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ABSTRACT

Neurobiological abnormalities associated with psychiatric disorders do not map well to existing diagnostic
categories. High co-morbidity and overlapping symptom domains suggest dimensional circuit-level
abnormalities that cut across clinical diagnoses. Here we sought to identify brain-based dimensions of
psychopathology using multivariate sparse canonical correlation analysis (sSCCA) in a sample of 663 youths
imaged as part of the Philadelphia Neurodevelopmental Cohort. This analysis revealed highly correlated
patterns of functional connectivity and psychiatric symptoms. We found that four dimensions of
psychopathology — mood, psychosis, fear, and externalizing behavior — were highly associated
(r=0.68-0.71) with distinct patterns of functional dysconnectivity. Loss of network segregation between the
default mode network and executive networks (e.g. fronto-parietal and salience) emerged as a common
feature across all dimensions. Connectivity patterns linked to mood and psychosis became more prominent
with development, and significant sex differences were present for connectivity patterns related to mood
and fear. Critically, findings replicated in an independent dataset (n=336). These results delineate
connectivity-guided dimensions of psychopathology that cut across traditional diagnostic categories, which

could serve as a foundation for developing network-based biomarkers in psychiatry.
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INTRODUCTION

Psychiatry relies on signs and symptoms for clinical decision making, while other branches of medicine are
transitioning to the use of biomarkers to aid in diagnosis, prognosis, and treatment selection. The search for
biomarkers in psychiatry has intensified,! and it is increasingly recognized that existing clinical diagnostic
categories could hinder this effort, as they do not pair well with distinct neurobiological abnormalities.*™
The high co-morbidity among psychiatric disorders exacerbates this problem.” Furthermore, studies have
demonstrated common structural, functional, and genetic abnormalities across psychiatric syndromes,
potentially explaining such co-morbidity.>" This body of evidence underscores the lack of direct mapping
between clinical diagnostic categories and the underlying pathophysiology, potentially leading to dramatic

changes to treatment strategies for psychiatric disorders.

This context has motivated the development of the National Institute of Mental Health’s Research Domain
Criteria, which seek to construct a biologically-grounded framework for neuropsychiatric diseases.!1? In
such a model, the symptoms of individual patients are conceptualized as the result of mixed dimensional
abnormalities of specific brain circuits. While such a model system is theoretically attractive, it has been
challenging to implement in practice due to both the multiplicity of clinical symptoms and the many brain

systems implicated in psychiatric disorders.!3 !4

Network neuroscience is a powerful approach for examining brain systems implicated in
psychopathology.'>"7 One network property commonly evaluated is its community structure, or modular
architecture. A network module (also called a sub-network or a community) is a group of densely

interconnected nodes, which may form the basis for specialized sub-units of information processing.
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Converging results across data sets, methods, and laboratories provide substantial agreement on large-scale
functional brain modules such as the somatomotor, visual, default mode, and fronto-parietal control
networks.'82% Furthermore, multiple studies documented abnormalities within this modular topology in
psychiatric disorders.!®%”-28 Specifically, evidence suggests that many psychiatric disorders are associated
with abnormalities in network modules subserving higher-order cognitive processes, including the default

mode and fronto-parietal control networks.?’

30-32 28,33-35

In addition to such module-specific deficits, studies in mood disorders, psychosis, and other
disorders®” % have reported abnormal interactions between modules that are typically segregated from each
other at rest. This is of particular interest as modular segregation of both functional'®-3%3% and structural®’
brain networks is refined during adolescence, a critical period when many neuropsychiatric disorders
emerge. Such findings have led many disorders to be considered “neurodevelopmental
connectopathies.”*!~# Describing the developmental substrates of neuropsychiatric disorders is a necessary
step towards early identification of at-risk youth, and might ultimately allow for interventions that “bend

the curve” of maturation to achieve improved functional outcomes.*

Despite the increasing interest in describing how abnormalities of brain network development lead to the

emergence of neuropsychiatric disorders, existing studies have been limited in several respects. First, most
adopted either a categorical case-control approach, or only examined a single dimension of psychopathology.
Second, especially in contrast to adult studies, existing work in youth has often used relatively small samples
(e.g. dozens of participants). While multivariate techniques could allow examination of both multiple brain

systems and clinical dimensions simultaneously, such techniques usually require large samples.
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In the current study, we sought to delineate functional network abnormalities associated with a broad array
of psychopathology in youth. We capitalized on a large sample of youth from the Philadelphia
Neurodevelopmental Cohort (PNC)* applying a recently-developed machine learning technique called
sparse canonical correlation analysis (sSCCA).*” As a multivariate method, sCCA is capable of discovering
complex linear relationships between two high-dimensional datasets.*®*’ Here, we used sCCA to delineate
linked dimensions of psychopathology and functional connectivity. As described below, we uncovered
dimensions of dysconnectivity that were highly correlated with specific, interpretable dimensions of
psychopathology. We found that each psychopathological dimension was associated with a pattern of
abnormal connectivity, and that all dimensions were characterized by decreased segregation of default mode
and executive networks (fronto-parietal and salience). These network features linked to each dimension of
psychopathology showed expected developmental changes and sex differences. Finally, our results were

replicated in an independent dataset.

RESULTS

We sought to delineate multivariate relationships between functional connectivity and psychiatric symptoms
in a large sample of youth. To do this, we used sCCA, an unsupervised learning technique that seeks to find
correlations between two high-dimensional datasets.*” In total, we studied 999 participants ages 8-22 who
completed both functional neuroimaging and a comprehensive evaluation of psychiatric symptoms as part
of the PNC.%%0 We divided this sample into discovery (n=663) and replication datasets (n=336) that were
matched on age, sex, race, and overall psychopathology (Supplementary Fig. 1 and Supplementary Table

1). Following pre-processing using a validated pipeline that minimizes the impact of in-scanner motion,”


https://doi.org/10.1101/199406
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/199406; this version posted October 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

1 we constructed subject-level functional networks using a 264-node parcellation system! that includes an

2 a priori assignment of nodes to network communities (Fig. 1a-c. e.g. modules or sub-networks; see Online
s Methods). Prior to analysis with sCCA, we regressed age, sex, race, and motion out of both the connectivity
+ and clinical data to ensure that these potential confounders did not drive results. As features that do not

s vary across subjects cannot be predictive of individual differences, we limited our analysis of connectivity

s data to the top 10 percent most variable connections (ranked by median absolute deviation, see Online

7 Methods and Supplementary Fig. 2). The input data thus consisted of 3410 unique functional connections

s (Fig. 1b) and 111 clinical items (Fig. 1c and Supplementary Table 3). Using elastic net regularization

s (L1+ L2), sCCA was able to obtain a sparse and interpretable model while minimizing over-fitting (Fig. 1d
10 and Supplementary Fig. 3 ; see Online Methods). Ultimately, sCCA identified specific patterns (“canonical

n  variates”) of functional connectivity that were linked to distinct combinations of psychiatric symptoms.

= Multivariate analysis reveals linked dimensions of psychopathology and connectivity

13 Based on the scree plot of covariance explained (Fig. 2a), we selected the first seven canonical variates for
1 further analysis. Significance of each of these linked dimensions of symptoms and connectivity was assessed
15 using a permutation test (see Online Methods and Supplementary Fig. 4); False Discovery Rate (FDR) was
16 used to control for type I error rate due to multiple testing. Of these seven cannonical variates, three were
17 significant (Pearson correlation r = 0.71, Prpr < 0.001; » = 0.70, Prpr < 0.001, 7 = 0.68, Prpr < 0.01,

18 respectively) (Fig. 2b), with the fourth showing a trend towards significance (r = 0.68, Prpr = 0.07,

19 Pyuncorrectea = 0.04). Notably, these results were robust to many different methodological choices, including

2 the number of features entered into the initial analysis (Supplementary Fig. 5a), the parcellation system
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(Supplementary Fig. 5b), and the use of regularization with elastic net versus data reduction with principal

component analysis (Supplementary Fig. 5c).

Each canonical variate represented a distinct pattern that relates a weighted set of psychiatric symptoms to a
weighted set of functional connections. Inspection of the most heavily weighted clinical symptom for each
dimension provided an initial indication regarding their content (Fig. 2c-f). For example, “feeling sad” was
the most heavily weighted clinical feature in the first dimension, while “auditory perceptions” was the most
prominent symptom in the second. Next, we conducted detailed analyses to describe the clinical and

connectivity features driving the observed multivariate relationships.

Interpretable, connectivity-guided dimensions of psychopathology cross clinical
diagnostic categories

To understand the characteristics of each linked dimension, we used a resampling procedure to identify both
clinical and connectivity features that were consistently significant across subsets of the data (Online
Methods and see Supplementary Fig. 6). This procedure revealed that 37 out of 111 psychiatric symptoms
reliably contributed to at least one of the four dimensions (Fig. 3). Next, we mapped these data-driven items
to typical clinical diagnostic categories. This revealed that the features selected by multivariate analyses
generally accord with clinical phenomenology. Specifically, despite being selected on the basis of their
relationship with functional connectivity, the first three canonical variates delineated dimensions that
resemble clinically coherent dimensions of mood, psychosis, and fear (e.g. phobias). The fourth dimension,
which was present at an uncorrected threshold, mapped to externalizing behaviors (attention

deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD)).
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While each canonical variate mapped onto coherent clinical features, each dimension contained symptoms
from several different clinical diagnostic categories. For example, the mood dimension was comprised of
symptoms from categorical domains of depression (“feeling sad” received the highest loading), mania
(“irritability”), and obsessive-compulsive disorder (OCD; “recurrent thoughts of harming self or others”)
(Fig. 3a). Similarly, while the second dimension mostly consisted of psychosis-spectrum symptoms (such as
“auditory verbal hallucinations”), two manic symptoms (i.e. “overly energetic” and “pressured speech”)
were included as well (Fig. 3b). The third dimension was composed of fear symptoms, including both
agoraphobia and social phobia (Fig. 3c). The fourth dimension was driven primarily by symptoms of both
ADHD and ODD, but also included the irritability item from the depression domain (Fig. 3d). These
data-driven dimensions of psychopathology align with clinical phenomenology, but in a dimensional

fashion that does not adhere to discrete categories.

Common and dissociable patterns of dysconnectivity contribute to linked
psychopathological dimensions

sCCA identified each dimension of psychopathology through shared associations between clinical data and
specific patterns of dysconnectivity. Next, we investigated the loadings of connectivity features that underlie
each canonical variate. To aid visualization of the high-dimensional connectivity data, we summarized
loading patterns according to network communities established a priori by the parcellation system.
Specifically, we examined patterns of both within-network and between-network connectivity
(Supplementary Fig. 7; Online Methods), as this framework was useful in prior investigations of both brain
development*®>? and psychopathology.®> This procedure revealed that the mood dimension was

associated with increased connectivity within three networks: default mode, fronto-parietal, and salience


https://doi.org/10.1101/199406
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/199406; this version posted October 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

20

21

22

aCC-BY-NC 4.0 International license.

networks (Fig. 4a,e,i). However, the most heavily weighted features in the mood dimension reflected
abnormalities of connectivity between networks. In particular, mood was associated with a lack of segregation
between the default mode and both the fronto-parietal and salience networks. The psychosis dimension
similarly showed elevated connectivity within the default mode network and its reduced segregation from
executive networks (fronto-parietal and salience)(Fig. 4b,£,j). The fear dimension also showed elevated
connectivity within the fronto-parietal and salience networks, but in contrast showed reduced connectivity
within the default mode network itself (Fig. 4c,g,k). As was the case for mood and psychosis, the fear
dimension exhibited a failure of segregation between the default mode and executive networks (Fig. 4c,g k).
Reduced connectivity within the default mode network was also present in the externalizing dimension, as

was reduced segregation between default mode and executive networks (Fig. 4d,h,1).

The results indicate that while each canonical variate was comprised of unique patterns of dysconnectivity,
there were several features that were shared across all dimensions. Such findings agree with accumulating
evidence for common circuit-level dysfunction across psychiatric syndromes.®!? To quantitatively assess
such common features, we compared overlapping results against a null distribution using permutation
testing (see Online Methods). This procedure revealed an ensemble of edges that were consistently
implicated across all four dimensions. These connections can be mapped to individual nodes, and revealed
that the regions most impacted across all dimensions included the frontal pole, superior frontal gyrus,
dorsomedial prefrontal cortex, medial temporal gyrus, and amygdala (Fig. 5a). Similar analysis at the level
of sub-networks (Fig. 5b) illustrated that abnormalities of connectivity within the default mode and
fronto-parietal networks were present in all four psychopathological dimensions (Fig. 5¢). Furthermore,
reduced segregation between the default mode and executive networks, such as the fronto-parietal and

salience systems, was common to all dimensions. These shared connectivity features complement each
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dimension-specific pattern, and offer evidence for both common and dissociable patterns of dysconnectivity

associated with psychopathology.

Developmental effects and sex differences are concentrated in specific dimensions

In the above analyses, we examined multivariate associations between connectivity and psychopathology
while controlling for participant age. However, given that abnormal neurodevelopment is thought to

underlie many psychiatric disorders, =

we next examined whether connectivity patterns significantly
associated with psychopathology differ as a function of age or sex in this large developmental cohort. We
repeated the analysis conducted above using connectivity and clinical features, but in this case did not
regress out age and sex; race and motion were still regressed from both datasets. Notably, the dimensions
derived were quite similar, with highly correlated feature weights (Supplementary Table 2). As in prior
work, %658 developmental associations were examined using generalized additive models with penalized
splines, which allows for statistically rigorous modeling of both linear and non-linear effects while
minimizing over-fitting. Using this approach, we found that the brain connectivity patterns associated with
both mood and psychosis became significantly more prominent with age (Fig. 6a,b, Prpr < 10713,

Pppr < 1075, respectively). Additionally, brain connectivity patterns linked to mood and fear were both

stronger in female participants than males (Fig. 6¢c,d, Prpr < 1078, Prpr < 1077, respectively). We did not

observe age by sex interaction effects in any dimension.

10
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Linked dimensions are replicated in an independent sample

Throughout our analysis of the discovery sample, we used procedures both to guard against over-fitting and
to enhance the generalizablity of results (regularization, permutation testing, resampling). As a final step,
we tested the replicability of our findings using an independent sample, which was left-out from all analyses
described above (n=336, Supplementary Fig. 1). Although this replication sample was half the size of our
original discovery sample, sSCCA identified four canonical variates that highly resemble the original four
linked dimensions of psychopathology (with correlations of loadings between discovery and replication
within 0.24 and 0.88; Fig. 7a,b). In the replication sample, three out of four dimensions were significant after

FDR correction of permutation tests (Supplementary Fig. 8).

DISCUSSION

Leveraging a large neuroimaging data set of youth and recent advances in machine learning, we discovered
several multivariate patterns of functional dysconnectivity linked to interpretable dimensions of
psychopathology that cross traditional diagnostic categories. These patterns of abnormal connectivity were
both highly correlated and replicable in an independent dataset. While each dimension displayed a specific
pattern of connectivity abnormalities, loss of network segregation between the default mode and executive
networks was common to all dimensions. Furthermore, patterns of dysconnectivity displayed unique
developmental effects and sex differences. Together, these results suggest that complex psychiatric

symptoms are associated with specific patterns of abnormal connectivity during brain development.

11
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1+ Both the co-morbidity among psychiatric diagnoses and the notable heterogeneity within each diagnostic
> category suggest that our current symptom-based diagnostic criteria do not “carve nature at its joints”.>

s Establishing biologically-targeted interventions in psychiatry is predicated upon delineation of the

+ underlying neurobiology. This challenge has motivated the NIMH Research Domain Criteria (RDoC) effort,
s which seeks to link circuit-level abnormalities in specific brain systems to symptoms that might be present
s across clinical diagnoses.!"!2 Accordingly, there has been a proliferation of studies that focus on linking

7 specific brain circuit(s) to a specific symptom dimension or behavioral measure across diagnostic

s categories.”10:29,56.59-63 However, by focusing on a single behavioral measure or symptom domain, many

o studies ignore the co-morbidity among psychiatric symptoms. A common way to attempt to evaluate such
1 co-morbidity is to find latent dimensions of psychopathology using factor analysis or related

1 techniques.””-%® For example, factor analyses of clinical psychopathology have suggested the presence of
12 dimensions including internalizing symptoms, externalizing symptoms, and psychosis symptoms.”® While

13 such dimensions are reliable, they are drawn entirely from the covariance structure of self-report or

14 interview-based clinical data, and are not informed by neurobiology.

15 An alternative increasingly pursued is to parse heterogeneity in psychiatric conditions using multivariate

16 analysis of biomarker data such as neuroimaging. For example, researchers have used functional

17 connectivity’ and gray matter density® to study the heterogeneity within major depressive disorder and

1 psychotic disorders, respectively. However, most studies have principally considered only one or two

e clinical diagnostic categories, and typically the analytic approach yields discrete subtypes (or “biotypes”).
20 By definition, such a design is unable to discover continuous dimensions that span multiple categories.

a1 Further, there is tension between the dimensional schema suggested by RDoC and categorical biotypes; as

22 suggested by RDoC, it seems more plausible that psychopathology in an individual results from a mixture

12
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1+ of abnormalities across several brain systems. Finally, unsupervised learning approaches using only imaging
2 data and not considering clinical data may frequently yield solutions that are difficult to interpret, and that

s do not align with clinical experience.

+ In contrast, in this study we used a multivariate analysis technique — sCCA — that allowed simultaneous

s consideration of clinical and functional connectivity data in a large sample with diverse psychopathology.
s This enabled uncovering linked dimensions of psychopathology and dysconnectivity that cross diagnostic
7 categories yet remain clinically interpretable. In contrast to “one-view” multivariate studies® %%+ (such as
s factor analysis of clinical data or clustering of imaging data), the sCCA-derived clinical dimensions were

o explicitly selected on the basis of co-varying signals that were present as both alterations of connectivity and
10 clinical symptoms. Such a “two-view” approach has been successfully applied in studies of

1 neurodegenerative diseases*® and normal brain-behavior relationships.*

2 Notably, the brain-driven dimensions described here incorporated symptoms across several diagnostic

13 categories while remaining congruent with prevailing models of psychopathology. For example, the mood
14 dimension was composed of items from five sections of the clinical interview: depression, mania, OCD,

s suicidality, and psychosis-spectrum. Despite disparate origins, the content of the items forms a clinically

1 coherent picture, including depressed mood, anhedonia, loss of sense of self, recurrent thoughts of self harm,
17 and irritability. Notably, symptoms of irritability were also significantly represented in the externalizing

18 behavior dimension, suggesting that irritability may have heterogeneous, divergent neurobiological

19 antecedents. The fear dimension, on the other hand, represents a more homogeneous picture of various

2 types of phobias (e.g. social phobia and agoraphobia), that had little overlap with other categorical

21 symptoms. Finally, the psychosis dimension (which was only significant in the discovery sample) was

13
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mainly comprised of psychotic symptoms, but also included symptoms of mania. This result accords with
studies demonstrating shared inheritance patterns of schizophrenia and bipolar disorder, and findings that
specific common genetic variants increase risk of both disorders.%® Instead of averaging over many clinical
features within a diagnostic category, sSCCA selected specific items that are most tightly linked to patterns of
dysconnectivity. These groups of symptoms remained highly interpretable, and were reproducible in the

replication data set.

Each of the clinical dimensions identified was highly correlated with patterns of dysconnectivity. These
patterns were summarized according to their location between and within functional network modules,
which has been a useful framework for understanding both brain development and psychopathology.>*-
While each dimension of psychopathology was associated with a unique pattern of dysconnectivity, one of
the most striking findings to emerge was evidence that reduction of functional segregation between the
default mode and fronto-parietal networks was a common feature of all dimensions. The exact connections
implicated in each dimension might vary, but permutation-based analyses demonstrated that loss of
segregation between these two networks was present in all four dimensions. Fox et al.% originally
demonstrated that the default mode network is anti-correlated with task-positive functional brain systems
including the fronto-parietal network. Furthermore, studies of brain maturation have shown that age-related
segregation of functional brain modules is a robust and reproducible findings regarding adolescent brain
development.3¥0 As part of this process, connections within network modules strengthen and connections

38,39 as well as

between two network modules weaken. This process is apparent using functional connectivity
structural connectivity.* Notably, case-control studies of psychiatric disorders in adults have found

abnormalities consistent with a failure of developmental network segregation, in particular between

executive networks, such as the fronto-parietal and salience networks, and the default mode network.2-%

14
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1+ Using a purely data-driven analysis, our results support the possibility that loss of segregation between the
2 default mode and executive networks may be a common neurobiological mechanism underlying

s vulnerability to a wide range of psychiatric symptoms.

+ In addition to such common abnormalities that were present across dimensions, each dimension of

s psychopathology was associated with a unique, highly correlated pattern of dysconnectivity. For example,
s connectivity features linked to the mood dimension included hyper-connectivity within the default mode,
7 fronto-parietal and salience networks. These dimensional results from a multivariate analysis are

s remarkably consistent with prior work, which has provided evidence of default mode hyper-connectivity

s using conventional case-control designs and univariate analysis.?>”%7> However, the data-driven approach
10 used here allowed us to discover a combination of novel connectivity features that was more predictive than
11 traditional univariate association analyses. These features included enhanced connectivity between both the
12 dorsal attention and fronto-parietal networks as well as between the ventral attention and salience networks.
15 The fear, externalizing, and psychosis dimensions were defined by a similar mix between novel features and
14 a convergence with prior studies. Specifically, fear was characterized by weakened connectivity within

15 default mode network, enhanced connectivity within fronto-parietal network, and — in contrast to mood —
16 decreased connectivity between ventral attention and salience networks. In contrast to other dimensions,

7 externalizing behavior exhibited increased connectivity in the visual network and decreased connectivity

e between fronto-parietal and dorsal attention networks.

19 Importantly, each of these dimensions was initially discovered while controlling for the effects of age and

2 sex. However, given that many psychiatric symptoms during adolescence show a clear evolution with

44,74

21 development and marked disparities between males and females,*"* we evaluated how the connectivity

15
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1+ features associated with each dimension were correlated with age and sex. We found that the patterns of

2 dysconnectivity that linked to mood and psychosis symptoms strengthened with age during the adolescent
s period. This finding is consistent with the well-described clinical trajectory of both mood and psychosis

+ disorders, which often emerge in adolescence and escalate in severity during the transition to

s adulthood.””® In contrast, no age effects were found for externalizing or fear symptoms, which are typically
s present earlier in childhood and have a more stable time-course.”””8 Additionally, we observed marked sex
7 differences in the patterns of connectivity that linked to mood and fear symptoms, with these patterns being
s more prominent in females across the age range studied. This result accords with data from large-scale

o epidemiological studies, which have documented a far higher risk of mood and anxiety disorders in

10 females.”?80 Despite marked differences in risk by sex (i.e. double in some samples), the mechanism of such
1 vulnerability has been only sparsely studied in the past.*>°%62 The present results suggest that sex

12 differences in functional connectivity may in part mediate the risk of mood and fear symptoms.

13 Although this study benefited from a large sample, advanced multivariate methods, and replication of

1 results in an independent sample, several limitations should be noted. First, although the item-level data

15 used do not explicitly consider clinical diagnostic categories, the items themselves were nonetheless drawn
16 from a standard clinical interview. Incorporating additional data types such as genomics may capture

17 different sources of important biological heterogeneity. Second, while we successfully replicated our findings
1 (except for the psychosis dimension) in an independent sample, the generalizability of the study should be
19 further evaluated in datasets that are acquired in different settings. Third, all data considered in this study
2 were cross-sectional, which has inherent limitations for studies of development. Ongoing follow-up of this
21 cohort will yield informative data that will allow us to evaluate the suitability of these brain-derived

22 dimensions of psychopathology for charting developmental trajectories and prediction of clinical outcome.
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In summary, in this study we discovered and replicated multivariate patterns of connectivity that are highly
correlated with dimensions of psychopathology in a large sample of youth. These dimensions cross
traditional clinical diagnostic categories, yet align with clinical experience. Each dimension was composed
of unique features of dysconnectivity, while a lack of functional segregation between the default mode
network and executive networks was common to all dimensions. Paralleling the clinical trajectory of each
disorder and known disparities in prevalence between males and females, we observed both marked
developmental effects and sex differences in these patterns of dysconnectivity. As suggested by the NIMH
Research Domain Criteria, our findings demonstrate how specific circuit-level abnormalities in the brain’s
functional network architecture may give rise to a diverse panoply of psychiatric symptoms. Such an
approach has the potential to clarify the high co-morbidity between psychiatric diagnoses and the great
heterogeneity within each diagnostic category. Moving forward, the ability of these dimensions to predict
disease trajectory and response to treatment should be evaluated, as such a neurobiologically-grounded

framework could accelerate the rise of personalized medicine in psychiatry.
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1+ Figure 1| Schematic of sparse canonical correlation analysis (SCCA). (a) Resting-state fMRI data analysis
2 schematic and workflow. After preprocessing, blood-oxygen-level dependent (BOLD) signal time series
s were extracted from 264 spherical regions of interest distributed across the cortex and subcortical structures.
+ Nodes of the same color belong to the same a priori community as defined by Power et al.!? (b) A
s whole-brain, 264 x 264 functional connectivity matrix was constructed for each subject in the discovery
s sample (n =663 subjects). (c) Item-level data from a psychiatric screening interview (111 items, based on
7 K-SADS®!) were entered into sCCA as clinical features. (d) sCCA seeks linear combinations of connectivity
s and clinical symptoms that maximize their correlation. A priori community assignment: SMT:

s somatosensory/motor network; COP: cingulo-opercular network; AUD: auditory network; DMN: default
1 mode network; VIS: visual network; FPT: fronto-parietal network; SAL: salience network; SBC: subcortical
11 network; VAT: ventral attention network; DAT: dorsal attention network; Cerebellar and unsorted nodes not
12 visualized. Psychopathology domains: PSY: psychotic and subthreshold symptoms; DEP: depression; MAN:
1 mania; SUI: suicidality; ADD: attention-deficit hyperactivity disorder; ODD: oppositional defiant disorder;
12 CON: conduct disorder; OCD: obsessive-compulsive disorder; SEP: separation anxiety; GAD: generalized
15 anxiety disorder; PHB: specific phobias; TRT: mental health treatment; PAN: panic disorder; PTSD:

16 post-traumatic stress disorder.

17 Figure 2 | sCCA reveals multivariate patterns of linked dimensions of psychopathology and

s connectivity. (a) The first seven canonical variates were selected based on covariance explained. Dashed

19 line marks the average covariance explained. (b) Three canonical correlations were statistically significant by
2 permutation testing with FDR correction (¢ < 0.05), with the fourth one showing an effect at uncorrected

21 thresholds. Corresponding variates are circled in (a). Error bars denote standard error. Dimensions are

22 ordered by their permutation-based P value. (c-f) Scatter plots of brain and clinical scores (linear
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combinations of functional connectivity and psychiatric symptoms, respectively) demonstrate the correlated
multivariate patterns of connectomic and clinical features. Colored dots in each panel indicate the severity of
a representative clinical symptom that contributed the most to this canonical variate. Each insert displays

the null distribution of sCCA correlation by permutation testing. Dashed line marks the actual correlation.

**Prpr < 0.001, *Pppgr < 0.01, TPuncorrected = 0.04.

Figure 3 | Connectivity-informed dimensions of psychopathology cross clinical diagnostic categories.
(a) The mood dimension was composed of a mixture of depressive symptoms, suicidality, irritability, and
recurrent thoughts of self harm. (b) The psychotic dimension was composed of psychosis-spectrum
symptoms, as well as two manic symptoms. (c) The fear dimension was comprised of social phobia and
agoraphobia symptoms. (d) The externalizing behavior dimension showed a mixture of symptoms from
attention-deficit and oppositional defiant disorders, as well as irritability from the depression section. The
outermost labels are the item-level psychiatric symptoms. The color arcs represent categories from clinical
screening interview and the Diagnostic and Statistical Manual of Mental Disorders (DSM). Numbers in the
inner rings represent sCCA loadings for each symptom in their respective dimension. Only loadings

determined to be statistically significant by a resampling procedure are shown here.

Figure 4 | Specific patterns of within- and between-network dysconnectivity contribute to linked
psychopathological dimensions. (a-d) Modular (community) level connectivity pattern associated with
each psychopathology dimension. Both increased (e-h) and diminished (i-1) connectivity in specific edges
contributed to each dimension of psychopathology. The outer labels represent the anatomical names of
nodes. The inner arcs indicate the community membership of nodes. The thickness of the chords represent

the loadings of connectivity features.
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Figure 5 | Loss of segregation between default mode and executive networks is shared across all
dimensions. (a) By searching for overlap of edges that contributed significantly to each dimension, we
found common edges that were implicated across all dimensions of psychopathology. These were then
summarized at a nodal level by the sum of their absolute loadings. Nodes that contributed significantly to
every dimension included the frontal pole, superior frontal gyrus, dorsomedial prefrontal cortex, medial
temporal gyrus, and amygdala. (b) Results of a similar analysis conducted at the module level. (c) Loss of

segregation between the default mode and executive networks were shared across all four dimensions.

Figure 6 | Developmental effects and sex differences are concentrated in specific dimensions.
Connectivity patterns associated with both the mood (a) and psychosis (b) dimensions increased
significantly with age. Additionally, connectivity patterns associated with both the mood (c) and fear (d)
symptoms were significantly more prominent in females than males. Multiple comparisons were controlled

for using the False Discovery Rate (¢ < 0.05).

Figure 7 | Linked dimensions of psychopathology were replicated in an independent sample. All
procedures were repeated in an independent replication sample of 336 participants. (a) The first four
canonical variates in the replication sample were selected for further analysis based on covariance explained.
Dashed line marks the average covariance explained. (b) The mood, fear, and externalizing behavior
dimensions were significant by permutation testing. Corresponding variates are circled in (a). Error bars

denote standard error. **Prppr < 0.01.
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1 Online Methods

2 Participants Resting-state functional magnetic resonance imaging (rs-fMRI) datasets were acquired as
s part of the Philadelphia Neurodevelopmental Cohort (PNC), a large community-based study of brain

+ development.*® In total, 1601 participants completed the cross-sectional neuroimaging protocol

s (Supplementary Fig. 1a). One subject had missing clinical data. To create two independent samples for

s discovery and replication analyses, we performed random split of the remaining 1600 participants using the
7 CARET package® in R. Specifically, using the function CREATEDATAPARTITION, a discovery sample (n=1069)
¢ and a replication sample (n=531) were created that were stratified by overall psychopathology. The two

s samples were confirmed to also have similar distributions in regards to age, sex, and race (Supplementary
1 Fig. 1b). The overall psychopathology is the general factor score reported previously from factor analysis of

1 the clinical data alone.?%57

12 Of the discovery sample (n=1069), 111 were excluded due to: gross radiological abnormalities, or a history of
13 medical problems that might affect brain function. Of the remaining 958 participants, 45 were excluded for
1 having low quality T1-weighted images, and 250 were excluded for missing rs-fMRI, incomplete voxelwise
15 coverage, or excessive motion during the functional scan, which is defined as having an average framewise
s motion more than 0.20mm or more than 20 frames exhibiting over 0.25mm movement. These exclusion

17 criteria produced a final discovery sample consisting of 663 youths (mean age 15.82, SD = 3.32; 293 males
18 and 370 females). Applying the same exclusion criteria to the replication sample produced 336 participants
19 (mean age 15.65, SD = 3.32; 155 males and 181 females). See Supplementary Table 1 for detailed

2 demographics of each sample.
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1 Psychiatric assessment Psychopathology symptoms were evaluated using a structured screening

> interview (GOASSESS), which has been described in detail elsewhere.”® To allow rapid training and

s standardization across a large number of assessors, GOASSESS was designed to be highly structured, with
+ screen-level symptom and episode information. The instrument is abbreviated and modified from the

s epidemiologic version of the NIMH Genetic Epidemiology Research Branch Kiddie-SADS.8! The

s psychopathology screen in GOASSESS assessed lifetime occurrence of major domains of psychopathology
7 including psychosis spectrum symptoms, mood (major depressive episode, mania), anxiety (agoraphobia,
s generalized anxiety, panic, specific phobia, social phobia, separation anxiety), behavioral disorders

s (oppositional defiant, attention deficit/hyperactivity, conduct) disorders, eating disorders (anorexia,
1 bulimia), and suicidal thinking and behavior. The 111 item-level symptoms used in this study were
1 described in prior factor analysis of the clinical data in PNC.”” For the specific items, see Supplementary

12 Table 3.

13 Image acquisition Structural and functional subject data were acquired on a 3T Siemens Tim Trio

w4 scanner with a 32-channel head coil (Erlangen, Germany), as previously described.**%> High-resolution

15 structural images were acquired in order to facilitate alignment of individual subject images into a common
16 space. Structural images were acquired using a magnetization-prepared, rapid-acquisition gradient-echo

17 (MPRAGE) T1-weighted sequence (Tr = 1810ms; Tz = 3.51ms; FoV = 180 x 240mm; resolution

18 0.9375 x 0.9375 x 1Imm). Approximately 6 minutes of task-free functional data were acquired for each

19 subject using a blood oxygen level-dependent (BOLD-weighted) sequence (Tr = 3000ms; Tz = 32ms; FoV
2 = 192 x 192mm; resolution 3mm isotropic; 124 volumes). Prior to scanning, in order to acclimate subjects to

21 the MRI environment and to help subjects learn to remain still during the actual scanning session, a mock
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1 scanning session was conducted using a decommissioned MRI scanner and head coil. Mock scanning was
2 accompanied by acoustic recordings of the noise produced by gradient coils for each scanning pulse

s sequence. During these sessions, feedback regarding head movement was provided using the MoTrack

+ motion tracking system (Psychology Software Tools, Inc, Sharpsburg, PA). Motion feedback was only given
s during the mock scanning session. In order to further minimize motion, prior to data acquisition subjects’
s heads were stabilized in the head coil using one foam pad over each ear and a third over the top of the head.
7 During the resting-state scan, a fixation cross was displayed as images were acquired. Subjects were

s instructed to stay awake, keep their eyes open, fixate on the displayed crosshair, and remain still.

0 Structural Preprocessing A study-specific template was generated from a sample of 120 PNC subjects
1 balanced across sex, race, and age bins using the BUILDTEMPLATEPARALLEL procedure in ANTS.%

1 Study-specific tissue priors were created using a multi-atlas segmentation procedure.® Subject anatomical
1z images were independently rated by three highly trained image analysts. Any image that did not pass

13 manual inspection was removed from the analysis. Each subject’s high-resolution structural image was

w processed using the ANTS Cortical Thickness Pipeline.®> Following bias field correction,® each structural
15 image was diffeomorphically registered to the study-specific PNC template using the top-performing SYN
i deformation provided by ANTs.% Study-specific tissue priors were used to guide brain extraction and

7 segmentation of the subject’s structural image.%

18 Functional Preprocessing Task-free functional images were processed using one of the top-performing
1o pipelines for removal of motion-related artifact.>! Preprocessing steps included (1) correction for distortions

2 induced by magnetic field inhomogeneities using FSL's FUGUE utility, (2) removal of the 4 initial volumes of

24


https://doi.org/10.1101/199406
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/199406; this version posted October 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

1 each acquisition, (3) realignment of all volumes to a selected reference volume using MCFLIRT,® (4) removal
2 of and interpolation over intensity outliers in each voxel’s time series using AFNI’s 3DDESPIKE utility,

3 (5) demeaning and removal of any linear or quadratic trends, and (6) co-registration of functional data to the
+ high-resolution structural image using boundary-based registration.”® The artefactual variance in the data
s was modelled using a total of 36 parameters, including the 6 framewise estimates of motion, the mean signal
s extracted from eroded white matter and cerebrospinal fluid compartments, the mean signal extracted from
7 the entire brain, the derivatives of each of these 9 parameters, and quadratic terms of each of the 9

s parameters and their derivatives. Both the BOLD-weighted time series and the artefactual model time series

s were temporally filtered using a first-order Butterworth filter with a passband between 0.01 and 0.08 Hz.”!

10 Network construction A functional connectivity network was computed across all parcels of a

1 common parcellation using the residual timeseries following de-noising.!” The functional connectivity

12 between any pair of brain regions was operationalised as the Pearson correlation coefficient between the

s mean activation timeseries extracted from those regions.? For each parcellation, an n x n weighted

14 adjacency matrix encoding the connectome was thus obtained, where n represents the total number of nodes
15 (or parcels) in that parcellation. Community boundaries were defined a priori for each parcellation scheme.
16 As part of the supplementary analysis to demonstrate the robustness of the results independent of

w7 parcellation choices (Supplementary Fig. 5), we also constructed networks based on an alternative system.?

1s  To ensure that potential confounders did not drive the canonical correlations, we regressed out relevant
19 covariates out of the input matrices. Specifically, using the glm and residual.glm functions in R , we

2 regressed age, sex, race and in-scanner motion out of the connectivity data, and regressed age, sex and race
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out of the clinical data. Importantly, we found that the canonical variates derived from regressed and

non-regressed datasets were comparable, with highly correlated feature weights (Supplementary Table 2).

Dimensionality reduction Each correlation matrix comprised 34,980 unique connectivity features. We
reasoned that since sSCCA seeks to capture sources of variation common to both datasets, connectivity
features that are most predictive of psychiatric symptoms would be those with high variance across
participants. Therefore, to reduce dimensionality of the connectivity matrices, we selected the top edges
with the highest median absolute deviation (MAD) (Supplementary Fig. 2). MAD is defined as
median(|X; — median(X)|), or the median of the absolute deviations from the vector’s median. We chose
MAD as a measurement for variance estimation, because it is a robust statistic, being more resilient to
outliers in a data set than other measures such as the standard deviation. To illustrate which edges were
selected based on MAD, we visualized the network adjacency matrix with all edges, at 95th, 90th and 75th

percentile (Supplementary Fig. 2c).

An alternative approach for dimensionality reduction is performing principal component analysis (PCA),
from which we selected the top 111 components (explaining 37% of variance) as connectivity features
entered into sCCA. As detailed in Supplementary Fig. 5, using PCA yielded similar canonical variates as
MAD. We ultimately chose feature selection with MAD because it allowed direct use of individual
connectivity strength instead of latent variables (e.g. components from PCA) as the input features to sCCA,

thus increasing the interpretability of our results.
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1 sCCA Sparse canonical correlation analysis (SCCA) is a multivariate procedure that seeks maximal

> correlations between linear combinations of variables in both sets,”® with regularization to achieve sparsity.*’
s In essence, given two matrices, X,,x, and Y,, x4, where n is the number of observations (e.g.participants), p
+ and g are the number of variables (e.g. clinical and connectivity features, respectively), sCCA involves

s finding u and v, which are loading vectors, that maximize cor(Xu,Yv). Mathematically, this optimization

s problem can be expressed as

maximizeu,vuTXTYv, subject to ||u||§ <1, ||VH§ <1, ulli < e, vl < eo. (1)

7 Since both L! (||x||1) and L?-norm (||x||2) are used, this is an elastic net regularization that combines the
s LASSO and ridge penalties. The penalty parameters for the L? norm are fixed for both u and v at 1, but those

o of L! norm, namely ¢; and cs, are set by the user and need to be tuned (see below).

10 Grid search for regularization parameters We tuned the L' regularization parameters for the

11 connectivity and the clinical features, respectively (see Supplementary Fig. 3). The range of sparsity

12 parameters are constrained to be between 0 and 1 in the PMA package,*” where 0 indicates the smallest

13 number of features (i.e. highest level of sparsity) and 1 indicates the largest number of features (i.e. lowest
1 level of sparsity). We conducted a grid search in increment of 0.1 to determine the combination of parameters
15 that would yield the highest canonical correlation of the first variate across 10 randomly resampled samples,
16 each consisting of two-thirds of the discovery dataset. Note that the parameters were only tuned on the

17 discovery sample and the same regularization parameters were applied in the replication analysis.
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1 Permutation testing To assess the statistical significance of each canonical variate, we used a

2 permutation testing procedure to create a null distribution of correlations (Supplementary Fig. 4).

s Essentially, we held the connectivity matrix constant, and then shuffled the rows of the clinical matrix so as
+ tobreak the linkage of participants’ brain features and their symptom features. Then we performed sCCA
s using the same set of regularization parameters to generate a null distribution of correlations after

s permuting the input data 1000 times (B). As permutation could induce arbitrary axis rotation, which

7 changes the order of canonical variates, or axis reflection, which causes a sign change for the weights, we

s matched the canonical variates resulting from permuted data matrices to the ones derived from the original
o data matrix by comparing the clinical loadings (v).”* The Prpr value was estimated as the number of null
1 correlations ( r; ) that exceeded the average sCCA correlations estimated on the original dataset ( 7 ), with

n  false discovery rate correction (FDR, ¢ < 0.05) across the top seven selected canonical variates:

i L if r>7
— 0, if m<T
Poermutation = = : (2)
P B
12 Resampling procedure To further select features that consistently contributed to each canonical

13 variate, we performed a resampling procedure (Supplementary Fig. 6). In each of 1000 samples, we

11+ randomly selected two-thirds of the discovery sample and then randomly replaced the remaining one-third
15 from those two-thirds (similar to bootstrapping with replacement). Similar to the permutation procedure,
1 we matched the corresponding canonical variates from resampled matrices to the original one to obtain a set
17 of comparable decompositions.” Features whose 95% and 99% confidence intervals (for clinical and

18 connectivity features, respectively) did not cross zero were considered significant, suggesting that they were

19 stable across different sampling cohorts.
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1 Network module analysis To visualize and understand the high dimensional connectivity loading
: matrix, we summarized it as mean within- and between-module loadings according to the a priori
s community assignment of the Power!® parcellation (Supplementary Fig. 7a). Specifically, within-module

+ connectivity loading is defined as

i,5€M

M| x (M] 1) ®

s where I¥; ; is the sCCA loading of the functional connectivity between nodes ¢ and j, which both belong to
¢ the same community m in M. The cardinality of the community assignment vector, | M|, represents the

7 number of nodes in each community. Between-module connectivity loading is defined as

> Wiy

ieM,jeN

7 4
M| > [N @)

s where W; ; is the sSCCA loading of the functional connectivity between nodes i and j, which belong to

o community m in |M| and community n in |N|, respectively.

10 We used a permutation test based on randomly assigning community memberships to each node while
11 controlling for community size to assess the statistical significance of the mean connectivity loadings

12 (Supplementary Fig. 7b). Empirical P-values were calculated similar to Equation 2 and were FDR corrected.

13 Analysis of common connectivity features across dimensions Each connectivity loading matrix was

1 first binarized based on the presence of a significant edge feature after the resampling procedure in a given
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1+ canonical variate. All four binarized matrices were then added and thresholded at 4 (i.e. common to all four
: dimensions), generating an overlapping edge matrix. Statistical significance was assessed by comparing this
s concordant feature matrix to a null model. The null model was constructed by computing the overlapping
+ edges, repeated 1000 times, of four randomly generated loading matrices, each preserving the edge density
s of the original loading matrix. Any edge that appeared at least once in the null model was eliminated from
s further analysis. With only the statistically significant common edge features, we calculated the mean

7 absolute loading in each edge feature across four dimensions as well as the nodal loading strength using

¢ Brain Connectivity Toolbox® and visualized it with BrainNet Viewer”® bothin MATLAB.

o Analysis of age effects and sex differences As previously,*0-°6-8

generalized additive models
1o (GAMs), using the MGCV package” ?® in R, were used to characterize age-related effects and sex differences
1 on the specific dysconnectivity pattern associated with each psychopathology dimension. A GAM is similar

12 to a generalized linear model where predictors can be replaced by smooth functions of themselves, offering

13 efficient and flexible estimation of non-linear effects. For each linked dimension 7, a GAM was fit:

Connectivity Score, ~ Sex + s(Age). 5)

11+ Additionally, we also separately tested whether age by sex interactions were present.
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Figure 1 | Schematic of sparse canonical correlation analysis (SCCA). (a) Resting-state fMRI data analysis schematic
and workflow. After preprocessing, blood-oxygen-level dependent (BOLD) signal time series were extracted from 264
spherical regions of interest distributed across the cortex and subcortical structures. Nodes of the same color belong
to the same a priori community as defined by Power et al.'” (b) A whole-brain, 264 x 264 functional connectivity
matrix was constructed for each subject in the discovery sample (n =663 subjects). (c) Item-level data from a psychiatric
screening interview (111 items, based on K-SADS®!) were entered into sCCA as clinical features. (d) sSCCA seeks linear
combinations of connectivity and clinical symptoms that maximize their correlation. A priori community assignment: SMT:
somatosensory /motor network; COP: cingulo-opercular network; AUD: auditory network; DMN: default mode network;
VIS: visual network; FPT: fronto-parietal network; SAL: salience network; SBC: subcortical network; VAT: ventral
attention network; DAT: dorsal attention network; Cerebellar and unsorted nodes not visualized. Psychopathology
domains: PSY: psychotic and subthreshold symptoms; DEP: depression; MAN: mania; SUT: suicidality; ADD: attention-
deficit hyperactivity disorder; ODD: oppositional defiant disorder; CON: conduct disorder; OCD: obsessive-compulsive
disorder; SEP: separation anxiety; GAD: generalized anxiety disorder; PHB: specific phobias; TRT: mental health
treatment; PAN: panic disorder; PTSD: post-traumatic stress disorder.
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Figure 2 | sCCA reveals multivariate patterns of linked dimensions of psychopathology and connectivity. (a) The
first seven canonical variates were selected based on covariance explained. Dashed line marks the average covariance
explained. (b) Three canonical correlations were statistically significant by permutation testing with FDR correction
(¢ < 0.05), with the fourth one showing an effect at uncorrected thresholds. Corresponding variates are circled in (a).
Error bars denote standard error. Dimensions are ordered by their permutation-based P value. (c-f) Scatter plots of brain
and clinical scores (linear combinations of functional connectivity and psychiatric symptoms, respectively) demonstrate
the correlated multivariate patterns of connectomic and clinical features. Colored dots in each panel indicate the severity
of a representative clinical symptom that contributed the most to this canonical variate. Each insert displays the null
distribution of sCCA correlation by permutation testing. Dashed line marks the actual correlation. ***Prpr < 0.001,

>H-PFDR < 001, TPu'nco'r'rected = 0.04.
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Figure 3 | Connectivity-informed dimensions of psychopathology cross clinical diagnostic categories. (a) The mood
dimension was composed of a mixture of depressive symptoms, suicidality, irritability, and recurrent thoughts of self
harm. (b) The psychotic dimension was composed of psychosis-spectrum symptoms, as well as two manic symptoms.
(c) The fear dimension was comprised of social phobia and agoraphobia symptoms. (d) The externalizing behavior
dimension showed a mixture of symptoms from attention-deficit and oppositional defiant disorders, as well as irritability
from the depression section. The outermost labels are the item-level psychiatric symptoms. The color arcs represent
categories from clinical screening interview and the Diagnostic and Statistical Manual of Mental Disorders (DSM).
Numbers in the inner rings represent sCCA loadings for each symptom in their respective dimension. Only loadings
determined to be statistically significant by a resampling procedure are shown here.
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Figure 4 | Specific patterns of within- and between-network dysconnectivity contribute to linked psychopathologi-
cal dimensions. (a-d) Modular (community) level connectivity pattern associated with each psychopathology dimension.
Both increased (e-h) and diminished (i-1) connectivity in specific edges contributed to each dimension of psychopathol-
ogy. The outer labels represent the anatomical names of nodes. The inner arcs indicate the community membership of
nodes. The thickness of the chords represent the loadings of connectivity features.
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Figure 5 | Loss of segregation between default mode and executive networks is shared across all dimensions. (a) By
searching for overlap of edges that contributed significantly to each dimension, we found common edges that were
implicated across all dimensions of psychopathology. These were then summarized at a nodal level by the sum of their
absolute loadings. Nodes that contributed significantly to every dimension included the frontal pole, superior frontal
gyrus, dorsomedial prefrontal cortex, medial temporal gyrus, and amygdala. (b) Results of a similar analysis conducted
at the module level. (c) Loss of segregation between the default mode and executive networks were shared across all
four dimensions.
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Figure 6 | Developmental effects and sex differences are concentrated in specific dimensions. Connectivity patterns
associated with both the mood (a) and psychosis (b) dimensions increased significantly with age. Additionally, connec-
tivity patterns associated with both the mood (c) and fear (d) symptoms were significantly more prominent in females
than males. Multiple comparisons were controlled for using the False Discovery Rate (¢ < 0.05).
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Figure 7 | Linked dimensions of psychopathology were replicated in an independent sample. All procedures were
repeated in an independent replication sample of 336 participants. (a) The first four canonical variates in the replication
sample were selected for further analysis based on covariance explained. Dashed line marks the average covariance
explained. (b) The mood, fear, and externalizing behavior dimensions were significant by permutation testing. Corre-
sponding variates are circled in (a). Error bars denote standard error. **Prpr < 0.01.
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Supplementary Figure Legends

Supplementary Figure 1 | Sample Construction. (a) The cross-sectional sample of the Philadelphia
Neurodevelopmental Cohort (PNC) has 1601 participants in total. Excluding the one missing clinical data,
1600 participants were randomly stratified into a discovery (n=1069) and a replication (n=531) sample.
Applying health, structural and functional imaging quality exclusion criteria (details in Online Methods),
663 and 336 subjects were included in the final discovery and replication samples, respectively. (b) The two
samples had similar demographic composition, including distributions of age, race, sex and overall

psychopathology.

Supplementary Figure 2 | Connectivity feature selection using median absolute deviation (MAD). Since
sCCA seeks to capture sources of variation common to both datasets, we selected top 10% or 3410
connectivity features that were variable across the discovery sample. (a) The variance was calculated using
the median absolute deviation (MAD). It is defined as the median of the difference between each element
and the median in a vector. (b) MAD of each edge strength in decreasing order. The 95th, 90th, and 75th
percentile are labeled, where the 90th corresponds to 3410 edges. (c) Average connectivity matrix across all

participants of edges with MAD at 100th, 95th, 90th, and 75th percentile levels.

Supplementary Figure 3 | Grid search for regularization parameters. We tuned the L' regularization
parameters for the connectivity and the clinical features in sCCA. The range of sparsity parameters is
constrained to be between 0 and 1 in the PMA package,*” where 0 indicates the smallest number of features
(i.e. highest level of sparsity) and 1 indicates the largest number of features (i.e. lowest level of sparsity). We

conducted a grid search in increment of 0.1 to determine the combination of parameters that would yield the
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highest canonical correlation of the first variate across 10 randomly resampled datasets, each consisting of

two-thirds of the discovery dataset.

Supplementary Figure 4 | Permutation testing to assess significance of linked dimensions. (a) Schematic
of permutation procedure. Connectivity data was held constant, while the rows of the clinical matrix were
randomly shuffled, so as to break the linkage of participants’ connectivity features and their symptom
features. As permutation could induce arbitrary axis rotation, which changes the order of canonical variates,
or axis reflection, which causes a sign change for the weights, we matched the canonical variates resulting
from permuted data matrices to the ones derived from the original data matrix by comparing the clinical
loadings (v).** (b) Null distributions of correlations generated by the permuted data. Dashed line represents

the correlation from the original dataset.

Supplementary Figure 5 | Patterns of canonical variates were robust to methodological choices. We
found four canonical variates based on covariance explained and correlation across methodological choices,
including (a) the number of features entered into the analysis (edges with top 5% variance based on MAD),
(b) an alternative parcellation (Gordon et al.”?), and (c) using alternative techniques of dimensionality
reduction (the first 111 principal components). Dashed line marks the average covariance explained.

Corresponding variates on the right panels are circled in the left. Error bars denote standard error.

Supplementary Figure 6 | Resampling procedure to identify stable features contributing to each linked
dimension. (a) Schematic of the resampling procedure. In each sample, two-thirds of the discovery dataset
was first randomly selected. The sample size was completed to be the same as the original by replacing with
those already selected. (b) Resampling distribution for clinical features in each linked dimension. Each bar

represents the 95% confidence interval. DSM categories to which each symptom item belongs are shown.
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Supplementary Figure 7 | Network module analysis. (a) Summarizing loadings on a between- and
within-network basis using a priori community assignment from the parcellation of Power et al.!®° (b)
Schematic for generating null model for modular analysis. Community membership was randomly assigned
to each node while controlling for community size. Mean between- and within-module loadings were then
calculated based on these permuted modules, which we used to assess the statistical significance by

comparing the orginal values against the null distribution.

Supplementary Figure 8 | Canonical variates in the replication sample accord with those found in the
discovery sample. (a) Scatter plots of brain and clinical scores (linear combinations of functional
connectivity and psychiatric symptoms, respectively) demonstrate the correlated multivariate patterns of
connectomic and clinical features. Colored dots in each panel indicate the severity of a representative clinical
symptom that contributed the most to this canonical variate. Each insert displays the null distribution of

sCCA correlation by permutation testing. Dashed line marks the actual correlation.
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Supplementary Figure 1 | Sample Construction. (a) The cross-sectional sample of the Philadelphia Neurodevelopmental
Cohort (PNC) has 1601 participants in total. Excluding the one missing clinical data, 1600 participants were randomly
stratified into a discovery (n=1069) and a replication (n=531) sample. Applying health, structural and functional imaging
quality exclusion criteria (details in Online Methods), 663 and 336 subjects were included in the final discovery and
replication samples, respectively. (b) The two samples had similar demographic composition, including distributions of
age, race, sex and overall psychopathology.
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Supplementary Figure 2 | Connectivity feature selection using median absolute deviation (MAD). Since sCCA seeks
to capture sources of variation common to both datasets, we selected top 10% or 3410 connectivity features that were
variable across the discovery sample. (a) The variance was calculated using the median absolute deviation (MAD). It
is defined as the median of the difference between each element and the median in a vector. (b) MAD of each edge
strength in decreasing order. The 95th, 90th, and 75th percentile are labeled, where the 90th corresponds to 3410 edges.
(c) Average connectivity matrix across all participants of edges with MAD at 100th, 95th, 90th, and 75th percentile levels.
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Supplementary Figure 3 | Grid search for regularization parameters. We tuned the L' regularization parameters for
the connectivity and the clinical features in SCCA. The range of sparsity parameters is constrained to be between 0 and 1
in the PMA package,47 where 0 indicates the smallest number of features (i.e. highest level of sparsity) and 1 indicates the
largest number of features (i.e. lowest level of sparsity). We conducted a grid search in increment of 0.1 to determine the
combination of parameters that would yield the highest canonical correlation of the first variate across 10 randomly
resampled datasets, each consisting of two-thirds of the discovery dataset.
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Supplementary Figure 4 | Permutation testing to assess significance of linked dimensions. (a) Schematic of permuta-
tion procedure. Connectivity data was held constant, while the rows of the clinical matrix were randomly shulffled, so as
to break the linkage of participants’ connectivity features and their symptom features. As permutation could induce
arbitrary axis rotation, which changes the order of canonical variates, or axis reflection, which causes a sign change for
the weights, we matched the canonical variates resulting from permuted data matrices to the ones derived from the
original data matrix by comparing the clinical loadings (v).** (b) Null distributions of correlations generated by the
permuted data. Dashed line represents the correlation from the original dataset.
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Supplementary Figure 5 | Patterns of canonical variates were robust to methodological choices. We found four canon-
ical variates based on covariance explained and correlation across methodological choices, including (a) the number of
features entered into the analysis (edges with top 5% variance based on MAD), (b) an alternative parcellation (Gordon et
al.””), and (c) using alternative techniques of dimensionality reduction (the first 111 principal components). Dashed line
marks the average covariance explained. Corresponding variates on the right panels are circled in the left. Error bars
denote standard error.
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Supplementary Figure 6 | Resampling procedure to identify stable features contributing to each linked dimension.
(a) Schematic of the resampling procedure. In each sample, two-thirds of the discovery dataset was first randomly
selected. The sample size was completed to be the same as the original by replacing with those already selected. (b)
Resampling distribution for clinical features in each linked dimension. Each bar represents the 95% confidence interval.
DSM categories to which each symptom item belongs are shown.
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Supplementary Figure 7 | Network module analysis. (a) Summarizing loadings on a between- and within-network basis
using a priori community assignment from the parcellation of Power et al.'” (b) Schematic for generating null model for
modular analysis. Community membership was randomly assigned to each node while controlling for community size.
Mean between- and within-module loadings were then calculated based on these permuted modules, which we used to
assess the statistical significance by comparing the orginal values against the null distribution.
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Supplementary Figure 8 | Canonical variates in the replication sample accord with those found in the discovery
sample. (a) Scatter plots of brain and clinical scores (linear combinations of functional connectivity and psychiatric
symptoms, respectively) demonstrate the correlated multivariate patterns of connectomic and clinical features. Colored
dots in each panel indicate the severity of a representative clinical symptom that contributed the most to this canonical
variate. Each insert displays the null distribution of sCCA correlation by permutation testing. Dashed line marks the
actual correlation.
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Supplementary Tables

Supplementary Table 1 | Demographics in each sample

Discovery  Replication Total
n 663 336 999
Sex Male 293 155 448
“* Female 370 181 551
White 306 153 459
Race  Black 286 141 427
Other 71 42 113
8-10 70 40 110
Age  11-13 125 63 188
14-16 195 102 297
17-19 206 100 306
20-22 58 30 88
>22 9 1 10

mean 1582 +3.32 15.65+3.32 15.76 +3.32
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Supplementary Table 2 | Correlations of loadings between covariate-regressed and non-regressed features

Connectivity Symptoms

Mood 0.73 0.54
Psychosis 0.95 0.88

Fear 0.70 0.35
Externalizing behavior 0.98 0.97

Loadings of both connectivity and clinical features across dimensions were highly correlated between input
data that had age and sex regressed out of and those that had not. All correlations were statistically

significant (Prpr < 0.001).
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Supplementary Table 3 | Clinical Assessment

Questions from the GOASSESS Semi-Structured Interview

DSM Label Question
ADDO011 Did you often have trouble paying attention or keeping your mind
on your school, work, chores, or other activities that you were doing?
(trouble paying attention)

Attention ADDO012  Did you often have problems following instructions and often fail to
Deficit finish school, work, or other things you meant to get done?
Disorder ADDO013  Did you often dislike, avoid, or put off school or homework (or any other

activity requiring concentration) (problems following instructions)

ADDO014 Did you often lose things you needed for school or projects at home
(assignments or books) or make careless mistakes in school work or
other activities? (making careless mistakes)

ADDO015 Did you often have trouble making plans, doing things that had to
be done in a certain kind of order, or that had a lot of different steps?
(trouble making plans)

ADDO016 Did you often have people tell you that you did not seem to be listen-
ing when they spoke to you or that you were daydreaming? (trouble
listening)

ADDO020 Did you often have difficulty sitting still for more than a few minutes
at a time, even after being asked to stay seated, or did you often fidget
with your hands or feet or wiggle in your seat or were you “always on
the go”? (difficulty sitting still)

ADDO021  Did you often blurt out answers to other people’s questions before they
finished speaking or interrupt people abruptly?

ADDO022 Did you often join other people’s conversations or have trouble waiting
your turn (e.g., waiting in line, waiting for a teacher to call on you in
class)? (difficulty waiting turns)

AGRO01  Looking at this card, have you ever been very nervous or afraid of being
in crowds (for example, a classroom, cafeteria, restaurant, or movie
theater)?

AGRO002 Looking at this card, have you ever been very nervous or afraid of going
to public places (such as a store or shopping mall)?

AGRO003  Looking at this card, have you ever been very nervous or afraid of being
in an open field?

AGR004 Looking at this card, have you ever been very nervous or afraid of going
over bridges or through tunnels? (bridges/tunnels)

AGRO005 Looking at this card, have you ever been very nervous or afraid of
traveling by yourself? (solo travel)

AGR006 Looking at this card, have you ever been very nervous or afraid of
traveling away from home? (leaving home)

AGRO007 Looking at this card, have you ever been very nervous or afraid of
traveling in a car?

AGRO008  Looking at this card, have you ever been very nervous or afraid of using
public transportation like a bus or SEPTA? (public transit)

Agoraphobia

Continued on next page
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CDDO001  Was there ever a time when you often did things that got you into trouble
with adults like lying or stealing (something worth more than $5), from
family, others, or stores?

Conduct CDDO002 Did you ever skip school, stay out at night later than you were supposed
Disorder to (more than 2 hours), or run away from home overnight?

CDDO003  Did you ever set fires, break into cars, or destroy someone else’s property
on purpose?

CDD004 Do you have a probation officer or have you ever been on probation?

CDDO005 Did you often bully others (hitting, threatening or scaring someone who
was younger or smaller), threaten or frighten someone on purpose, or
often start physical fights with others?

CDDO006 Have you ever been physically cruel to an animal or person (on pur-
pose)?

CDDO007 Did you ever try to hurt someone with a weapon (a bat, brick, broken
bottle, knife, or gun)?

CDDO008 Did you ever threaten someone?

DEP001 Has there ever been a time when you felt sad or depressed most of the
Depression time? (feeling sad)

DEP002 Has there ever been a time when you cried a lot, or felt like crying?
(crying)

DEP004 Has there ever been a time when you felt grouchy, irritable or in a
bad mood most of the time; even little things would make you mad?
(irritability)

DEP006  Has there ever been a time when nothing was fun for you and you just
weren't interested in anything? (anhedonia)

Generalized GADO001 Have you ever been a worrier?
Anxiety GADO002 Did you worry a lot more than most children/people your age?

MANO001 Have there been times when you were much more active, excited or en-
ergetic than usual, had problems sitting still, or needed to move around
a lot? (overly energetic)

MANO002 Has there ever been a time when you felt so full of energy that you
couldn’t stop doing things and didn’t get tired?

MANO003 Has there ever been a time when you felt like you hardly needed sleep?

MANO004 Have there been times when you kept talking a lot, couldn’t stop talking,
talked faster than usual, had thoughts faster than usual, or had so many
ideas in your head that you could hardly keep track of them? (pressured
speech)

MANO005 Have you ever had a time when you felt much more happy or excited
than you usually do when there was nothing special going on?

MANO006 Have you ever had a time when you felt like you could do almost
anything?

MANO007 Has there ever been a time when you felt unusually grouchy, cranky,
or irritable; when the smallest things would make you really mad?
(irritability)

Manic
Disorder

Continued on next page
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OCDO001 Have you ever been bothered by thoughts that don’t make sense to you,
that come over and over again and won’t go away, such as concern with
harming others/self? (thoughts of harming)

OCDO002 Have you ever been bothered by thoughts that don’t make sense to you,
that come over and over again and won’t go away, such as pictures of
violent things?

OCDO003 Have you ever been bothered by thoughts that don’t make sense to you,

Obsessive that come over and over again and won’t go away, such as thoughts
Compulsive about contamination/germs/illness?
Disorder OCD004 Have you ever been bothered by thoughts that don’t make sense to you,

that come over and over again and won’t go away, such as fear that you
would do something/say something bad without intending to?

OCDO005 Have you ever been bothered by thoughts that don’t make sense to you,
that come over and over again and won’t go away, such as feelings that
bad things that happened were your fault?

OCD006 Have you ever been bothered by thoughts that don’t make sense to
you, that come over and over again and won’t go away, such as forbid-
den/bad thoughts?

OCD007 Have you ever been bothered by thoughts that don’t make sense to you,
that come over and over again and won’t go away, such as need for
symmetry/exactness?

OCDO008 Have you ever been bothered by thoughts that don’t make sense to you,
that come over and over again and won’t go away, such as religious
thoughts?

OCDO011 Have you ever had to do something over and over again - that would
have made you feel really nervous if you couldn’t do it, like cleaning or
washing (for example, your hands, house)?

OCD012 Have you ever had to do something over and over again - that would
have made you feel really nervous if you couldn’t do it, like counting?

OCDO013 Have you ever had to do something over and over again - that would
have made you feel really nervous if you couldn’t do it, like checking
(for example, doors, locks, ovens)?

OCD014 Have you ever had to do something over and over again - that would
have made you feel really nervous if you couldn’t do it, like getting
dressed over and over again?

OCDO015 Have you ever had to do something over and over again - that would
have made you feel really nervous if you couldn’t do it, like going in
and out a door over and over again?

OCD016 Have you ever had to do something over and over again - that would
have made you feel really nervous if you couldn’t do it, like ordering or
arranging things?

OCDO017 Have you ever had to do something over and over again - that would
have made you feel really nervous if you couldn’t do it, like doing things
over and over again at bedtime, like arranging the pillows, sheets, or
other things?

Continued on next page
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OCD018 Have you ever saved up so many things that people complained or they
got in the way?
OCDO019 Do you feel the need to do things just right (like they have to be perfect)?

ODDO001 Was there a time when you often did things that got you into trouble

Oppositional with adults such as losing your temper, arguing with or talking back to
Defiant adults, or being grouchy or irritable with them? (losing temper)
Disorder ODDO002  Was there a time when you often got into trouble with adults for refusing

to do what they told you to do or for breaking rules at home/school?
(breaking rules)

ODDO003 Did you often annoy other people on purpose or blame other people for
your mistakes (excluding siblings)?

ODDO005 Did you ever get into trouble for getting even with other people by doing
things to hurt them, telling lies about them, or messing up their things?

ODDO006  Were you often irritable or grouchy, or did you often get angry because
you thought that things were unfair? (irritability due to unfairness)

PAN(001 Have you ever had an attack like this?

PANO003  Has there ever been a time when all of a sudden you felt very, very scared
or uncomfortable - and your chest hurt, you couldn’t catch your breath,
your heart beat very fast, you felt very shaky, and sweaty/tingly /numb
in your hands or feet?

PAN(004 Has there ever been a time when all of a sudden, you felt that you were
losing control, something terrible was going to happen, that you were
going crazy, or going to die?

Panic
Disorder

PHB001 Looking at this card, have you ever been very nervous or afraid of
animals or bugs, like dogs, snakes, or spiders?
PHB002 Looking at this card, have you ever been very nervous or afraid of being
Specific in really high places, like a roof or tall building?
Phobia PHB003  Looking at this card, have you ever been very nervous or afraid of water
or situations involving water, such as a swimming pool, lake, or ocean?
PHB004 Looking at this card, have you ever been very nervous or afraid of
storms, thunder, or lightning?
PHBO005 Looking at this card, have you ever been very nervous or afraid of
doctors, needles, or blood?
PHB006  Looking at this card, have you ever been very nervous or afraid of closed
spaces, like elevators or closets?
PHB007  Looking at this card, have you ever been very nervous or afraid of flying
or airplanes?
PHB008 Looking at this card, have you ever been very nervous or afraid of any
other things or situations?

PSY001  Have you ever heard voices when no one was there? (auditory verbal
hallucination)
PSY029  Have you ever seen visions or seen things which other people could not
see?
PSY050  Have you ever smelled strange odors other people could not smell?
Continued on next page

Psychosis
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PSY060  Have you ever had strange feelings in your body like things were crawl-
ing on you or someone touching you and nothing or no one was there?

PSY070  Have you ever believed in things that most other people or your parents
don’t believe in?

PSY(071  Have you ever believed in things and later found out they weren't true,
like people being out to get you, or talking about you behind your back,
or controlling what you do or think? (persecutory/suspicious)

PTSD PTD001 Have you ever been very upset by seeing a dead body or by seeing
pictures of the dead body of somebody you knew well?

SCR001  Have you ever talked to a counselor, psychologist, social worker, psychi-

Treatment atrist or some other professional about your feelings or problems with
Seeking your mood or behaviors?
SCR006  Are you currently taking medication because of your emotions and/or
behaviors?

SCR007 Have you ever had to go to a hospital and stay overnight because of
problems with your mood, feelings, or how you were acting?

SCR008 Have you or anyone else (like your friends, parents, or teachers) ever
thought you needed help because of problems with your mood, feelings,
or how you were acting?

SEP500  Since you were 5 years old, has there ever been a time when you had a
lot of worries about your (attachment figures) and were very upset or
got sick (for example, felt sick to your stomach, headaches, thrown-up)
when you were away from him/her?

SEP508  Has there ever been a time when you wanted to stay home from school
or not go to other places (for example, sleep-overs) without your (attach-
ment figures)?

SEP509  When you knew that you were going to be away from home or (at-
tachment figure(s)), did you get very upset and worry (e.g., when you
learned (attachment figure(s)) were going on an upcoming trip or night
out)?

SEP510  Did you ever worry/have bad dreams about something terrible happen-
ing to you or your (attachment figures) so that you would not see them
again?

SEP511  Were you scared to be alone in your room (or any place in your house)
or did you need your (attachment figure(s)) to stay with you while you
fell asleep?

SIP003 I think that I have felt that there are odd or unusual things going on that
I can’t explain. (odd/unusual thoughts)

SIP004 I think that I might be able to predict the future.

SIP005  Imay have felt that there could possibly be something interrupting or
controlling my thoughts, feelings, or actions. (thought control)

SIP006  Ihave had the experience of doing something differently because of my
superstitions. (superstitions)

Separation
Anxiety

Continued on next page
Subthreshold
Psychosis
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SIP007  Ithink I may get confused at times whether something I experience or
perceive may be real or may be just part of my imagination or dreams.
(reality confusion)

SIP008  I'have thought that it might be possible that other people can read my
mind, or that I can read others” minds

SIP009 I wonder if people may be planning to hurt me or even may be about to
hurt me.

SIP010 I believe that I have special natural or supernatural gifts beyond my
talents and natural strengths.

SIP011  Ithink I might feel like my mind is “playing tricks” on me. (mind tricks)

SIP012  Ihave had the experience of hearing faint or clear sounds of people or
a person mumbling or talking when there is no one near me. (auditory
perception)

SIP013 I think that I may hear my own thoughts being said out loud. (audible
thoughts)

SIP014  Ihave been concerned that I might be “going crazy.”

SIP027 Do people ever tell you that they can’t understand you?

SIP028 Do people ever seem to have difficulty understanding you?

SIP032 Do you ever feel a loss of sense of self or feel disconnected from yourself
or your life? (loss sense of self)

SIP033  Has anyone pointed out to you that you are less emotional or connected
to people than you used to be?

SIP038  Within the past 6 months, are you having a harder time getting your
work or schoolwork done?

SIP039  Within the past 6 months, are you having a harder time getting normal
activities done?

SOC001  Looking at this card, was there ever a time in your life when you felt
afraid or uncomfortable or really, really shy with people, like meeting
new people, going to parties, or eating or drinking, writing or doing
homework in front of others? (focus of social situation)

SOC002  Looking at this card, was there ever a time in your life when you felt
afraid or uncomfortable talking on the telephone or with people your
own age who you don’t know very well? (novel social situations)

SOC003  Looking at this card, was there ever a time in your life when you felt
afraid or uncomfortable when you had to do something in front of a
group of people, like speaking in class?

SOC004 Looking at this card, was there ever a time in your life when you felt
afraid or uncomfortable acting, performing, giving a talk/speech, play-
ing a sport or doing a musical performance, or taking an important test
or exam (even though you studied enough)? (public performance)

SOC005 Looking at this card, was there ever a time in your life when you felt
afraid or uncomfortable because you were the center of attention and
were concerned something embarrassing might happen and you felt
very afraid or felt uncomfortable? (center of attention)

Social
Phobia

Continued on next page
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SUI0O01  Have you ever thought a lot about death or dying?

Suicidality SUI002  Have you ever thought about killing yourself? (suicidality)
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