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Abstract

Genetic variants in genome-wide association studies (GWAS) are tested for
disease association mostly using simple regression, one variant at a time.
Standard approaches to improve power in detecting disease-associated SNPs
use multiple regression with Bayesian variable selection in which a sparsity-
enforcing prior on effect sizes is used to avoid overtraining and all effect
sizes are integrated out for posterior inference. For binary traits, the logistic
model has not yielded clear improvements over the linear model. For multi-
SNP analysis, the logistic model required costly and technically challenging
MCMC sampling to perform the integration.

Here, we introduce the quasi-Laplace approximation to solve the integral
and avoid MCMC sampling. We expect the logistic model to perform much
better than multiple linear regression except when predicted disease risks
are spread closely around 0.5, because only close to its inflection point can
the logistic function be well approximated by a linear function. Indeed, in
extensive benchmarks with simulated phenotypes and real genotypes, our
Bayesian multiple LOgistic REgression method (B-LORE) showed consider-
able improvements (1) when regressing on many variants in multiple loci at
heritabilities > 0.4 and (2) for unbalanced case-control ratios.

B-LORE also enables meta-analysis by approximating the likelihood functions
of individual studies by multivariate normal distributions, using their means
and covariance matrices as summary statistics. Our work should make sparse
multiple logistic regression attractive also for other applications with binary
target variables. B-LORE is freely available from: https://github.com/
soedinglab/b-lore.

Introduction

Common, noninfectious diseases are responsible for over 2/3 of the deaths worldwide. Genome
wide association studies (GWAS) have opened up a fundamentally new approach to identify
novel regions of the genome which are associated with these complex human diseases. In the
past decade, GWAS identified thousands of genetic variants, particularly single nucleotide
polymorphisms (SNPs), associated with many diseases and complex traits [1,2].

In a typical GWAS, genotype data comprising millions of SNPs from thousands of
individuals with some trait are analyzed to identify SNPs that have significant associations
with the trait. Most studies apply simple regression (single-SNP analysis) i.e., they test for one
SNP at a time, yielding a p-value for each SNP. GWAS for quantitative traits like lipid levels,
BMLI, height, etc. use a linear model for regression of the trait by the minor allele frequency at
the SNP. Case-control GWAS, for which the binary trait is either “diseased” (“cases”) or
“healthy” (“controls”), use a logistic model for regression.

Complex diseases studied with GWAS are usually polygenic, with many SNPs each
contributing only a small fraction of the disease risk. The low effect sizes limit the power to
detect statistically significant associations. Meta-analyses attempt to increase the statistical
power by combining the summary statistics from single-SNP analyses of many GWAS, thereby
encompassing a large number of samples, often in the range of hundreds of thousands.

While the simple regression model is computationally fast, it can only detect association
and not statistical coupling or even causality. Therefore, a non-causal SNP (tag SNP) that is in
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strong linkage disequilibrium (LD) with a causal SNP will also obtain similarly significant
p-values, making it difficult to decide which of these SNPs is really causal. Multiple regression
models (also called multiple-SNP analyses or polygenic models) overcome this problem by
using many SNPs at a genetic region or locus as explanatory variables. They can distinguish
between correlation and coupling because the causal SNP can explain away the effects of other
SNPs, which are merely correlated with the given phenotype via the causal SNP. Multiple
regression can also improve the power of GWAS to detect risk loci by aggregating evidence
from many SNPs with low effect sizes.

In GWAS, only a few hundred out of millions of measured or imputed SNPs are expected to
be causal, i.e.,, to have a direct influence on disease risk. Therefore, Bayesian variable selection
has been employed to prevent overtraining (see [3] for an overview). Bayesian variable
selection uses a sparsity-enforcing prior on the effect sizes to force all but a small fraction of
the regression coefficients to zero. Bayesian variable selection regression (BVSR) [4,5] uses a
point-normal prior, a mixture of a delta function at zero and a normal distribution for causal
SNPs.

Until recently, multiple regression was limited by the requirement of individual-level
genotype data. It was practically infeasible to apply it to multiple GWAS due to logistical,
technical, and ethical restrictions for sharing huge volumes of genetic data from patients. In
recent years, a number of studies devised novel strategies to perform multiple regression with
variable selection using only summary statistics: PAINTOR [6,7], CAVIAR [8], CAVIARBF [9]
and FINEMAP [10] employ a linear model yielding a multivariate normal likelihood. Its mean
is approximated using the single-SNP effect size estimates and its covariance matrix is deduced
from the LD correlation matrix of the SNPs. Like BVSR, they use a point-normal prior for
variable selection. These methods are routinely used for fine-mapping i.e., for prioritizing the
SNPs within the risk-associated loci (see [11] for a recent review).

For binary phenotypes, these fine-mapping methods approximate the logistic likelihood
with a linear function of the genotype vector, permitting an analytical solution of the integral
over effect sizes. Because the integration is analytically intractable without this linear
approximation, multiple logistic regression required computationally cumbersome Markov
Chain Monte Carlo (MCMC) sampling. Early in 2009, Newcombe et al. developed a Bayesian
framework for multiple logistic regression using variable selection [12] using full MCMC
sampling of all parameters and analyzing ~35 SNPs. For analyzing binary traits with BVSR [5],
Guan and Stephens used the probit model, which is very similar to the logistic model.
However, they could not demonstrate a clear benefit of the probit model and ascribed this to
technical difficulties in the MCMC sampling (insufficient mixing for binary traits), concluding
that the approach needs “further methodological innovation”.

Besides the methodological challenge of performing the integration over effect sizes,
single-SNP logistic regression did not yield clear advantages over linear regression [13], which
might have also reduced the interest of exploring multiple logistic regression. Here we argue
that the reason for the lack of improvement is simply due to the fact that the risk explained by
a single SNP is usually so low that predicted risks stay very near to 0.5, where a linear
approximation of the logistic function is still very accurate.

In this work, we present B-LORE, a scalable Bayesian method for multiple logistic
regression. We introduce the quasi-Laplace approximation in which we approximate the
L,y-regularized likelihood of the logistic model by a normal distribution, whose mean vector
and covariance matrix serve as our novel summary statistics. This trick allows us to
analytically integrate the (unregularized) likelihood times the point-normal effect-size prior
over the unknown effect sizes. The regularization ensures that the mode of the regularized
likelihood is near the mode of the integrand and hence the normal approximation stays
accurate. We estimate the parameters of our effect-size prior by maximizing the total marginal
likelihood over all loci. B-LORE can also combine multiple case-control GWAS because the
maximization requires only the summary statistics for each study.

Through extensive benchmarks, in which we simulate binary phenotypes for real genotype
data, we show that the quasi-Laplace approximation is significantly better than existing linear
approximations of the logistic model. Most other multiple regression methods using Bayesian
variable selection have been developed for fine-mapping of SNPs within credible sets, i.e., sets
of SNPs known to contain at least one causal SNP. We therefore limit our comparison here to
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this application. However, B-LORE can also be employed to rank risk loci by their probability
to contain a causal SNP or to predict the genetic risk of patients from their genotype.

Materials and Methods

We are interested in analyzing case-control GWAS, using summary data instead of individual
genotype data. In this section, we describe the model and the implementation of B-LORE. At
each step we compare and contrast B-LORE with other multiple regression variable selection
methods, namely BIMBAM [4], piMASS [5], GEMMA [3, 14], CAVIARBF [9], FINEMAP [10]
and PAINTOR [6,7]. For quick reference, we summarized the methods in Table 1. Finally, we
describe the data and simulation details used for the validation of our method.

Table 1. Comparison of methods for multiple regression of case-control GWAS data. All methods use the point-normal prior

(Eq. (4)) for the effect sizes of the SNPs. The posterior probability is obtained by integrating out these effect sizes, either via MCMC
sampling or analytically (column 2). Column 3 compares the approximations to the logistic or probit likelihood model. Column 4 shows
which hyperparameters of the prior distribution are estimated from the data, and the method of estimation is shown in column 5.
Column 6 lists which tools can perform meta-analysis. MCMC: Markov Chain Monte Carlo sampling, EM: expectation-maximization,
CG: conjugate gradient method.

BIMBAM [4] MCMC Laplace None - No No
piMASS [5] MCMC Probit i, O MCMC | No No
GEMMA [3,14] | mcMmc Probit T, o MCMC | No No
CAVIARBF [9] Analytic Linear None — No Yes
FINEMAP [10] Analytic Linear None - No Yes
PAINTOR [6,7] | Analytic Linear T EM No Yes
B-LORE Analytic quasi-Laplace i, O CG Yes Yes

Likelihood function

For binary traits, GWAS data consists of phenotypes ¢,, € {0, 1} (healthy or diseased) and of
genotypes wy; € {0, 1,2}, where 0, 1, or 2 signify the number of minor alleles of patient
ne{l,...,N}atSNPi e {1,...,I}. The genotype is centered and normalized as
Xni = (Wai — 2f;)//2fi(1 = f;), where f; is the minor allele frequency of the i SNP. We
denote the vector of normalized genotypes for the n'" sample as x,,, and the N x I matrix of
genotypes as X.

As BIMBAM, CAVIARBF, FINEMAP and PAINTOR, we use standard logistic regression to
model the probability for a patient to have the disease,

1

1+exp(-fTx,) )

Pn=p(Pn=1]%p,p)=

which can be transformed to

p(Pn =1]xp,P) _

1 -
8 b hn = 0 | % )

ﬂTxn ’ (2>
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The minor allele count x,,; of SNP i contributes linearly to the log-odds ratio with an effect size
Bi. The likelihood for N patients is

exp(¢n B Xn)

N N
LB =pplX.p)= npf" (1=pn)'™ = l_[ 1+ exp(BTx,)
n=1 n

n=1

Prior distributions
Point-normal prior for effect sizes

In a GWAS, the number of parameters p = I is usually much larger than the number of
samples N (p > N). Hence, a standard approach of maximizing the likelihood with respect to
the effect sizes will lead to gross overtraining. One common solution is to add a regularization
term to the log likelihood that will push most of the components of f to zero or near zero.
From a Bayesian viewpoint, this is equivalent to maximizing the posterior distribution p(f|X),
which is proportional to p(X|B) p(B), where p(p) is the prior distribution of effect sizes [15].

To reflect the prior expectation that an overwhelming majority of SNPs have a negligible
effect on disease risk, we use the point-normal prior,

pBi |l miyo)=(1—m) 8 +mN(Bi | 0,6%), (4)

which is used in many tools, e.g. BIMBAM, piMASS, CAVIARBF, FINEMAP and PAINTOR. The
normal distribution models the effect sizes for the rare, causal SNPs and the delta function
models the non-causal SNPs. The hyperparameters 7; control the sparsity of the model and ¢?
describes the variance of the effect sizes.

Prior probability of 7t and o

In the simplest case the prior probabilities to be causal is the same for all SNPs, x; = & = const.
CAVIARBF and FINEMAP implicitly assumes that z; = 1/I. B-LORE also assumes

p(r) = const. However, improvements can be expected by making 7; depend on informative
local genomic features or annotation tracks [7].

BIMBAM, PAINTOR, CAVIARBF and FINEMAP use fixed values of o that can be specified
by the user. PIMASS uses an intuitively appealing prior on ¢ with wider tails (see [5] for
details). B-LORE implicitly assumes a much simpler prior p(c?) = const to avoid
computational complexity.

Causality configurations
We define c; € {0, 1} as the hidden indicator variables defining the underlying causality of the

SNPs. Here, ¢; = 1 indicates that SNP i is causal and ¢; = 0 otherwise. To simplify notations,

we define the vector o2, whose i" component is 6?2, = ofg +c¢i(0? - oﬁg). This allows us to

reformulate Eq. (4) as:

1
pBlmo)=> (1‘[ 7 (1 - n)“‘“)) N (B 10, diag(a?)) (5)

with the sum running over all 2 possible causality configurations ¢ € {0,1}. Using

I
plelmo)=]]r1-m" (6)
i=1
we can write the prior on the effect sizes as,

p(Bl o) =) plclmo)N (B0, diag(c?)) . 7)

In this formulation, p (c; = 1 | 7, o) gives the prior probability of the i SNP to be causal
before observing the phenotype and genotype data, and ||c||; gives the total number of causal
SNPs in the model.
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BVSR and CAVIARBF also use the same Bernoulli prior on ¢ (Eq. (6)). FINEMAP uses a
general discrete distribution for the number of causal SNPs. However, it requires that the
region to be analyzed includes at least one causal SNP, i.e., p (c = 0) = 0. For binary traits,
piMASS also has the same restriction.

Inference

Fine-mapping. The posterior probability for SNP i to be coupled to the disease is obtained by
summing the posterior probability over all causality configurations ¢ for which SNP i is causal

(ie,c; = 1)
pla=11¢Xma)= > plclpXmoa), (8)
c:c;=1, c#0
also called the posterior inclusion probability (PIP). CAVIARBF, FINEMAP and BVSR also
outputs the PIP.

Prediction of causal loci. The probability for a locus to be coupled with the disease phenotype
is equal to the probability of the locus harboring at least one causally associated SNP. This is
equal to 1 minus the probability of not containing a single causal SNP:

Preausal = p (locusis causal | ¢, X, 7,0) =1—-p(c=0| ¢,X,7,0) . 9)

CAVIARBF and FINEMAP output Bayes factor for the posterior probability that there is at least
one causal variant in the region against the null model.

Quasi-Laplace approximation

Both the above posterior inferences require computing

p(@|X.cmo)plc|r o)

plcl¢.X,m,0)= - , (10)
Dp@ X m0)p(c | 7,0)
for all causality configurations ¢, which in turn requires computing
p(@ X, c,m0)p(c|m o)
~peclma) [ p@ X PpB|cr.o)dp
~p(cl o) [ p@| X PN (B o0.ding (a2)) . )

The above integration also appears in the marginal likelihood (see below) used for the
optimization of the hyperparameters (i, o). It does not have an exact solution when using the
likelihood function of the logistic model, given by Eq. (3). In contrast to logistic regression, the
linear regression has normally distributed likelihood function, admitting an exact solution (for
example, see Protocol S1 of [4]).

BIMBAM approximates the integrand with a multivariate Gaussian using Laplace’s method.
In this method, the parameters of the Gaussian are determined by finding the integrand’s
mode (e.g. using gradient-based optimization) and setting the precision matrix to the Hessian
at the mode. Unfortunately, the mode depends on ¢ and (7, o). So, one needs to determine the
mode and precision matrix every time (7, o) is changed. Not only does this require individual
genotype data, but this also makes it computationally infeasible to learn (7, o).

CAVIARBF and FINEMAP approximate p, with a linear function of 8, which reduces the
likelihood function of Eq. (3) to a multivariate normal distribution with scaled variance (see
Pirinen et al. [16] and Chen et al. [9] for details). This approximation becomes inaccurate as we
move away from the mode of the likelihood, and unfortunately the region in § space which
contributes most to the integrand (around the mode of the integrand) can be quite far from the
mode of the likelihood.
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We propose the “quasi-Laplace approximation” to solve the integration. We start by
splitting the integrand into two factors — an Ly-regularized likelihood that approximates the
integrand (but does not depend on (7, o) or c) and a correction term:

p(¢ | X, BN (B0, diag (a7))

N , diag (o7
p @1 X BN (8] 0,6T) x NP1 0. dizg (o))

N(B]0,5%)

(12)

The regularized likelihood is the product of the likelihood function (Eq. (3)) and a Gaussian
regularizer, N (B | 0, 5*I) which acts as an approximate, simple prior distribution — pulling
the maximum of the regularized likelihood near to the mode of the integral, making it more
accurate than the Laplace approximation. The ¢ can be optimized on the data (see S1 File for
details) or can be specified by the user. Next, we approximate the regularized likelihood by a
multivariate Gaussian:

P@IX BN (Bl0.5T) N (BIBAT). (13)

The quasi-Laplace approximation can be motivated from its validity in the limit of N > 1
and equal number of cases and controls (details in S1 File for interested readers). From our
simulations, we found that the approximation can be extended to unequal number of cases and
controls. The regularized likelihood does not depend on (7, o) or c. Hence, it would suffice to
calculate it only once and use f} and A as our summary statistics. We determine [§ and A by
maximizing the regularized likelihood with respect to f§, and setting f} to the mode and A to

the negative of the Hessian matrix at the mode. The covariance A" resembles the scaled LD
matrix used for the logistic model in CAVIARBF, FINEMAP and PAINTOR, but includes an
additional term from the regularizer (see S1 File).

Optimization of hyperparameters

In the same spirit as BVSR, CAVIARBF and FINEMAP, we calculate the marginal likelihood
function [15],

mL(r.0) = p($ | X, 7.0)
- / 2@ X. B 7.0)p(B | 7.0)dp

= Vp(elno) [p@IX BN (B]0.ding (0?)) dp. (14)

where we use Eq. (7) in the last step. In contrast to the classical maximum likelihood approach,
in which the parameters f are optimized, this method integrates out the parameters f. This is
a crucial difference in practice, because it eliminates the need to learn a large number of
parameters and thereby very effectively guards against overtraining. Also, by integrating out
the parameters we avoid the errors incurred when fixing them to noisy point estimates.

In B-LORE, the integration in Eq. (14) is solved by the quasi-Laplace approximation
whereas other methods use a linear approximation of logistic model to solve the integration.
The solution (see S1 File) depends on &, f} and A, which serve as our novel summary statistics.

In B-LORE, we use the conjugate gradient method to maximize the marginal likelihood
function. BIMBAM, CAVIARBF and FINEMAP use fixed values of the hyperparameters (7, o).
PAINTOR learns 7 from the data. PIMASS and GEMMA learn both 7 and ¢ from the data
using MCMC.

Meta-analysis

Meta-analysis would require combining &, /.‘} and A from multiple studies. For a single study,
the likelihood is given by Eq. (3). We can combine multiple independent studies simply by
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computing the total likelihood as the product of the likelihoods of each contributing study s:

S
P s | X, X5, B) = [ [ (95 | Xs, B) (15)
s=1

The integrand in Eq. (14) will now have a product over multiple logistic functions. We have the
summary statistics 65, Bs and A from each study. We apply the quasi-Laplace approximation
for each study and combine the regularized likelihoods to a multivariate normal distribution:

S

[Tlp@s | X BN (B10.571)] o

s=1 s

:]cn

N (81604

I
—_

=z,
=

=N (B1847) (16)

where we now have,

-1

ABs . (17)

Mm

S
]&:Z[N\S and ﬁ:]&
s=1

1l
-

S

We now use Eq. (17) in place of Eq. (13) to calculate the marginal likelihood for the
optimization of hyperparameters. Unlike conventional meta-analysis methods, which pool
aggregate allele count data of each individual SNP, the above method allows us to combine
information from multiple regression.

Overview of steps used in B-LORE software

In summary, B-LORE works in two steps:

1. Novel summary statistics. Calculation of summary statistics in B-LORE requires two
optimization at each cohort or study:

« Learn ¢ from the data.

« Learn ﬁ and A from the data.

2. Meta-analysis. Estimation of the hyperparameters (1, o) by optimizing the marginal
likelihood using &, B and A of each cohort or study.

In our software, the first step can be run using the command --summary and the second step
can be run using the command --meta.

Factorization over loci

To speed up B-LORE analysis, we recommend to pre-select loci with a faster method such as
SNPTEST [17-19] and to include SNPs from these pre-selected loci. Usually these candidate
loci will be in linkage equilibrium since LD is highly local. Therefore the covariance matrix
XX is approximately block-diagonal, with each block corresponding to a locus. All multiple
regression methods utilize this block-diagonal feature of the LD matrix. For example, BIMBAM
uses a factorization over loci to perform multiple regression at each locus independently.

However, analyzing multiple loci together increases power and specificity for
fine-mapping [20]. We expect the logistic model to benefit from analyzing multiple loci
because they can together explain a higher fraction of heritability. Hence, we compute the
summary statistics over all the pre-selected loci together. In S1 File, we show that the marginal
likelihood in Eq. (14) can be factorized as a product over all the loci. Therefore, the
hyperparameter optimization can be performed over all loci simply by summing the log
marginal likelihoods of all loci. This will effectively ignore the off-diagonal terms in the
covariance matrix among the loci but retain the important diagonal elements.
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Data

We used the genotype from five German population cohorts: German Myocardial Infarction
Family Study (GerMIFS) I - V [21-26]. Details for quality control and pre-processing of these
data were described by Nikpay et al. [26]. Briefly, there are a total of 6234 cases and 6848
controls of white European ancestry. Each cohort was imputed with phased haplotypes from
the 1000 Genomes Project. SNPs were filtered for MAF > 0.05 and Hardy-Weinberg
equilibrium (HWE) p-value > 0.0001.

Phenotype simulation

The inherent complexity of the genotype data with strong linkage effects are very difficult to
simulate realistically from haplotype data. We therefore used real patient genotypes for our
semi-synthetic benchmark. We selected 100 genomic regions or loci from each of the five
GerMIFS cohorts, such that each locus had 200 unique SNPs.

Since piMASS cannot do meta-analysis, we had to make a unified cohort by combining the
individual genotypes and phenotypes of the five cohorts. Hence, we pruned each locus to
contain only SNPs which are common to all the five cohorts, leaving 17218 SNPs distributed
over the 100 loci.

In each locus, we sampled one or more SNPs to be causal. S2 Figure shows the distribution
of the number of causal SNPs at each locus. Once we established a “ground truth” of C causal
SNPs, we used the classical liability threshold model [27, 28] to simulate the binary phenotypes
¢n, for every individual. Guan and Stephens [5] also used the same method for simulating
binary phenotypes. The model assumes that the binary disease status results from an
underlying continuous disease liability that is normally distributed in the population. If the
combined effects of genetic and environmental influences push an individual’s liability across
a certain threshold level, the individual is affected.

c
Liability vy, = Zﬂixin + ¢

i=1
1 ify, >0

18
0 ify, <0 (18)

Disease status ¢, = {

This is equivalent to a disease prevalence of 0.5 and gives roughly equal number of cases and
controls. The individual effect sizes ff; were assumed to be normally distributed

Bi~N (0, h; / \/E) such that the causal SNPs aggregated to explain a fixed heritability (hZ,

proportion of the phenotypic variance) on the liability scale.

c c
Zﬂixin) = Z,Blz = hy. (19)
i=1 i=1

The environmental contribution given by ¢; was assumed to be normally distributed

Var

g ~ N (0, 1- h;). The observations on the risk scale follows a probit function of the liabilities

on the unobserved continuous scale [28].

Methods for comparison

Multiple regression methods are primarily used for fine-mapping, and are generally applied to
credible sets, i.e., loci which contain causal SNPs. Hence, we compared the ranking of SNPs
within each locus. Fine-mapping methods are generally assessed in terms of recall, i.e., the
proportion of all causal SNPs in the locus included in the top ranked SNPs. In addition, we also
looked at the precision, i.e., the proportion of causal SNPs among the selected ones.

B-LORE: We calculated the summary statistics at each cohort and performed meta-analysis.
B-LORE is not designed to be applied on a single locus. It learns the hyperparameters by
conjugate gradients from the data and would require enough number of SNPs for proper
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estimation. A single locus generally do not have enough causal SNPs in real data. Hence, all
loci were used for the meta-analysis in each simulation, unless otherwise stated. The SNPs
were ranked by the PIPs within each individual locus.

META: We used META v1.7 for single-SNP meta-analysis. At each individual cohort, we
obtained summary statistics with SNPTEST v2.5.2 assuming an additive model and using a
missing data likelihood score test (-method score). We then corrected each cohort for the
genomic inflation factor, and performed meta-analysis using inverse-variance method based
on a fixed-effects model. We used the —log,, (p) values for ranking.

FINEMAP: We used FINEMAP v1.1 for multiple regression with a linear approximation to the
logistic model. It has similar accuracy as CAVIARBF and higher accuracy than PAINTOR
without functional annotations. As input, INEMAP requires the z-score for every SNP and the
LD matrix for each locus. We calculated z; = ﬁi / SE(ﬁi) using the results of META. The prior
standard deviation was set as s; = 0.05+/¢(1 — ¢), where ¢ is the proportion of cases among
the N individuals. To ensure the best performance, we calculated the LD matrix using
LDSTORE [29] from the single unified cohort. After analysis, we used the logarithm of the
Bayes factors, log;, (BF (¢c; = 1 : ¢; = 0)) for ranking the SNPs.

BVSR: GEMMA and piMASS both provide a BVSR probit model implementation using
MCMC integration. The probit model is similar to the logistic model. We performed MCMC
sampling at each locus of the unified cohort using piMASS with the -cc flag. We used 100000
burn-in steps and 1000000 production steps for the MCMC. We also repeated the same analysis
without the -cc flag to compare the probit model with the linear model. We again used the
PIPs for ranking the SNPs.

Results

To evaluate the validity, accuracy and utility of the quasi-Laplace approximation, we
performed a series of simulations to explore different conditions.

Effect of heritability

First we show that B-LORE outperforms existing fine-mapping methods for binary phenotypes
in case-control GWAS (Fig. 1). In general, the recall of every method improves with heritability.
At all heritabilities, B-LORE provides the best ranking of SNPs followed by the multiple
regression methods (BVSR and FINEMAP), which are better than single-SNP meta-analysis
(META). The difference in recall between B-LORE and BVSR increases with increasing
heritability — the improvement being always equal to or better than the difference between
BVSR and META.

We schematically compare the logistic model against the linear model for our simulated
GWAS (insets of Fig. 1). At low heritability, e.g. h; = 0.2, the cases and controls appear near
the inflection point of the logistic curve, i.e., in the linear regime, and hence the linear model is
a good approximation of the logistic model. With increasing heritability, the cases and controls
have a wider spread and increasingly more samples appear in the non-linear regime. Hence,
the linear model becomes increasingly inaccurate for explaining the data. Therefore, the
quasi-Laplace approximation performs better than the linear approximation of the logistic
model.

B-LORE also outperforms the BVSR probit model. We kept B-LORE as similar as possible to
the BVSR probit model in order to validate the quasi-Laplace approximation — using the same
priors for B and ¢ and a simpler hyperprior for . There are two major differences in the
implementation. First, piMASS uses MCMC for optimization while B-LORE uses conjugate
gradient method including the quasi-Laplace approximation. Second, piMASS analyzes each
locus independently while B-LORE uses multiple loci. Therefore, the poorer performance of
piMASS compared to B-LORE could be due to: (1) inefficient MCMC sampling by piMASS for
binary phenotypes (as postulated by the authors), or (2) less information in each individual
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Fig 1. Multiple logistic regression improves fine-mapping in case-control GWAS. We

simulated 13082 phenotypes using 100 loci of ~200 SNPs, as described in the main text. We
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compared the ranking of SNPs at each locus using recall (solid lines, left y-axis) and precision
(dotted lines, right y-axis), which were averaged over 100 loci and 20 simulation replicates. All
methods were run with a maximum of two causal SNPs per locus. Different panels show the
results at different heritabilities, h; =0.2, 0.4, 0.6 and 0.8. Insets schematically compare the
logistic model with the linear model. We plot the true }}; x; f; from the simulation for each
individual along the x-axis, and show the distribution of cases and controls on the top and
bottom axes respectively. On the y-axis, we show the predicted probability of being causal
using a logistic model (p (¢ = 1), red for cases and green for controls). The black lines are
merely visual guides, obtained by averaging in each quantile. With increasing heritability, the
predicted disease probability spreads away from 0.5, where the logistic model becomes
increasingly better than the linear model to explain the data and B-LORE shows increasingly
more recall over other methods. The improvement by B-LORE over other multi-SNP analyses
is more significant than the improvement by multi-SNP over single-SNP analyses.

locus, as compared to the total heritability accessible to B-LORE from multiple loci (as
postulated by Newcombe et al. [20] in a different context).

In the following we try to explore the contribution of the logistic model and of multiple
loci for the improved performance of B-LORE.
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Effect of case-control imbalance

We reasoned that if the improved performance of B-LORE is due to the more accurate
modelling of risk in the non-linear regime, then B-LORE should also excel when the bias
constant is far from zero, i.e., for case/control ratios less than 1.0. Having more controls than
cases would lead to extreme imbalance in the data, making the linear approximation grossly
suboptimal.

Our simulation yields roughly equal number of cases and controls — approximately ~6500
cases and ~6500 controls with a disease prevalence of 0.5. To obtain unequal cases and
controls, we picked a subset of cases and/or controls by random choice. This can be done in
two ways: (a) using the same number of cases (Fig. 2), and (b) using the same number of
controls (S4 Figure). The remaining cases and/or controls were ignored by assigning unknown
(NA) disease status.

In both scenarios (a) and (b), B-LORE provides increasingly more recall over other methods
as the case/control ratio decreases, confirming that the quasi-Laplace is more accurate than the
existing linear approximations for the logistic model. Scenario (a) starts with 1625 cases and
1625 controls for 1:1 ratio. Due to less number of total samples, all methods have reduced
power as compared to Fig. 1b. All methods provide almost similar recall for 1:1 case:control
ratio. Including additional controls improves the recall of all methods but B-LORE gets the
maximum benefit. When the number of controls is four times as much as the number of cases
(case/control = 0.25), the logistic model has 33% better recall than the linear model for choosing
the top 10 SNPs (and 45% better recall for choosing the top 5 SNPs).

In scenario (b), all methods have maximum recall when case/control = 1.0. With reducing
number of cases, BVSR, FINEMAP and META lose power, while B-LORE remains virtually
unaffected.

We also found that the BVSR probit model does not improve over the linear model. Even
with a single locus, the probit model was expected to be better than the linear model in the
extreme situation of case/control = 0.25. While we cannot rule out the effect of multiple loci,
this result indicates that inefficient MCMC sampling is at least one of the reasons for the
poorer performance of piMASS. By the same reasoning, the improved performance of B-LORE
can be attributed to the logistic model although the effect of multiple loci cannot be ruled out.

Effect of multiple loci

We then wanted to check the effect of using multiple loci on the improvement in B-LORE.
Multiple loci together explain a higher proportion of heritability than each single locus.
Newcombe et al. earlier showed that multiple-locus analysis is better at fine-mapping than
many independent single-locus analyses [20]. Unfortunately, their method is limited to
quantitative phenotypes and is not yet designed for binary phenotypes. Hence we could not
include their method in our benchmark. Instead, we varied the number of loci in our analysis
to directly check the effect of estimating causality from multiple loci.

We simulated phenotypes for the five cohorts with 25, 50, 75 and 100 loci — with 80, 40, 33
and 20 simulation replicates respectively. Each locus had ~200 SNPs. We used a fixed
heritability of h; = 0.6 explained by these loci and 1:1 ratio of cases to controls.

In Fig. 3 we show the fine-mapping performance of the different methods in these
simulations. The heritability per locus increases with decreasing number of loci. Hence we
observe that the performance of all methods improves when the number of loci is reduced.
However, B-LORE always provides higher recall than other methods.

We further wanted to decouple the effect of multiple loci on calculating the summary
statistics and meta-analysis of B-LORE. For this, we assumed that the phenotype is simulated
from 100 loci as usual, and asked the following two questions. First, what happens if the
B-LORE summary statistics are calculated from a subset of these 100 loci? This would mean
that the heritability visible to B-LORE (i.e., the heritability explained by the chosen subset of
loci) is reduced, e.g. calculating summary statistics with 25 loci would correspond to a
heritability of 0.15 when the total hé = 0.6. Hence the results (S8 Figure) are similar to Fig. 1.
Second, what happens if the summary statistics are calculated from 100 loci for each cohort
but the meta-analysis uses only a subset of them? In S9 Figure, we show that the ranking in
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Fig 2. Multiple logistic regression improves power of GWAS with additional controls. We
simulated phenotypes with varying case/control ratio - (a) 1625/1625, (b) 1625/3250, (c)
1625/4875 and (d) 1625/6500 respectively — using 100 loci of ~200 SNPs, as described in the
main text. All simulations used h; = 0.4. We compared the ranking of SNPs at each locus using
recall (solid lines, left y-axis) and precision (dotted lines, right y-axis), which were averaged
over 100 loci and 20 simulation replicates. All methods were run with a maximum of two
causal SNPs per locus. Insets schematically compare logistic model with linear model (see
Fig. 1 for details). B-LORE shows increasingly more recall over other methods with addition of
more controls, i.e., decreasing case/control ratio, because the logistic function becomes
increasingly better than the linear function to model the data.

each locus does not depend on the number of loci in the subset, indicating that the number of
loci does not impact the estimation of hyperparameters, as long as we have enough number of
causal SNPs (~ 20) in the data for estimating the hyperparameters. Therefore, we can conclude
that our method benefits from the greater proportion of heritability explained by the multiple
loci.

Number of causal SNPs allowed

Having established that B-LORE improves the power of case-control GWAS over existing
methods, we next explored the effect of allowing different numbers of causal SNPs ||c||; in the
model of B-LORE. Different loci are expected to have different number of true causal SNPs in
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Fig 3. The advantage of B-LORE does not depend on the number of loci used for
estimation. We simulated 13082 phenotypes using 25, 50, 75 or 100 loci of ~200 SNPs, as
described in the main text. All simulations used hé = 0.6. We compared the ranking of SNPs at
each locus using recall (solid lines, left y-axis) and precision (dotted lines, right y-axis), which
were averaged over the loci and the simulation replicates. All methods were run with a
maximum of two causal SNPs per locus. Different panels show the results at different number
of loci. Insets schematically compare logistic model with linear model in one simulation (see
Fig. 1 for details). The heritability per locus increases when the number of loci is reduced.
Multiple regression becomes increasingly better than single SNP analysis, but the advantage of
B-LORE over other multiple regression methods does not change with the number of loci. Note
also that the comparison between logistic model and the linear model in the insets does not
change with the number of loci.

the data. Current implementation of B-LORE allows only one common input ||c||, for all loci.
There is no way to know the “ground truth”, i.e., the distribution of true causal SNPs in the
different loci of real GWAS. Here, we use different hypothetical distributions of true causal
SNPs to simulate the phenotype and check the effect of ||c||; on the ranking performance of
B-LORE (Fig. 4). We plot the hypothetical distribution of true causal SNPs used for each
simulation in the insets of each panel respectively. In general, higher ¢ improves the ranking
power of B-LORE, but does not significantly impact FINEMAP. Of course, the impact depends
on the “ground truth”. For most practical cases, when there are few or no regions with > 5 true
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causal SNPs, ||c||; = 3 suffices for B-LORE.
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Fig 4. Effect of number of causal SNPs in B-LORE fine-mapping accuracy. We simulated
13082 phenotypes using 100 loci of ~200 SNPs, as described in the main text. Different panels
show the results using different hypothetical distributions of true causal SNPs in each
simulation (see insets, the distributions were generated ad hoc). All simulations used h? = 0.6.
We compared the ranking of SNPs at each locus by B-LORE and FINEMAP using recall (solid
lines, left y-axis) averaged over the loci and the simulation replicates. Both methods were run
with different number of causal SNPs allowed in the model (||c||;, see legends). INEMAP was
run on each locus separately and B-LORE was run on all loci together. For each method, we
stopped increasing ||c||; if the recall did not improve. The symbols are merely visual guides to
distinguish between the different methods.

Earlier studies showed stronger influence of ||c||; on fine-mapping accuracy (e.g. see Fig. 5

of [10]). However, those simulations used replicates of a single locus with fixed number of true
causal SNPs. In contrast, we used many loci with a distribution of true causal SNPs because we

expect that future applications of B-LORE would involve analyses over all loci found in a
GWAS.

Computational efficiency

In S6 Figure, we show the average time and memory required for calculating the summary
statistics of B-LORE in different realistic situations. For instance, computing the summary
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statistics of 40000 SNPs spread over 200 loci in a cohort of 10000 individuals requires around 2
hours and ~22 GB of memory on an Intel Xeon E5-2670 v2 processor with 8 cores.

For B-LORE meta-analysis, we compare the average time and memory requirements of
B-LORE with other multiple regression variable selection meta-analysis methods (CAVIARBF
and FINEMAP) in S7 Figure. B-LORE has a speed comparable to CAVIARBF, although, unlike
CAVIARBF, B-LORE optimizes the hyperparameters.

B-LORE is significantly slower than FINEMAP, and requires much more memory than
FINEMAP. This is expected because B-LORE performs exhaustive search over the causality
configurations, while FINEMAP uses a much faster shotgun stochastic search. The speed
improvement by FINEMAP was a major technical breakthrough in multiple regression. We
currently focus on better performance and only use a naive branch-and-bound algorithm (S1
File) to reduce the search space. Note that unlike INEMAP, B-LORE learns ¢ from the data.

Like other multiple regression methods, B-LORE is not designed for genome-wide analysis.
It could be used to finemap each locus as well as re-rank the loci according to their probability
of being causal (see Inference). Considering the speed and memory requirements (S6 Figure
and S7 Figure), we showed that with modest computing facilities, it is possible to apply
B-LORE even on a total of 40000 SNPs, distributed evenly over 200 loci. The total number of
SNPs and the total number of loci can be increased with more computing power, which is
commonly available. There has to be a balance between the number of SNPs (I;) within a locus
and the number of causal SNPs (||c||;) used by the model because the exhaustive search over
the SNPs creates combinatorially increasing causal configurations depending on I; and ||c||;.
For example, I; can be up to a few thousands with ||c||; = 2, but [; can only be up to a few
hundreds with ||c||; = 5. Different loci might have different number of causal SNPs, and we
showed that ||c||; = 3 is sufficient for a wide variety of distributions (Fig. 4).

Calibration of posterior inclusion probabilities (PIPs)

Finally, we note that the PIPs obtained from B-LORE are well-calibrated (S5 Figure). Following
the method proposed by Guan et al. [5], we assessed that the PIPs obtained from B-LORE
roughly correspond to the marginal precision. On null data, B-LORE does not show any
spurious association (S3 Figure).

Discussion

Since its introduction in 2011, BVSR has remained the de facto method of choice for achieving
the maximum power in GWAS multiple regression [5], but was limited by the requirement of
individual genotype data. Several fine-mapping methods [9, 10,30] introduced novel strategies
to extend the scope of multiple regression analysis using only summary statistics from
individual studies. However, none of these methods achieved more power [9,30] than BVSR
unless additional external information, such as ENCODE data or multiple traits, was

used [6,7,31].

In the present work, we introduce B-LORE for performing multiple logistic regression on
binary phenotypes, and show that it improves the power of case-control GWAS over both
BVSR probit and linear models. In fact, the improvement achieved by B-LORE over BVSR is
more significant than the improvement achieved by BVSR over single-SNP analyses (Fig. 1).
The key innovation is the quasi-Laplace approximation, which allows us to accurately
compute posterior probabilities for SNP causality and to learn hyperparameters for the
multiple logistic regression model.

Multiple logistic regression has received very little attention in GWAS. There were
technical difficulties in the MCMC sampling of binary phenotypes for the BVSR probit model.
The fine-mapping methods approximated the logistic likelihood with a Gaussian, which is
essentially equivalent to using a scaled linear model. This linear approximation becomes
inaccurate when moving out of the inflection point of the logistic function or when the spread
of disease risk among patients is large.

We can get some intuition about this advantage of the logistic over the linear model from
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the partial derivatives of their log likelihoods with respect to the effect sizes, f3,

N
9 log L (B)= > (6 - pu) i (20)
a’B i n=1
Here, p,, is given by Eq. (1) for the logistic model and by p, = B'x,, for the linear one. The
terms (¢, — p,) can be interpreted as weights with which diseased patients (¢ = 1) with minor
alleles at SNP i (x,; > 0) “vote” f; up and healthy patients (¢ = 0) with x,,; > 0 “vote” §; down.
The strongest contributions are made by healthy patients with high predicted disease risk p,
and by diseased patients with low predicted risk, while the smallest contributions are made by
healthy patients with low predicted risk and diseased patients with high predicted risk. As
long as pj, is near 0.5, the weights for both models are near 0.5 and they will give very similar
results. But as predictability grows or the bias changes from 0.5 due to case/control ratios
different from 1, the p, for the logistic model will become quite different from those of the
linear model and the linear model will become inaccurate. In extreme cases when B'x,, gets
smaller than 0 or larger than 1, patients will even “vote” with the wrong sign!

When applying logistic regression to a single SNP or when applying multiple logistic
regression only on a single locus at a time, the predicted risk differences are small, the values
of p,, lie very near to 0.5, and the linear approximation holds well. However, when predicted
risks lie in the non-linear regime of the logistic curve, B-LORE outperforms - by a clear
margin — methods based on a linear regression model and those based on a linear
approximation of the logistic regression model. We gave two examples:

First, when applying multiple logistic regression to all risk loci, heritability adds up over
the many loci, the predicted risks p, scatter farther from 0.5 and the logistic model performs
significantly better than the linear model (Fig. 1, S8 Figure).

Second, when the case-control ratio r differs significantly from 1, the predicted risk of
patients scatters around 1/(1 + r), which will differ significantly from 0.5. In this regime,
B-LORE strongly outperformed the multiple linear regression methods (Fig. 2). The failure of
the linear model in the nonlinear regime could explain the reason why GWAS have been rarely
analyzed with unbalanced case-control ratios. B-LORE could change that. It should be possible
to discover many new loci and SNPs associated with complex diseases simply by using
additional controls to existing GWAS, e.g. from one of the medical biobanks springing up
across the world [32].

Third, predicting the disease risk from known covariates should significantly improve
power of detecting causal SNPs, because the more accurate estimation of p, would improve
the weighting of patients. It is well known that age and sex alone can predict disease risk more
accurately than genotype for most common diseases (e.g. cardiovascular diseases [33,34]).
Various other measurable covariates could further improve risk prediction. Using covariates to
predict disease risk from external data sources [35] (and not from the case-control study itself,
as this estimate would suffer from strong selection bias) could therefore greatly improve power
in combination with our logistic multiple regression approach.

The flexibility of the Bayesian approach makes it easy to integrate this and other external
information in the future, such as functional genomics data tracks on DNA accessibility,
transcription factor binding etc. [6,36-38] which can modulate the prior probability r; for a
SNP to be causal. We will explore more systematically how best to improve predictive
performance of multiple logistic regression by adding these functional annotations.

The quasi-Laplace approximation also allows us to extend the analysis to multiple studies
without using genotype data. Any method for GWAS meta-analysis that can improve the
power has enormous leverage. It can be applied to pool millions of patients from multiple
GWAS to help understand the origin of all common diseases in humans [2]. We hope that
B-LORE will contribute to realizing this potential.
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Supporting information

S1 File. Additional Methods

S2 Figure. Distribution of the causal SNPs in our simulation. In each locus, we sampled the
causal SNPs with a prior probability 7 and a constraint that at least one SNP must be picked.
For our simulations, we choose 7 = 0.005. We show (a) the distribution of total number of
causal SNPs used for each simulation, and (b) the distribution of causal SNPs in each locus
averaged over all simulations.

S3 Figure. Performance of B-LORE on null data. We performed a simulation with randomly
generated binary phenotype on 13082 samples across five populations, using 17218 SNPs
distributed over 100 loci. We show (a) the log posterior probability of each locus being causal
(log (Preausal)), and (b) the posterior inclusion probability (PIP) for each SNP.

S4 Figure. Imbalance in case-control GWAS with fixed number of controls. We simulated
phenotypes with varying case/control ratio — (a) 1625/6500, (b) 3250/6500, (c) 4875/6500 and (d)
6500/6500 respectively — using 100 loci of ~200 SNPs, as described in the main text. All
simulations used h; = 0.4. We compared the ranking of SNPs at each locus using recall (solid
lines, left y-axis) and precision (dotted lines, right y-axis), which were averaged over 100 loci
and 20 simulation replicates. All methods were run with a maximum of two causal SNPs per
locus. Insets schematically compare logistic model with linear model (see Fig. 1 for details).
B-LORE shows increasingly more recall over other methods with increasing imbalance,
because the logistic function becomes increasingly better than the linear function to model the
data.

S5 Figure. Calibration of the posterior inclusion probabilities from B-LORE. The SNPs
were put into 10 bins of width 0.1 according to their posterior inclusion probabilities (PIPs).
Each point on the plot represents a single bin, with the center of the PIP within that bin on the
x—axis and the proportion of SNPs which were true positives in that bin on the y—axis.
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Vertical bars show +2 standard errors of the proportions, assuming a binomial distribution.
Panel (a) is the result of B-LORE using maximum of 2 causal SNPs and panel (b) using
maximum of 3 causal SNPs.

s6 Figure. CPU time and memory requirement for calculating summary statistics with
B-LORE. Panel (a) shows the processing time and panel (b) shows the maximum memory
required for calculating B-LORE summary statistics with 50, 100, 150 and 200 loci. Each point
corresponds to an average over 20 simulations, with the vertical bars representing + standard
errors. Different shapes and colors correspond to different sample sizes (N = 2000, 4000, 6000,
8000 and 10000) of GWA studies, as specified in the legend. The lines connect the results of the
same sample size. Each locus contained 200 SNPs. All calculations were done on an Intel Xeon
E5-2670 v2 processor with 8 cores.

S7 Figure. CPU time and memory requirement for meta-analysis with B-LORE. We
compared the computational requirements of B-LORE with other fine-mapping methods in
terms of (a) processing time and (b) maximum memory required. Along the x—axis, we vary
the number of maximum allowed causal SNPs. For each point on the plot, we used an average
over 20 simulations. Each simulation was a meta-analysis of 5 GWA studies with 40000 SNPs
(distributed over 200 loci). All calculations were done on an Intel Xeon E5-2670 v2 processor
with 8 cores. INEMAP and CAVIARBF were allowed to use all the cores in parallel, by
analyzing 25 loci in each core.

S8 Figure. Impact of number of loci on calculation of B-LORE summary statistics. We
simulated 13082 phenotypes using 100 loci of ~200 SNPs, as described in the main text. All
simulations used h; = 0.6. We then used only a subset (25, 50, 75 and 100) of these loci for
further analysis. We compared the ranking of SNPs at each locus using recall (solid lines, left
y-axis) and precision (dotted lines, right y-axis), which were averaged over the loci and the
simulation replicates. All methods were run with a maximum of two causal SNPs per locus.

S9 Figure. Impact of number of loci on optimization of hyperparameters for B-LORE
meta-analysis. We simulated 13082 phenotypes using 100 loci of ~200 SNPs, as described in
the main text. All simulations used h; = 0.6. We calculated B-LORE summary statistics from
all the 100 loci, but performed meta-analysis using only a subset (25, 50, 75 and 100 - shown in
different panels) of these loci. Other methods were run on the same subset of loci. We
compared the ranking ranking of SNPs at each locus using recall (solid lines, left y-axis) and
precision (dotted lines, right y-axis), which were averaged over the loci and the simulation
replicates. All methods were run with a maximum of two causal SNPs per locus.
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