egger. Cochran’s @ and Riicker’s @ statistic only reveal a small
amount of residual heterogeneity and examination of Q) — Q" reveals neither standard
nor radial MR-Egger represent a better fit to the data than the IVW model. There-
fore, the data does not support a move away from the standard IVW analysis without

SNP rs17249754.

Model/ Heterogeneity
Parameter Est. S.E. t-value p-value Statistic
Complete data

IVW

Brvw 0.0531 0.0104 5.08  3.0le-05 @ = 67.09(p=1x1075)

MR-Egger

Bor 0.033 0.018 1.86 0.075 -

b1k -0.002 0.031 -0.078 0.939 Q' =58.60(p=1x10"%)

Radial MR-Egger

Boe 1.495 0.967 1.54 0.136 -

b1k 0.007 0.0315 0.225 0.824  Q'=61.05(p=4.5x107°)
SNP rs17249754 removed

IVW

Brvw 0.066 0.008 8.08 2.63x107% Q = 35.00(p=0.068)

MR-Egger

Boe 0.010 0.015 0.670 0.509 -

(5397 0.049 0.027 1.760 0.092 Q' =34.33(p=0.061)

Radial MR-Egger

Boe 0.059 0.826 0.071 0.944 -

bie 0.064 0.028 2.294 0.031 Q'= 34.99(p=0.052)

Table 1: IVW and MR-Egger regression analyses of the SBP data with all SNPs and
with SNP rs17249754 removed. Multiplicative random effects models were fitted in all
cases whenever over-dispersion was detected.

A leave-one-out sensitivity analysis

Rather than using the Riicker framework for formal model selection purposes (Box
3), we instead demonstrate its utility in providing a useful, but informal, backdrop
to assess the influence of each individual variant on the analysis under the IVW and
MR-Egger frameworks. Figure |5 shows the values of Cochran’s @ (calculated with
respect to the IVW fit) against Riicker’s " (calculated with respect to the radial

11
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MR-Egger fit) for 26 analyses where each SNP is left out in turn. These points are
overlaid on top of the Riicker decision space assuming a threshold of § = 0.05 for
declaring heterogeneity using () and Q. In the main analysis reported in Table ,
random effects models were fitted if any heterogeneity at all was detected, which is
equivalent to setting 6 = 0.5. The nested nature of the radial IVW and MR-Egger
models guarantees that all points in Figure [5|lie below the diagonal line Q = Q'

When all the data are analysed together (orange point in Figure [5)), sufficient het-
erogeneity and bias are detected to mean that a random effects radial MR-Egger
regression model is best supported by the data. It infers the presence of large di-
rectional pleiotropy and no causal effect between SBP and CHD risk. This is not
materially changed when every variant except SNP rs17249754 is left out of the analy-
sis in turn (black dots in Figure [f]). However, when SNP 1s17249754 is removed from
the data (red dot in Figure , there is no evidence of heterogeneity or bias due to
directional pleiotropy and the data provides no reason to move away from a standard
IVW analysis.

Leave-1-out sensitivity analysis

g 4 ¢ Complete data
e SNP rs17249754 removed
¢ All other Leave—-1-out estimates

50

Rucker's Q'
40

%/ Random effects MR-Egger

4

Fixed effect MR-Egger

Fixed effect IVW

I T T T I
20 30 40 50 60

Cochran's Q

Figure 5: Leave-one-out sensitivity analysis of the data, showing the values of () and
Q' when each variant is left out of the analysis in turn. Points are overlaid on the
Riicker decision space that governs which of four model choices should be favoured. It
assumes a significance threshold of 6 = 0.05 to affect the model selection.
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The radial plot function

We have written an R function RadialMR to produce radial plots and to perform ra-
dial regression. Two of the many possible plot options are illustrated for the blood
pressure data in Figure @ Figure |§] (top) shows the radial plot of the IVW analysis
alone, which includes a radial curve to highlight the ratio estimate for each genetic
variant, as well as the overall IVW estimate. Data points with large contributions to
Cochran’s () statistic are shown in orange. The significance level for identifying these
outliers can be set by the user, here we chose the value 0.01. Figure[f] (bottom) shows
the radial plot on a tighter scale, with both IVW and radial MR-Egger regression
implemented. Outliers for either method (and both methods) are shown. A table
of the exact @ and Q" contributions for each variant is given as an output for the
researcher to conduct a more detailed analysis.

Radial plots are produced by many existing R packages such as metafor, numOSL,
and Luminescence. Care will need to be taken, however, to input data from an
MR-analysis appropriately into these generic platforms. For this reason we will also
continue to develop our own RadialMR package to produce radial plots and conduct
radial plot regression for the MR-setting. It is currently available to download at

https://github.com/WSpiller/RadialMR/

and will continue to be refined and extended to incorporate further features and
analyses.

1 Conclusion

It has long been appreciated in the general meta-analysis context that the radial plot
has many desirable characteristics over the traditional scatter plot, especially in the
detection of outlying studies and small study bias. Given its intimate connection with
meta-analysis, we propose that the radial plot should also be given a more central role
in two-sample summary data MR studies.

The radial plot, and its corresponding funnel plots, improve the visual interpreta-
tion of data used within an MR analysis because it provides the most transparent
representation from an information content perspective. Its implications stem beyond
the purely aesthetic for MR-Egger regression, however. Radial MR-Egger is an at-
tractive modification and generalization of the original approach that naturally flows
from the use of this plot. On top of removing the need to recode the genetic data
and facilitating a more straightforward detection of outliers, the radial formulation
also makes it much more transparent that it is attempting to detect any systematic
trend in ratio estimates according to the weight they receive in the analysis. Another
advantage is that it only requires the ratio estimates and their standard errors. This
makes it applicable even when data on individual SNP-exposure and SNP-outcome
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Figure 6: Radial plots of the blood pressure data produced using the RadialMR() func-
tion. Top: only the IVW estimate shown, radial lines joining each data point back to
the origin. Bottom: Radial MR-Eqgger ang VW model fits shown.
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associations (and their standard errors) are not available.

When 1st order weights are used, radial MR-Egger and traditional MR-Egger will
yield similar causal estimates, but the magnitude of the intercept will be different.
An undoubted strength of the radial approach lies in the fact that it can be seamlessly
applied when any set of weights are used. For example, Bowden et al [4] have shown
that 1st order weights can inflate the type I error rate of Cochran’s ) and Riicker’s
Q' statistics for detecting heterogeneity, when none is present, whenever the SNPs
utilized are collectively weak or there is a large causal effect. They propose modi-
fied weights that depend on the causal estimate to improve the performance of both
statistics and those of the IVW and MR-Egger estimates. These weights (and indeed
any weights) can be naturally incorporated into a radial plot, the IVW approach and
radial MR-Egger. Further investigation into the properties of radial MR-Egger in a
variety of circumstances are required, but the features that distinguish it from the
standard approach appear attractive, and it has the potential to become the standard
implementation.

When conducting a two-sample summary data MR analysis with a binary outcome,
natural correlations will exist between causal effect estimates (e.g. log-odds ratios)
and their precisions, which could easily contribute to heterogeneity and hence be mis-
construed as pleiotropy. In related work on the meta regression of separate trial results
measuring a binary outcome, Harbord et al [I9] show that regressing the ratio of the
score and square root information statistics against the square root information (in a
close analogy to the radial plot) is better at mitigating this effect than simply working
directly with the log-odds ratio and its standard error. As further work we plan to
extend the approach of Harbord to the MR context for radial MR-Egger regression
with binary outcomes. Similar approaches based on score and information statistics
may also prove useful for MR analyses of time-to-event outcomes.

We have proposed a leave-one-out analysis using the Riicker model selection frame-
work as a backdrop when conducting an MR study, to understand how model choice
is affected by the exclusion of individual variants. However, we stress some caution
in following this approach to the extreme, for example in adopting a strategy of re-
moving multiple outliers until little or no-heterogeneity remains, unless its statistical
properties are well understood. Procedures such as this have been proposed when
meta-analysing separate study results [20], but have been criticised for being too data
driven, likely to throw out larger studies than smaller studies, and offering little ex-
planation as to the underlying cause of heterogeneity [21].

The Riicker model selection framework we present explores how the choice of IVW or
MR-Egger model is affected by the summary data from each SNP, but it can not tell
the user about the probability each model is true. Thompson et al [22] have proposed
a formal Bayesian model averaging framework that achieves this aim, and produces
posterior causal effect estimates accounting for model uncertainty. Hemani et al [23]
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have also recently proposed a machine learning framework for choosing between a
much larger group of modelling choices. Both ideas nicely compliment and extend the
basic the approach outlined here.

Key messages:

Summary data furnishing a two-sample Mendelian randomization study are
often visualized with the aid of a scatter plot. The scatter plot is also used to
interpret the validity of the standard inverse variance weighted (IVW) estimate,
and pleiotropy robust methods such as MR-Egger regression.

A close relation of the scatter plot - the radial plot - can instead be used for this
purpose.

The radial plot removes the need to pre-process the summary data (a pre-
requisite for MR-Egger), improves the detection of outliers and influential data
points in either an IVW or MR-Egger analysis, and can incorporate any set of
weights desired by the user.

A more general form of MR-Egger regression is proposed that flows from, and
naturally compliments, the radial plot.

Generalized funnel, and leave-one-out analysis plots can also be used to aid the
visualisation and interpretation of MR studies.
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Box 1: Standard two-sample summary data MR analysis

The IV assumptions: The canonical approach to MR assumes that group of SNPs are valid IVs for
the purposes of inferring the causal effect of an exposure, X, on an outcome, Y. That is they are: associated
with X (IV1); not associated with any confounders of X and Y (IV2); and can only be associated with Y
through X (IV3). The IV assumptions are represented by the solid lines in the causal diagram below for a SNP
G, with unobserved confounding represented by U. Dotted lines represent dependencies between G and U, and
G and Y that are prohibited by the IV assumptions. The causal effect of a unit increase in X on the outcome
Y, denoted by 3, is the quantity we are aiming to estimate.

)

G V1 Y B Y

The Ratio estimate: Assume that exposure X causally affects outcome Y linearly across all values of X, so
that a hypothetical intervention which induced a 1 unit increase in X would induce a (3 increase in Y. Suppose
also that all L SNPs predict the exposure via an additive linear model with no interactions. If SNP j is a valid
IV, and the two study samples are homogeneous, then the underlying SNP-outcome association from sample 1,
I'j, should be a scalar multiple of the underlying SNP-exposure association estimate from sample 2, v;, the scalar
multiple being the causal effect 8. That is:

L = Bv;.

The ratio estimate for the causal effect of X on Y using SNP j (out of L), /3’]- = fj/‘ng where f‘j is the
estimate for SNP j’s association with the outcome (with standard error oy ;) and 4; is the estimate for SNP j’s
association with the exposure (with standard error o).

The IVW estimate: The overall inverse variance weighted (IVW) estimate for the causal effect obtained
across L uncorrelated SNPs is then given by

L R

F; _ 21 wiby

vw ="
j=1Wj

where wj is the inverse variance of 3;. Two popular choices for the inverse variance weights are

42
’y >
1st order (fixed effect) weights: w; = TJ

oy,

2 2 2 -
oy; 150k,
2,2 + 24
75 V5

When SNP-exposure association estimates are sufficiently precise, so that crg( . is negligible, or the causal effect 3
is small, then both weighting schemes are very similar. When this is not the case, both 1st and 2nd order weights
can perform poorly. In this case, Bowden et al [4] propose the use of a ‘modified 2nd order’ weighting scheme
instead.

2nd order (fixed effect) weights: w;
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Box 2: Detecting and accounting for heterogeneity in two-sample summary data MR

Heterogeneity amongst the ratio estimates can be calculated via Cochran’s @ statistic. When 1st order
weights are used for the w;, @ can be expressed in two ways:

L L
Q=>.Q;=>_ T(fj — BrvwA)? =D wi(B; — Brvw)?,
; ; , =

If heterogeneity is detected this suggests violation of the modelling or IV assumptions. Although horizontal
pleiotropy is just one factor among many others that could be the underlying source of heterogeneity, we will
assume it is the cause when explaining the implementation and assumptions of subsequent methods.

Accounting for pleiotropy via a random effects meta-analysis:. Let a; equal the pleiotropic ef-
fect of SNP j on the outcome Y not through X, with sample mean and variance across all L SNPs of i and
o2 respectively. If a; is independent in magnitude of the instrument strength across all SNPs (the InSIDE
assumption) and po = 0 (balanced pleiotropy), then an additive [24] or multiplicative [25] random effects

meta-analysis can be used to reliably estimate the causal effect.

Accounting for pleiotropy via MR-Egger regression: If o is non-zero (directional pleiotropy)
then the IVW estimate will generally yield a biased estimate for the causal effect. However if the InSIDE
assumption holds then MR-Egger regression [I1] can still deliver reliable estimates for the causal effect, along
with an estimate for po. It is implemented by fitting the following linear regression of the SNP-outcome
associations versus the SNP-exposure associations

f‘j :60E+61E;Yj +ij6j, where Ej ~N(0, 1)
after pre-processing the data according to the following rule:
For all j in (1,..,.L) such that 4; < 0:9; — —%;, I'j = =TI

The standard implementation of MR-Egger regression tacitly assumes 1st order weights. In this case, the InSIDE
assumption is that the pleiotropic effects weighted by oy, are independent of the SNP-exposure associations
weighted by oy ;.

Assessing heterogeneity about the MR-Egger fit: Heterogeneity about the MR-Egger fit can be
assessed using Riicker’s Q/ statistic [12} [3]. When 1st order weights are used for the wj, Q, can be expressed in
two ways:

lei%{f‘j—<BOE+BlE'ﬁ)} ZU’J A'_/BOJ_BUE) ’
j=1"Yj

Vi

Specifically Q/ tests for the presence of heterogeneity due to pleiotropy around the MR—Egger fit after adjustment
for its mean value, pqo (estimated by ﬁOE) This is equivalent to testing whether o2 is greater than zero. When
such heterogeneity is detected, standard errors for the MR-Egger intercept and slope parameter estimates, ﬁoE
and BIE can be inflated by a factor of /1 + 2. This is consistent with applying a multiplicative random effects
model using 1st order weights.
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Box 3: The Riicker model selection framework

The Riicker model selection framework [12} [3] is encapsulated in the diagram below

A
2
=—Xis.110
Random effects
Q' MR Egger
— - 2
4 — Xi-s,1-2
Qr -~
Fixed effect -7
VW~ Fixed effect MR-Egger
0 -
2
Xi-s,1-1

It shows the two-dimensional decision space defined by @, Ql and a significance threshold for detecting pleiotropy,
0 (e.g. 6 = 0.05). The rationale for this framework is briefly summarised.

1. Start by performing an IVW analysis under a fixed effect model and calculate Q.

2. If @Q reveals sufficient heterogeneity at significance level § with respect to a )&71 distribution then switch
instead to a random effects IVW model.

3. Fit fixed effect MR-Egger regression and calculate Ql. If the difference Q — Ql is significant at level &
with respect to a X% distribution, switch to this model.

4. If Ql reveals sufficient heterogeneity at significance level § with respect to a X%_z distribution then switch
instead to a random effects MR-Egger model.

For a given data set, the slope joining the point (Q, Q/) to the origin gives the ratio statistic @, and the point
(Q, Q/) immediately defines the selected model under the above framework. This is illustrated by the black dot
in the diagram above. In this hypothetical case the Riicker framework suggests the random effects MR-Egger
model is most appropriate [3].
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Box 4: Two-sample summary data MR via radial plot regression

Radial IVW regression: The IVW estimate obtained using any set of weights w; can be interpreted
as the S coefficient estimated from the following IVW Radial regression model:

Bi/iw; = By/w; +¢€j, € ~ N(0,1)

Cochran’s @ statistic must then be calculated as
L
Q=Y w;(B;— Brvw)*.
=1

Radial MR-Egger regression: As a natural compliment to the radial IVW model above, the following
radial MR-Egger regression model below can instead be used to estimate the causal effect:

Bivw; = Bor + B1E/Wj + €;.
That is, radial MR-Egger is a regression directly on the radial plot scale with the intercept parameter left
unconstrained. Under a radial model the InSIDE assumption is that the pleiotropic effects are independent of

the radial weights.

Riicker’s Q/ statistic for the radial MR-Egger model is defined as:

Fixed effect and random effects versions of radial IVW and radial MR-Egger regression can be implemented by
altering the definition of wj.

How does this differ from traditional MR-Egger? The originally proposed MR-Egger regression
model, which implicitly used 1lst order weights, is equivalent to the following radial MR-Egger regression model:

Bj\/wy = —izf + BiE/W; + €5
J

where w; represent 1st order weights. That is, Sgg in the original model is not a true intercept (i.e. a
constant), it is the coefficient of the explanatory variable 0';—1-, as explained in [3]. In practice traditional and

radial MR-Egger will yield qualitatively similar inferences, although the magnitude of their respective intercept
parameters will be different.

Generalised radial plots A generalised funnel plot that naturally complements the radial plot can be
produced by plotting ,/w; on the vertical axis against §; on the horizontal axis. This plot, however, is most
informative for the IVW analysis because the IVW slope lies at the (inverse variance weighted) centre of the
data points. An equivalent radial MR-Egger funnel plot with the same property can be produced by plotting
\/wj on the vertical axis against

on the horizontal axis.
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