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Competitive learning modulates memory consolidation during sleep 

Abstract 

Competition between memories can cause weakening of those memories. Here we 

investigated memory competition during sleep by presenting auditory cues that had 

been linked to two distinct picture-location pairs during wake. We manipulated 

competition during learning by requiring subjects to rehearse item pairs associated with 

the same sound either competitively (choosing to rehearse one over the other, leading 

to greater competition) or separately; we hypothesized that greater competition during 

learning would lead to greater competition when memories were cued during sleep. 

With separate-pair learning, we found that cueing benefited spatial retention. With 

competitive-pair learning, no benefit of cueing was observed on retention, but cueing 

impaired retention of well-learned pairs (where we expected strong competition). During 

sleep, post-cue beta power (16-30 Hz) indexed competition-based weakening and 

forgetting, whereas sigma power (11-16 Hz) indexed memory strengthening. These 

findings show that memory consolidation during sleep fundamentally engages 

competition and selective memory weakening.  
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Despite the difficulty of precisely characterizing memory storage in the human 

brain, it is safe to assume that memories do not exist in a vacuum. Rather, each 

memory exists in a network with related memories. Moreover, it is rarely the case that a 

cue will evoke just one memory; instead, memories compete at retrieval, and this 

competition has consequences. Generally, when memories compete, winners are 

strengthened and losers are weakened (Anderson, Bjork, & Bjork, 2000; Norman, 

Newman, & Detre, 2007). For example, in retrieval-induced forgetting, recalling a subset 

of items within a category results in improvement for practiced items and impairment for 

non-practiced, related items within the same category (Anderson et al., 2000). On the 

other hand, several other studies have found that activating memories moderately (i.e., 

enough to compete, but not enough to win the competition) leads to their weakening 

(Detre, Natarajan, Gershman, & Norman, 2013; Kim, Lewis-Peacock, Norman, & Turk-

Browne, 2014; Lewis-Peacock & Norman, 2014; Newman & Norman, 2010). These 

modifications adaptively shape the memory landscape, such that later retrieval is 

associated with reduced competition (Norman et al., 2007). 

While the aforementioned studies of memory competition focused on wake 

learning, it is plausible that similar competitive dynamics could occur during sleep, with 

similarly important consequences. However, most studies of sleep and learning, with 

some notable exceptions (Genzel et al., 2017; Oyarzún, Moris, Luque, Diego-Balaguer, 

& Fuentemilla, 2017; Payne, Stickgold, Swanberg, & Kensinger, 2008), have focused on 

how sleep affects individual memories and not on how memories compete and the 

consequences of competition.  
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A substantial body of evidence shows that memories can be reactivated during 

sleep, leading to their stabilization (e.g., Gulati, Ramanathan, Wong, & Ganguly, 2014; 

Ji & Wilson, 2007; Wilson & McNaughton, 1994). Reactivation can be systematically 

biased when learning-related stimuli are presented during post-training sleep, a 

methodology termed targeted memory reactivation or TMR (Creery, Oudiette, Antony, & 

Paller, 2014; Diekelmann, Büchel, Born, & Rasch, 2011; Oudiette, Antony, Creery, & 

Paller, 2013; Rasch, Büchel, Gais, & Born, 2007; Rudoy, Voss, Westerberg, & Paller, 

2009). Additionally, analyses of sleep electroencephalography (EEG) have linked 

memory strengthening via TMR with post-cue sigma power (Farthouat, Gilson, & 

Peigneux, 2017; Groch, Schreiner, Rasch, Huber, & Wilhelm, 2017; Lehmann, 

Schreiner, Seifritz, & Rasch, 2016; Schreiner, Lehmann, & Rasch, 2015). Similarly, 

memory weakening has been linked with post-cue beta power (Oyarzún et al., 2017).  

In this study, we used TMR to study competition during sleep. We hypothesized 

that the degree of competition during sleep, along with the behavioral consequences of 

this competition, would depend on how memories are learned. Intuitively, the more that 

memories are entangled during wake, the more they will compete during sleep. We 

varied entanglement by either forcing memories linked by a common sound cue to be 

learned either in direct temporal proximity or separately. Moreover, competition can be 

enhanced if participants are forced to prioritize one memory over another, as opposed 

to allowing the memories to co-exist (Mather & Sutherland, 2011). We therefore 

explored the effects of prioritization by assigning a high or low reward to each item of a 

pair, and we included short periods allotted for memory rehearsal whereby subjects 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/196964doi: bioRxiv preprint 

https://doi.org/10.1101/196964
http://creativecommons.org/licenses/by/4.0/


could prioritize encoding of high-reward items (Oudiette et al., 2013). Finally, we used 

TMR to bias reactivation of competing memories, and we hypothesized that increased 

competition would result in memory weakening.  

Subjects (N = 60; Fig 1) first learned arbitrary associations between specific 

environmental sounds and visual items that were either celebrities, landmarks, or 

common objects. Some sounds were linked with two items from different categories 

(paired). For example, if a “meow” sound was presented with both Brad Pitt and the 

Eiffel Tower on two separate trials, then Brad Pitt and the Eiffel Tower became paired 

items via their mutual association to the sound “meow.” We included other sounds 

linked with one item (singular) to later assess the neural effects of simultaneously 

cueing one versus two memories during sleep. Next, subjects learned the spatial 

location of each item against a background grid during four rounds of encoding. At this 

point, each item was assigned either a high (9 cents) or low (1 cent) monetary reward 

that could be earned during subsequent memory tests. Singular items were shown 

alone and paired items were shown in groups of two (with a randomized order of 

presentation of one high-reward and one low-reward item) before a 5-s memory 

rehearsal period. Each item was presented with its accompanying sound. We further 

manipulated the level of competition between paired items (in a between-subjects 

fashion) by varying the temporal proximity of spatial location learning trials. Paired items 

were either presented in the same group in a competitive-pair learning condition (CPL; n 

= 30) or in different groups in a separate-pair learning condition (SPL; n = 30). For CPL, 

paired items were grouped together on all four rounds of encoding. For example, Brad 
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Pitt’s location was always grouped with that of the Eiffel Tower. For SPL, paired items 

were never grouped together. Instead, items were grouped with different items of the 

opposite reward value on each round of encoding. For example, Brad Pitt might have 

been grouped with a globe on round one and the Taj Mahal on round two, etc, but never 

with the item that was also associated with the same “meow” sound (Eiffel Tower). In 

both cases, subjects were encouraged to prioritize location rehearsal for the high-

reward item over that of the low-reward item. 

Following this learning procedure, subjects were tested on their memory for item 

locations, and then took a nap in the lab. When intervals of slow-wave sleep were 

detected online by the experimenter, sound cues (100% of singular and 50% of paired 

sounds) were presented to the subjects while they slept. After the nap, subjects took a 

final item-location memory test and a sound-item association test. Subjects received an 

added monetary reward based on their performance on the pre-nap and post-nap item-

location memory tests. 

We predicted that the level of competition would impact TMR, such that SPL (low 

competition) and CPL (high competition) would lead to memory benefits and 

impairments, respectively. Furthermore, we predicted that paired low-reward items 

would be more susceptible to impairment than high-reward items. We also predicted 

(based on prior results reviewed above) that post-cue sigma power would positively 

predict subsequent memory and that post-cue beta power would index greater 

competition and negatively predict subsequent memory.  
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Results:  

Competition during learning impaired pre-nap accuracy. We first assessed whether 

competition affected learning prior to sleep. Our design included a between-subjects 

manipulation (CPL vs. SPL) and three item types: singular items (high-reward items 

associated with only a single sound), high-reward paired items, and low-reward paired 

items. We therefore submitted pre-nap spatial errors to a mixed, 2 (condition: CPL vs. 

SPL) x 3 (item type: singular, high-reward, or low-reward) ANOVA. We found a 

significant main effect of item type [F(2,116) = 59.2, p < 0.001], a marginally significant 

main effect of condition [F(1,58) = 3.2, p = 0.08], and a significant interaction [F(2,116) = 

7.8, p < 0.001). As shown in Fig. 2A, follow-up t-tests revealed pre-nap recall accuracy 

was better in the SPL than for the CPL condition for singular items [SPL: 128.4 ± 12.7 

pixels, CPL: 173 ± 13.4, t(58) = 2.4, d = 0.63, p = 0.02] and for high-reward items [SPL: 

138.7 ± 12.2, CPL: 183.4 ± 14.0, t(58) = 2.4, d = 0.62, p = 0.02] but not for low-reward 

items [SPL: 214.4 ± 12.6, low reward CPL: 215.9 ± 13.9, t(58) = 0.08, d = 0.01, p = 

0.94]. Whereas this effect shows competition had a meaningful impact on learning, we 

did not anticipate an effect on singular items. We speculate that pair encoding might 

have been more difficult in the CPL condition, so subjects may have occasionally 

rehearsed previously-shown paired items during rehearsal periods that followed singular 

items, thus weakening memory for singular items. 

Competition during learning influenced the effects of targeted memory 

reactivation. Our primary procedural manipulations were 1) altering the amount of 

competition between paired items during learning by either presenting them 
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competitively (CPL condition) or separately (SPL condition), 2) administering TMR cues 

for only half of the pairs, thus creating cued and uncued conditions, and 3) manipulating 

reward for each paired item to be either high or low. Our primary dependent measure of 

forgetting across the nap was computed as post-nap error minus pre-nap error, after 

regressing out the effects of pre-nap error (see Methods; Fig S1). Greater positive 

values indicate more forgetting and therefore worse memory retention. 

 We first asked whether competition affected TMR efficacy by contrasting cued – 

uncued scores (the cueing effect) across conditions. We found the cueing effect was 

larger in the SPL condition than the CPL condition [in pixel mean ± SEM, SPL cued – 

uncued error: -14.9 ± 6.0, CPL cued – uncued error: 7.9 ± 7.3, t(59) = 3.0, d = 0.78, p = 

0.004], demonstrating that competition decreases the efficacy of TMR (Fig 2B). Next, to 

ensure differences in TMR efficacy were not merely driven by pre-nap memory 

differences between the conditions, we randomly resampled subjects without 

replacement (N=18 - 28) from both the CPL and SPL groups to find instances in which 

there was no pre-nap difference in high reward (t < 0.5). We found the interaction 

(greater cueing effect in SPL than CPL) still held in each of 100 instances meeting this 

condition as determined by a negative t value in each (t mean = -2.26, standard 

deviation = 0.46, range = -3.65 to -1.2). Therefore, pre-nap memory differences 

between the conditions cannot explain the differences in TMR efficacy.   

 Given that competition had a significant effect on TMR efficacy, we next 

assessed the effects of reward priorities and TMR on memory retention using a two-

way, repeated measures ANOVA. For SPL, high-reward items were better remembered 
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than low-reward items [F(1,29) = 6.0, dz = 0.45, p = 0.02] and cued items were better 

remembered than uncued items [F(1,29) = 11.0, dz = 0.61, p = 0.002], but there was no 

interaction between the conditions [F(1,29) = 0.01, dz = 0.02, p = 0.91; Fig 2C]. Follow-

up t-tests indicated TMR benefitted memory in the high-reward condition [cued: -10.1 ± 

7.0 pixels, uncued: 5.3 ± 9.3, t(29) = 2.6, dz = 0.48, p = 0.01] and marginally in the low-

reward condition [cued: 7.7 ± 5.8, uncued: 22.1 ± 6.9, t(29) = 2.0, dz = 0.37, p = 0.052]. 

Conversely, for CPL, high-reward items were better remembered than low-reward items 

[F(1,29) = 8.9, dz = 0.55, p = 0.006], but there was no effect of TMR [F(1,29)  = 1.7, dz = 

0.24, p = 0.20] or interaction [F(1,29) = 0.03, dz = 0.03, p = 0.86; in pixels, high cued: -

3.3 ± 8.0, high uncued: -10.1 ± 9.4, low cued: 14.7 ± 8.9, low uncued: 5.6 ± 7.2; Fig 2D].  

Under separate pair learning, cueing tended to help one item, but not both. Under 

SPL, when there is less competition during learning, TMR benefitted both high- and low-

reward items. However, the above analyses did not examine whether improvements for 

one item occurred independently of effects on its paired item. For instance, a TMR 

benefit for Brad Pitt’s spatial location could tend to occur along with a TMR benefit for 

the Eiffel Tower. If improvements for one item increase the likelihood of improvement for 

another item, their fates converge; conversely, if it decreases that likelihood, their fates 

diverge. To test whether their fates converged or diverged, we computed Pearson 

correlations on the amount of forgetting for all pairs, separately for the cued and uncued 

conditions within each subject (Fig 3A, top, shows data from one representative 

subject). Then, we computed paired t-tests on Fisher Z-transformed r values. We found 

cued-pair forgetting was significantly less correlated than uncued-pair forgetting [r: -0.06 
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± 0.04 and 0.11 ± 0.05, respectively: t(29) = 2.44, dz = 0.45, p = 0.02], suggesting more 

divergence in cued relative to uncued pairs. Further tests revealed uncued-pair 

correlations were significantly greater than zero [t(29) = 2.37, dz = 0.43, p = 0.02], 

whereas cued-pair correlations were not—they were numerically (but not significantly) 

less than zero [t(29) = 1.39, dz = 0.25, p = 0.17; Fig 3A, bottom]. Therefore, cueing 

seemed to interfere with the positive relationship (i.e., convergence) between items that 

was present for uncued pairs.  

We next ran simulations (see Methods; Fig 3B) on the data under three 

assumptions: improvements for one item (1) do not affect the likelihood the other item 

improves, (2) increase the likelihood the other improves, or (3) decrease the likelihood 

the other improves. The simulations involved treating the uncued data from the SPL 

condition as a “baseline” against which cueing could impact results under the various 

assumptions. The simulations showed that results were most consistent with the third 

assumption, that a TMR-based improvement in one member of a pair decreased the 

likelihood the other improved.  

 In a related analysis, we calculated the median forgetting value for high- and low-

reward items separately. Each pair fell into one of four quadrants depending on whether 

the high-reward and low-reward items were above or below their respective median 

forgetting values (Fig 3C). Based on this, each pair can be labeled according to whether 

neither, one, or both items in the pair were higher than the median forgetting value. If 

cueing improved one item and not the other, we would expect fewer items in the upper 

right (None better) and more in the upper left and lower right quadrants (One better), 
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whereas if it improves both items of a pair, there should be fewer pairs in the upper right 

and more in the lower left (Both better). We found there were significantly fewer cued 

than uncued pairs in the None better group [t(29) = 3.3, dz = 0.61, p = 0.002], 

significantly more cued than uncued pairs in the One better group [t(29) = 2.39, dz = 

0.44, p = 0.02], and no difference than in the Both better group [t(29) = 0.63, dz = 0.11, p 

= 0.53]. We ran another simulation to explore what patterns of data we would expect for 

this quadrant analysis, under different assumptions about how cueing affects paired 

items. As with our previous simulations, these simulations showed that our results were 

most consistent with the assumption that cueing improvements are negatively 

correlated within a pair: If a cue helps one item of a pair, the other item is less likely to 

benefit from cueing (Fig 3D). Neither the correlation [cued r: 0.04 ± 0.04, uncued r: 0.05 

± 0.04, t(29) = 0.19, dz = 0.03, p = 0.85] or quadrant analyses produced significant 

results in the CPL condition [neither cued: 0.27 ± 0.02, uncued: 0.24 ± 0.02, t(29) = 

1.08, dz = 0.20, p = 0.29; one cued: 0.48 ± 0.03, uncued: 0.50 ± 0.02, t(29) = 0.71, dz = 

0.13, p = 0.49; both cued: 0.25 ± 0.02, uncued: 0.26 ± 0.01, t(29) = 0.51, dz = 0.09, p = 

0.62; Fig S2]. Altogether, even for SPL, when we see cueing benefits for both high- and 

low-reward items, cues do not benefit both memories simultaneously. Instead, each 

particular cue may be biased to reactivate the high- or low-reward item, thus decreasing 

the likelihood the other member will also receive benefits.  

Under competitive pair learning, cueing impaired memory for well-learned items. 

Contrary to what was observed under SPL, we found no cueing benefit under CPL, 

suggesting competition negatively affects TMR efficacy. Following similar logic, TMR 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/196964doi: bioRxiv preprint 

https://doi.org/10.1101/196964
http://creativecommons.org/licenses/by/4.0/


may actually impair memory when competition is strongest, which could occur when 

both an item and its competitor have strong initial pre-nap accuracy. Additionally, 

competition might impair low-reward information more than high-reward information, 

given that subjects had weaker initial memory for low-reward information (Fig 4A).  

To test whether TMR impaired memory when competition was strongest, we 

investigated whether retention differed for cued and uncued items as a function of both 

the pre-nap accuracy of an item and its competitor. First, for each paired item, we took 

the item’s pre-nap accuracy and its competitor’s pre-nap accuracy, and we plotted this 

as a point in 2-d space. We then slid a 150 x 150 pixel moving window around this 

space (Fig 4B, left). For instance, the bin for 0-150 pixels for an item and 0-150 pixels 

for its competitor would encompass the pair of Brad Pitt and Eiffel Tower if they had pre-

nap errors of 70 pixels and 145 pixels, respectively. Note that, if a pair falls in the lower-

left region of this 2-d space, this indicates that both the item and its competitor were 

well-learned prior to the nap. Next, for each bin (i.e., each location of the moving 

window), we gathered up all of the items (both cued and uncued) that fell into this region 

of the 2-d space, and we used a t-test to compare the amount of forgetting for cued 

versus uncued items falling within this bin (Fig 4B, bottom). We repeatedly moved this 

window until we had covered the entire space. We then repeated these calculations 400 

times after resampling subjects with replacement (bootstrapping), producing 400 

different t values for each bin. We calculated the mean and the 5th and 95th percentiles 

for the bootstrapped distribution of each bin (Fig 4C); if the bootstrap distribution of t 

values reliably differs from zero, this indicates that the cued-uncued difference is 
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reliable for that bin. Next, we identified clusters of contiguous bins that reliably differed 

from zero (i.e., the middle 90% of the distribution from the 5th to 95th percentile is above 

or below zero). Finally, we repeated this entire procedure 400 times after randomly 

rescrambling cued and uncued labels to find a null distribution of cluster sizes. This 

allowed us to determine whether the true cluster size exceeded the cluster size 

expected due to chance (using a p < 0.05 family-wise error threshold).  

Our first analysis combined both high- and low-reward items. Each pair 

contributed twice to this analysis: once with the high-reward item as the item of interest 

(i.e., the item whose forgetting was measured) and once with the low-reward item as the 

item of interest. In other words, both items acted in turn as the item and the competitor. 

This analysis produced a significant cluster indicating a TMR impairment in the range in 

which both an item and its competitor were well-remembered pre-nap (>99th percentile; 

Fig 4D). We next looked at high-reward items and low-reward items separately. When 

high-reward items were considered against their low-reward competitor, we found no 

significant effect (76th percentile), but when low-reward items were considered against 

their high-reward competitor, we found a significant cluster indicating cueing 

impairments (>95th percentile; Fig 4E). The same analyses applied to the SPL condition 

showed a broad range of bins for which cueing was beneficial for memory, meaning it 

was broadly in the opposite direction of the CPL effect above, but there was no 

significant cluster (Fig S3). Together, these results demonstrate that under conditions of 

competitive learning and strong initial memory for more than one item, TMR can cause 

forgetting.  
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Under competitive pair learning, cueing impaired overlearned sound-item 

memories. After the final post-nap spatial test, subjects took another test to verify that 

they still retained the sound-item associations learned in Phase 1. We expected recall to 

be at or near perfect, but also included a post-hoc analysis of post-nap scores (not of 

pre-post differences, because no sound-item test was given prior to the nap). 

Consistent with the idea that cues linked with more items endure more interference, 

singular associations were better remembered than all other categories under CPL 

(proportion correct for singular items: 0.87 ± 0.02, all p < 0.005; Fig 4F, on the upper 

right of Figure 4). However, similar to the cueing impairment in spatial memory for low-

reward items under CPL, cues impaired sound-item memory for low-reward items [cued: 

0.76 ± 0.03, uncued: 0.81 ± 0.03, t(29) = 2.22, dz = 0.41, p = 0.03] but not high-reward 

items [cued: 0.81 ± 0.03, uncued: 0.79 ± 0.03, dz = 0.12, p = 0.52]; the difference in 

cueing impairment for low- versus high-reward items was marginal [F(1,29) = 4.0, p = 

0.055]. Under the SPL condition, we also found better memory for the singular category 

(proportion correct for singular items: 0.88 ± 0.02, all p < 0.005), but found no other 

effects [high cued: 0.79 ± 0.03, high uncued: 0.79 ± 0.03, t(29) = 0.14, dz = 0.02, p = 

0.88; low cued: 0.80 ± 0.02, low uncued: 0.81 ± 0.03, t(29) = 0.48, dz = 0.08, p = 0.63; 

interaction: F(1,29) = 0.05, p = 0.83]. Thus, these tests provided converging evidence 

that low-reward information was weakened under CPL.  

Post-cue beta power negatively predicted subsequent memory and competition-

based weakening. Based on previous studies implicating beta power in competition 

(Waldhauser, Johansson, & Hanslmayr, 2012), we investigated whether post-cue beta 
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power was modulated by competition. Although we expected less competition in the 

SPL condition than the CPL condition, we expected both of the paired conditions to elicit 

more competition than the singular condition. Thus, we used the difference between 

singular versus paired to identify competition-sensitive neural signals. In both the CPL 

and SPL conditions, across-subject differences revealed lower post-cue beta power for 

singular than paired sounds 250 – 750 ms across multiple electrodes, maximal over 

electrode FCz in each condition (Fig 5A). We initially used this time segment because it 

was significant over nearly every electrode. To establish that this difference in beta 

power was genuine (i.e., not just an artifact of multiple comparisons), we re-confirmed it 

using a bootstrapping analysis on beta power at FCz. We calculated singular – paired 

values for each bootstrap. Next, we found clusters of consecutive time points whereby 

the central 90% of the bootstraps (5th or 95th percentile) differed from zero. Lastly, we 

computed a null distribution over cluster sizes by repeatedly permuting the conditions 

across items, re-running the bootstrap, and recording the maximum cluster size for each 

permutation. We considered a cluster to be significant if its size exceeded 95% of the 

null distribution (corresponding to a family-wise error rate of .05).  Indeed, singular cues 

had less post-cue beta power than paired cues around the same early beta interval (in 

relation to the size of clusters from the random (null) distribution for each condition 

separately: SPL: 97th percentile; CPL: 94.5th percentile; Fig 5A).  

Beta power enhancements have also been shown in paradigms where TMR cues 

impair memory (Oyarzún et al., 2017). One possible interpretation of this finding is that 

beta indicates competition, which leads to memory weakening. A key prediction that 
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follows from this view is that beta power over FCz (our hypothesized neural indicator of 

competition) should negatively predict subsequent memory. To test this, we began by 

investigating the items most likely to become reactivated: those with singular sounds 

that were well-remembered before the nap (<= 200 pixel error, see Methods), a 

condition we refer to as Singular-R. We expected competition for these items to be low 

on average, but we also expected there to be variance across items in the level of 

competition – singular items can compete to different degrees with other studied items, 

even if those items were linked to other sounds; we hypothesized that this item-by-item 

variance would be registered in beta power and would predict memory. Specifically, we 

asked whether beta power negatively predicted whether these items remained well-

remembered or not after the nap (termed Singular-R-R for well-remembered after the 

nap and Singular-R-NR for not remembered after the nap, respectively) in both CPL and 

SPL conditions. Individuals without any trials in the Singular-R-NR condition were 

dropped from the analysis (N=2 for SPL, N=3 for CPL). Indeed, early beta power was 

significantly lower for remembered than not remembered items in both conditions (in 

relation to the size of clusters from the random (null) distribution for each condition 

separately: SPL: 96th percentile; CPL: 96th percentile; Fig 5B).  

Finally, we combined the two ideas about beta power — that it is higher under 

greater competition and that it predicts memory weakening — to ask how beta 

influenced the competition-based weakening observed in the CPL condition. 

Specifically, we asked whether post-cue beta power differed for subsequently 

remembered versus subsequently forgotten low-reward items from pairs in which both 
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items were initially well-remembered prior to the nap (2R-R [both remembered pre-nap, 

low-reward remembered post-nap] vs. 2R-NR [both remembered pre-nap, low-reward 

forgotten post-nap]). Individuals without trials in both conditions were dropped from the 

analysis (N=14 for SPL, N=15 for CPL). Indeed, under CPL, post-cue beta power was 

significantly lower for 2R-R than 2R-NR items (98th percentile). Importantly, this 

difference was not present in the SPL competition condition, where we did not observe 

competition-based weakening (53rd percentile). Together, results showed that post-cue 

beta power increased with competition and negatively predicted memory, including 

cases of competition-based memory weakening.  

Post-cue sigma power predicted subsequent memory and was reduced under 

high competition. Based on previous studies, we hypothesized that sigma power 

approximately 1000-1500 ms post-cue would positively predict retention (Farthouat et 

al., 2017; Groch et al., 2017; Lehmann et al., 2016; Schreiner et al., 2015). As fast 

spindles tend to correlate with subsequent memory (James W Antony & Paller, 2017), 

we chose the midline centroparietal location (CPz) for spindle power a priori as it is the 

scalp location where fast spindle power is maximum (Andrillon et al., 2011; Mölle, 

Bergmann, Marshall, & Born, 2011; Peter-Derex, Comte, Mauguière, & Salin, 2012). For 

this analysis, we focused on the same behavioral contrasts as above: first, we looked at 

singular items that were well-remembered pre-nap and then remembered or forgotten 

post-nap (Singular-R-R vs Singular-R-NR); next, we looked at low-reward paired items 

where both items were initially well-remembered pre-nap, and then as a function of 

whether low-reward items were remembered or forgotten post-nap (2R-R vs. 2R-NR).  
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First, we submitted sigma power to a mixed, condition (SPL vs. CPL) x memory 

(Singular-R-R vs Singular-R-NR) ANOVA. Individuals without any trials in the Singular-

R-NR condition were again dropped from the analysis (N=2 for SPL, N=3 for CPL). We 

found a significant effect of memory [F(1,53) = 16.8, p < 0.001], no main effect of 

condition [F(1,53) = 0.01, p = 0.91], and no significant interaction [F(1,53) = 0.00, p = 

0.98]. Follow-up t-tests confirmed that sigma power between 1000-1500 ms post-cue 

was significantly higher for singular items that were subsequently remembered than 

forgotten in the SPL [mean difference: 0.41 ± 0.14, t(27) = 2.86, dz = 0.54, p = 0.008] 

and CPL conditions [mean difference: 0.41 ± 0.14, t(26) = 2.95, dz = 0.57, p = 0.006].  

We next asked whether this predictive signal was reduced under conditions in 

which we found cueing impairments: low-reward paired items when both items were 

well-remembered. We submitted sigma power to a mixed, condition (SPL vs. CPL) x 

memory (2R-R vs. 2R-NR) ANOVA. Individuals without trials in both conditions were 

again dropped from the analysis (N=14 for SPL, N=15 for CPL). We found a marginally 

significant main effect of memory [F(1,29) = 3.9, p = 0.057], no main effect of condition 

[F(1,29) = 0.05, p = 0.83], and a significant interaction [F(1,29) = 8.6, p = 0.007]. Follow-

up t-tests confirmed that sigma power significantly predicted memory retention in the 

SPL condition [mean difference: 0.17 ± 0.06, t(15) = 2.98, dz = 0.74, p = 0.009], but not 

in the CPL condition [mean difference: -0.04 ± 0.04, t(14) = 0.92, dz = 0.24, p = 0.37]. To 

look for other time windows that might show an effect, we submitted these analyses to 

the same bootstrapping procedure that was described above. We found no other time 

segments showing significance at the 95th percentile. In sum, post-cue sigma power 
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positively predicted memory under low levels of competition, but this signal was less 

predictive under high levels of competition.  

 

Discussion: 

 Certain environmental events can cause multiple memories to be activated 

simultaneously, which produces competition and corresponding changes in memory 

strength (Lewis-Peacock & Norman, 2014; Norman et al., 2007). Here the amount of 

competition during learning strongly modulated the effects of TMR during sleep. Under 

the separate-pair learning (SPL) condition, when the spatial locations of items sharing a 

common sound were learned separately, TMR improved spatial memory. However, 

under the competitive-pair learning (CPL) condition, when the locations of items sharing 

a common sound were learned in succession and rehearsed competitively, TMR 

produced no overall benefit for memory and even impaired spatial memory when both 

members of a pair had high pre-nap accuracy (i.e., when competition between the 

memories was presumably strongest).  

 Under both learning conditions, high-reward information was retained better than 

low-reward information. Under SPL, TMR benefited both high- and low-reward 

information, but further analyses showed that TMR benefits tended to apply to one of 

the two items within a pair, but not both. Perhaps each cue had a “preferred” item that it 

preferentially reactivated, and which one was preferred was not necessarily a function 

of reward value. Future studies that examine inherent preferences for or prior 

knowledge of each item could provide further clarification.  
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An entirely different pattern emerged under CPL, whereby TMR impaired sound-

item associations that were later assigned a low reward and also impaired spatial 

memory for low-reward items when both members of a pair were initially well-

remembered. Note that the spatial impairment was also observed when considering all 

items together, but not when considering high-reward items alone. We speculate that 

weakening occurred because two items simultaneously came to mind, but neither could 

become fully activated, so each remained only weakly reactivated. This speculation 

would accord with predictions of the non-monotonic plasticity hypothesis, whereby weak 

reactivation weakens memory relative to no reactivation at all, whereas only strong 

reactivation results in strengthening (Lewis-Peacock & Norman, 2014; Newman & 

Norman, 2010; Norman et al., 2007; Poppenk & Norman, 2014). 

 Our EEG results align well with a recent model proposing that waking beta power 

(along with alpha power) plays a crucial role in memory encoding and adjudicating 

between competing memories at retrieval (Hanslmayr, Staudigl, & Fellner, 2012). As 

noted earlier, Hanslmayr and colleagues (2009) found that higher beta power at 

encoding predicted worse subsequent memory. Correspondingly, we found singular 

items in both learning conditions benefitted from less beta power. Second, Waldhauser 

and colleagues (2012) found that beta power during wake increased with increased 

competition between items at retrieval. In keeping with this, we found that TMR cues 

elicited higher beta power for paired versus singular items in both conditions.  

A recent study converged on the idea that beta power may play a role in TMR-

based memory impairment (Oyarzún et al., 2017). Participants learned the spatial 
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locations of two identical objects (e.g., dogs; X1-X2 learning) before learning a new 

location for one of the two objects (X1-X3), followed by sleep and the implementation of 

TMR. Like our study, this study created a situation in which TMR cues could elicit 

competition between memories (here, memories of X1-X2 and X1-X3). Critically, X1-X3 

learning occurred either immediately after X1-X2 learning (5 min) or after a longer delay 

(3 hr). Intriguingly, the authors found that TMR improved memory for X1-X2 pairs when 

learning occurred immediately, but impaired memory when learning occurred with a 

delay. Furthermore, beta power increased for TMR cues relative to control cues (sounds 

not linked to studied items), but only in the delayed condition.  

These results resemble ours insofar as 1) there was a condition where TMR hurt 

memory, and 2) these memory weakening effects were associated with beta power 

increases. However, the results also diverge in important ways. In our study, the 

condition where there was no delay between studying paired items (CPL) yielded 

memory weakening and beta increases, whereas Oyarzún and colleagues (2017) 

observed this pattern of results (memory weakening, beta increases) in the delayed 

condition but not the immediate condition. These discrepancies suggest that the lack of 

a delay in our CPL condition is not, on its own, sufficient to give rise to competition 

during sleep (see below for additional discussion of this issue). Nonetheless, there were 

multiple procedural differences between the two studies, and more work is needed to 

assess which factors are consequential in shaping competitive dynamics during sleep 

(see Table S2 for a summary of differences between the procedures used in our study 

vs. those of Oyarzún et al., 2017).  
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The role of sleep spindles in memory has received substantial support from a 

vast array of research domains (James W Antony, Gobel, O’Hare, Reber, & Paller, 

2012; Bergmann, Mölle, Diedrichs, Born, & Siebner, 2012; Eschenko, Mölle, Born, & 

Sara, 2006; Latchoumane, Ngo, Born, & Shin, 2017; Mednick et al., 2013; Niknazar, 

Krishnan, Bazhenov, & Mednick, 2015; Rosanova & Ulrich, 2005). TMR studies have 

repeatedly shown that sigma (spindle) power approximately 1000-1500 ms post-cue 

positively predicts memory (Antony, 2015; Farthouat et al., 2017; Groch et al., 2017; 

Lehmann et al., 2016; Schreiner et al., 2015). Our data from singular items (paired with 

only a single sound) replicated these findings in both competition conditions. A similar 

difference was observed in the SPL condition, but was absent from the CPL condition. 

These results provide further substantiation that post-cue spindle activity benefits 

memory and that the absence of spindle activity could reflect no or weaker reactivation.  

Moreover, results from low-reward items where both of the items in the pair were 

well-remembered pre-nap demonstrated an intriguing contrast between beta and sigma 

power. Sigma predicted subsequent memory better in SPL than CPL (Fig 6B), but beta 

predicted subsequent memory better in CPL than SPL (Fig 5C). Therefore, it appears 

beta may be more informative than sigma about subsequent memory when competition 

is high, and vice versa when competition is low.  

 Importantly, while we observed robust differences in TMR effects following CPL 

versus SPL, the current study cannot pin down exactly which of the procedural 

differences between CPL and SPL were responsible for the different results in these 

conditions.  One salient difference between the conditions is temporal proximity (paired 
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items were studied one immediately after the other in CPL, whereas they were 

separated by a delay in SPL). For reasons noted above (in our discussion of Oyarzún et 

al., 2017), we think that this temporal proximity factor is not decisive. Another possibility 

is that our use of a competitive-rehearsal procedure (where participants were instructed 

to prioritize one item over the other item in the pair) was important for giving rise to the 

memory weakening and beta increase effects that we observed in the CPL condition. 

For example, it is possible that results could differ if subjects were asked to integrate, 

rather than prioritize, the items (Richter, Chanales, & Kuhl, 2016)	. Another difference 

between CPL and SPL is that each item in the former condition was studied in 

succession with the same pairmate, whereas a given item in the SPL condition was 

studied in succession with a variety of other items (each linked to a different sound). If 

SPL also used consistent pairings (e.g., meow + Brad Pitt was always rehearsed after 

violin + globe), this might create competition between these memories during sleep, 

even if the sounds were different. Future studies could include such alternative 

conditions to disambiguate these possibilities.  

In both learning conditions, paired sound cues could theoretically elicit two 

memories simultaneously, yet it is only under CPL that we witnessed an absence of 

TMR benefits (or under certain conditions, reversal). We speculate that under the SPL 

condition, TMR cues may be biased towards one of the two associations formed at 

different times during learning, but under CPL, the TMR cues cannot dissociate these 

two. These findings are especially intriguing in light of studies showing TMR cues 

benefit memory when linked with an entire learning context, rather than specific trials 
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(Diekelmann et al., 2011; Rasch et al., 2007; Rihm, Diekelmann, Born, & Rasch, 2014). 

Theoretically, TMR context cues could similarly evoke multiple individual memories, yet 

they generally benefit memory. These differences raise many questions. Do context 

cues benefit different memories in a probabilistic fashion on each trial? Do benefits 

occur because context cues are not especially strongly associated with any particular 

items, thus decreasing the probability that simultaneous reactivation occurs? Are there 

subtler forms of competition playing out that get masked by an overall beneficial effect? 

And more broadly, considering that TMR under the SPL condition tended to benefit only 

one association, what is the bandwidth of memory reactivation during sleep?   

 In summary, our study demonstrated systematic differences in memory 

consolidation during sleep as a function of competition during learning. By pairing sound 

cues with more than one stimulus in conjunction with competitive learning, our design 

produced new insights into memory consolidation during sleep. The findings support 

and extend previous evidence on beta and sigma power, which hold promise for 

continuing efforts to decipher critical neurophysiological mechanisms in memory 

processing. The study also expands the scope of the sort of memory processing that 

can be examined during sleep, beyond individual memories, here emphasizing inter-

item competition. Finally, although the physiology of sleep and wake differ substantially 

from each other, including the near-complete absence of cognitive control in the former, 

the results are consistent with those during wake showing that simultaneous activation 

of two pieces of information results in weakening (Lewis-Peacock & Norman, 2014).  
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Methods: 

Subjects. Sixty subjects (43 female, 18-35 years old) were recruited via online 

scheduling software at Princeton University (n=37, 27 female) and Northwestern 

University (n= 23, 16 female). Data were collected in approximately similar proportions 

for the two conditions at the two universities (SPL: 18 Princeton, 12 Northwestern; CPL: 

19 Princeton, 11 Northwestern). Forty other subjects (17 Princeton, 23 Northwestern) 

were excluded for not sleeping long enough for at least one round of sleep cues. 

Subjects were given hourly monetary compensation for participating and small 

additional increases based on good performance. This experiment comprised either a 

separate-pair learning (SPL) condition (n = 30, 22 female) or a competitive-pair learning 

(CPL) condition (n = 30, 21 female). Written informed consent was obtained in a manner 

approved by the Princeton and Northwestern University Institutional Review Boards.  

Stimuli. We included 102 visual stimuli from three categories (celebrities, famous 

landmarks, common objects), updating the set used by Polyn et al. (2005) for cultural 

relevance (e.g. Justin Bieber instead of Janet Reno). These items became associated 

with 66 unique sounds (e.g., “meow”) lasting up to 500 ms adapted from those used by 

Oudiette et al. (2013). During the nap, sleep cues were embedded in constant white 

noise (~ 44 dB), resulting in increases of no greater than 5 dB.  

Design and procedure. The experiment comprised five phases (Fig 1). In phase 1, 

subjects over-learned arbitrary associations between sounds and items. The goal of this 

phase was to create strong associations that could consistently support sounds 

reactivating their corresponding associates during sleep. Thirty sounds were uniquely 
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associated with a single exemplar (10 from each category), while the remaining 36 were 

associated with two items from different categories. Sound-item mappings were 

randomly shuffled for each subject. Learning proceeded in four blocks of 20 and one 

block of 22. Each self-initiated trial began with 1 s of a central fixation cross followed by 

simultaneous auditory presentation of the sound and visual presentation of the item and 

sound label. The item was shown centrally with the sound label above. Sound labels 

were included to eliminate ambiguity of sound identities and to facilitate learning. After 2 

s, the sound was repeated and the picture label was included below the picture. After 

one presentation of each item within a block, we tested subjects by simultaneously 

presenting the auditory sound, the sound label, and the desired visual category (e.g. 

“celebrity”). Each sound-item association was tested until it was correctly remembered, 

after which it dropped out. After all associations from a block were recalled, subjects 

proceeded to the next block. After the fifth block, all associations were tested until 

subjects retrieved each correctly again, so in total each association was correctly 

remembered twice.  

 In phase 2, subjects learned arbitrary associations between items and locations 

against a background spatial grid. Each singular item was assigned a high reward and 

each paired item was assigned a high (9 cents) or low reward (1 cent) to be given at the 

end of the experiment for correct performance on the pre- and post-nap tests. Subjects 

were told explicitly these rewards would be given, and reward totals were shown to 

them and given as shown at the end of the experiment. The goal of this phase was to 

influence the amount of priority subjects assigned to two items corresponding to the 
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same sound. Its basic structure consisted of subjects viewing one (singular) or two 

(paired) items for 1 s each, followed by a 5-s rehearsal period where we instructed 

subjects to maximize their score by freely remembering information in such a way as to 

give them the highest score. We expected participants would selectively rehearse the 

high-reward item during this period. Subjects were given breaks at intermittent intervals. 

Subjects viewed all items four times, each in a new random order. Crucially, for the SPL 

condition, the two consecutive items before the rehearsal period were never linked with 

the same sound, whereas in the CPL condition, they were always linked with the same 

sound. In the SPL condition, paired items were randomly assigned new associates in 

each round with the requirement that they were not associated with the other item with 

the same sound. Each item was shown with a height of 150 pixels (5.5 cm) centered 

around a random location between -300 to 300 pixels (-11.1 to 11.1 cm) from the center 

of the screen. Each item was shown with its reward value in the center of the picture 

(Fig 1) and the corresponding sound was played, in order to reinforce associations 

learned in phase 1. For paired associates, we assigned equal distributions of each 

possible combination of category-category-reward (e.g., celebrity-high reward + 

landmark-low reward).  

 In phase 3, subjects took a pre-nap test by dragging each item from the center of 

the screen to its location. They indicated their spatial recall choice with a mouse click 

and were given no feedback.  

 In phase 4, subjects took an afternoon nap in the lab. Upon online indications of 

SWS, we administered sleep cues once every 4.5 seconds unless they showed 
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arousals. We cued all of the singular sounds and half of the paired sounds up to seven 

times. After 60 minutes, if subjects had not received sounds, we administered them 

during indications of stage-2 sleep. After the nap, subjects left the lab for 2.5 hours.  

 In phase 5, subjects returned to the lab to take a final spatial memory test 

followed by a final sound-item test in the same manner as in previous phases. Following 

these tests, subjects were debriefed and compensated for their participation.  

Dependent variables. We used an adjusted forgetting score as our primary dependent 

variable. Forgetting, calculated as post-nap error – pre-nap error, significantly correlates 

with pre-nap error. Items with highly accurate pre-nap recall face ceiling effects (e.g. an 

error of only 2 pixels cannot be improved across the nap by more than 2 pixels) and 

those with poor pre-nap accuracy follow a regression to the mean (e.g., an incorrectly 

recalled location, when very distant from the correct location, is likely to be recalled 

more accurately after the nap, even by chance). Therefore, we calculated the linear 

relationship between pre-nap score and forgetting (post-nap – pre-nap score) pooled 

across subjects in the present data (Fig S1). Then we subtracted each forgetting score 

from the forgetting expected from this linear relationship (i.e., the residual) to produce 

the adjusted forgetting store used for all reported analyses. We also calculated 

accuracy on the final sound-item test; specifically, we calculated the proportion of 

correctly remembered pictures associated with cued and uncued sounds.  

Permutation tests on pre-nap differences and condition interaction. To ensure 

differences in pre-nap accuracy could not explain TMR differences between the two 

learning conditions, we randomly resampled 18-28 subjects without replacement in both 
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the CPL and SPL conditions, selecting 100 instances in which the differences in high-

reward pre-nap accuracy between the groups was minimal (t < 0.5). We chose a range 

of sample sizes randomly so the algorithm would not repeatedly choose the same 

sample of subjects. Then we calculated TMR effects for each of these selections.  

Paired forgetting interactions. To assess whether fates of paired items converged or 

diverged, we correlated forgetting for the high-reward item with forgetting for the low-

reward item separately for cued and uncued conditions for each subject. We then 

contrasted these r values for cued and uncued conditions across subjects with a paired 

t-test. Next, we ran simulations to assess how different assumptions about interactions 

between paired items will affect these correlations. This involved taking the actual data 

from uncued pairs in the SPL condition and simulating the effects of cueing under 

different assumptions about how cueing affects memory. We simulated three different 

possible effects of cueing, whereby a) paired cues could benefit either item 

independently (e.g. cue fates unrelated), b) improvement of one item decreased the 

likelihood that the other improved (e.g. cue fates diverged), and c) improvement of one 

item increased the likelihood the other improved (e.g. cue fates converged). The high- 

or low-reward item was randomly chosen to be the first item up as a candidate for 

improvement and its likelihood of improving was set to 1/9. For the three conditions we 

simulated, improvements either a) did not change the likelihood of the other item 

improving (independence), b) reduced the likelihood of the other item improving by a 

factor of 3 (likelihood=1/27), or c) increased the likelihood of the other item improving by 

a factor of 3 (likelihood=1/3).  After implementing these different effects of cueing, we 
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computed Pearson correlations between the items of each pair on 100 simulations. 

Note that the uncued SPL condition that we used as a starting point showed a positive 

correlation (r = 0.11; see Results). When we assumed that improvement for an item 

were completely independent from improvement for its paired item, we continued to 

observe a positive relationship between forgetting effects for paired items (r = 0.07 ± 

0.004, p < 0.001; Fig 3B, top). When we assumed that improvement for one item 

decreased the likelihood of improvement for its paired item, this decreased the 

correlation between items (r = -0.07 ± 0.004, p < 0.001; Fig 3B, middle). Finally, when 

we assumed that improvement for one item increased the likelihood of improvement for 

its the paired item, this increased the correlation between items (r = 0.19 ± 0.003, p < 

0.001; Fig 3B, bottom). Note that significance is less instructive for simulations, as the 

goal is to capture the qualitative nature of the data under various assumptions. 

 To further probe the relationship between paired items, we conducted median-

split analyses on the amount of forgetting for both high- and low-reward items, creating 

four quadrants wherein item pairs could fall. Next, we asked how many cued and 

uncued items fell within each quadrant. We simplified the analyses by considering the 

upper right quadrant to represent pairs in which neither item was better than the median 

(None better), the lower right and upper left quadrants to represent pairs in which one 

item was better than the median (One better), and the lower left where both items were 

better than the median (Both better). Finally, we calculated paired t-tests between the 

proportion of cued and uncued items in each bin. Using the same simulated data that 

were described above, we assessed how different assumptions about pairwise 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/196964doi: bioRxiv preprint 

https://doi.org/10.1101/196964
http://creativecommons.org/licenses/by/4.0/


interactions between items affected the quadrant analysis. As with the previous 

simulations, we found that our actual results were most consistent with simulation 

results generated under the assumption that cuing benefits were negatively correlated 

within a pair (i.e., improvement for one item decreased the likelihood of improvement for 

its paired item). In the simulation, this condition revealed far fewer cued than uncued 

pairs in the None better group (mean difference in proportion: -0.30 ± 0.006, p < 0.001), 

far more cued than uncued items in the One better group (0.22 ± 0.007, p < 0.001), and 

only slightly more cued than uncued items in the Both better group (0.083 ± 0.004, p < 

0.001).  

 

Item versus competitor pre-nap accuracy bootstrapping procedure. We assessed 

the influence of TMR on forgetting based on two factors: an item’s pre-nap strength and 

its competitor’s pre-nap strength. Each bin contained all cued and uncued forgetting 

values within a moving window of 150 pixels (bin ± 75 pixels, step = 4 pixels; Fig 4B). 

We then calculated the t statistic between the amount of forgetting for cued and uncued 

items within each bin. We repeated this procedure by randomly resampling subjects 

with replacement (bootstrapping) 400 times. We determined significance in two steps. 

First, we sorted all 400 bootstraps and identified clusters of contiguous bins that all 

differed from zero at the 90% confidence level (between the 5th and 95th percentile). 

Second, we scrambled the cued and uncued labels 400 times and repeated the 

bootstrapping procedure, finding the largest cluster size in each scrambled permutation 
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to determine a p < .05 threshold for significant cluster size. Any true cluster size 

exceeding this threshold was deemed significant.  

Cluster maps were calculated separately for all items as well as high-reward and 

low-reward items only. Note that, for analyses featuring all items, each pair is included 

twice: The high-reward item stands as the item of interest against the low-reward 

competitor and the low-reward item stands as the item of interest against the high-

reward competitor.  

EEG recording and pre-processing. Continuous EEG was recorded during the nap 

using Ag/AgCl active electrodes (Biosemi ActiveTwo, Amsterdam) in the same fashion 

at Northwestern and Princeton. Recordings were made at 512 Hz from 64 scalp EEG 

electrode locations. In addition, a vertical electrooculogram (EOG) electrode was placed 

next to the right eye, a horizontal EOG electrode was placed under the left eye, and an 

electromyogram (EMG) electrode was placed on the chin.  

EEG data were processed using a combination of internal functions in EEGLAB 

(Delorme & Makeig, 2004) and custom-written scripts. Data were re-referenced offline 

to the average signal of the left and right mastoid channels and were down-sampled to 

256 Hz. They were high-pass filtered at 0.1 Hz and low-pass filtered at 60 Hz in 

successive steps. Problematic channels were interpolated using the spherical method.  

Sleep physiological analyses. Sleep stages were determined by an expert scorer 

according to standard criteria (Rechtschaffen & Kales, 1968). Table S1 shows the 

breakdown of stages for each condition as well as the number of cues occurring within 

each stage. Note that sleep-staging rules require assigning stages based on whichever 
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stage is more prevalent within the 30-s epoch, which can result in sounds occurring in 

stages that were not the intended targets. Artifacts (large movements, blinks, arousals, 

and rare, large deflections in single channels) during sleep were marked separately in 

5-s chunks following sleep staging.  

To calculate oscillatory power, we first filtered separate signals into the sigma 

(11-16 Hz) and beta (16-30 Hz) bands using a two-way, least-squares finite impulse 

response filter. Next, we calculated a root-mean-square (RMS) value for every time 

point using a moving window of 200 ms (using values 100 ms before and after each 

point) for each channel separately (Mölle et al., 2011; Ngo, Martinetz, Born, & Mölle, 

2013). We averaged RMS values within each condition for each subject, ignoring 

artefactual time segments, and calculated across-subject statistics for our planned 

contrasts of interest.  

We used different approaches for analyzing beta and sigma (spindle) power 

because we had different predictions given the prior literature. For beta power, we 

chose electrode FCz based on our finding that the difference in beta power for singular 

versus paired sounds was greatest for this electrode (effectively, we were using singular 

versus paired sounds as a “competition localizer”). We used beta power from this 

electrode as a putative index of competition for all of our analyses comparing beta 

power for subsequently remembered versus forgotten items. Next, because we were 

agnostic to time segment, we used a bootstrapping procedure to determine contiguous 

segments of time in which the central 90% of the data differed from zero and calculated 

the likelihood that a time segment that large could occur by chance using a p < .05 
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threshold across the whole interval by scrambling the conditions within each subject. 

Conversely, for sigma power we had a clear prediction for electrode (CPz) and time 

segment (1000-1500 ms). We additionally ran bootstrap analyses to ask whether any 

other sigma power segments (outside of 1000-1500 ms) differed from chance. Finally, 

some EEG analyses were designed to follow up on the finding that TMR impaired 

memory in the CPL condition when paired items are well-learned prior to the nap. For 

these analyses, we set a threshold of pre-nap error <= 200 pixels as indicating “good 

memory,” which corresponds to the lower-left region in Figure 4C that showed memory 

weakening effects. 
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Figure captions: 

Figure 1 – Task design. In phase 1, subjects over-learned associations between 

sounds and items. Associations were tested along with the category of the item until 

each association was correctly retrieved twice in a row. In phase 2, subjects encoded 

spatial locations for the same items (along with their accompanying sounds) against a 

background grid. Each paired item was assigned a high or low reward to be given upon 

correct recall, and each singular picture was assigned a high reward. The numbers 

depicting reward are enlarged here for expository purposes and did not obscure the 

item in the actual experiment. Paired items were shown in groups of two for 1-s each 

before a 5-s period when subjects were to prioritize rehearsal to maximize their score. 

Under separate-pair learning conditions (SPL), both items within a group were 

associated with different sounds, whereas under competitive-pair learning conditions 

(CPL), they were associated with the same sound. Singular pictures were shown alone 

before a similar 5-s prioritized recall period. In phase 3, subjects took a test on each 

spatial location. In phase 4, sounds from all singular and half of the paired items were 

presented during SWS. In phase 5, subjects took a final test on each spatial location 

followed by a sound-item test on the associations formed during phase 1.  

 

Figure 2 – Inter-item competitive learning influences learning and targeted 

memory reactivation. We depicted data for various conditions using bee swarm plots, 

with rectangular box heights indicating means. (A) Competition negatively affected 

learning, as shown by pre-nap error between the conditions. (B) Competition strongly 
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altered the effectiveness of targeted memory cues, where lower forgetting indicates 

better memory retention. (C) Under SPL, reward reduced forgetting, and cueing 

reduced forgetting for both high and low rewards. (D) Under CPL, reward reduced 

forgetting, but cueing had no overall significant effect on memory. *: p <= 0.05. **: p < 

0.01.  

 

Figure 3 – Under separate pair learning, the fate of items within a cued pair 

diverge, as cueing helps one item, but not both. (A) (upper) We plotted forgetting for 

each pair of items associated with the same sound and found correlations among cued 

and uncued pairs. The figure illustrates a single subject’s data. (lower) The fates of cued 

pairs diverged relative to uncued pairs. Note that statistics were computed on Fisher Z-

transformed correlation (r) values. (B) We ran simulations of correlations between 

forgetting of paired items, under different assumptions of how cues affect items within 

pairs. Under the assumption that cues benefited both items of a pair independently, the 

positive correlation observed in the uncued condition was carried over into the cued 

condition (top). Under the assumption that benefits of cueing for one item made the 

other item less likely to benefit from cueing, correlations became more negative. Under 

the assumption that benefit of cueing for one item made the other item more likely to 

benefit, correlations became more positive. Our actual results fit best with the 

assumption that cueing effects are negatively correlated within a pair. (C) (upper) We 

computed median forgetting scores for high and low reward items (horizontal and 

vertical lines) for each subject and calculated the number of pairs in each quadrant 
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(quadrants were defined by each of the paired items being above or below the median 

forgetting score). If a pair fell in the upper-right quadrant, that indicated that neither of 

the items in the pair were better than the median (None better), pairs in the upper left 

and lower right indicated one of the items was better than the median (One better), and 

pairs in the lower left indicated both items were better (Both better). (lower) Plotted are 

the proportion of cued pairs minus uncued pairs falling within each group defined above. 

Across subjects, there were significantly fewer cued than uncued pairs in the None 

better group and significantly more cued than uncued pairs in the One better group. *: p 

<= 0.05. **: p < 0.01. (D) Simulation results for the quadrant analysis (under the same 

three assumptions as above) show, again, that the actual results fit best with the 

assumption that cueing effects are negatively correlated within a pair. 

 

Figure 4 – Under competitive pair learning, cueing impairs spatial memory for 

low-reward items when both items are well-learned pre-nap and also impairs 

sound-item memory. (A) Schematic showing two ways cueing could impair low reward 

memories: by weakening associations between the sound and picture later assigned a 

low reward or the spatial location of the low reward picture item. (B) Schematic of 

analysis relating pre-nap accuracy to cueing effects. We binned items according to their 

pre-nap accuracy and the pre-nap accuracy of their competitor. Each bin contained all 

cued and uncued forgetting values within a moving window (top), then we calculated the 

t-statistic between them (bottom). (C) Using a bootstrap analysis, we found a large 

cluster of bins that showed a negative TMR effect (more forgetting for cued than uncued 
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items) in the CPL condition; this negative TMR effect is evident for items where both the 

item itself and its paired item (competitor) were well-learned prior to the nap. The upper 

plot shows the mean cued-uncued difference in forgetting of low-reward items across 

bootstraps (results for high-reward items are not shown here). The lower plot highlights 

only bins where the lower 5th percentile of bootstraps fall above zero. (D-E) Cluster size 

(red line) exceeds size expected due to randomly shuffling the labels (black line) when 

combining high reward items against their low reward competitors and low reward items 

against their high reward competitors (D), as well as low reward items considered 

against their high reward competitors alone (E). (F) Cueing impaired recall of previously 

overlearned sound-item associations for items that were assigned to the low-reward 

condition. * indicates p < 0.05.  

 

Figure 5 – Post-cue beta oscillations increase with competition and negatively 

predict subsequent memory. (A-C) These plots show the mean surrounded by the 

central 90% of bootstraps for difference scores of various conditions. (A) Contrast of 

beta power for singular versus paired sounds. Early post-cue beta power was 

significantly lower for singular than paired sounds in the SPL (left) and CPL (right) 

conditions. (B) Contrast of beta power for subsequently remembered versus forgotten 

items, focusing on singular items that were well-remembered pre-nap. Early beta power 

negatively predicted subsequent memory for singular items in both the SPL and CPL 

conditions. (C) Contrast of beta power for subsequently remembered versus forgotten 

items, focusing on low-reward paired items where both items in the pair were well-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/196964doi: bioRxiv preprint 

https://doi.org/10.1101/196964
http://creativecommons.org/licenses/by/4.0/


remembered pre-nap. Early beta negatively predicted subsequent memory in the CPL, 

but not the SPL, condition.  

 

Figure 6 – Post-cue sigma positively predict subsequent memory, but not under 

high competition. We analyzed subsequent memory effects on sigma power for 

singular items that were well-remembered pre-nap (A) and low reward items within pairs 

for which both items were well-remembered pre-nap (B). Each plot shows a subtraction 

of the sigma power trace for items remembered versus forgotten post-nap. (C) For 

singular items that were well-remembered pre-nap, in both the SPL (left column) and 

CPL (middle column) conditions, sigma power (1000-1500 ms) positively predicted 

memory (right column). (D) For low-reward paired items where both items in the pair 

were well-remembered pre-nap, sigma power positively predicted memory in the SPL 

condition, but not in the CPL condition. Horizontal bars indicate time points significant at 

the p < 0.05 level.   
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Figure 1.  
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Figure 2.  
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Figure 3. 
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Figure 4.		
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Figure 5.  
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Figure 6 
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