bioRxiv preprint doi: https://doi.org/10.1101/199703; this version posted November 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Hierarchy of transcriptomic specialization across human
cortex captured by myelin map topography

Joshua B. Burt!, Murat Demirtag®, William J. Eckner', Natasha M. Navejar®, Jie Lisa Ji*,
William J. Martin®, Alberto Bernacchia®, Alan Anticevic? & John D. Murray'?

' Department of Physics, Yale University, New Haven, CT

*Department of Psychiatry, Yale University School of Medicine, New Haven, CT
3Tulane University, New Orleans, LA

*Interdepartmental Neuroscience Program, Yale University, New Haven, CT
SBlackThorn Therapeutics

University of Cambridge, Cambridge, United Kingdom


https://doi.org/10.1101/199703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/199703; this version posted November 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Hierarchy provides a unifying principle for the macroscale organization of anatomical
and functional properties across primate cortex, yet the microscale bases of specializa-
tion across human cortex are poorly understood. Cortical hierarchy is conventionally
informed by invasive measurements of long-range projections, creating the need for a
principled proxy measure of hierarchy in humans. Moreover, cortex exhibits marked
interareal variation in patterns of gene expression, yet organizing principles of its tran-
scriptional architecture remain unclear. We hypothesized that functional specialization
of human cortical microcircuitry involves hierarchical gradients of gene expression.
We found that a noninvasive neuroimaging measure, the MRI-derived myelin map,
reliably indexes hierarchy and closely resembles the dominant pattern of transcrip-
tomic variation across human cortex. We found strong hierarchical gradients in expres-
sion profiles of genes related to microcircuit function and neuropsychiatric disorders.
Our findings suggest that hierarchy defines an axis shared by the transcriptomic and
anatomical architectures of human cortex, and that hierarchical gradients of microscale

properties contribute to macroscale specialization of cortical function.
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The neocortex of human and nonhuman primates exhibits interareal patterns of structural
and functional variation. Cortical areas are distinguished by differences in their cellular
composition, laminar differentiation, and long-range anatomical connectivity. Primate
cortex also is also characterized by large-scale gradients of specialization in physiology
and function, including in representational selectivity'™ and dynamics of intrinsic activ-

ity*2. Yet it remains unclear how the large-scale functional architecture of cortex may be

subserved by specialization of local microcircuitry.

Recently, analysis of the molecular composition of cortical microcircuitry has been
revolutionized by advances in large-scale high-throughput transcriptomics, which can
produce genome-wide maps of gene expression levels across brain areas. Datasets such
as the Allen Human Brain Atlas (AHBA) have revealed a rich transcriptomic architecture
characterized by spatially heterogeneous gene expression profiles across areas of the hu-
man brain®®. Interareal transcriptional diversity has been related to differences in corti-

7,9—11’ and

cal function, including the spatiotemporal structure of intrinsic network activity

11}12

to spatially heterogeneous patterns of anatomical connectivity However, unifying

principles for the macroscale organization of structural, functional, and transcriptional

differences across human cortex are still unknown.

A parsimonious principle for the large-scale anatomical and functional organiza-

24113416

tion of nonhuman primate cortex is the concept of cortical hierarchy Anatomi-
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cal hierarchy, defined as a globally self-consistent ordering of cortical areas according to
characteristic laminar patterns of interareal projections, has been studied extensively in

monkeys through histological tract-tracing methods'**>

. The ordering of cortical areas
along the anatomical hierarchy, which situates early sensory areas toward the bottom
and higher-order association areas toward the top of the hierarchy, has also been found
to align with their functional organization in sensory processing hierarchies™!>. We hy-
pothesized that the transcriptomic architecture of human cortex is also hierarchically or-
ganized, such that the functional specialization of human cortical microcircuitry involves
hierarchical gradients of gene expression. However, the highly invasive nature of the
tract-tracing data acquisition procedures which are required to index hierarchy in nonhu-

man primates has thus far precluded analogous investigations of cortical organization in

humans, thereby creating the need for noninvasive alternative measures.

To address these open questions, we analyzed transcriptomic, anatomical, and neu-
roimaging data from humans and monkeys to study the hierarchical organization of mi-
crocircuit specialization across human cortex. We found that a noninvasive structural
neuroimaging measure, the MRI-derived myelin map’’, provides a proxy for anatomi-
cal hierarchy in primate cortex. To test for hierarchical gradients in gene expression, we
then compared the spatial expression profiles of genes in the AHBA to the topography of

the human myelin map. We found strong hierarchical gradients in expression profiles of
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genes related to synaptic physiology, cell-type specificity, and cortical cytoarchitecture, in
line with anatomical measurements in monkey. Furthermore, we observed a remarkably
close correspondence between myelin map topography and the dominant spatial pattern
of gene expression variation across human cortex. Finally, we found that hierarchically
patterned genes are preferentially associated with functional processes and brain disor-
ders. Overall, these findings suggest that hierarchy defines an axis shared by the tran-
scriptomic and anatomical architectures of human cortex, and that hierarchical gradients

of microscale properties shape the macroscale specialization of cortical function.

Results

Myelin maps noninvasively capture anatomical hierarchy

To enable the study of hierarchy in human cortex, we first sought to establish a nonin-
vasive neuroimaging measure that can serve as a proxy measure for indexing anatom-
ical hierarchy. One measure we examined was the cortical myelin map, a structural
neuroimaging map which can be measured as the contrast ratio of T1- to T2-weighted
(T1w/T2w) magnetic resonance images'”. The MRI-derived myelin map provides a non-
invasive in vivo correlate of gray-matter intracortical myelin content and captures estab-
lished anatomical borders between cytoarchitecturally delineated cortical areas™. Moti-

vated by the empirical observation that myelin map values are high in primary sensory
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cortex (visual, somatosensory, auditory) and low in association cortex, homologously in
human and monkey (Fig. [Ta—c, Extended Data Fig. [T), we hypothesized that the cortical
myelin map provides a noninvasive proxy for areas’ hierarchical positions through this

inverse myelin-hierarchy relationship.

We validated the myelin map as a proxy measure of anatomical hierarchy in mon-
key cortex by comparing myelin map values to the hierarchy levels derived from conven-
tional tract-tracing approaches which quantify long-range interareal projections and their
laminar specificity’®. These laminar connectivity data are used to specify a globally op-
timal hierarchical ordering of cortical areas, such that lower areas send feedforward pro-
jections to higher areas, and higher areas send feedback projections to lower areas'>°!15
(Extended Data Fig. [2). Feedforward and feedback projections primarily originate from
the supragranular and infragranular cortical layers, respectively®?!>. At the level of indi-
vidual projections, we found that the difference in myelin map values between connected
areas is correlated with the laminar feedforward/feedback structure of the connection

(Fig.[Id). Globally, we found a strong negative correlation between anatomical hierarchy

and myelin map value (r, = —0.76, P < 10~°; Spearman rank correlation) (Fig. [If).

How well does the myelin map capture hierarchy relative to other putative proxy
measures? We compared the performance of the myelin map against two alternative

proxy candidates derived from structural MRI¥: the map of cortical thickness, as cortex
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is generally thicker in association cortex than sensory cortex; and the map of geodesic dis-
tance from primary visual cortex, which defines a posterior-anterior gradient. We found
that the myelin map was more predictive of hierarchy than were either of the two other
candidate proxy measures (Fig. [2). The strong inverse relationship supports the cortical
myelin map as a noninvasive proxy measure for hierarchy. The myelin map can be readily
applied as a proxy measure for hierarchy in human cortex, for which lack of tract-tracing
data precludes the direct characterization of hierarchy according to the conventional ap-

proach.

Hierarchical gradients in cortical microcircuit specialization

To test for hierarchical specialization of microcircuit properties across human cortex, we
examined areal patterns of cortical gene expression variation from the AHBA in relation
to the myelin map. The AHBA is a transcriptional atlas that contains expression levels
measured with DNA microarray probes and sampled from hundreds of neuroanatomical
structures in the left cortical hemisphere across six normal post-mortem human brains®.
From these data, we calculated group-averaged gene expression maps with 180 unilat-
eral cortical areas using a multimodal parcellation from the Human Connectome Project®

(Fig. 3| see Methods). Due to the strong inverse relationship observed between the myelin

map and hierarchy, if gene expression level is negatively correlated with myelin map
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value across areas, then expression level increases with position along the anatomical
hierarchy (i.e., increasing from sensory to association cortex); conversely, a positive corre-
lation indicates decreasing expression level along the hierarchy. To support the validity of
our interpretations, we compared the myelin map correlation (MMC) of microcircuitry-
related genes in human cortex to more direct anatomical measures in monkey cortex, with

focus on cytoarchitecture, inhibitory interneuron densities, and synaptic processes (Fig.

4).

An established feature of microcircuit specialization that varies along cortical hier-
archy is the degree of laminar differentiation in local cytoarchitecture®: primary sensory
cortex is highly laminated and exhibits a thick and well-defined granular layer, whereas
association cortex is characterized by decreasing laminar differentiation and a gradual
loss of the granular layer with progression along the hierarchy. In monkey cortex, we
found a very strong correlation between myelin map value and cytoarchitectural type*!
(Fig. ). In human cortex, we examined average expression profiles of genes reported to
be preferentially expressed in specific cortical layers®. Consistent with trends observed in
monkey cortex, we found a positive MMC for granular (L4) layer-specific genes, and neg-
ative MMCs for supra- (L1-3) and infra-granular (L5/6) layer-specific genes (Fig. @b,c).
These findings demonstrate that the noninvasive myelin map captures anatomical gradi-

ents related to cortical hierarchy in humans and nonhuman primates.
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To gain further insight into microcircuit bases of hierarchical specialization, we ex-
amined the spatial distributions of markers for different inhibitory interneuron cell types.
Inhibitory interneuron cell types fall into several biophysically distinct classes which dif-
fer in their synaptic connectivity patterns, morphology, electrophysiology, and functional

rolesz24,

In monkey cortex, we found that immunohistochemically measured densi-
ties of parvalbumin- and calretinin-expressing interneurons exhibit positive and negative
MMCs, respectively (Fig. [fd). Consistent with these results, in human cortex we found
corresponding hierarchical gradients in the expression profiles for the genes which code
for parvalbumin and calretinin (Fig. EP) In general, we observed strong hierarchical gra-
dients in transcriptional markers for a number of inhibitory interneuron cell types* (Fig.
M), as well as for composite gene expression profiles associated with specific neuronal cell
types derived from RNA sequencing in individual human neurons® (Extended Data Fig.

B). These findings suggest that hierarchical gradients in neuronal cell-type distributions

may contribute to specialization of cortical microcircuit function.

Gradients in the composition of synapses may endow cortical areas with diverse
physiological properties required to perform the various computations which underlie
specialized cognitive and behavioral functions. One putative microanatomical correlate
for the strength of recurrent synaptic excitation in local cortical microcircuits is the num-

ber of excitatory synapses on pyramidal neurons, which can be quantified by counting
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the number of spines on pyramidal cell dendrites. In monkey cortex, we found a strong
negative MMC for basal-dendritic spine counts on cortical pyramidal neurons® (Fig. ).
This finding suggests a gradient of increasing local recurrent excitation strength along the

cortical hierarchy in primates’®.

Distinct subunits of synaptic receptor proteins that mediate neurotransmission are
differentially expressed across neuronal cell types and produce physiologically diverse
synaptic properties. In the AHBA dataset, we examined expression profiles of genes that
code for various excitatory and inhibitory synaptic receptor subunits (Fig. [gh—j). The
gene GRIN2B, which codes for a glutamatergic NMDA receptor subunit mediating local
synaptic excitation preferentially in primate association cortex?’, exhibited a strong nega-
tive MMC, suggesting increased recurrent excitation strength in association cortical areas
and consistent with the spine count gradient observed in monkey. Gene sets coding for
neuromodulatory synaptic receptor subunits also contains strong positive and negative
hierarchical gradients (Extended Data Fig. [4). The positive and negative MMCs reported
in Fig. [j,j suggest that gradients in local excitatory and inhibitory synaptic machinery

contribute to the functional specialization of cortical microcircuitry**%.,

10
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Hierarchy captures the dominant axis of transcriptomic variation

How well does the myelin map capture areal variation in the transcriptomic architec-
ture of human cortex in general? We performed principal component analysis (PCA)
to identify the dominant areal patterns underlying gene expression variation (Fig. [Ba-
e, Extended Data Fig. [6). To test for generality of effects, we analyzed categorical sets
of genes which are preferentially expressed in human brain tissue, neurons, oligoden-
drocytes, and synaptic compartments®<®. To assess statistical significance of effects, we
developed a method for surrogate testing using randomized maps that preserve the spa-
tial autocorrelation structure of the myelin map (Extended Data Fig. [7] see Methods). The
tirst principal component (PC1) is the spatial map that captures the maximal amount of
overall variance in gene expression across areas (Fig. pp). Across all five gene sets, PC1
captures a large fraction of gene expression variance (range: 22-28%, more than twice
PC2) (Fig. pb, Extended Data Fig. [f)), revealing that cortical gene expression patterns are
effectively low-dimensional. Moreover, PC2 and PC3 consistently fractionated early sen-
sory cortical areas by sensory modality, separating somatomotor cortex from early visual

cortex across all five gene sets (Extended Data Fig. [5).

Remarkably, we found that myelin map topography is strongly correlated with PCl,
i.e., the dominant axis of gene expression variation, across all gene sets (MMC range:
0.84-0.86; P < 10~*) (Fig. plc,d). We can also quantify how much gene expression variance

11
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is captured by the myelin map (see Methods). We found that across all gene sets the
myelin map captures roughly two-thirds as much variance as PC1, which by construction
is the spatial map that captures the maximum possible gene expression variation (Fig.
Be). We compared performance of the myelin map against the two alternative candidate
proxy maps, cortical thickness and geodesic distance from primary visual cortex (Fig. ).
Across all gene sets, the myelin map was more strongly correlated with PC1 and captured
more gene expression variance than either alternative map. The close alignment between
myelin map topography and gene expression variance suggests that the dominant axis of

transcriptomic organization in human cortex relates to hierarchy.

Genes that are especially vital to normal healthy cortical function may be more likely
to have consistent spatial expression profiles across individual subjects. Hawrylycz and
colleagues defined differential stability (DS) as the mean pairwise correlation between
subjects’ individual gene expression profiles, which they found predicts association with
key neurobiological functions”. We found a strong nonlinear and positive relationship be-
tween cortical DS and MMC magnitude (Fig. [7p). To gain additional insight into this rela-
tionship, we explored how the MMC distribution is impacted by filtering genes through a
DS threshold. Exclusion of low-DS genes alters the shape of the MMC distribution, from
having a peak near zero to having a trough near zero and roughly symmetric bimodal

peaks at strong MMCs (Fig. [/b). Furthermore, exclusion of low-DS genes renders gene

12
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expression patterns more quasi-one-dimensional, as it strongly increases the fraction of
gene expression variance captured by PC1, while marginally increasing the similarity of
PC1 with the myelin map (Fig. [7c). Together, these results suggest that high-DS genes,
i.e., genes whose spatial expression maps are consistent across individuals, preferentially

exhibit strong positive and negative hierarchical gradients.

Hierarchically expressed genes are enriched for functional and disease
annotations

To examine the functional roles of genes with strong hierarchical variation, we tested for
their preferential enrichment in gene sets defined by functional and disease ontologies.
We found that genes with stronger MMCs are enriched in more functional categories,
relative to genes with weaker MMCs, for all functional gene ontologies tested”®%: biolog-
ical processes, cellular components, molecular functions, microRNA binding sites, and
drug targets (Fig. [8a). These results suggest that diverse key cell-biological processes
contribute to hierarchical differentiation of cortical microcircuitry. Finally, we examined
whether hierarchical expression is a preferential property of genes associated with psy-
chiatric and neurological disorders. For instance, we found that the genes APOE and
SNCA, which are strongly linked to Alzheimer’s and Parkinson’s diseases, respectively*!,
exhibit robust negative MMCs and are therefore more highly expressed in association

cortex (Fig. [Bp,c). For a systematic examination, we statistically quantified the enrich-
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ment of genes with strong hierarchical variation in disease-related gene sets?, obtained
from the DisGeNet database®®. We found that genes with strongly negative MMCs were
significantly over-represented across multiple disease-related gene sets (Fig. [§d). In par-
ticular, gene sets for schizophrenia, bipolar disorder, autistic disorders, and depressive
disorders are significantly enriched with strongly negative MMC genes which are more

highly expressed in association cortex. These findings suggest that brain disorders in-

volve differential impacts to areas along the cortical hierarchy.

Discussion

Taken together, our findings show that cortical hierarchy provides an organizing princi-
ple for the transcriptomic architecture of human cortex. First, the MRI-derived myelin
map provides a noninvasive neuroimaging proxy for anatomical hierarchy in the absence
of axonal tract-tracing data. Second, the principal axis of transcriptional variation across
human cortex aligns with cortical hierarchy as captured by the myelin map. Third, this hi-
erarchical axis reflects microcircuit specialization involving synapses and cell types, with
relevance to brain disease pathophysiology. Strong similarities between the patterns of
anatomical, functional, and transcriptional variation suggest that hierarchical gradients
of microcircuit properties play key roles in the functional specialization of large-scale net-

works across the human cortex.
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Specialization of cortical function may derive in part from the multiple features of
microcircuitry identified here to exhibit hierarchical gradients. In addition to variation
in synaptic subunit composition, stronger recurrent excitation in association cortex can

18‘33’ as

endow association circuits with longer intrinsic timescales of spontaneous activity
observed empirically*®, which subserve the prolonged integration of signals. Further-
more, computational modeling of cortical circuits identifies recurrent excitation strength
as a key property governing functional specialization across areas for core cognitive com-
putations such as working memory and decision making®** Hierarchical gradients of
inhibitory interneuron cell types can additionally shape interareal specialization of dy-
namics and function, due to cell-type differences in physiology and synaptic connectiv-
ity23‘24. For example, parvalbumin-expressing inhibitory interneurons preferentially tar-
get the perisomatic areas of pyramidal neurons where they can gate pyramidal-neuron
outputs. In contrast, calretinin-expressing inhibitory interneurons preferentially target
distal dendrites of pyramidal neurons and other inhibitory interneurons, where they may

play key computational roles in disinhibition-mediated gating of dendritic inputs®.

Our study adds to a growing understanding of how transcriptomic specialization
shapes cortical function. Transcriptional diversity, particularly of genes which regulate
synaptic function and ion channel activity, relates to the spatiotemporal organization

79411

of intrinsic activity in large-scale cortical networks”>™, and transcriptional markers for
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synaptic, neuronal, and axonal structure relate to patterns of anatomical connectivity 2.

Of note, Hawrylycz et al. (2015) found that genes most strongly predictive of functional
connectivity patterns in cortex were shifted toward high DS, and that high-DS genes
were significantly enriched in gene sets related to functional ontologies and brain dis-
eases, leading the authors to suggest these genes constitute a “canonical transcriptional
blueprint” for the human brain”. We found that cortical DS is strongly associated with
MMC (Fig. [7a), and that high-MMC genes exhibit similar functional and brain disease-
related enrichments, indicating that genes whose expression topography is highly con-

served across individuals preferentially exhibit strong hierarchical gradients in cortex.

Our findings show that the myelin map generally captures an axis of hierarchical
differentiation across cortex that reflects multiple features of interareal variation beyond
just intracortical myelin content. Intracortical myelination itself may contribute to hierar-
chical functional specialization in multiple ways®. First, higher myelination may support
speed, fidelity, and efficiency of axonal transmission in sensory cortex*”. Second, myelina-
tion may regulate plasticity through exposure of axons for synapse formation®, leading
to greater plasticity in lightly-myelinated association cortex than in heavily-myelinated
sensory cortex. Third, myelination may reflect proportions of cell types, such as heavily
myelinated parvalbumin-expressing interneurons®. We note that there are interesting de-

viations between the topographies of the myelin map and other hierarchical features. For
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instance, primary motor cortex and retrosplenial cortex exhibit high myelin map values"

yet differ from primary sensory areas in their laminar structure.

Our findings have implications for computational models of large-scale dynamics
in human cortex, which are applied to explain how the structure of resting-state func-
tional connectivity emerges through long-range interactions among cortical areas. Lead-
ing circuit models of human cortex treat cortical microcircuitry as homogeneous across
cortex, with all cortical areas modeled as nodes with identical properties®. Recent mod-
eling has shown that hierarchical heterogeneity can shape functional connectivity!®, and
its alterations in disease states*'. Empirical resting-state functional connectivity exhibits
structure related to cortical hierarchy**, which is captured by myelin map topography*®.
We propose that interareal variation of microcircuit parameters can be anatomically con-
strained by structural neuroimaging maps, such as the myelin map, in next-generation

circuit models of human cortex.

Multiple lines of evidence point to a transcriptional basis for disease phenotypic
variation, linking white matter dysconnectivity** and developmental changes in struc-
tural topology* to genes implicated in schizophrenia. Further characterization of the

developmental trajectory of hierarchical transcriptomic specialization®=

may inform
the progression of neurodevelopmental disorders. Hierarchical gradients in drug targets,

such as receptor subunits, enables preferential modulation of sensory or association corti-
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cal areas through pharmacology, which may guide future rational design of treatments to
target specific macroscale cortical circuits. Large-scale mapping of the cortical transcrip-
tome at finer spatial resolution will further elucidate the microcircuit basis of hierarchical

specialization with laminar®* and cell-type®® specificity.
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Figure 1: Cortical myelin map topography noninvasively captures the hierarchical orga-
nization of primate cortex. (a) The parcellated human cortical myelin map (T1w/T2w
MRI signal) exhibits high values in primary sensory cortical areas relative to associa-
tion areas. (b) Human myelin map values are significantly lower in functionally defined
association networks than in sensory networks (P < 10~*; Wilcoxon signed-rank test)
(Fig. ). Error bars mark the std. dev. across areas.(c) The parcellated macaque mon-
key myelin map topography is similar to that of the human. (d) Myelin map variation
predicts feedforward (FF) and feedback (FB) interareal projections in monkey cortex, as
quantified by the fraction of labeled supragranular layer neurons (SLN) in the source area.
High and low SLN correspond to FF and FB projection motifs, respectively. SLN signif-
icantly correlates with the difference in myelin map values between target and source
areas (r, = —0.44, P < 107%; Spearman rank correlation). (e) Hierarchy levels across corti-
cal areas are estimated by fitting a generalized linear model to predict SLN from pairwise
hierarchical distance. (f) Hierarchy levels are reliably predicted by the myelin map values
in monkey cortex (r; = —0.76, P < 1079).
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Figure 2: Hierarchy in monkey cortex is better captured by the myelin map (T1w/T2w)
than by two other candidate proxy measures derived from structural MRI. (a) Correlation
between hierarchy and cortical thickness. (b) Correlation between hierarchy and geodesic
distance from primary visual cortex (V1), which is a rostro-caudal gradient. (¢) Compari-
son of hierarchy correlation values for the myelin map, thickness map, and distance from
V1. The myelin map is much more strongly correlated with hierarchy than the other two
maps (P < 107?%). Statistical significance is calculated by a test of the difference between
dependent correlations (*, P < 1071 **, P < 107%, ***, P < 1073).
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Figure 3: Procedure for generating group-averaged parcellated maps of gene expression
levels. All analyses of gene expression patterns used group-averaged parcellated expres-
sion maps derived from the Allen Human Brain Atlas (AHBA) (see Methods for details).
The AHBA contains genes expression levels measured with DNA microarray probes and
sampled from hundreds of neuroanatomical structures in the left hemisphere across six
normal post-mortem human brains. First, cortical samples were mapped from volumet-
ric space onto a two-dimensional cortical surface, for each subject. Second, parcellated
gene expression maps were constructed, for each subject, using a parcellation of the cor-
tical surface into contiguous areas. For genes profiled by multiple microarray probes, we
selected a single representative probe for each subject. Finally, a group-level parcellated
expression map for each unique gene was computed by averaging parcellated expression
levels across subjects’ selected gene probes.
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Figure 4: Myelin map topography capture specialization of cortical microcircuitry in hu-
mans and nonhuman primates. (a) Cytoarchitectural type is reliably predicted by the
macaque monkey cortical myelin map (7 = 0.87, P < 10~%; Kendall’s tau correlation). (b)
The average expression map of genes preferentially expressed in human granular layer
4 (L4) is positively correlated with the human cortical myelin map (r; = 0.74, P < 107%;
Spearman rank correlation), consistent with a more prominent granular L4 in sensory
than association cortex. (c) Average expression maps of laminar-specific genes show sig-
nificant myelin map correlations (MMCs). L1-3: supragranular layers 1-3; L5/6: infra-
granular layers 5 and 6. (d) The monkey cortical myelin map captures areal variation in
the relative proportions of calretinin- and parvalbumin-positive inhibitory interneurons.
(e) Genes coding for calretinin (CALB2) and parvalbumin (PVALB) exhibit homologous
hierarchical gradients in human cortex. (f) MMCs of genes coding for markers of specific
inhibitory interneuron cell types.(g) Basal-dendritic spine counts on pyramidal cells are
significantly anti-correlated with the monkey myelin map (r; = —0.71, P < 107%). (h) The
gene coding for the NMDA receptor subunit NR2B (GRIN2B) exhibits a negative MMC
(rs = —0.62, P < 107%). (i, j) MMCs of genes coding for distinct subunits of the excita-
tory NMDA receptor and inhibitory GABA , receptor. Statistical significance is calculated
through a spatial autoregressive model to account for spatial autocorrelation (*, P < 107%;
P <1073 P <107%).
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Figure 5: Myelin map topography captures the dominant axis of gene expression vari-
ation across human cortex. (a) The first principal component (PC1), here for a set of
brain-specific genes, is the areal map that linearly captures the maximum variation in
gene expression. (b) PC1 captures a large fraction of total gene expression variance. Inset:
Variance captured by PC1 for five gene sets: all genes, and genes preferentially expressed
in brain, neurons, oligodendrocytes, and synaptic processes. (c) PC1 for this gene set is
highly correlated with the myelin map (MMC = 0.86; P < 10~*). (d) Across all sets, PC1
exhibits a highly similar areal topography to the myelin map (MMC range: 0.84-0.86;
P < 10~* for each). (e) Gene expression variance captured by the myelin map (aﬁ,lyehn) rel-
ative to PC1 (03,). Statistical significance is calculated through permutation testing with

surrogate maps that preserve spatial autocorrelation structure (¥, P < 107°L* P < 1072
P < 1073).
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Figure 6: Principal component analysis (PCA) shows that the dominant mode of
gene expression (PC1) is better captured by the myelin map than by other candi-
date proxies. (a) Parcellated map of human cortical thickness. (b) The difference
in correlation with PC1 between the myelin map and the cortical thickness map, i.e.,
(rs(Myelin, PC1) — r4(Thickness, PC1)), across several categorical gene sets. Positive val-
ues indicate that the myelin map is more strongly correlated with PC1 than is the thick-
ness map. Statistical significance is calculated by a test of the difference between depen-
dent correlations (*, P < 107%; **, P < 1072, ** P < 107%). (c¢) The difference in the
fraction of gene expression variance captured, relative to the variance captured by PCl,

. . . . 2 2 2
between the myelin map and the cortical thickness map, i.e., (UMyehn — UThickness> /0bc1,

across several categorical gene sets. Positive values indicate that the myelin map cap-
tures more gene expression variance than does the thickness map. Statistical significance
is calculated through permutation testing with surrogate maps that preserve spatial au-
tocorrelation structure (*, P < 107%; **, P < 107%; ***, P < 107?%). (d) Parcellated map
of geodesic distance from primary visual cortical area V1. (e) The difference in correla-
tion with PC1 between the myelin map and the map of distance from area V1. (f) The
difference in the fraction of gene expression variance captured, relative to the variance
captured by PC1, between the myelin map and the map of distance from V1.
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Figure 7: Expression profiles of genes which exhibit strong hierarchical gradients tend to
be relatively stable across individuals. (a) Differential stability (DS), defined as the mean
pairwise Spearman rank correlation between subjects” expression maps, as a function of
the magnitude of the myelin map correlation (MMC) (r, = 0.68, P < 107°; Spearman
rank correlation). Each gray dot represents a single gene. The black line indicates the
average value in a sliding window of size 600 points. (b) Filtering genes by a threshold
on DS alters the shape of the MMC distribution. Increasing the DS threshold filters out
genes whose expression profiles are not relatively consistent across subjects. The trough
which develops near MMC=0 suggests that high-DS genes preferentially exhibit strong
hierarchical gradients. (c) Thresholding genes by DS substantially increases variance cap-
tured by the first principal component (PC1) of gene expression variation (blue) and only
marginally increases PC1’s MMC (red).
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Figure 8: Hierarchical variation relates to enrichment in neurobiological function and
brain disorders. (a) Genes with strong MMCs are overrepresented in functional annota-
tions across multiple gene ontologies (GOs). BP, biological process; CC, cellular compo-
nent; MF, molecular function; MiRNA, microRNA binding site. (b, ¢) Two key risk genes
for neurodegenerative disorders, APOE for Alzheimer’s disease and SNCA for Parkin-
son’s disease, exhibit strongly negative MMCs, with higher expression levels in associ-
ation cortex relative to sensory cortex (APOE: MMC = —0.64, P < 10'*; SNCA: MMC
= —0.80, P < 10*2). APOE is a leading risk gene for Alzheimer’s disease. The ¢4 al-
lele of APOE is the largest genetic risk factor for late-onset Alzheimer’s disease. SNCA
(PARK1/PARK4) is a key risk gene for Parkinson’s disease. Duplication of SNCA is risk
factor for familial Parkinson’s disease with dominant inheritance. SNCA codes for the
alpha-synuclein protein which is the primary component of Lewy bodies, a biomarker of
Parkinson’s disease. (d) Genes with strong negative MMCs are overrepresented in mul-
tiple gene sets associated with neuropsychiatric disorders. Left panel: 20-80% ranges of
MMC for gene sets. Right panel: Enrichment is quantified by the hypergeometric test,
which assesses the statistical significance of overlap between each gene set and the top
(red) or bottom (blue) 20% MMC genes. Inset: Distribution of MMCs across genes.
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Methods

Parcellated cortical myelin maps (T1w/T2w). Cortical myelin maps were defined as
the ratio of T1- to T2-weighted (T1w/T2w) MRI maps as previously characterized*"*,
using the surface-based CIFTI format®’. The T1lw/Tw2 map has been shown to corre-
late with grey-matter intracortical myelination and to reflect architectonic boundaries be-
tween cortical areas'’®®. Of note, it may not index myelin content in white matter. The
group-averaged (N = 69) human myelin map was obtained from the publicly available
Conte69 dataset, which was reported previously to study myelin maps'”. The group-
averaged (N = 334) cortical thickness map was obtained from the Human Connectome
Project (HCP)*®. Human myelin map values for the left cortical hemisphere were parcel-
lated into 180 areas using the Multi-Modal Parcellation (MMP1.0) from the HCP?. As-
signment of MMP1.0 parcels to functional networks (Fig. [Ib, Extended Data Fig. [Ic) was
performed through community detection analysis[49] on time-series correlation from the

HCP resting-state fMRI dataset.

The group-averaged myelin (T1w/Tw) map and thickness map for macaque mon-
key cortex were obtained from the publicly available BALSA database™ (N = 19) (https:
//balsa.wustl.edu/study/show/W336). Monkey myelin map values for the left
cortical hemisphere were parcellated into 91 areas using the M132 parcellation which was

used for the anatomical tract-tracing dataset®. Geodesic distance between two parcels i
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and j is calculated as the average of all pairwise surface-based distances between grayor-

dinate vertices in parcel i and vertices in parcel j.

Anatomical hierarchy levels in monkey cortex. To assess whether macaque cortical
myelin maps could reliably capture the laminar-specific interareal projection patterns
conventionally used to define anatomical hierarchy, we fit a generalized linear model
(GLM) to quantitative laminar projection data, yielding ordinal hierarchy values in 89
cortical areas, following the procedure of ref. [15]. Anatomical tract-tracing data, derived
from retrograde tracers, was obtained from the publicly available Core-Nets database
(http://core-nets.org). Retrograde tracer was injected into a target area 7, and the
number of labeled neurons in source area j were counted. The fraction of external la-
beled neurons, FLNe;;, is a quantitative measure of connection strength defined as the
number of labeled neurons in the source area normalized by the total number of labeled
neurons in all external cortical source areas for a given injection®’. Labeled neurons in
the source areas are classified by location in either supragranular or infragranular lay-
ers. For a given projection, the proportion of supragranular labeled neurons, SLN;;, is
defined as the ratio of Ngypra t0 Noupra + Ninsra fOr neurons labeled in source area j. As
feedforward and feedback connections preferentially originate in supragranular and in-
fragranular layers, respectively’®", SLN is a quantitative measure of hierarchical distance

between two cortical areas™: under this paradigm for laminar-specific projection motifs,
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a pure feedforward connection from source area j to target area i would originate entirely
in the superficial layers, resulting in an SLN of 1. Conversely, a pure feedback projection

originating entirely in deep infragranular layers would result in an SLN of 0.

The GLM procedure for fitting hierarchy from SLN data is described in detail in ref.
[15]. In brief, the hypothesis that SLN is indicative of hierarchical distance can be ex-
pressed as g(SLN;;) = H; — H;, where H; corresponds to the hierarchical position of area
i, and ¢ is an arbitrary and possibly nonlinear function linking SLN values on the unit
interval (0, 1) to their corresponding hierarchical distance. We used a logit link function
to map SLN values from the unit interval to the entire real number line following the pro-
cedure of ref. [18]. Fitting linear predictors (i.e. hierarchical levels) to logit-transformed
SLN values formulates a type of generalized linear model, with maximum likelihood
estimation assuming a binomial family probability distribution for the supra- and infra-
granular neuron counts. To assign more weight to stronger connections during model
estimation of hierarchical levels, we also weight each pathway in the model by the nega-
tive logarithm of the FLNe value. We clip SLN values to lie in the interval (0.01, 0.99) so
the logit-transformed SLN value is well-defined for all pathways used to fit the model.
Furthermore, to reduce the impact of noise on model parameter estimation, we only in-
cluded pathways which contained at least 100 projection neurons when fitting the GLM;

we confirmed that results were generally robust to the choice of neuron count threshold.
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Maximum likelihood estimation of model parameters was done in the R program-
ming language using the glm function. The model-estimated hierarchy levels, invariant
under linear transformations, were rescaled to span the unit interval [0, 1]. To assess the
statistical relationship between myelin map value and hierarchy level, we calculated the
Spearman rank correlation between the 89 ordinal hierarchy values and their correspond-
ing parcellated myelin map values (Fig. 1f). For visual clarity in Fig. 1c,d we remove this
nonlinear transformation by displaying model-estimated hierarchy levels after applying
the inverse-logit (i.e., logistic) transformation. This rescaling preserves the ordering of

areas and therefore does not affect the reported Spearman rank correlations.

Macaque monkey anatomical data: cytoarchitectural types, inhibitory interneuron den-
sities, and pyramidal neuron spine counts. To quantify the statistical relationship be-
tween myelin map value and categorical cytoarchitectural type (Fig. ), we compared
myelin map values to structural classification values reported for 29 regions of primate
visual cortex, obtained from ref. [21]. To characterize hierarchical distributions of cortical
inhibitory interneuron cell types (Fig. @b), we compiled, from multiple immunohisto-
chemical studies, the relative densities of inhibitory interneurons which are immunore-
active (ir) to the three calcium-binding proteins parvalbumin (PV), calretinin (CR), and
calbindin (CB)**®°. To characterize hierarchical variation in pyramidal neuron excitatory

synaptic connectivity (Fig. @), we compiled, from multiple studies by Elston and col-
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leagues™®®!, the number of spines of basal-dendritic trees of layer-3 pyramidal neurons.

For each of these three analyses, we produced a mapping between the 91 areas in the
M132 atlas parcellation, where the myelin map values are calculated, to the architectonic
areas reported in these collated studies (Supplementary Table 1). Where the anatomical
mapping was not a one-to-one correspondence, we mapped the reported anatomical area
onto the set of all M132 parcels with nonzero spatial overlap, and the myelin map value

was calculated as the average across these M312 parcels.

Gene expression preprocessing. The Allen Human Brain Atlas (AHBA) is a publicly
available transcriptional atlas containing gene expression data, measured with DNA mi-
croarrays, that are sampled from hundreds of histologically validated neuroanatomi-
cal structures across six normal post-mortem human brains®. After no significant in-
terhemispheric transcriptional differences were observed in the first two bilaterally pro-
filed brains®, the remaining four donor brains were profiled only in the left cortical hemi-
sphere”. To construct parcellated group-averaged expression maps, we therefore restricted
all analyses to microarray data sampled from the left cortical hemisphere in each of the
six brains. Microarray expression data and all accompanying metadata were downloaded
from the AHBA (http://human.brain-map.org)®. The raw microarray expression
data for each of the six donors includes expression levels of 20,737 genes, profiled by

58,692 microarray probes. These data were preprocessed according to following proce-
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dure:

1. Gene probes without a valid Entrez Gene ID were excluded.

2. Cortical samples exhibiting exceptionally low inter-areal similarity were excluded. We
tirst computed the spatial correlation matrix of expression values between samples us-
ing the remaining 48,170 probes, then summed this matrix across all samples. Samples
whose similarity measure was more than five standard deviations below the mean
across all samples were excluded. At most, this step excluded three samples within a

subject.

3. Samples whose annotations did not indicate that they originated in the left hemisphere
of the cerebral cortex were excluded. To focus analysis to neocortex, we also excluded
samples taken from cortical structures that are cytoarchitecturally similar to the hip-
pocampus, including the rhinal sulcus, piriform cortex, parahippocampal gyrus, and

the hippocampal formation.

4. The remaining cortical samples were mapped from volumetric space onto a two di-
mensional cortical surface by minimizing the pairwise 3D Euclidean distance between
the stereotaxic MNI coordinates reported for each sample, and each grayordinate ver-
tex in the group-averaged surface mesh of the midthickness map in the Conte69 brain
atlas. Cortical samples whose Euclidean distance to the nearest surface vertex was

more than two standard deviations above the mean distance computed across all sam-
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ples were excluded (excluding between 4 and 13 samples per subject). An average

of 203 + 32 samples per subject, yielding 1219 total samples across all six subjects,

remained at this stage.

5. Expression profiles for samples mapped onto the same surface vertex were averaged.

Then expression profiles for each remaining sample were z-scored across gene probes.

6. Expression profiles for each of the 180 unilateral parcels in the HCP’s MMP1.0 cortical
parcellation” were computed in one of the two following ways. (I) For parcels which
had at least one sample mapped directly onto one of their constituent surface vertices,
parcellated expression values were computed by averaging expression levels across
all samples mapped onto the parcel. (II) For parcels which had no samples mapped
onto any of their constituent vertices, we first created densely interpolated expression
maps, in which each surface vertex was assigned the expression level associated with
the most proximal surface vertex onto which a sample had been mapped (i.e., a Voronoi
diagram), determined using surface-based geodesic distance along the cortical surface;
the average of expression levels across parcels’ constituent vertices was then computed

to obtain parcellated expression values.

7. A coverage score was also assigned to each gene probe, defined as the fraction of 180
parcels that had at least one sample mapped directly onto one of its constituent surface

vertices. Probes with coverage below 0.4 (i.e., probes for which fewer than 72 of the
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180 parcels contained samples) were excluded.

8. For each gene profiled by multiple gene probes, we selected and used the expression
profile of a single representative probe. If two probes were available, we selected the
probe with maximum gene expression variance across sampled cortical structures, in
order to more reliably capture spatial patterns of areal heterogeneity. If three or more
probes were available, we selected a probe using a procedure similar to the one de-
scribed in step 2t we computed a correlation matrix of parcellated gene expression
values across the available gene probes, summed the resultant matrix along one of its
dimensions to obtain a quantitative similarity measure for each probe, relative to the
other gene probes, and selected the probe with the highest similarity measure, as it is

most highly representative among all available gene probes.

9. Each subject-level gene expression profile was z-scored before we computed group-
level expression profiles, which were obtained by computing the mean across subjects
which were assigned a probe for that gene. Genes were excluded if fewer than four
subjects were assigned a probe. Finally, group-level expression profiles were z-scored

across areas for each gene.

These steps yielded group-averaged expression values for 16,040 genes across 180 cortical
areas, which were used for all analyses reported here. The myelin map correlation (MMC)
for each gene is reported in Supplementary Table 2.
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Categorical gene sets. We conducted analyses on biologically and physiologically mean-
ingful gene sets extracted from existing databases and neuroscientific literature, reported

below (Supplementary Table 2):

1. Brain-specific. Genes with expression specific to human brain tissue, relative to
other tissues, were obtained from supplementary data set 1 of ref. [62]. Following
ref. [28], brain-specific genes were selected for which expression in brain tissue was

four times higher than the median expression across all 27 different tissues.

2. Neuron- and oligodendrocyte-specific. Brain genes with expression specific to neu-
rons or oligodendrocytes, relative to other central nervous system (CNS) cell types,
were obtained from supplementary data set S3b of ref. [63]. Following ref. [28],
neuron-specific genes were selected for which log-expression in neurons of P7n cell

type in the mouse was 0.5 greater than the median log-expression across 11 CNS cell

types.

3. Synaptome. Four synaptic gene sets encoding proteins in the presynaptic nerve
terminal, presynaptic active zone, synaptic vesicles, and postsynaptic density, were
obtained from SynaptomeDB, an ontology-based database of genes in the human

synaptome=.

4. Neuron subtype-specific. Gene sets representing distinct classes of neuronal sub-

types were obtained from ref. [25], in which clustering and classification analyses
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yielded 16 distinct neuron subtypes, on the basis of differential gene expression
measured by RNA sequencing from single neurons in human cortex. The fraction
of positive values using exon-only derived transcripts per million (TPM) associated
with each subtype-specific gene were obtained from supplementary table S5; within
each neuronal subtype cluster, the TPM values for the cluster genes were normal-
ized and used to create a weighted gene expression profile representative of each

subtype’s spatial topography (Extended Data Fig. [3).

5. Layer-specific. Sets of laminar-specific genes localized to different layers of hu-
man neocortex were obtained from supplementary table S2 of ref. [22]. Genes were
broadly grouped into sets representative of supragranular (L1-3), granular (L4), and

infragranular (L5/6) layers.

Spatial autoregressive modeling. Significance values as indicated by the number of
stars reported on barplots for myelin map correlations were corrected to account for spa-
tial autocorrelation structure in parcellated myelin map and gene expression values. Be-
cause physical quantities like cortical myelination and gene expression must vary smoothly
and continuously in space, measurements recorded from proximal cortical areas tend to
be more similar than measurements recorded from distal areas of cortex. This depar-
ture from the assumption of independent observations biases calculations of statistical

significance. To model this spatial autocorrelation, we used a spatial lag model (SLM)
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commonly applied in the spatial econometrics literature®®, of the form y = pWy+ X3+,
where W is a weight matrix implicitly specifying the form of spatial structure in the data,

and v is normally distributed.

To implement a spatial lag model in the python programming language, we used the
maximum likelihood estimation routine defined in the Python Spatial Analysis Library
(pysal)®. We first determined the surface-based spatial separation between each pair of
cortical parcels by computing the mean of the pairwise distances between a vertex in

parcel i and a vertex in parcel j, from which we constructed a pairwise parcel distance

matrix, D.

Similarity of gene expression profiles was well-approximated by an exponential de-
caying spatial autocorrelation function (Extended Data Fig. [7), as was found in mouse
cortex'?. We fitted the correlation of gene expression profiles between two areas with the
exponential function Corr(z;,z;) ~ exp(—D;;/dy), where x; and z; are vectors contain-
ing the parcellated gene expression values at parcels ¢ and j, D;; is the geodesic distance
between the parcels, and dj is the characteristic spatial scale of autocorrelation. We em-
pirically determined dj by first constructing the pairwise gene co-expression matrix C;; =
Corr(z;, x,), where x; and z; are vectors containing the parcellated gene expression values
at parcels ¢ and j. We then fit the free parameter d, using ordinary least squares (OLS)

regression on the off-diagonal (upper-triangular) elements of the gene co-expression and
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parcel distance matrices, so as to minimize the sum-of-squared-residuals between em-
pirical and model-estimated gene co-expression values over all pairs of cortical parcels,
S = Z e = Z [Ci; — exp(—Dy;/dy)])’. This empirical fit was performed on a set of brain-
i>j >
specific genes. Using the OLS estimate of the spatial autocorrelation scale from the fit to
the empirical gene expression data, we calculated the elements of the spatial weight ma-
trix, W;; = exp(—D;;/dp). Finally, we fit the SLM to parcellated gene expression profiles,
using the maximum likelihood estimator routine (pysal.spreg.ml_lag.ML_Lag) in

pysal. P-values indicated by the number of stars in the bar plots of myelin map correla-

tion correspond to p-values for model parameter 3 defined above.

Of note, spatial autoregressive model parameters do not have the same interpreta-
tion as they do in OLS regression. The parameter 3 reflects the direct (i.e. local) impact on
the dependent variable y due to a unit change in the independent variable z. In addition,
because of the underlying spatial structure, the direct impact of z; on y; results in an indi-
rect effect of y; on neighboring y;. Therefore § cannot be interpreted as a corrected, global
correlation coefficient, and we restrict our use of the SLM to correcting for the biasing

effect of spatially autocorrelated samples on reported significance values.

Theil-Sen estimator. Trend lines in figures are calculated by the Theil-Sen estimator,
which is a nonparametric estimator of linear slope, based on Kendall’s tau rank correla-

tion, that is insensitive to the underlying distribution and robust to statistical outliers.
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It is defined as the median of the set of slopes computed between all pairs of points.

Principal components analysis. We used principal component analysis (PCA) to iden-
tify the dominant modes of spatial variation in the transcriptional profiles of gene ex-
pression in the human cortex. For a set of N genes, each with group-averaged expres-
sion values for P cortical parcels, we constructed a gene expression matrix G with one
row for each cortical parcel and one column for each unique gene (i.e. with dimen-
sions P x N). The P x P spatial covariance matrix C was constructed by computing
the covariance between vectors of gene expression values for each pair of cortical parcels:
C;; = Cov(G}, G), where G; is the i-th row in the matrix G, corresponding to the vector of
N gene expression values for the i-th cortical parcel. Eigen-decomposition is performed
on the spatial covariance matrix to obtain the matrix eigenvectors (i.e., the principal com-
ponents, PCs) and their corresponding eigenvalues, which are the amount of variance
captured by the corresponding PC. To enumerate each principal component, eigenvalues
are ranked in descending order of absolute magnitude, with larger magnitudes indicating
a greater proportion of the total variance captured by the associated PC (i.e., the associ-
ated mode of spatial covariation). PCA therefore allows for simultaneous identification
of spatial patterns of covariation and quantification of the extent to which these spatial

modes capture variance in cortical gene expression profile s.

To quantify the overlap of these spatial PCs with the cortical myelin map vector, we
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compute the Spearman rank correlation coefficient between each P-dimensional PC and
the P-dimensional vector of myelin map values for each cortical parcel. We can quantify
the amount of gene expression variance that is captured along any given spatial map, such
as the myelin map (Fig. [Be, Extended Data Fig. [pjg,k). From the spatial covariance matrix
C, the variance captured along a unit-length vector a, here a demeaned and normalized

map, is given by a' Ca.

Surrogate data generation. To nonparametrically determine significance values in our
PCA results, in Fig. [l and Extended Data Fig. [} we generated surrogate maps with a
spatial autocorrelation structure matched to the empirical data (Extended Data Fig. [7b).
Parameters characterizing the empirical spatial autocorrelation were determined numer-
ically for the cortical myelin map, cortical thickness map, and the map of surface-based
geodesic distance from area V1; in each case, we fit the data using a spatial lag model of
the form y = pWy, where y is a vector of mean-subtracted map values. W is the weight
matrix with zero diagonal and off-diagonal elements W;; = exp(—D;;/d,), where D;; is the
surface-based geodesic distance between cortical areas i and j. Two free parameters p and
dy are estimated by minimizing the residual sum-of-squares®®. Using best-fit parameter
values p and d}, surrogate maps yqu are generated according to ysu., = (H — pW [cio]> - u,
where u ~ N(0, 1). From these surrogate maps we construct null distributions for the ap-

propriate statistics, and report significance values as the proportion of samples in the null
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distribution whose absolute value is equal to or greater than the absolute value of the test

statistic.

Functional enrichment analyses. Functional enrichments were determined using the
ToppGene (https://toppgene.cchmc.org/) web portal?, including gene ontology
annotations (biological process, cellular component, and molecular function); microRNA
targets (from all sources indicated on https:/ /toppgene.cchmc.org/navigation/database.jsp);
and drug annotations (from DrugBank, Comparative Toxicogenomics Database, includ-
ing marker and therapeutic, and Broad Institute CMAP). Significant genes in each cate-
gory were identified using the ToppFun utility. Disease annotations were determined us-
ing curated disease gene associations in the DisGeNet database®® (http: //www.disgenet .
org/web/DisGeNET/menu/home). Hypergeometric testing was used to determine sig-
nificant over-representation of brain-related disease genes in the top and bottom gene

quintiles (20%, 3208 genes) ranked by myelin map correlation, following ref. [7].
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Extended Data Figure 1: Cortical myelin maps exhibit inter-species homology and inter-
hemispheric symmetry. (a) Unparcellated bilateral myelin map (T1lw/T2w) in human
cortex visualized on an inflated cortical surface. (b) Unparcellated bilateral myelin map
(T1w/T2w) in monkey cortex visualized on an inflated cortical surface. Primary sensory
areas (visual, V1; somatosensory, S1; auditory, Al) exhibit high myelin map values, as
do their homologues in human cortex. (c¢) Functional networks derived from resting-
state functional connectivity from the Human Connectome Project (HCP). Cortical areas
are parcellated using the HCP multi-modal parcellation (MMP1.0). We assigned each
region to a functional network using a community detection method applied to resting-
state fMRI data from the HCP, and designated functional labels to networks, including
three sensory and five association, that align with previously reported functional net-
works (with abbreviations labeled in Fig. ): Auditory (AUD), Visual (VIS), Somato-
motor (SOM), Dorsal Attention (DAN), Frontoparietal (FPN), Ventral Attention (VAN),
Default (DMN), and Cingulo-Opercular (CON).
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Extended Data Figure 2: Anatomical cortical hierarchy derived from laminar-specific in-
terareal projections in monkey cortex. (a) Fraction of external labeled neurons (F'LNe).
Target area i is injected with a retrograde tracer that labels neurons in many source areas;
the FLNe in source area j is then defined as the fraction of all external labeled neurons
terminating in area 7 that originated in source area j. Each row of the F'LN matrix is
therefore normalized to 1. Measurements which yielded no labeled neurons are marked
in grey. (b) Fraction of supragranular layer neurons (SLN), defined as the fraction of
neurons in an interareal projection (to target area ¢ from source area j) originating in
supragranular layers. An SLN of 1 indicates that all labeled projection neurons were of
supragranular origin, reflecting a pure feedforward connection; an SLN of 0 indicates
that all projection neurons originated in deep infragranular layers, reflecting a pure feed-
back connection. Measurements which yielded no labeled neurons are marked in grey.
(c) Model-estimated hierarchy values for 89 cortical regions. The blue line indicates hier-
archy levels estimated by the model after shifting and re-scaling them to lie on the unit
interval. The red indicates hierarchy values passed through a logistic function to remove
the nonlinearity introduced by the logit link function in the GLM fitting procedure. The
monotonicity of this transformation preserves the order of the cortical regions and there-
fore does not affect the Spearman rank correlations reported in the main text. (d) Myelin
map values for 89 cortical areas.

49


https://doi.org/10.1101/199703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/199703; this version posted November 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

a Inhibitory interneuron markers

CALB1
CALB2
ccK
CORT
NPY
PNOC
PVALB VIP
SST
VIP |
1 1 1 1
MMC 1
b Excitatory cell types Ex1 Ex2 Ex3 Ex4
Exl § —|
Ex2 |
Ex3 ______E
Ex4  § I
Ex5 | —|
Ext Ex5 Ex6 Ex7 Ex8
Ex7 i I
Ex8 |
1 1 1 1 1
- MMC 1
C Inhibitory cell types In1 In2 In3 In4
In1 ¢
In2 |
In3 i
In4 J—
InS |
n6 — In6 In7 In8
In7 o i
In8 %
" 1 1 ! 1 1
1 MMC 1

Extended Data Figure 3: Expression maps and MMCs for genes that code for markers
of distinct inhibitory interneuron cell types, and for weighted profiles characteristic of
distinct neuronal cell types derived from single-cell RNA sequencing of human cortical
neurons. (a) Markers for inhibitory interneuron cell types. (b) Weighted gene sets for
excitatory neuronal cell types, derived from single-cell RNA sequencing. (c) Weighted
gene sets for inhibitory neuronal cell types, derived from single-cell RNA sequencing.

50


https://doi.org/10.1101/199703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/199703; this version posted November 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

a NMDA

GRIN1
GRIN2A

GRIN2B
GRIN2C
GRIN2D

GRIN3A g-
GRIN3B BE
GRINA §! @@

-1 MMC 1

b GABAA

GABRAL -3
GABRA2 3-
GABRA3 ;-
GABRA4 . .

GRIN3B

GABRA1

GRIN2A

GRINA

DO

GABRA2

GABRAS ;! o @

-1 MMC 1

C Muscarinic
CHRM1
CHRM2
CHRM3

CHRM4

CHRM1

CHRM5

QO

CHRM4

B

ke @O

-1 MMC 1

d Nicotinic
CHRNA10
CHRNA2
CHRNA3
CHRNA4
CHRNA7

CHRNB1

CHRNA10

CHRNA2

=

-1 MMC 1

e Norepinephrine

ADRA1A

ADRA1B

ADRA1D

ADRA2A

ADRA2C

ADRB1

b

d |
I
|*
|
I

*

ADRB2 ﬁ!

-1

DRD1
DRD2
DRD3
DRD4

DRD5

g

HTR1A
HTR1E
HTR1F
HTR2A
HTR2C
HTR3B

HTR4

HTRS5A

-1

MMC

Dopamine

MMC

Serotonin

¥
H]
-*
H
H
.*
%

MMC

1

1

ADRA1A

ADRA2C

ADRA1B

SO0

ADRB2

<

DRD1

-1

HTR1A

HTR1E

o

S0P

HTR1F

&

HTR2C

HTR4

HTR2A

O

HTR3B

LTS el

HTR7

Extended Data Figure 4: Expression maps and MMCs for genes coding for synaptic re-
ceptor subunits and neuromodulator receptors. (a) NMDA receptor subunits. (b) GABA 4
receptor subunits. (¢) Muscarinic acetylcholine receptors (CHRM). (d) Nicotinic acetyl-
choline receptors (CHRN). (e) Norepinephrine receptors (ADR). (f) Dopamine receptors
(DRD). (g) Serotonin receptors (HTR).
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Extended Data Figure 5: Principal component analysis (PCA) reveals that the dominant
axis of gene expression (i.e., the first principal component, PC1) is conserved across cat-
egorical gene sets. PC1, which aligns with the myelin map, separates sensory areas (e.g.,
primary visual, somatosensory, and auditory cortical areas), from association areas. For
each gene set, the secondary and tertiary main of gene expression (i.e., PC2 and PC3) tend
to fractionate sensorimotor cortical areas by modality, separating early visual cortex and
somatomotor cortex. Rows correspond to the first three PCs, respectively, across gene
sets.
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Extended Data Figure 6: The dominant axis of gene expression is better captured by the
myelin map than by two alternative candidate proxies: cortical thickness and distance
from primary visual cortex (V1). (a—e) For five gene sets, the Spearman rank correla-
tion between the first principal component (PC1) and the cortical myelin map, the map
of cortical thickness, and the map of geodesic distance from primary visual cortex. For
each gene set, PC1 is more strongly correlated with the myelin map than with the two
other candidate maps. (f-j) For five gene sets, the amount of gene expression variance
captured, relative to PC1, for the three candidate maps. For each gene set, the myelin
map captures more gene expression variance than do other two maps. (k-o) Percentage
of gene expression variance captured by the top 10 PCs, out of 179 total PCs (due to 180
cortical areas in our parcellation). For all five gene sets, PC1 captures between 22% and
28% of the variance, which is more than twice the amount captured by PC2. (p-t) Dis-
tribution of myelin map correlations (MMCs) across genes for the five gene sets. Dashed
lines mark the mean of the distribution. For all five gene sets, the distributions are broad,
containing large fractions of strong positive and negative MMCs, and centered near zero,
with a range of means (—0.06, +0.04).
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Extended Data Figure 7: Autocorrelation structure in gene expression and myelin maps.
(a) Spatial autocorrelation structure in the parcellated cortical gene expression data is
well-approximated by a decaying exponential. Gene co-expression is defined as the pair-
wise Spearman rank correlation between cortical parcels” gene expression values, here for
the brain-specific gene set. Proximal cortical parcels exhibit more similar gene expression
values compared to distal parcels. All pairs of parcels with geodesic distance less than
100 mm were used to fit the characteristic scale of spatial autocorrelation, illustrated in
red (i.e., exp(—d/dy)), where d is geodesic distance and d, = 29 mm. Each data point cor-
responds to the co-expression of a pair of cortical parcels. Top: Mean co-expression value
as a function of geodesic distance bin. (b) Gene co-expression values after correcting for
spatial autocorrelation structure by subtraction of the fitted exponential decay. After cor-
rection, the mean co-expression value is near zero across all geodesic distance bins. (c)
Example randomized surrogate maps with spatial autocorrelation structure matched to
the cortical myelin map (see Methods). Autocorrelation structure-preserving surrogate
myelin maps are used for nonparametric calculation of statistical significance for PCA
results in Figs. fland [6} (d) Distribution of pairwise Spearman rank correlations between
pairs of surrogate myelin maps.
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