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Abstract

Single-cell RNA sequencing significantly deepened our insights into complex tissues
and latest techniques are capable processing ten-thousands of cells simultaneously.
With bigSCale, we provide an analytical framework being scalable to analyze millions
of cells, addressing challenges of future large datasets. Unlike previous methods,
bigSCale does not constrain data to fit an a priori-defined distribution and instead uses
an accurate numerical model of noise. We evaluated the performance of bigSCale
using a biological model of aberrant gene expression in patient derived neuronal
progenitor cells and simulated datasets, which underlined its speed and accuracy in
differential expression analysis. We further applied bigSCale to analyze 1.3 million cells
from the mouse developing forebrain. Herein, we identified rare populations, such as
Reelin positive Cajal-Retzius neurons, for which we determined a previously not
recognized heterogeneity associated to distinct differentiation stages, spatial
organization and cellular function. Together, bigSCale presents a perfect solution to
address future challenges of large single-cell datasets.
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Extended Abstract

Single-cell RNA sequencing (scRNAseq) significantly deepened our insights
into complex tissues by providing high-resolution phenotypes for individual cells.
Recent microfluidic-based methods are scalable to ten-thousands of cells, enabling an
unbiased sampling and comprehensive characterization without prior knowledge.
Increasing cell numbers, however, generates extremely big datasets, which extends
processing time and challenges computing resources. Current scRNAseq analysis
tools are not designed to analyze datasets larger than from thousands of cells and
often lack sensitivity and specificity to identify marker genes for cell populations or
experimental conditions. With bigSCale, we provide an analytical framework for the
sensitive detection of population markers and differentially expressed genes, being
scalable to analyze millions of single cells. Unlike other methods that use simple or
mixture probabilistic models with negative binomial, gamma or Poisson distributions to
handle the noise and sparsity of scRNAseq data, bigSCale does not constrain the data
to fit an a priori-defined distribution. Instead, bigSCale uses large sample sizes to
estimate a highly accurate and comprehensive numerical model of noise and gene
expression. The framework further includes modules for differential expression (DE)
analysis, cell clustering and population marker identification. Moreover, a directed
convolution strategy allows processing of extremely large data sets, while preserving
the transcript information from individual cells.

We evaluate the performance of bigSCale using a biological model for reduced
or elevated gene expression levels. Specifically, we perform scRNAseq of 1,920
patient derived neuronal progenitor cells from Williams-Beuren and 7g11.23
microduplication syndrome patients, harboring a deletion or duplication of 7¢q11.23,
respectively. The affected region contains 28 genes whose transcriptional levels vary in
line with their allele frequency. BigSCale detects expression changes with respect to
cells from a healthy donor and outperforms other methods for single-cell DE analysis in
sensitivity. Simulated data sets, underline the performance of bigSCale in DE analysis
as it is faster and more sensitive and specific than other methods. The probabilistic
model of cell-distances within bigSCale is further suitable for unsupervised clustering
and the identification of cell types and subpopulations. Using bigSCale, we identify all
major cell types of the somatosensory cortex and hippocampus analyzing 3,005 cells
from adult mouse brains. Remarkably, we increase the number of cell population
specific marker genes 4-6-fold compared to the original analysis and, moreover, define
markers of higher order cell types. These include CD90 (Thyl), a neuronal surface
receptor, potentially suitable for isolating intact neurons from complex brain samples.

To test its applicability for large data sets, we apply bigSCale on scRNAseq
data from 1.3 million cells derived from the pallium of the mouse developing forebrain
(E18, 10x Genomics). Our directed down-sampling strategy accumulates transcript
counts from cells with similar transcriptional profiles into index cell transcriptomes,
thereby defining cellular clusters with improved resolution. Accordingly, index cell
clusters provide a rich resource of marker genes for the main brain cell types and less
frequent subpopulations. Our analysis of rare populations includes poorly characterized
developmental cell types, such as neuron progenitors from the subventricular zone and
neocortical Reelin positive neurons known as Cajal-Retzius (CR) cells. The latter
represent a transient population which regulates the laminar formation of the
developing neocortex and whose malfunctioning causes major neurodevelopmental
disorders like autism or schizophrenia. Most importantly, index cell cluster can be
deconvoluted to individual cell level for targeted analysis of populations of interest.
Through decomposition of Reelin positive neurons, we determined a previously not
recognized heterogeneity among CR cells, which we could associate to distinct
differentiation stages as well as spatial and functional differences in the developing
mouse brain. Specifically, subtypes of CR cells identified by bigSCale express different
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compositions of NMDA, AMPA and glycine receptor subunits, pointing to
subpopulations with distinct membrane properties. Furthermore, we found Cxcl12, a
chemokine secreted by the meninges and regulating the tangential migration of CR
cells, to be also expressed in CR cells located in the marginal zone of the neocortex,
indicating a self-regulated migration capacity.

Together, bigSCale presents a perfect solution for the processing and analysis
of scRNAseq data from millions of single cells. Its speed and sensitivity makes it
suitable to the address future challenges of large single-cell data sets.
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Introduction

Single-cell RNA sequencing (scRNAseq) is at the forefront of techniques to chart
molecular properties of individual cells. Recent microfluidic-based methods are
scalable to ten-thousands of cells, enabling an unbiased sampling and in-depth
characterization without prior knowledge'™. Consequently, studies are less confined by
the number of cells and aim to produce comprehensive cellular atlases of entire
tissues, organs and organisms®. Increasing cell numbers, however, generate extremely
large datasets, which extend processing time and challenge computing resources.
Current scRNAseq analysis tools are not designed to analyze datasets larger than
thousands of cells and often lack sensitivity and specificity to identify marker genes for
cell populations or experimental conditions.

To address the challenges of large scRNAseq datasets, we developed bigSCale, an
analytical framework for the sensitive detection of population markers and differentially
expressed genes, being scalable to analyze millions of single cells. Unlike other
methods that use simple or mixture probabilistic models with predefined distributions to
handle the noise and sparsity of scRNAseq data®®, bigSCale does not assume an a
priori-defined distribution. Instead, bigSCale uses large sample sizes to estimate a
highly accurate and comprehensive numerical model of noise. The framework further
includes modules for differential expression (DE) analysis, cell clustering and
population marker identification. Moreover, a directed convolution strategy allows the
processing of extremely large datasets, while preserving the transcript information from
individual cells.

We evaluate the performance of bigSCale using a defined biological model for reduced
or elevated gene expression levels by performing scRNAseq of neuronal progenitors
derived from induced pluripotent stem cells of Wiliams-Beuren® and 7q11.23
microduplication'® syndrome patients. Simulated datasets of different size and sparsity
were utilized to underline the accuracy and speed of bigSCale in DE analysis. To
demonstrate its suitability for unsupervised clustering and population marker
identification using its probabilistic model of cell-distances, we applied bigSCale to
cluster cell types of the somatosensory cortex and hippocampus from adult mouse
brains''. Lastly, the bigSCale framework was applied to convolute and characterize 1.3
million cells derived from the developing mouse forebrain, detecting profound
heterogeneity in rare neuronal subpopulations. We believe bigSCale presents a perfect
solution for the processing and analysis of sScRNAseq data from millions of single cells.
Its speed and sensitivity make it suitable to address future challenges of large single-
cell datasets.

Results

The bigSCale framework

Datasets from scRNAseq display sparse and noisy gene expression values, among
other sources due to drop-out events, amplification biases, and variable sequencing
depth. The bigSCale framework builds a probabilistic model to define phenotypic
distance between pairs of cells that considers all sources of variability. Compared to
other methods that assume negative binomial, gamma or Poisson distributions in
simple or mixture probabilistic models, bigSCale estimates a highly accurate and
comprehensive numerical model of noise. The model allows to quantify distances
between cells, which provide the basis for differential expression analysis and cell
clustering (Fig. 1, Methods).

(1) To generate the model, cells featuring highly similar transcriptomes are grouped
together. Next, the expression variation within groups is used as an estimator of noise.
Unlike previous methods, bigSCale models differences in expression levels rather than
expression levels themselves. Therefore, a p-value is assigned to each gene,
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representing the likelihood of a change of expression from one cell to another. Prior to
model computation, a module for batch effect removal can be applied.

(2) For differential expression bigSCale assigns a p-value to each gene, representing
the likelihood of an expression change between two groups of cells. To this end, all
pairwise cell comparisons between two groups are performed. Genes repeatedly
differing in expression between cells cumulate higher scores, which are next adjusted
and normalized into p-values.

(3) Cellular clustering is achieved by computing all pairwise cell distances to generate a
distance matrix and to assign cells into groups (via Ward’s linkage). Specifically, the
distance matrix is computed over a set of overdispersed genes, namely genes
presenting a high degree of variation across the dataset. To improve the feature
quality, skewed, isolated and perfectly correlating genes are discarded. The latter are
prone to generate artificial transcript clusters and consist of genes with a common 3'-
end, being indistinguishable by digital counting scRNAseq methods.

(4) Following the identification of cell clusters, bigSCale conducts an iterative DE
analysis between populations of cells for the sensitive detection of markers, defined by
genes unevenly expressed across populations. Notably, most current tools lack the
option to model multifaceted phenotype structures with overlying molecular signatures
of cells. Conversely, bigSCale allows to disclose multiple alternative phenotypes of a
given cell by ordering markers in a hierarchical structure, in which increasing layers of
phenotypic complexity (from cell types to subtypes or states) are represented by
markers at increasing hierarchical levels.

(5) While bigSCale’s intrinsic speed allows the direct analysis of datasets up to
hundred thousand cells, adjustments are needed to handle millions of cells. For these
scenarios, the cell numbers are scaled down by pooling (convoluting) information from
cells with analogous transcriptional profiles into indexed cell (iCell) profiles. Here, iCells
are defined by adding transcript counts from pools of similar single cells, significantly
increasing molecule and gene counts and overall improving the expression profile
quality. Accordingly, iCells allow to discriminate subpopulations with higher precision
and sensitivity. Most importantly, iCells preserve the transcript information from
individual cells and can be deconvoluted for targeted analysis of populations of interest.

Identification of differentially expressed genes

We evaluate the performance of bigSCale using a biological model for reduced and
elevated gene expression levels. Specifically, we performed scRNAseq of 1,920
neuronal progenitor cells (NPC) derived from induced pluripotent stem (iPS) cells of
two patients with Williams-Beuren (WB) and two with 7g11.23 microduplication (Dup7)
syndrome. Both are multisystemic disorders caused by a heterozygous deletion or
duplication, respectively, of 1.5-1.8Mb at the chromosome band 7g11.23. This region is
flanked by segmental duplications with high sequence identity that can mediate non-
homologous recombination with the consequent loss or gain of 26-30 contiguous
genes, whose transcriptional levels vary in line with their allele dosage®®. To
benchmark bigSCale against other common single-cell DE tools, NPC from four
syndromic patients (WB1/2: n=742 and Dup7.1/2: n=735) were compared to NPC
derived from a healthy donor (WT: n=369 cells). The sensitivity of each algorithm was
evaluated by counting the number of genes detected to be significantly down- or
upregulated in patients against the control. To achieve the same level of specificity
amongst tools, the top 1500, 2000 and 2500 deregulated genes were used in each
comparison.

For the WB1 sample harboring a deleted allele, bigSCale presented the highest
sensitivity by detecting 12 down-regulated genes, followed by scde®, MAST’, seurat®
and scDD?® (Fig. 2a). Notably, bigSCale finds the same genes as the other best
performing tools, plus additional events (Fig. 2b). Interestingly, the poorest performing
tool scDD is also the most divergent one, displaying reduced overlaps with the other
four methods (Fig. 2a,b). Consistently, bigSCale displayed the highest sensitivity also
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in the remaining three comparisons (Supplementary Fig. la-c), with an overall
average of 11.5 detected down-regulated genes in WB patients and 9 up-regulated
genes in Dup? patients (Fig. 2c). Moreover, bigSCale proved to be the most sensitive
method at all tested specificity levels, with an average of 8.75 (top 2000) and 6.75 (top
1500) detected DE genes (Supplementary Fig. 1d). These results indicate that
bigSCale outperforms other methods for single-cell DE analysis in sensitivity when
using biological data.

To further test the performances in determining DE genes, we benchmarked bigSCale
against the previous tools using simulated datasets. For data simulation, we used
Splatter*?, which allows to generate and control true positive DE genes. Simulations
have been performed estimating parameters from two datasets representing different
characteristics of large-scale experiments, namely our NPC dataset (sim_NPC) and a
droplet-based experiment consisting of ~2,500 cells sequenced to low coverage (10x
Genomics, sim_10xG; Methods). The two datasets widely differed in the number of
detected genes per cell, sparsity and heterogeneity (Fig. 2d and Supplementary
Fig. 2a). In both simulations, we recreated distributions of gene expression levels and
library properties highly similar to the original datasets and preserved the original
number of cells and genes. Six cell types of different proportions were simulated in
each dataset, allowing to test DE between groups of proportions 1:1 (1x), 1:2 (2x) and
1:10 (10x). Each tool has been applied to the complete dataset at the model-building
step, prior to test DE between groups of cells.

The ability to correctly classify true DE genes against non-DE genes was evaluated
calculating the area under the curve (AUC) of a receiver operating characteristic (ROC)
curve, ranking genes in their order of significance as determined by the tools. To test
the capacity of controlling false positives events, we focused on the partial AUC with
high specificity being >90%. All tools performed better in the simulated NPC dataset
and the order of tools was consistent across all group sizes (Fig. 2e,f and
Supplementary Fig. 2b-e). Remarkably, bigSCale outperformed the other tools,
reaching the highest levels of sensitivity and specificity in all tested conditions (Fig.
2g). The MAST performance was the closest to bigSCale, with the gap being more
evident in more distinct proportional contexts (10x, Supplementary Fig. 2c,e). Notably,
while the design of MAST is restricted to DE analysis, bigSCale provides a
comprehensive framework for single-cell analysis.

In the view of increasing datasets sizes, we further evaluated bigSCale’s speed in DE
analysis. In the biological model (NPC), bigSCale proved to be the fastest tool (3.1 min)
in performing DE, followed by MAST (4.0 min) (Fig. 2h). The slowest tool was scde
(684 min), as reported in previously studies'***. We next compared the scalability of
bigSCale to MAST with respect to samples sizes. To this end, we created a simulated
matrix of 40,000 genes and 32,000 cells and performed DE analyses between pairs of
groups with sizes ranging from 2,000 to 32,000 cells. BigSCale was faster for all
conditions (Fig. 2i). Moreover, bigSCale could process datasets larger than 8,000 cells,
whereas MAST was limited by the RAM requirements, denoting a broader perspective
of applicability for bigSCale.

Cellular clustering and population marker identification

To evaluate the ability of bigSCale to identify cell types and subpopulations in complex
tissues, we analyzed 3,005 cells of the somatosensory cortex and hippocampus
dissected from the adult mouse brains'. Consistently with previous analyses'**°,
bigSCale was able to segregate all major brain cell types, namely somatosensory
pyramidal neurons, different types of CAl/2 pyramidal neurons, interneurons,
astrocytes, oligodendrocytes and vascular cells (Fig. 3a). Remarkably, we increased
the number of marker genes specific for cell types 4/5-fold compared to the original
analysis using BackSPIN and, moreover, defined markers of higher order cell types
(Fig. 3a). Specifically, bigSCale determined 9,258 marker genes for cellular types,
including 7,167 previously unidentified markers (Supplementary Table 1). The
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expression patterns of the novel markers were highly specific to the respective
populations of cells, as shown for astrocytes (Fig. 3b), oligodendrocytes, vascular
cells, neurons and interneurons (Supplementary Fig. 3a,b), pointing to a high
accuracy of bigSCale. In line, external bulk RNAseq signatures supported the novel
markers to be highly specific for the respective populations®®!’ (astrocytes, p<4.9e-62;
oligodendrocytes, p=9.9e-18; interneurons, p=9.8e-19; neurons, p=2.3e-34; vascular,
p=1.0e-67). Furthermore, the novel markers included established marker for brain
subtypes, such as Atpla2'®, Slc1a3', Mt1%* and Aqp4®* for astrocytes or Stmn3?%,
Snap25% for neurons (Supplementary Fig. 4a-c).

Differently to other methods, bigSCale marker genes are organized in a hierarchical
structure allowing to stratify the analysis into different layers of tissue organization. This
enabled the assignment of markers to subpopulations, but also higher order cell types,
such as glia cells or neurons (Supplementary Fig. 3b). In this regard, current
experimental designs fail to reliably separate intact neurons from glia cells, as
established markers (e.g. NeuN) located in the nuclear membrane and are not suitable
for isolating entire neurons. Our analysis identified 1,656 marker genes silenced in glial
cells and expressed in neuronal populations (Supplementary Table 1), such as the
neuronal surface receptor CD90 (Thyl, Fig. 3a), potentially suitable for isolating intact
neurons from complex brain samples.

Convolution of large datasets into index cells

To analyze very large datasets of millions of cells, bigSCale convolutes the original
cells into iCells with improved transcriptional profiles after the numerical model has
been computed using the entire dataset (Methods). To ensure that the convolution
strategy does not deteriorate cellular phenotypes and related cell clustering, we
evaluated its performance by analyzing 20,000 brain cells (randomly downsampled
data set, 10x Genomics). Specifically, we tested the cluster assignment of all cell pairs
within the dataset before and after increasing degree of convolution (from 4,587 to
2,101 iCells) and for different cluster numbers (n=2-32). Similarities of classification
were defined by the Rand Index (RI), a metric suitable for comparative cluster
assessment®, where RI=100% implies complete similarity of clusterings. Importantly,
we observed a highly similar cluster assignment between original and convoluted
datasets with RI>80% (Fig. 4a). The Rl was also stable with increasing cluster
numbers or degree of convolution, indicating a robust strategy to reduce cell numbers.
In line, visualizing cells in two-dimensional plots (tSNE) confirmed the high similarity of
cluster assignment between original and iCells (Fig. 4b). Together, the results support
the utility of bigSCale convolution to reduce dataset sizes without the introduction of
artifacts.

Analysis of 1,306,127 cells of the developmental pallium

The by far most extensive dataset to date for scRNAseq are 1,306,127 sequenced
mouse brain cells from the developmental (E18) dorsal and medial pallium. The data
was produced using droplet-based library preparation (10xChromium v2) and is
publically available (10x Genomics). Despite being the sole developmental scRNAseq
dataset of crucial regions such as cortex, hippocampus and the subventricular zone, its
large size yet prevented any detailed analysis. We reasoned that the bigSCale
analytical framework would be suitable to analyze such large data set and performed
an in-depth analysis of cell types and states, including rare and poorly described
subpopulations. This analysis serves as proof-of-concept for bigSCale’s suitability to
process millions of cells from complex tissues in an unbiased manner.

Initially, we applied our convolution strategy to reduce the dataset size 50-fold from
1,306,127 cells to 26,185 iCells. As expected iCells were of improved quality with
average library size increasing 50-fold (from 4,890 to 238,500 UMIs) and detected
genes per cell increasing 5-fold (from 2,009 to 9,360). In line, average expression level
increased from to 2.4 UMIs to 25.5 UMIs. The convolution retained 1,244,298 cells
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(95.27%), discarding 61,829 cells (4.73%). Clustering of the index cells revealed 16
major cell populations and captured 16,242 differentially expressed markers (Fig. 5a,b,
Supplementary Table 2). We classified the 16 populations in four main cell types:
non-neuronal (1-4), neuronal progenitors (5-8), radial glia (9-11) and post-mitotic
neurons (12-16). Hierarchical markers allowed to sharply disentangle cell types and
subtypes, as well as stages of lineage commitment. Exemplarily, higher order markers,
such as Tubb3 and Slcla3 mark the two main cell types: postmitotic neurons of the
intermediate/marginal zones and radial glia and progenitors of the ventricular zone,
respectively (Fig. 5a,c). Similarly, bigSCale captured the hallmarks of the main stages
of the neuronal lineage®, indicated by the expression of Pax6 (radial glia), Tbr2
(committed progenitors) and Tbrl (differentiated neurons) (Fig. 5a). On the other hand,
the most significant markers shaping the heterogeneity of post-mitotic neurons are
Stmn2 (silenced in neuroblasts), Meg3 (interneurons and Cajal-Retzius (CR) neurons),
Nrpl (glutamatergic neurons), Tac2 (neuroblasts), Reln (CR neurons) and Gad2
(gabaergic interneurons).

As expected, some radial glia (C9, C10) and progenitor populations (C5, C7, C8)
represent dividing cells, indicated by Top2a expression and other cell cycle genes (Fig.
5a, Supplementary Table 2). Interestingly, bigSCale also identified a population of
dividing GABAergic progenitors (C5) characterized, amongst other markers, by
simultaneous expression of Gad2, Pax6 and Top2a. Subpatterns of expression within
populations of cells further indicate the presence of subtypes of cells, as displayed by
the uneven expression of the signaling molecule Nhpx2 within Gad2 positive
interneurons (Fig. 5a). Given the association of Nhpx2 with an attention-
deficit/hyperactivity disorder?®, Gad2/Nhpx2 positive cells could represent a previously
unknown developmental subtype of interneurons with a roles in behavior and
neurocognitive functions.

Deconvolution for high-resolution subpopulation analysis

While bigSCale enabled the convolution of 1.3 million cells to characterize the main
cellular types of the developmental pallium with unprecedented detail, the information
of single-cell transcriptional profiles was maintained. Consequently, population specific
deconvolution allows the in-depth analysis of populations of interest at the resolution of
individual cells. We were especially interested in the population of Reln positive cells,
also known as Cajal-Retzius neurons, a transient type of neurons which regulates the
laminar formation of the developing neocortex and whose malfunctioning causes major
neurodevelopmental disorders like autism or schizophrenia®’.

To date a comprehensive phenotypic characterization of the CR cells and its potential
subtypes remains elusive, mostly due to their transient nature and to the lack of
unambiguous markers. To unravel the diversity of CR cells, we deconvoluted 480 Reln
positive iCells to 17,543 individual Reln positive cells, an unprecedented resource to
phenotype this cell type (Fig. 6a). Reln was expressed uniformly in all deconvoluted
cell, confirming the specificity of the convolution strategy (Fig. 6b). Furthermore, P73
(Trp73) a well-known marker of neocortical CR cells of later developmental stages
(E18) was also uniformly expressed. Expression of P73 indicates that the CR cells
were originated from the cortical hem, which is the major source of neocortical CR
cells?®. We determined CR cell specific markers, in addition to Reln and Trp73, which
included Cacna2d2, a calcium channel subunit, and Eya2, a transcriptional coactivator
(Methods). Unsupervised clustering revealed eight major subpopulations of CR cells
(Fig. 5a) and a total of 8,174 differentially expressed markers genes (Supplementary
Table 3). The clusters also included cell doublets an inevitable artefact of microfluidic-
based sample processing, recognizable by cells with simultaneous expression of Reln
and erythrocytes genes (Fig. 6a).

The eight subclusters pointed to a yet undescribed heterogeneity within CR cells and to
spatial and functional differences in the developmental pallium. We found Cxcl12, a
chemokine secreted by the meninges and regulating the tangential migration of the CR
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cells®®, to be also expressed by subtypes of CR cells (Fig. 6b). Notably, in situ
hybridization data from E18 mice (Allen Brain Atlas) indicated that Cxcl12+/Reln+
positive CR cells are located within the marginal zone (MZ), whereas Cxcl12-/Reln+
are positioned outside the MZ, in the inner layers of the neocortex. Intriguingly, this
points to a self-regulated migration capacity of the CR neurons of the marginal zone.
The bigSCale analysis further unveiled potentially distinct differentiation stages of CR
cells, marked by either Sox11/Neurod2 or Nnat/Igf2 (Fig. 6a,c). Likewise, we found a
population of CR cells (CR8) expressing higher levels of mitochondrial genes, an
indicator of apoptotic or disrupted cells (Fig. 6a,c). Considering that we did not find a
similar cluster in the other pallial cell types, we excluded a technical artefact and
suggest a cell subtype specific phenotype. Consistently, CR cells were shown to initiate
cell death at postnatal stages®. Consequently, CR8 cells could represent an intriguing
population of CR neurons committed to die already at the last stages of embryonic
development (E18).

Lastly, neurotransmitter receptors are one of the most important features of CR cells.
We specifically interrogated the expression of the 62 subunits of the 9 major receptor
types. We found a number of subunits to be differentially expressed, pointing to CR
subtypes with different membrane properties (Supplementary Fig. 5). The most
striking variation was found for the Glu-R2 (Gria2), a pivotal subunit of AMPA channels
strongly influencing receptor properties, assembly, trafficking and long-term synaptic
plasticity (Fig. 6d).

Discussion

Current scRNAseq analytic tools use simple or mixture probabilistic models which
require predefined distributions to handle noise and sparsity. BigSCale bypasses this
requirement by estimating a numerical model of noise. Furthermore, it determines the
extent of the variation between cells without estimating actual gene expression value.
These stratagems allowed us to build a highly optimized code, which can rapidly
process large cell numbers whilst showing an improved sensitivity and specificity to
detect differentially expressed genes, as shown for biological and simulated datasets.
With the advent of microfluidic-based scRNAseq library preparation methods and the
associated decrease in costs, experiments are now scalable to profile millions of cells
simultaneously. Latest methods even provide single-cell transcriptomes without the
physical separation of cells (through combinatorial indexing)®, paving the way to
affordable big-scale projects and the comprehensive charting of tissue and organism
compositions. With bigSCale we provide an analytical framework that addresses the
computational challenges of future large datasets. While current tools are not
applicable for experiments exceeding thousands of cells, DE analysis and clustering
with bigSCale is practical for hundred thousand cells. Beyond that, its convolution
module allows the analysis of millions of cells as shown here for the developing
pallium.

With decreasing expenses for library preparation, sequencing costs become a limiting
factor. Here we showed that despite being sequenced to low coverage (average
18,500 reads per cell), the analysis of more than a million cells is capable of identifying
heterogeneity even in rare cell types. Indeed, the convolution into index cells and
related improvements of expression profiles allowed us to draw a high-resolution atlas
of the developing pallium, providing a rich resource of novel marker genes for
subsequent studies. Further, the size of the dataset enabled us to describe a yet
unprecedented heterogeneity in a rare, transient brain cell type (Cajal-Retzius neurons,
1% of total cells), producing new, founded hypotheses that can be used to enhance our
mechanistic insights in brain development. Overall, these results illustrate the value of
lowly sequenced large datasets. Nevertheless, for even sparser datasets, such as
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those obtained from the sequencing of nuclei®, the performance of bigSCale still needs
to be evaluated.

Together, we present an analytical framework for scRNAseq analysis that provides a
solution for challenges arising from future large-scale efforts to systematically and
comerehensively chart cellular composition of complex organisms, including the human
body”.
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Methods

Numerical probabilistic model

The probabilistic model is established as follows. First, cells are clustered in groups
sharing similar expression profiles. We refer to this clustering as pre-clustering, as it is
different from the final cell clustering achieved at the end of the pipeline. The purpose
of the pre-clustering step is to group cells sharing highly similar transcriptomes, which
are next treated as biological replicates to allow evaluation of the noise. Pre-clustering
is achieved by i) normalizing the reads/UMIs to library size (xj = ci/LS for
i=1,..,tot_genes, where x; is the normalized expression for gene i in cell j, ¢ the non-
normalized expression and LS=Sum(c;) the library size); ii) transforming the normalized
expression levels in log10(x+1); iii) normalizing the log-transformed values to the same
interval for each gene. This step is required otherwise only highly expressed genes
would drive the clustering; iiii) Clustering the cells using Pearson-correlation and
hierarchical clustering with Ward’s linkage. BigSCale automatically attempts to find the
deepest possible cut (on average 10-15% of total tree height) in the tree to ensure that
only highly similar cells are grouped together. At the same time, it avoids cuts which
are too deep and would produce clusters which are too small for computing the
numerical model. As a side note, the level at which the dendrogram is cut (and hence
the number of pre-clusters) is not a key parameter of the pipeline, as it produces
marginal effects on the final clustering or differential expression. Mainly, a lower
number of pre-clusters will generate a numerical model which is less sensitive,
meaning that the final p-values will be higher (less significant), but with negligible
changes in the clustering and in the order of the differentially expressed genes. At this
stage, we now treat the cells within each group as replicates, assuming their changes
of expression to be solely due to noise and not to biological differences.

Secondly, all within-group pairwise comparisons between cells are enumerated in order
to determine how rare/common (i.e. assigning a p-value) each combination of
expression values is. Specifically, if a pre-cluster contains n cells, it produces
C(n,2)=n"(n-1)/2 combinations of cells. Each of this combinations contains k couples of
expression values (Xcell;, Xcelly), where k is equal to the total number of genes and
Xcelly, Xcell, is the expression of a gene in the two compared cells. Each couple of
expression values of each combination is summed into a 3D histogram that represents
a numerical approximation of a cumulative distribution function (Supplementary Fig.
6a,b). The assigned p-values are related to the difference in gene expressions across
all cells. For instance, if a gene has 0 UMIs in cell X and 2 UMls in cell Y, its p-value
would be larger than for a gene with 0 UMIs in cell X and 20 UMIs in cell Y, as such
differences are rare.

The fitting takes into account the library size, meaning that it accounts for the higher
dispersion of values of low-sized libraries. Specifically, when two cells of one pre-
cluster are compared during the enumeration, they are normalized for the library size
according to the formula x; = ci/Sum(cy)*((LS:+LS,)/2) for i=1,..,tot_genes, where Xx; is
the normalized expression for gene i in cell j=1 or j=2, ¢ the non-normalized expression
and LS;,LS, the library sizes of cells j=1 and j=2).

Learning this numerical, probabilistic model from the data is possible because single-
cell datasets contain hundreds to thousands of cells, which allows to enumerate up to
hundreds of billions of couples and, hence, to gain a high precision in the estimated
p-values. Ultimately, the model allows to assign a p-value to each gene, indicating the
probability of a difference in the expression when comparing two cells.

Differential expression (DE) model and hierarchical markers

The purpose of DE analysis is to assign p-values to genes that indicate the likelihood of
an expression change between two groups of cells. To determine these p-values, each
cell of one group is compared to each of the cells of the other group, resulting in a total
of ny*n, comparison, where n is the number of cells of each group. For each gene, the
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ni*n, logl0 transformed p-values (derived from the probabilistic model and signed to
represent up- or down-regulation) are summed into a total raw score. Genes up(down)-
regulated in one group compared to the other will cumulate high (positive or negative)
total raw scores. Here, the raw score is proportional to the likelihood of an expression
change between the two groups.

The raw score is next adjusted i) for the total number of comparison, using a curve
smoothing spline (Supplementary Fig. 6¢). The rationale for this adjustment is to take
into account that genes with sparser expression will produce smaller scores compared
to genes expressed in high frequency; ii) for the within-group variability, which is
estimated by running a DE analysis between randomly reshuffled cells in a way that
cells of the same group are compared. Specifically, two null-groups are created by
taking an equal proportion of cells from the two original groups. For example, in the
case of two groups of 100 cells each, the null-groups will each be formed by mixed
50+50 cells randomly extracted from original group one and two, respectively. For
comparison involving <2,000 total cells, 5 such permutation are performed. For
comparison involving >2,000 total cells, the number of permutations is progressively
scaled down with the increase of cell numbers. The reason is that large groups allow to
fit the within group variability already with one or few permutations.

Aside from being a standalone tool, the DE script is also iteratively applied between
clusters at the end of the clustering pipeline to isolate markers genes, i.e. genes
expressed only in specific cells types (i.e. clusters). Upon completion of the clustering,
a differential expression analysis is performed among all the pairs of clusters, resulting
in (N comparisons, where N=number of clusters. Generally, the user can select the
desired number of clusters, according to the desired detail of analysis. Nonetheless,
bigSCale will calculate a hierarchical structure of the markers, which allows to
recognize the main cell types even when setting a high N to inspect cell subtypes. In
this way, the number of clusters N can be freely set to any level without the risk of
losing phenotypic information.

As the last step, genes presenting significant changes of expression throughout the
dataset are selected and organized in a hierarchical structure. Genes which are up-
regulated in one population compared to each of the other populations are classified as
markers specific to that population (Level 1 markers). Level 1 makers capture the
phenotypes being unique and peculiar to populations of cells. Each Level 1 marker has
a score, which corresponds to the highest (less significant) log10 transformed p-value
out of the N-1 comparison. In the next step, Level 2 markers are calculated. These
markers are up-regulated in at most 2 populations of cells compared to each of the
other populations. Essentially this means that Level 2 markers are genes expressed in
two populations of cells amongst all populations. This computation iteratively continues
up to Level N-1 markers. Exemplarily, we assume four populations: radial glia,
neuronal progenitors, dividing neuronal progenitors and differentiated neurons. Level 1
markers would represent genes expressed only in one of the populations, such as
radial glia specific markers. Level 2 markers would be genes shared by two
populations, such as the neuronal progenitors markers, which are expressed both in
the neuronal progenitors and in the dividing neuronal progenitors. Lastly, Level 3
markers are shared by three populations, for example neuronal markers, which are
expressed in the dividing and non-dividing progenitors and in the differentiated
neurons.

To calculate new markers for CR cells we selected genes that were i) markers for CR
cells, using the 1.3M convoluted dataset (1,291 genes with Z-score>6, Supplementary
Table 2) and ii) uniformly expressed within subtypes of CR cells, using the
deconvoluted CR dataset. Genes without significant changes of expression (max fold
change <1.5) between subtypes (CR1-CR8) of CR cells were labeled as uniformly
expressed in CR cells. A total of 501 genes including Reln satisfied both requirements.
However, restricting the intersection to strong CR makers showing at least 8-fold
increased expression in CR cells and Z-score>15 resulted in six high confidence
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makers: Reln (Z-score=35), Cacna2d2 (Z-score=30), Eya2 (Z-score=21), Tex1l5 (Z-
score=19), Cpebl (Z-score=17), Vmn2rl (Z-score=15).

Overview of the clustering

Once the probabilistic model has been fitted, it is possible to calculate distances
between cells. Firstly, overdispersed genes, namely genes with high variation of
expression throughout the dataset, are determined by means of a non-linear noise
model learned from the data (Supplementary Fig. 6d-f). To further improve the
features section, extremely skewed genes (Supplementary Fig. 6g) and isolated
genes (not correlated with any others) are discarded. Furthermore, perfectly correlating
genes are discarded as they belong to families with shared 3’-exons (such as Pcdh or
Uty), for which most scRNAseq techniques (e.g. MARS-Seq***? or Chromium-based?®
methods) cannot differentiate between transcripts. These families can otherwise
generate artificial clusters, as it happens with other tools™.

Secondly, distances for all pairs of cells are calculated and the obtained distance-
matrix is used to cluster the cells (hierarchical clustering, Ward’s linkage). The distance
between two given cells is calculated as the sum of the log10-transformed p-values of
overdispersed genes. Cells presenting many overdispersed DE genes will cumulate
higher sums and eventually result very distant. Only genes with DE p-values<0.01 are
retained in the sum to ensure that only significant changes determine the final distance.
Prior to the calculation of the numerical model and distance matrix, batch correction
can be applied to level out the batch-related variance in expression. Briefly, batch
correction forces each gene to follow the same distribution in each batch, condition-
wise (Supplementary Fig. 6h). In this way, the batch-effects are removed while
preserving the original distributions of expression (Supplementary Fig. 6h,i).

Convolution of large datasets

To convolute large dataset, bigSCale performs the following pipeline. 1) The numerical
model of the dataset is calculated. 2) For each cell, its distances against a number n of
other random cells are calculated. The number of random cells n is normally set to
thousands. The higher n, the longer the computational time, but the lower the distortion
introduced by the convolution. The final output of this step is a m*n matrix, where m is
the number of cells in the original dataset and n is the number of random cells for
which distances are calculated. 3) A pooling algorithm is applied to the m*n distance
matrix to determine all groups of cells that will be summed into iCells. The rationale of
the algorithm is that, for each cell, its closest neighbor among the n other random cells
can be considered as an analogous phenotype. To increase the convolution factor, k
closest neighbors, instead of 1, can be chosen. The pipeline pools the cells in order of
similarity, starting with the closest ones, up to a maximum distance determined by
percentile values. Initially, the algorithm starts with a stringent percentile value (p=5%
of the total computed distances) and attempts pooling k closest neighbors for each cell.
When there are no more cells with k closest neighbors within the maximum distance
(p=5%), k is relaxed to k-1. This cycle continues until k=1, to which point the maximum
distance allowed is increased to p=10%. These inner (k) and outer (p) cycle continue
until p=50%. Cells ending up with no neighbors are considered outliers and discarded.
While it is easy to locate neighbors for cells belonging to abundant (frequent) types, for
rare cell types it becomes harder. Essentially, the two k-p cycles maximize the
probability to find neighbors for every cell, both common and rare ones.

The ratio n/k is proportional to the quality of the convolution. In fact, a high n/k ratio
implies that the k-closest neighbors chosen for each cell are selected from a much
larger population of n random cells, which increases the chances to find the “real”
neighbors, especially for rare cell types. Convolution of very large datasets can be split
in multiple rounds to further reduce artifacts by using better n/k ratios, as done in the
case of the 1.3M cells dataset (1.3 Million Brain Cells from E18 Mice, 10xGenomics).
Specifically, we convoluted the dataset with a final factor k=75 in three rounds. In fact,
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calculating n=4000 for 1.3M cells already requires approximately 12 hours of CPU-
time, nonetheless yielding in a bad n/k=4000/75=53,3 ratio, if convolution was in one
round. Therefore, we proceeded with three rounds of convolution. The convolution
factors used for each round where: (n,=4000, k=3), (n,=5000, k.=5), (n,=7000, k,=5)
which all showed high, good n/k ratios (1333, 1000, 1400 respectively). The first round
reduced the size to 456,274 iCells, the second round to 110,583 iCells and the third
round to 26,185 iCells.

Patient derived neural progenitor cells

Skin fibroblasts from two patients with Williams-Beuren (WB) and two with 7q11.23
microduplication (Dup7) syndrome were reprogrammed to induced pluripotent stem
(iPS) cells by retroviral delivery of the pluripotency factors OCT4, SOX2, KLF4 and
MYC, at the Centre of Regenerative Medicine in Barcelona (CMR[B]). Individual iPS
cells were picked to generate single clone colonies that were expanded and fully
characterized®. Briefly, genomic stability was confirmed by karyotype; integration and
silencing were verified by PCR and quantitative RT-PCR; pluripotency was
demonstrated by Alkaline Phosphatase staining and expression of pluripotency
markers by immunocytochemistry. Finally, the capacity to differentiate to mesoderm,
ectoderm and endoderm germ layers both in vitro and in vivo was verified by embryoid
bodies and teratoma formation followed by immunostaining. All iPS cells were
deposited in the Stem Cell Bank repository of the Instituto de Salud Carlos il
([SWB]FiPS1-R4F-5, [SWB]FiPS-4F-5-6, [DUP7]FiPS-4F-3-1, [DUP7]FiPS4-R4F-2).
We generated neural progenitor cells from iPS cells following the Gibco protocol based
on PSC Neural Induction Medium (NIM). Briefly, differentiation of iPS cell colonies was
performed by seven days culture in NIM, followed by several passages of maturation in
Complete Neural Expansion Medium (Neurobasal Medium, Advanced DMEM/F-12, and
Neural Induction Supplement). Confirmation of expression of NPC markers was done
by immunocytochemistry (Human Neural Stem Cell Immunocytochemistry Kit, Gibco).
After 4-7 passages, NPC were detached with Accutase (Gibco) and resuspended.
Single-cells were sorted in a BD Influx cell sorter to MARS-Seq plates (see below) for
single-cell RNA sequencing (Flow Cytometry Core Facility, Univeritat Pompeu Fabra).

Library preparation and sequencing

To construct single-cell libraries from polyA-tailed RNA, we applied massively parallel
single-cell RNA sequencing (MARS-Seq)*"%. Briefly, single cells were FACS isolated
into 384-well plates, containing lysis buffer (0.2% Triton (Sigma-Aldrich); RNase
inhibitor (Invitrogen)) and reverse-transcription (RT) primers. The RT primers contained
the single-cell barcodes and unique molecular identifiers (UMIs) for subsequent de-
multiplexing and correction for amplification biases, respectively. Single-cell lysates
were denatured and immediately placed on ice. The RT reaction mix, containing
SuperScript Il reverse transcriptase (Invitrogen) was added to each sample. In the RT
reaction, spike-in artificial transcripts (ERCC, Ambion) were included at a dilution of
1:16x10° per cell. After RT, the cDNA was pooled using an automated pipeline
(epMotion, Eppendorf). Unbound primers were eliminated by incubating the cDNA with
exonuclease | (NEB). A second pooling was performed through cleanup with SPRI
magnetic beads (Beckman Coulter). Subsequently, pooled cDNAs were converted into
double-stranded DNA with the Second Strand Synthesis enzyme (NEB), followed by
clean-up and linear amplification by T7 in vitro transcription overnight. Afterwards, the
DNA template was removed by Turbo DNase | (Ambion) and the RNA was purified with
SPRI beads. Amplified RNA was chemically fragmented with Zn2+ (Ambion), then
purified with SPRI beads. The fragmented RNA was ligated with ligation primers
containing a pool barcode and partial lllumina Readl sequencing adapter using T4
RNA ligase | (NEB). Ligated products were reverse-transcribed using the Affinity Script
RT enzyme (Agilent Technologies) and a primer complementary to the ligated adapter,
partial Readl. The cDNA was purified with SPRI beads. Libraries were completed
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through a PCR step using the KAPA Hifi Hotstart ReadyMix (Kapa Biosystems) and a
forward primer that contains lllumina P5-Readl sequence and the reverse primer
containing the P7-Read2 sequence. The final library was purified with SPRI beads to
remove excess primers. Library concentration and molecular size were determined with
High Sensitivity DNA Chip (Agilent Technologies). The libraries consisted of 192 single-
cell pools. Multiplexed pools (2) were run in one lllumina HiSeq 2500 Rapid two lane
flow cell following the manufacturer’s protocol. Primary data analysis was carried out
with the standard lllumina pipeline. We produced 52 nt of transcript sequence reads.

Data processing

The MARS-Seq technique takes advantage of two-level indexing that allows the
multiplexed sequencing of 192 cells per pool and multiple pools per sequencing lane.
Sequencing was carried out as paired-end reads; wherein the first read contains the
transcript sequence and the second read the cell barcode and UMI. Quality check of
the generated reads was performed with the FastQC quality control suite. Samples that
reached the quality standards were then processed to deconvolute the reads to single-
cell level by de-multiplexing according to the cell and pool barcodes. Reads were
filtered to remove polyT sequences. Reads were mapped with the RNA pipeline of the
GEMTools 1.7.0 suite*® using default parameters (6% of mismatches, minimum of 80%
matched bases, and minimum quality threshold of 26) and the genome references for
human (Gencode release 25, assembly GRCh38). Gene quantification was performed
using UMI corrected transcript information to correct for amplification biases, collapsing
read counts for reads mapping on a gene with the same UMI (allowing an edit distance
up to 2 nt in UMI comparisons). Only unambiguously mapped reads were considered.
The analysis of spike-in control RNA content allowed us to identify empty wells and
barcodes with more than 15% of reads mapping to spike-in artificial transcripts were
discarded. In addition, cells with less than 60% of reads mapping on the reference
genome or more than 2x10° total reads were discarded. Finally, low quality cells
featuring either of the following were discarded: 1) low mapped reads 2) low library size
3) low library complexity (detected genes) 4) high mitochondrial content. Overall, 73
cells did not satisfy these quality requirements and were discarded.

Simulated datasets

For data simulation we applied Splatter*? estimating parameters from NPC (sim_NPC)
and a droplet-based experiment (2,520 random cells from: 1.3 Million Brain Cells from
E18 Mice, 10x Genomics; sim_10xG). The datasets differed in the number of detected
genes per cell, sparsity and heterogeneity. We recreated highly similar distributions of
gene expression means and variances, cell library sizes and zeros counts as well as
relationships of mean-variance and mean-zeros (Fig. 2d and Supplementary Fig. 2a).
We preserved the number of cells and genes as in the original dataset and defined
groups of different proportions across multiple sequencing pools. The dimensions of
the gene x cell matrices were 41,020 x 1,847 and 27,998 x 2,520 in sim_NPC and
sim_10xG, respectively. Each tool has been applied on the complete dataset at the
model-building step, before defining groups of proportions 1:1 (1x), 1:2 (2x) and 1:10
(10x). The number of DE genes between groups ranged from 18% to 30% of the total
number of DE genes (around 47% of total genes), being lowest at 10x and highest at
2x cases. While the composition of DE genes was similar in up-regulated and down-
regulated genes, ratios of gene average means between groups could reach levels of
expression magnitude up to twice as much as in sim_NPC. The datasets further
differed in the proportion of outlier genes, which was around 1% in sim_10xG and
~2.5% in the sim_NPC.

ROC curves and pAUCs have been performed using the R package pROC®. In all
comparisons, only genes tested by all methods were considered. Genes were ranked
by nominal p-values, which we used to define a score as 1-p, indicating the outcome of
the prediction (DE or non-DE) for each tool. Predictions and true gene labels were

17


https://doi.org/10.1101/197244
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/197244; this version posted October 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

lacono et al. 2017

assessed at different thresholds of these scores to compute relative specificity and
sensitivity coordinates for ROC curves.

Data availability at GEO

The 1.3 million brain dataset is freely accessible from 10x Genomics:
https://support.10xgenomics.com/single-cell-gene-expression/datasets
The adult brain dataset is available at GEO (GSE60361).

The complete lists of hierarchical markers for the adult brain dataset'!, the 10x
Genomics dataset (1.3 Million Brain Cells from E18 Mice) and the Reelin
subpopulations are available at GEO (GSE102934) in the following tables:

Table_S1 Linnarsson.xlsx (Markers of Zeisel/Linnarsson et al. dataset)
Table_S2_10xfull.xIsx (Markers of 10xGenomics)

Table_S3 10x_Reln.xlsx (Markers of 10xGenomics Reelin subtypes)

Availability of the source code

All functions of bigSCale v1.0 are available at Github under the link:
https://github.com/iaconogi/bigSCale

We are currently working to bigSCale 2.0, a user-friendly suite in which all parameters
are automatically set and the analysis (DE and population clustering) can be performed
in one-click.
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Figure legends

Fig.1l | Schematic representation of the bigSCale framework for analyzing millions of
single-cell transcriptomes. The analytical framework includes a numerical model step to
determine distances between single cells and modules for differential expression
analysis, cell clustering and population marker identification. An optional convolution
strategy allows the processing of extremely large datasets (preserving the transcript
information from individual cells).

Fig.2 | Benchmarking of sensitivity, specificity and speed of bigSCale, scde, seurat,
MAST and scDD. (a) Differential expression analysis in iPS cell-derived neuronal
progenitor cells (NPC) from healthy and Williams-Beuren (WB) syndrome donors (WT
vs. WB1). For the genes located in the deleted region the p-values of each tool are
shown in Z-score scale, (blue: down-regulated; red: up-regulated). Genes correctly
detected as down-regulated are highlighted (grey). Total numbers of correctly assigned
genes are indicated (below). (b) Venn diagrams for WT vs. WB1 comparing the identity
of correctly assigned genes (orange: bigSCale; blue: others) (c) Average number of
detected down- (blue) and up-regulated (red) genes in the two WB and Dup7 patients,
respectively, compared to healthy donor. (d) Comparison of the mean-variance
relationship in the two simulated datasets (sim_NPC and sim_10x). (e,f) Partial AUCs
of ROC curves computed across the tools in the two simulated datasets (sim_NPC, e;
sim_10x, f) with group sizes having proportions 1:1 (1x). The sensitivity at high level of
specificity (>90%) is highlighted (grey area). (g) Barplots of partial AUC across tools for
all tested proportions (1x, 2x, 10x) in DE analyses of simulated datasets (sim_NPC and
sim_10x). h) Average required time for computing DE in the NPC cell model (average
739 total cells per comparison, 4 comparisons, tools run on 1 CPU-core) i) Scalability
of bigSCale and MAST with large datasets. MAST could not be tested beyond 8,000
cells due to excessive RAM requirements (>16Gb).

Fig.3 | BigSCale analysis of scRNAseq data from 3,005 mouse cortical and
hippocampal cells**. (a) Dendrogram and expression plots reporting examples of
hierarchical markers. Dendrogram was cut at 20% of its total depth to segregate 9
different clusters of cells, which correspond to the main brain cell types. In the
expression plots, UMI counts are shown at single-cell level for markers of different
hierarchical marker levels (Online Methods). Marker genes for decreasing marker
levels, representing distinct brain cell types are displayed. (b) Comparison of bigSCale
and BackSPIN™ in the detection of gene markers for astrocytes. BigSCale identified
167 additional markers with high specificity for astrocytes (high expression, yellow; low
expression, blue). Vice versa, markers uniquely identified by BackSPIN display a weak
specificity and achieved low scoring in bigSCale.

Fig.4 | Assessment of the cell convolution strategy in bigSCale. (a) Comparison of
original and convoluted clustering with the Rand-index. Pairwise cell comparisons were
performed for three increasing degrees of convolution (Convl,2,3) into iCells (numbers
indicated). Similarity of clustering (Rand-index, y axis) were evaluated at different
resolution (n cluster numbers, x axis). Rand-indexes were >80% for all tested
combinations, pointing to highly similar cluster assignment for original and iCells. (b)
tSNE plots comparing original and convoluted clustering. The example displays a
comparison with Rand-index = 82% and 12 clusters. The high degree of concordance
between experiments is visible through the consistent cluster assignment of cell pairs.

Fig.5 | BigSCale analysis of 26,185 iCells (convoluted from 1,306,127 single cells) of
the embryonic pallium (E18). (a) Dendrogram of 16 iCell clusters representing the
major cell types (split by color) and subpopulations (cluster 1-16). Single-cell
expression plots (UMI counts) present marker genes (decreasing levels of hierarchical
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markers) for the main subpopulations and specific markers for neuronal differentiation
(lower panel). (b) tSNE representation of the 16 populations of pallial cells identified by
bigSCale clustering. (c) In-situ hybridization data for Tubb3 and Slcla3. Post-mitotic
neurons (Tubb3 positive) locate to the outer neocortical layers, including cortical plate
(CP) and marginal zone (MR) and radial glia and progenitors (Sclla3 positive) are
found in the ventricular and sub-ventricular zone (VZ).

Fig.6 | Subtypes of Cajal-Retzius (CR) cells disentangled by bigSCale. (a) Dendrogram
and heatmap of the five top-scoring population markers (CR1-8; high expression,
yellow; low expression, blue). (b) Comparison of Reln (upper panel) and Cxcl12 (lower
panel) expression spatially resolved. Reln consistently marks all CR cells, (tSNE, right)
located in the Marginal Zone (MZ) and the Cortical Plate (CP) in situ immuno- (left) and
fluorescence-staining (middle, source: Allen Mouse Brain). Cxcl12 is expressed in a
CR subpopulation (tSNE, right and in situ experiments indicate that Cxcl12 positive
cells are exclusively located in the marginal zone. (c) tSNE representation of Neurod2,
Igf2 and Mt-nd1l positive subpopulations of CR cells. (d) Differential expression of
AMPA receptor subunits in CR cells. (left) Heatmap (Z-scores) representing the relative
expression level of each AMPA subunit in the CR subpopulations (higher expression,
red; lower expression, blue). (right) Expression of AMPA receptors displayed by UMI
counts (y axis). Significant differential expression is indicated (***, Z-score>10).
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Figure 6
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