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Abstract

Single-cell transcriptomics is a versatile tool for exploring heterogeneous cell populations. As
with all genomics experiments, batch effects can hamper data integration and interpretation.
The success of batch effect correction is often evaluated by visual inspection of dimension-
reduced representations such as principal component analysis. This is inherently imprecise
due to the high number of genes and non-normal distribution of gene expression. Here, we
present a k-nearest neighbour batch effect test (kBET, https://github.com/theislab/kBET) to
qguantitatively measure batch effects. KBET is easier to interpret, more sensitive and more
robust than visual evaluation and other measures of batch effects. We use kBET to assess
commonly used batch regression and normalisation approaches, and quantify the extent to
which they remove batch effects while preserving biological variability. Our results illustrate
that batch correction based on log-transformation or scran pooling followed by ComBat
reduced the batch effect while preserving structure across data sets. Finally we show that
kBET can pinpoint successful data integration methods across multiple data sets, in this
case from different publications all charting mouse embryonic development. This has
important implications for future data integration efforts, which will be central to projects such
as the Human Cell Atlas where data for the same tissue may be generated in multiple
locations around the world.

[Before final publication, we will upload the R package to Bioconductor]
Introduction

The term “batch effect” is used to describe variation that emerges through technical effects
that arise when samples are handled in distinct batches. Usually, this situation occurs if one
repeats an experiment with biologically equivalent cells (e.g. different patients of the same
disease) or technically equivalent cells (e.g. sequencing cells of the same culture condition
on subsequent days) as depicted in Fig. 1a. Both biological and technical variations
contribute substantially to the total variability in single-cell RNA-sequencing (scRNA-seq)
data. In a balanced design for a sequencing experiment, we are able to identify and
distinguish biological from technical variation (Fig. 1b). In contrast, a confounded design
groups cells of the same condition into the same sequencing runs, and separates
biologically distinct cells into entirely distinct handling and sequencing runs. This confounds
biological with technical variability. In such a setup, a worst case scenario might be that the
technical variation swamps out the biological variation. Furthermore, differences between
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replicates in scRNA-seq data can arise from different sequencing depths: fewer genes are
detected at shallow sequencing depths compared to deeper sequencing?.

Several methods have been proposed to remove or reduce batch effects in single-
cell data while preserving biological variability. In general, we can distinguish spike-in based
and non-spike-in based methods®*. A spike-in is a mix of synthetic, poly-adenylated RNAs
as, for example, designed by the External RNA Control Consortium (ERCC) that do not map
to the reference genome and that cover different lengths, GC-contents and initial
concentrations. However, technical variance of ERCC spike-ins can differ from the variation
of biological samples®. Hence, the standardisation of data by spike-ins does not necessarily
always reflect variation in endogenous mRNA content®. Also, droplet-based experimental
setups such as DropSeq’, inDrop® or the commercial platform Chromium (10x Genomics) do
not allow the use of spike-ins. Hence, methods that 'match' several replicates without a
reference concentration are more practical and preferable. Examples of such methods are
factor analysis based methods such as removal of unwanted variation (RUV)® and
probabilistic estimation of expression residuals (PEER)®. Other non-spike-in approaches use
downsampling'®"? of the reads or cell-specific scaling factors from pooling across samples
for normalisation. We provide an overview to single-cell normalisation and batch correction
methods in Supplementary Table 1.

Given the wide variety of normalisation and batch correction strategies available, we
sought to identify which of these methods remove batch effects and preserve biological
variation best. Current approaches to detect batch effects involve visual inspection of
dimension-reduced representations, such as principal component analysis (PCA). Yet,
scRNA-seq data is high dimensional and sparse due to dropout events and stochastic gene
expression, which may perturb the results of PCA™. In addition, it is unclear whether
classical bulk transcriptome correction methods may need to be adapted to the sample-rich
but sparse scRNA-seq situation.

Here, we propose a k-nearest neighbour batch effect test (kBET) to quantify batch
effects in scRNA-seq data. Intuitively, a replicated experiment is well-mixed if a subset of
neighbouring samples has the same distribution of batch labels as the full data set (Fig. 1¢).
In contrast, a repetition of the experiment with some bias is expected to yield a skewed
distribution of batch labels across the data set (Fig. 1d). kBET uses a X°-based test for
random neighbourhoods of fixed size, followed by averaging the binary test results to return
an overall rejection rate. This result is easy to interpret: low rejection rates imply well-mixed
replicates.

In this study, we analysed five single-cell data sets derived from mice that cover both
microwell plate-based and droplet-based methods with sample sizes ranging from 100 to
3000 cells per batch. We demonstrate the performance and accuracy of 11 normalisation
and 5 batch effect regression approaches (Fig. 1e). Finally, we address the question of
whether it is possible to integrate separate studies, and show with mouse development data
sets that it is possible to correct for study-to-study effects. We show that batch correction
based on log(counts+1), log(CPM+1) or scran pooling, together with ComBat or limma
regression, reduced the batch effect while preserving biological structure across all data sets
(Table 1).
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Results

kBET outperforms other methods for batch effect detection

We evaluated the performance of kBET on simulated data with three different degrees of
batch effects: the data set consists of 500 samples (or “cells) with 1000 “genes” each,
where 1 %, 10 % or 20 % of the genes have their mean gene expression varied by a
Gamma distributed random variable in the second batch (see Methods for details). Using
appropriate scaling of this random variable, the expected mean gene expression remains
unchanged. A batch with 1 % biased genes overlaps well with the other batch, yielding a low
rejection rate (Fig. 2a). In contrast, a batch with 20 % biased genes separates from the
other batch, so that samples/cells are surrounded by samples from the same batch only,
yielding a high rejection rate (Fig. 2b).

kBET uses a Pearson’s x*based test for random neighbourhoods of fixed size k and
averages the binary test result. Thus the neighbourhood size k is an important factor for the
X°-test that kBET is based on. For a small k, the rejection rate is smaller in general™. As
soon as the neighbourhood size k for each test is larger than the size of a single batch, we
observe a decrease in the rejection rate as well. This can be explained by the decreasing
number of possible choices of batch labels; the ‘local’ batch label distribution becomes more
similar to the global batch label distribution(Figs. 2c and 2d). In between exceedingly small
and large neighbourhood sizes, the average rejection rate becomes maximal. The value of
the maximum indicates the presence of a batch effect (see Supplementary Note 1), and we
use this maximum value for quantification.

kBET employs three different kinds of hypothesis tests: an exact multinomial test,
Pearson’s y*test and a likelihood ratio test (Irt) (see Methods and Supplementary Note 1
for details and ref. 15). The exact test yields an accurate result, but its computation is very
costly as it involves the computation of each batch label configuration and the corresponding
probability of observing it. Both Pearson’s x?-test and a Irt approximate the result of the exact
test with little deviation (inset in Fig. 2c and extended Fig. 2).

We compared the ability of KBET to detect batch effects with alternative measures:
the average silhouette width (‘silhouette’) and principal component (PC) regression (Fig. 2e).
In addition to the percentage of varied mean gene expression, we simulated different batch
sizes ranging from equal size (1:1) to strong size imbalance (1:19). We found that kBET is
most sensitive to the degree of bias compared with PC regression and silhouette. The
silhouette performs better than PC regression, but silhouette shows little difference between
10 % and 20 % varied genes. kBET also performs better when only a few data points are
biased by batch, as it still reveals a substantial bias when batches are imbalanced in size.
Overall, kBET is clearly the most sensitive and robust measure of batch effect in this
comparison.

KBET accurately captures batch effects in single-cell RNA-seq data sets

Batch effects originate from different sources, as is evident when comparing technical
replicates. We investigated the mouse embryonic stem cell (mMESC) LIF cultures of Klein et
al.®, which were generated with the inDrop protocol. The authors provided two technical
replicates in the samples of day 0 culture (Fig. 3a), which offers an ideal case for batch
correction assessment. The shift of the technical replicates in both PCs is a clearly visible
inter-batch difference (Fig. 3b). We compared all combinations of normalisation and batch
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correction strategies, and illustrate f-scLVM corrected log(CPM+1) values (Fig. 3c) and
ComBat corrected log(counts+1) (Fig. 3d). Both appear successful in removing batch effects
according to visual inspection of the PCA. When we inspect each principal component, we
find 196 PCs have a significant correlation with the batch covariate in the f~scLVM case,
which explain 3.4 % variance in the data. For ComBat corrected log(counts+1), none of the
PCs correlates significantly with the batch covariate. The more sensitive KBET reveals that
ComBat corrected log(counts+1) works best (Fig. 3e), in contrast to poor batch correction
perfomance of f~scLVM. The PCA plot only shows the batch effect of the first two PCs, while
kBET effectively quantifies more subtle batch effects.

Distinguishing batch effect variability from biological variability

The second challenge in batch correction is to preserve biological heterogeneity in the data,
otherwise the optimal batch correction would remove all variance, setting each observation
to the same constant. We assess biologically relevant heterogeneity by computing highly
variable genes (HVG) before and after correction. Before correction, we only consider HVG
present in all replicates. (We find considerably more HVG in the whole data set than
replicate-wise, due to the batch effect.) For example, let A, B and C represent three
replicates, and a,b and c the corresponding sets of HVG. Then, the batch-free, conservative
set of HVG is the intersection of a,b and ¢: HV Gpgich—free = @ N b N c. When we check the
set of HVG after batch correction (HVG.,), this set would ideally contain the complete set of
HVGypachiree- IN total, we evaluated the fraction of retained HVG after correction (see
Methods and Fig. 3f-g).

To complement the concept of retained HVG, batch correction is not supposed to
introduce additional variability to the data. Thus, we consider the difference set of HVG
before and after correction, i.e. HVG.,+\ (a U b U ¢) as false discoveries that we use to
compute a false positive rate (FPR, see Methods). Here, the two technical replicates share
1863 HVGpaich_free and over 700 HVG reside in either of the replicates (Fig. 3f-g).

After correction by f~scLVM, we retained half of HV Gpaten-ree While we discovered over
5000 HVG in the whole data set (Fig. 3f and extended Fig. 3a-b), which explains f-scLVM'’s
minimal kBET acceptance rate (Fig. 3e). When we compute the FPR on the basis of
log(CPM+1) normalised data, we find a FPR of 27 % (extended Fig. 3c). We obtained the
best result for the combination of log-transformed Counts and ComBat (Fig. 3d) - all
HVGyacnree Were kept after batch correction and only 295 HVG were caused by batch
correction (8 % FPR, see Fig. 39).

In conclusion, batch correction may confound observations massively, masking the
biological signal completely. In addition, even the best batch correction strategy leaves part
of the batch effect in the data (Fig. 3e, g). This explains the increase of the total amount of
HVG after correction (extended Fig. 3b) and FPR (extended Fig. 3c). Both the silhouette
coefficient and PC regression show little discrimination between most of the correction
strategies (extended Fig. 3d-e), whereas kBET resolves them in detail (Fig. 3e and
extended Fig. 3d-e).

Best practice in batch correction

Next, we examined mouse embryonic stem cells cultured in three different conditions (2i, a2i
and LIF)"® and sequenced with the SMARTseq2/C1 protocol (Fig. 4a). These data sets are
rather similar in terms of heterogeneity, but the biological origin of the heterogeneity in each
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culture condition is different (compare ref. 16 for details). Thus applying the same batch
correction and normalisation strategies led to similar results across all culture conditions. We
obtained well-mixed data for all data sets with log(CPM+1) normalisation and batch
correction with ComBat (Fig. 4b and black arrows in Fig. 4c).

In all data sets, log-transformed count data are locally well-mixed in over 50 % of
cases (dark blue full squares in Fig. 4c and extended Fig. 4a-c). We notice a decrease in
acceptance rate in 2i and LIF culture when we compare count data to other normalisation
methods. For batch effect correction, RUV controlled both acceptance rate and overlap in
highly variable genes, but we also noticed an increase in the total number of HVG
(extended Fig. 4d-f) as well as an increased false positive rate (extended Fig. 4g-i). In
contrast, ComBat increased the acceptance rate, preserved almost all HVGpaen-free in all data
sets and had a low false positive rates at the same time.

In a2i, we observe almost perfect mixing in log-transformed data, but we also found
that a considerable amount of cells are isolated, i.e. they do not have a mutual nearest
neighbour. These cells are implicitly removed from the local structure evaluation. If the
isolated cells have a different label composition than the global data set, we find strong
differences in kBET’s rejection rate if isolated cells remain unconsidered (see extended Fig.
4j-k). Therefore, we adapt the expected label composition such that we can neglect the
isolated cells (see Methods). In general, we consider a correction strategy is ill-advised if it
produces considerable amounts of isolated cells when removing batch effects (see
extended Fig. 4a-c).

The performance of batch correction methods varied slightly from data set to data set
(Fig. 4¢c). To test the dependence of batch correction performance and the number of
batches, we subset the 2i data to combinations of three and two batches (see
Supplementary Note 2 and Supplementary Fig. 4b,c). In these batches, library size and
number of detected genes do not correlate well (Supplementary Fig. 4d). Depending on the
combination of batches, we observed performance differences in batch effect correction that
was independent on the number of batches and rather explicable by batch-specific
dissimilarity. Taken together, we demonstrated that classical batch correction tools, in
particular ComBat, successfully remove batch effects and preserve the biological signal
(Table 1).

Going beyond replicates - data set integration across multiple studies

With the explosion of single cell RNA-seq data in recent years'’, we begin to realise the
need for a comprehensive strategy of data integration. Of course, correcting batch effects
between different studies is more challenging than within the same study, especially, if cell
types vary between studies. In this work, we benchmark the batch correction performance
on 8 different Smart-seq based data sets'®® all profiing mouse early embryonic
development from oocyte to blastocyst (Fig. 5a and online Methods).

We remapped the reads to the same reference transcriptome with Salmon?® to
reduce quantification biases?’. Interestingly, even different versions of Salmon resulted in
different degrees of batch effect (see Supplementary Note 3). Batch effects before
correction are quite obvious even in PCA (Fig. 5b-c): Biase et al data and Deng et al data
deviate significantly from others. Consequently, the cells are more likely to cluster by study
rather than embryonic developmental stage. However, we observe that it is possible to
correct the batch effect computationally: the best results are with ComBat on log(counts+1)
(Fig. 5d-e) with an average acceptance rate of 82 % (Supplementary Table 2).


https://doi.org/10.1101/200345
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200345; this version posted October 27, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

When integrating developmental data, we expect that the same cell types from
different studies mix, maintaining the correct trajectory of successive developmental stages.
Hence, we assess the batch effect of each developmental stage based on averaged kBET
results. In parallel, we monitor the developmental progression by silhouette (Fig. 5f). A high
acceptance rate implies good mixing within each developmental stage, and a good
separation of developmental stages translates into higher silhouette coefficients. Before
correction the developmental stages separate weakly (silhouette 0.08 for log(counts+1)).
After correction with Empirical Bayesian methods as limma and ComBat, we observe distinct
clustering according to development stages, but only ComBat achieves a good mixing of
study batches. Notably, the PC1 corresponds to the real developmental time of the cells.

As desired, one of the normalisation and regression methods captures both the
developmental stages and mixes the data from different studies. ComBat with log(counts+1)
yields high acceptance rates and clear clustering by developmental time. This example
illustrates how batch effect correction tools can play a key role in data integration and
provide an effective separation of the biological signal from complex technical variations. In
this work, we considered each study as one batch and ignored any technical substructure
within the studies. Also, cell type distribution as well as cell collection time points differed
slightly across studies, which made the task more difficult. For future data integration efforts
with more complex data structure and less prior knowledge on cell types, the community
needs more sophisticated batch correction methods that model nested batch structures and
several batch variables.

Discussion

Batch effects in single-cell RNA-seq data can have a severe impact on downstream data
analysis if they are not properly accounted for. Moreover, they have a substantial random
noise component that stems mostly from technical factors of the experiment. In the simplest
possible case, where we have technical replicates that are otherwise homogeneous,
ComBat corrects the data and preserves the underlying biological properties
(Supplementary Table 2). At the next level of complexity, with biological replicates such as
two independent cell cultures of the same cell type and more batch-to-batch variability,
ComBat again dealt well with the situation.

Current batch correction methods have been designed to correct bulk RNA-seq or
microarray data. With little or no adaptation, they can be applied to single-cell RNA-seq data.
While single-cell RNA-seq data mirror cell-to-cell variability, they are sparse because of
dropouts in the experiment. Yet, none of the current batch effect correction approaches
tackles the dropout property in single-cell RNA-seq. (A mere mean shift and variance
stabilization would not take into account a batch-to-batch difference that is solely addressing
dropout rates.) Moreover, with thousands of measured cells per data set, optimal memory
usage and efficient implementation will be as important as accurate correction for
confounders (Supplementary Note 4).

In contrast to batch correction with regression models, normalisation aims to reduce
cell-to-cell bias within a batch. Previous studies have discussed appropriate scaling factors
28 put we found that normalising for library size with CPM consistently increased batch
effect compared to raw count data. Also, the number of genes per cell and the library size
may not correlate well across batches (Supplementary Fig. 4d). Nevertheless, CPM
normalisation and the more advanced scaling with scran in combination with ComBat


https://doi.org/10.1101/200345
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200345; this version posted October 27, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

worked very well in deeply sequenced SMARTseq2/C1 data (Fig. 4 and Table 1). In
addition, all batch effect correction methods require a certain statistical property in their
model. For example, RUV requires count data with negative binomial distribution. If the data
input in RUV violates the model assumption, RUV introduces additional variability to the
data, which we described as isolated cells.

The k-nearest neighbour batch effect test (KBET) approach allows the study of high-
dimensional data without prior assumptions regarding statistical properties. Hence, kBET is
applicable to any type of NGS data given a reasonable sample size per batch. Still, the
underlying model assumption requires all batches to be equivalent and interchangeable.
While simple, the translation into balanced experimental design is challenging. For complex
experimental setups as time series data collection, it would require one to collect and
sequence all cells of all time points together. Otherwise data is confounded with both
technical factors and biological variation between samples. With the imminent global efforts
to create a genomic single-cell reference of every tissue in the human body - the Human Cell
Atlas - we need to be able to robustly determine, control and correct numerous sources of
both technical and biological variations.

Methods

Methods, including statements of data availability and any associated accession codes and
references, are available in the online version of the paper.
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kBET -- k-nearest neighbour batch estimation

Let the full gene expression data set D = {x;,...,x,}, where x; € R9 and and X € R™*9 the
corresponding gene expression data matrix with n samples and g genes. In a single-cell
RNA-seq data set X, each sample has meta-information such as cell type, FACS gate or the
batch i it was measured in.

The batch variable i has / categories such that n; denotes the number of samples in batch J,
fi = % the fraction of samples in i, and v = (n4,...,n;) the batch configuration of all

samples.

We formulate the null hypothesis of “data being well-mixed”, i.e. the absence of a batch
effect, as

fi=fivi€e{l,...,1} Vsubsets Nc D

In order to statistically test this hypothesis, let us define a neighbourhood subset N; = x; U
{xs | s is among k — 1 nearest neighbours of j}. Nearest neighbours are computed with the
cover-tree algorithm (FNN R package). To optimize computation efficiency, we pre-compute
the first 50 eigenvectors of the largest eigenvalues with the svd function and use the reduced
data set to find nearest neighbours.

Let n"ji denote the number of cells in batch i that are in subset j of size k. Testing the null
hypothesis involves two steps:

1. We test the null hypothesis in each subset N;of a given sequence of subsets. In each
subset N;, this amounts to testing whether the distribution of n"ji with respect to i
matches the distribution under the null hypothesis.

2. We summarize the result of the sequence of tests by computing the average
rejection rate S over all tests -- a test statistic for the whole data set. Hence, testing
whether S exceeds a significance threshold allows to reject the null-hypothesis for
the whole data set.

Note that by performing these two steps, we go beyond a standard test for homogeneity of
subsets of a given data set.

Xx*-based test

In the limit of high values of k, n"ji is Gaussian distributed with respect to i. A test for small

values of k is provided as exact test (Supplementary Note 1). Then, we can use Pearson's

)(2 test, the test statistic of which reads
l

k (i = fi * k)? 2
K] - f.l ~X l_ll

"« k
i=1

where )(Zl_l denotes the x’-distribution with /-1 degrees of freedom. The p-value for each
K;* is computed as
p;* =1—-F_1(¢"),
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where F,_;(x) denotes the cumulative distribution function of the x-distribution with /-7
degrees of freedom.

Identification of isolated cells and adaptive frequencies

When we determine the local structure of the data as neighbourhoods, we implicitly assume
that every cell has mutual nearest neighbours. That means we expect that every cell can be
found in more than one neighbourhood of size k. If a cell is more distant to its k-7 nearest
neighbours than those neighbours among each other, we call this cell an isolated cell or
outsider. Such a cell does not contribute to any other neighbourhood and the composition of
a tested neighbourhood will not change if an isolated cell is removed from the data entirely.
However, a considerable amount of isolated cells bias the observed outcome if their label
composition is significantly different from the global batch label distribution. We introduce
adaptive expected frequencies that are computed without the isolated cells to adjust for this
effect.

Let Ni5, = {xj| jhas no mutual nearest neighbour }and n;**° denotes the number of cells in

batch i that are isolated. Then, we apply Pearson’s x? test to determine if a certain batch
label class is overrepresented:

l .
2
IS0 — Z ("% — fi * k) ~ 52
fi x k -v

i=1
where the p-value reads p*° =1 —F,_;(x**°), where F,_;(x) denotes the cumulative
distribution function of the Y*-distribution with /-7 degrees of freedom. In case that ps° <
a =0.05, we compute adapted expected frequencies on the basis of
v = (n, —n,%°,...,n, — n;"°) the batch configuration excluding isolated cells.

Principal component regression

Principal component analysis (PCA) is an orthogonal transformation the data matrix
X € R™Yinto a set of linearly uncorrelated variables. The principal components (PCs)
correspond to the eigenvectors of the covariance matrix Cov(X) of the data and are ordered
by the explained variance of the data. If a batch effect is present in the data, it contributes to
the variance. As the set of PCs is uncorrelated, regressing the batch covariate B (with /
categories defined in the kBET model and the i PC returns the coefficient of determination
R?(PC;| B)as approximation of the variance explained by B in each PC (principal component
regression, similar to ref. 28). Overall, the total contribution of the batch effect to the variance
in the data may be approximated by

G
Var(C|B) = Z Var(C|PC,) * R%(PC;|B),

i=1
where Var(C|PC;) is the variance of C explained by the i PC. However, using a linear
regression model enables us to evaluate the significance of R?(PC;|B).For the case of two
batches, the significance test equals a univariate t-test on the loadings of each PC split by
batch covariate. However, as the number of features (genes) increases, the largest and
smallest eigenvalue of the sample covariance matrix converge ?°. Consequently, Var(C|B)
decreases with the number of features as well and due to the high-dimensionality of scRNA-
seq data, batch effects are underestimated.
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We use the sum of explained variance of the PC with the most significant (i.e. highest)
R?(PC;|B)as proxy for the batch effect:

Var(C|B) ~ Z Var(C|PCy), i = arg minjey p(R*(PC;|B))
i

Silhouette coefficient

The calculation of a silhouette aims to determine if a particular clustering has minimised
within-cluster dissimilarity and maximised inter-cluster dissimilarity®°. Let us assume there is
a given clustering into more than one cluster. For each sample /, the silhouette width s(i) is
defined as follows:
Let a(i) be the average dissimilarity between i and all other data points of its cluster A. If j is
the only observation in this cluster, set s(i): = 0. For all other clusters C # A, let d(i, C) be the
average dissimilarity of / to all samples of C. There is some cluster B whose dissimilarity
d(i, B) is minimal: b(i): = min.d(i, C), which is the "neighbouring" cluster to sample i. Then,
the silhouette width s(i)is defined as the scaled difference of average dissimilarity within a
cluster and the average dissimilarity to its "neighbouring" cluster:
. b(i) — a(i)
s(i) = - -
max(a(i), b(i))

Finally, the mean of all silhouette widths s(i) gives the silhouette coefficient s from which we
display its absolute value (in Fig. 2). We adapted the calculation from the scone R package®.

Computation of highly variable genes

In order to determine if a batch correction method is over-correcting, we check the number
highly variable genes (HVG) before and after batch correction. In the Brennecke® model
implemented in the M3Drop*? package, the relation of the squared coefficient of variation

and mean u for each gene follows a Gamma model CV* ~ 7+a0. e
(CV?) and f h foll G del cv2z~ & The CV?

decreases with increasing gene mean expression. A gene is considered as highly variable, if
its CV? is higher than expected from its mean.

To define a batch-free gene set before batch correction, we fit the Brennecke model to each
batch separately and intersect the corresponding sets of HVG. Let / be the number of

batches and a; the set of HVG for batch i, then we denote

l
HVGbatch—free = igl a;

as the set of HVG present in each of the batches in a data set.

More specifically, we considered the fact that highly variable genes depend on the type of
normalisation®. Then, the reference set of highly variable genes consists of all genes that are
highly variable in all batches with log(counts+1) normalisation. After batch correction, we
compute HVG for the whole corrected data set (HVG.y). Ideally, we would retain all
HVGrach-ree  after batch correction. We define the fraction of retained batch-free HVG,
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|HVGbatch—free N HVGeorr|
|HVGbatch—free|
upon batch correction.

Dretained = , to determine if the biological signal in the data is preserved

False positive rate for highly variable genes

We quantify the number of HVG caused by the batch effect as a false positive rate (FPR). In
contrast to the fraction of retained HVG, we define the FPR by the fraction of HVG that are
found in the whole data set but not in any of the batches. More formally, let

e a: set of highly variable genes in the complete data set and

e a; set of highly variable genes in batch /.
Then, the false positive rate reads
|n{_1(anay

lal

FPR = 1 —

Data Normalisation

Data normalisation methods account for the sequencing depth as a size factor and
normalise the expression data to the same comparable level. We summarised the
normalisation methods used in Supplementary Table 1. Briefly, 1) Counts per million (CPM)
is based on the library size; 2) Relative log expression (RLE) ; 3) Trimmed Mean of M-values
(TMM); 4) scran size factor'®; 5) gsmooth from the YARN package®®; 6) Transcripts per
million (TPM) is derived from the mapping by Salmon®®(version 0.8.2).

Batch regression

Methodologically, the recent batch regression approaches either require the assignment of
batches as input or they assess bias in the data independently from batch information. In this
paper, we compare five established batch regression methods (see Supplementary Table 1
for details).

1) limma employs an Empirical Bayes model, we used the removeBatcheffect function from
the limma package>*; 2) the Combat model*® function from sva package®, which is based on
Empirical Bayes methods; 3) the f-scLVM model is a factor analysis based latent variable
model, after training the model, the batch effect related factors or removed using the
regressOut function implemented in the fscLVM package®; 4) PEER is based on factor
analysis38; 5) RUVs, RUVr and RUVg from RUVseq package® remove unwanted variance
according to replicate samples, residuals and control genes. We derive control genes using
the edgeR package® and the top 400 constant genes are used as control genes. The model
parameter k in RUVseq and PEER indicates the number of hidden factors correlated to the
variance. We tested several values from 1 to 7 and 25 % of the sample size. Methods 1-3
require batch information for correction, methods 4-5 assess general bias in the data.
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Simulated data

We model the number of transcripts per gene and per cell as count data that follow the
negative binomial distribution with zero-inflation (ZINB) to account for dispersion and sparsity
caused by dropouts. Mean expression levels for each gene are sampled from the beta-
distribution (with appropriate scaling):
u~ Beta(a,b) -c,

with parameters a = 2,b =5 and ¢ = 100. The dropout probability for each simulated gene
j € {1,...,G} in batch i €{1,2} is modeled by the Ilogistic (sigmoid) function
pij = sigm(—(Bo + B1,ikij)), where B, = —1.5 and f,; = 1/median(y;). In total, every
sample is drawn from s;; ~ NB(u;;, 6 | Ber(p;;)), where 6 =1 and Ber is the Bernoulli
distribution. The mean expression levels of the second batch u, are subject to different
degrees of variation. We multiply a 1 %, 10 % and 20 % of the mean expression levels u
with a Gamma distributed random variable y ~ I'(a,f) and a = § = 1:

o mgy ie{l,.,h-G}
2.5 = 11,5 : else,
where h € {1 %,10 %,20 %} and G is the number of genes in the data set. The Gamma
distribution with the chosen parameters has mean and variance equal to 1 such that the
expected value of the sampled mean expression levels stays unchanged. In addition, we

vary the sample size of the two batches: In each simulation, we sample 500 instances with

111 1

1000 genes each, with the size ratio of the batches being r € {1,5,1,3,5}. This means

equally sized batches contain 250 samples each, and batches with r = g have 450 and 50
samples, respectively.

Public data sets

We applied the batch estimates to several single-cell RNA-seq data sets. In the inDrop
publication, the droplet based sequencing was demonstrated on mouse embryonic stem
cells growing on LIF" medium and additional two technical replicates®. In our analysis, we
have used the two replicates that consist of 5952 cells from two batches and 11308 genes
with at least 2 cells having more than 4 UMI reads per cell.

Kolodziejczyk et al.'®, explored heterogeneity in mESCs cultured with three different media
(2i, alternative 2i and LIF*) on full-length sequenced transcripts (SMART-Seq). The three
conditions include 219, 123 and 207 cells on 4, 2 and 3 batches, respectively.

Further, single-cell RNA-seq has been widely applied in exploring mouse embryonic
development. To test the performance of batch correction for data integration, we collected
single cell RNA-seq data of mouse early embryonic development from 8 different studies'®
% which consist of 56, 49, 124, 65, 15, 294, 17 and 15 cells, respectively. The corresponding
numbers of cells per cell developmental stage are summarised in Fig. 5a.
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Data sources

The mESC data sequenced with inDrop® were downloaded as UMI-filtered read count
matrices with accession number GSE65525.

The mESC data sequenced with full length SMART-seq'® were downloaded from ENA
(project id: PRJEB6455) as fastq files and mapped to Ensembl*® mouse transcriptome
(GRCm38.p5.87, equivalent to UCSC mm10) with Salmon?. Cells were quality controlled
according to data derived from the Espresso database (http://www.ebi.ac.uk/teichmann-
srv/espresso/).

Early embryonic development data were derived from several studies'®? with accession ids:

E-GEOD-57249, E-GEOD-70605, E-MTAB-3321, GSES53386, E-MTAB-2958, E-GEOD-
45719, E-GEOD-44183 and E-GEOD-66582. All studies applied SMARTseq-based
protocols for single-cell RNA-seq. All fastq files were mapped to Ensembl*® mouse
transcriptome (version GRCm38.p5.87) with Salmon?® (version 0.8.2, kmer = 21 to tolerate
different read length). Here, we only consider the studies as batches while omitting the flowcell
batches. We continued our analysis without further gene filtering or quality control.

Software availability

kBET is available as an R package at https://github.com/theislab/kBET.
An  implementation of the batch regression methods is available at:
https://github.com/chichaumiau/batch_regression/.
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Figure legends

Fig. 1: Batch types and the concept of kBET

Estimating the batch effect in single-cell RNA sequencing data. a) Biological and technical
replicates have different origins. Technical replicates are derived from the same biological
samples (in this case cell cultures), while biological replicates are independent samples. b)
Experimental designs: A balanced design allows one to separate technical and biological
sources of variation, while a confounded design mixes both. c) and d) illustrate the concept
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of kBET. c) In a data set with replicates without batch effects, the fraction of the batch label
does not differ from the global label distribution in any neighbourhood. d) If a data set has a
batch effect, data points from respective batches tend to cluster with their 'peers'. Then the
fraction of batch labels differs considerably in arbitrarily chosen neighbourhoods. e)
Overview of normalisation and batch regression methods as well as assessment
approaches.

Fig. 2: kKBET is more sensitive than other batch tests on simulated data

Simulation results for 1000 genes and 500 cells. Two batches in a) and b) are equally sized
with 1 % (a) and 20 % (b) varied gene mean expression levels, see online Methods. ¢) and
d) illustrate how kBET values depend on neighbourhood size for a) and b). Dashed vertical
line shows the optimal neighbourhood size for batch effect detection, i.e. where the rejection
rate is maximal. Shaded areas represent the 95-percentile of repeated kBET tests (subset
size 10 %). e) Comparison of KBET to other batch effect tests: PC regression and silhouette
coefficient. Batch sizes were varied to assess the impact of unequal batch sizes.

Fig. 3: ComBat corrects best on mESC inDrop technical replicates (Klein et al.)

The inDrop protocol provides a large UMI-count data set with two technical replicates (a).
PCA plots (b-d) display log-normalised counts, a biology-removing batch removal (f-scLVM
on log-transformed CPM) and a biology-preserving batch removal (ComBat on log-
transformed counts), respectively. Density plots depicted on the axes show the frequency of
the replicates along the PCs. e) Percentage of retained highly variable genes vs. acceptance
rate for all combinations of normalisations and batch regression approaches. (f,g) Venn
diagrams of highly variable genes per replicate before correction and for the whole data set
after batch correction. Highly variable genes in each replicate are computed on
log(counts+1) values. The f-scLVM method retains 932 highly variable genes but has a high
false positive rate, while ComBat captures all the highly variable genes with a low false
positive rate.

Fig. 4: Deeply sequenced SMARTseq2/C1 mESC data have similar characteristics for
batch correction (Kolodziejczyk et al.)

(a) lllustration of three full-length read data sets with replicates in 2i, a2i and LIF culture (219,
123 and 207 cells, respectively).

(b) PCA plots for log(CPM+1) ComBat corrected data.

(c) Percentage of retained highly variable genes vs. KBET acceptance rate for all
combinations of normalisation and batch correction approaches. Best performing
normalisation-regression strategies cluster in the top right corner, such as ComBat on
log(CPM+1) data.

Fig. 5: kBET assesses in agreement of cell stages in early mouse embryo data
integration

(a) Overview of data from early mouse development from 5 different data sets.

(b-c) PCA plots of log(counts+1) normalised expression data coloured by data set (b) and by
developmental stage (c).

(d-e) PCA plots of of log(counts+1) normalised expression data after batch correction by
limma coloured by data set (d) and by developmental stage (e).

(f) Silhouette coefficient of embryonic development vs. average kBET acceptance rate
(weighted per developmental stage) reveals that ComBat applied to log(counts+1) provides


https://doi.org/10.1101/200345
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200345; this version posted October 27, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

good mixing of cells from different studies in the same developmental stages. This is
indicated by the high KBET acceptance rate and by high silhouette coefficient, indicating the
best separation of developmental stages.

Table 1: Best overall normalisation and batch correction methods
The ranking of batch correction strategies is based on kBET, retained HVG and false
positive rates for Klein et al and Kolodziejczyk et al data. For mouse early embryonic
development data integration, the ranking is based on both KBET and silhouette coefficient.

data set Klein et al. Kolodziejczyk et al. mouse early
embryo
2i azi LIF
normalisation | /log(counts+1)/ | log(CPM+1) | scran TMM/ log(counts+1)
scran pooling pooling [ /log(CPM+1)
batch ComBat ComBat ComBat | limma/ ComBat
correction ComBat
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