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Reliable detection of somatic variations is of critical importance in cancer research. Lancet is
an accurate and sensitive somatic variant caller which detects SNVs and indels by jointly
analyzing reads from tumor and matched normal samples using colored DeBruijn graphs.
Extensive experimental comparison on synthetic and real whole-genome sequencing datasets
demonstrates that Lancet has better accuracy, especially for indel detection, than widely used
somatic callers, such as MuTect, MuTect2, LoFreq, Strelka, and Strelka2. Lancet features a
reliable variant scoring system which is essential for variant prioritization and detects low
frequency mutations without sacrificing the sensitivity to call longer insertions and deletions
empowered by the local assembly engine. In addition to genome-wide analysis, Lancet allows
inspection of somatic variants in graph space, which augments the traditional read alignment
visualization to help confirm a variant of interest. Lancet is available as an open-source

program at

Reliable detection of somatic variants from next-generation sequencing data requires the ability to
effectively handle a broad range of diverse conditions such as aneuploidy, clonality, and purity of
the input tumor material. The sensitivity and specificity of any somatic mutation calling approach
varies along the genome due to differences in sequencing read depths, error rates, mutation types
and their sizes (e.g., SNVs, indels, CNVs). Micro-assembly approaches' have been successful at
calling indels up to a few hundred base pairs in length, allowing inquiry into the twilight zone
between longer indels and shorter CNVs. However, existing micro-assembly methods rely on
separate assembly of tumor and matched normal data, which has limitations in regions with low
supporting coverage, repeats, and large indels. Accounting for these variables requires flexible

methods that can adapt to the specific context of each genomic region.
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Figure 1. Colored DeBruijn illustration. Example of colored DeBruijn graph rendered using Lancet for a short
region of 400bp containing an insertion. Blue nodes correspond to k-mers shared by both the tumor and the normal
samples, red nodes correspond to k-mers private to the tumor, green nodes correspond to k-mers private to the normal,
and white nodes correspond to low coverage k-mers due to sequencing errors.

We here introduce a new somatic SNV and indel caller, Lancet, which uses localized colored
DeBruijn graphs (Fig. 1) to detect somatic variants with high accuracy in paired tumor and normal
samples. Lancet builds upon the effective assembly engine we introduced in the Scalpel”® variant
caller, that localizes the assembly to small genomic regions. However, unlike Scalpel, Lancet
jointly assembles reads from a tumor and a matched normal sample into colored DeBruijn graphs
that are automatically optimized according to the repeat composition of each sequence
(Supplementary Fig. 1 and Online Methods). The colored DeBruijn graph assembly paradigm
was initially introduced and applied to detection and genotyping of both simple and complex
germline variants in a single individual or population®. We here demonstrate that this paradigm is
even more powerful in the context of somatic variant detection. Unlike the initial work of Igbal et
al., where the colored DeBruijn graph is constructed for the whole genome, Lancet builds a local
colored DeBruijn graph in a short genomic region (default 600bp) following the micro-assembly
paradigm" *. The local assembly paradigm makes a very detailed analysis of the graph structure
computationally tractable, allowing the detection of low frequency mutations private to the tumor
without sacrificing the sensitivity to call longer mutations. In the Lancet framework, somatic
variants correspond to simple paths in the graph whose nodes (k-mers) belong only to the tumor.
Partially supported variants in the normal sample can be easily detected and classified as germline
variants (Supplementary Fig. 2). Among its many features, Lancet employs: 1) an Edmonds—Karp
style network-flow algorithm to efficiently enumerate all haplotypes in a genomic region; 2) on-
the-fly short tandem repeat (STR) analysis of the sequence context around each variant; 3) a highly
reliable scoring system; 4) carefully tuned filters to prioritize higher confidence somatic variants;
and 5) a simple and efficient active region module to skip the analysis of genomic regions with no
evidence of variation (Online Methods). Finally, in additional to running the tool in discovery
mode, Lancet can be used interactively for an in-depth analysis of a region of interest, similarly to
other bioinformatics utilities used for operating on BAM files, such as samtools4, bamtoolss,
bedtools®, etc. Colored DeBruijn graphs can be easily exported and rendered to visualize variants
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of interest in graph space (Fig. 1), which can help in confirming a variant. This feature
complements read alignment visualization tools such as the Integrative Genomics Viewer (IGV)’

and provides another useful view into the data that supports variant calling.

Results

We performed extensive experimental comparisons using several synthetic and real-world datasets
designed to assess the variant calling abilities of Lancet under diverse tumor clonality/cellularity
and sequencing conditions on a range of Illumina platforms (HiSeq 2000, HiSeq 2500, HiSeq X)
commonly used for whole-genome sequencing. We compared Lancet to some of the most widely
used somatic variant callers, including MuTect®, MuTect2, LoFrqu, Strelka'®, and Strelka2''.
Benchmarking datasets include (1) virtual tumors generated from real germline sequencing reads,
that contain a predefined list of somatic mutations with known variant allele fractions (VAF); (2)
synthetic tumors from the ICGC-TCGA DREAM mutation calling challenge'?; (3) matched tumor
and normal from a medulloblastoma case from the ICGC PedBrain Tumor project”; and (4) real

data from a highly genetically concordant pair of primary and metastatic cancer lesions'*.
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Figure 2. Performance of Lancet and other methods on the virtual tumors. (a) Precision/recall curves for somatic
SNVs called by Lancet, MuTect, MuTect2, LoFreq, Strelka, and Strelka2 on the virtual tumor. Curves are generated by
sorting the variants based on the confidence or quality score (QUAL) assigned by each tool. Each point on the curve
corresponds to precision and recall of all the SNVs with confidence score less or equal to a specific quality threshold.
The curve for an ideal tool (with no errors) should start from the top left corner (with precision=1) and produce a
straight horizontal line. Any deviation from a straight line is due to errors introduced by the variant calling process.
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84 Specifically, deviations at low recall rates are indicative of low performance of the scoring system adopted by the tool
85 (false positive variants reported with high score). (b) Precision/recall curves for somatic indels called by Lancet,
86 MuTect2, LoFreq, Strelka, and Strelka2 on the virtual tumor. Number of true-positive (¢) SNVs and (d) indels at
87 different variant allele fractions for each method and for the truth call set.
88  Virtual tumors. Using a strategy similar to the one described in the MuTect paper®, we generated
89  virtual tumors by introducing reads that support real germline SNVs and indels in HapMap sample
90 NAI12892, from an unrelated HapMap sample NA12891, both sequenced on the Illumina HiSeq X
91 system. Only actual sequencing data was used to spike-in somatic variants at a ladder of variant
92  allele fractions at variable loci identified in those sample as part of the 1000 Genomes Project
93  (Supplementary Fig. 3 and Online Methods). By knowing the true somatic variants and
94  controlling the VAF of inserted mutations, we use the virtual tumors to test the methods’ ability to
95  call somatic mutations at predefined, including very low, VAFs. Precision/recall curves of somatic
96  variant calls, sorted by their confidence score, show that Lancet outperforms all other somatic
97  callers analyzed in this study on this dataset, especially for indels (Fig. 2a-b). On this dataset,
98 Lancet behaves close to an (ideal) variant caller that makes no errors (straight line with
99  precision=1) demonstrating a highly reliable scoring system for both SNVs and indels. The other
100  tools tend to either introduce errors early by assigning high scores to false positive variants or
101  substantially worsen in precision at higher recall rates. Although the truth set contains a handful of
102 somatic STR mutations (Supplementary Fig. 4), analysis of indels called by each tool shows
103 higher false positive rate of somatic STR indels for Strelka2, LoFreq, and MuTect2 compared to
104  Lancet and Strelka (Supplementary Fig. 5); interestingly, the false positive STR indels are highly
105  discordant across callers (Supplementary Fig. 6b). When calling indels, Lancet and Strelka2
106  demonstrate higher sensitivity (Supplementary Fig. 6a) in particular for variants with VAF < 10%
107  (Fig. 2d), however Lancet loses the least amount of precision compared to the other tools (Fig.
108  2b). All the callers show similar performance in the detection of indels with VAF>10%, with the
109  exception of Strelka, whose sensitivity for indels is comparable to the other methods only at 20%
110 VAF or above. Excluding LoFreq, all the tools show similar sensitivity to detect SNVs across the
111 VAF spectrum (Fig. 2¢), however Lancet’s superior accuracy is highlighted in the precision/recall
112 curve (Fig. 2a). Finally, Lancet produces by far the best overall F;-score across all the tested
113 methods on the virtual tumor for indel calling (Tables 1 and 2). Lancet and Strelka2 achieve the
114  same Fj-score on SNVs calling, however Lancet generates half the number of false positives
115 compared to Strelka2. Analysis of the reference and alternative allele counts shows great
116  variability in the number of supporting reads for each tool, due to the different methods and filters
117  wused in selecting the reads. As expected, most false positive indels have few reads containing the
118 alternative allele; this is largely the case for Lancet, while other tools (e.g., MuTect2) also report
119  false positives indels with higher support for the alternative allele, indicating a problem in

120 selecting/filtering the set of alignments that support the mutations either in the tumor or the normal


https://doi.org/10.1101/196311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/196311; this version posted October 24, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

121 (Supplementary Fig. 7). Strelka has the lowest number of false positive calls but the distribution
122 of supporting reads highlights its limited power in detecting indels with very low support.

123 Table 1. Somatic indel detection performance on the virtual tumor. Tools sorted in descending order of F;-score.
# of TP FP FN Recall Precision FDR Fiscore* Max
calls Fiscoret

Lancet 3891 3586 305 1359 0.72 0.92 0.078 0.81 0.81
Strelka2 4514 3647 867 1298 0.73 0.81 0.192 0.77 0.78
LoFreq 4853 3210 1652 1744 0.64 0.66 0.340 0.65 0.67
MuTect2 4873 2712 2071 2233 0.54 0.56 0.432 0.55 0.58
Strelka 1846 1793 53 3152 0.36 0.97 0.028 0.52 0.71

124 * Fiscore: harmonic mean of precision and recall, 2x(precisionxrecall)/(precisiontrecall); ¥ Maximum Fiscore

125 computed for each combination of precision and recall along the precision/recall curve.

126

127 Table 2. Somatic SNV detection performance on the virtual tumor. Tools sorted in descending order of F-score.

# of TP FP FN Recall Precision FDR Fiscore* Max
calls Fiscore
Lancet 24413 23848 565 7744 0.75 0.98 0.023 0.85 0.85
Strelka2 25249 24132 1117 7460 0.76 0.96 0.044 0.85 0.85
Strelka 23891 22741 1150 8851 0.72 0.95 0.048 0.82 0.82
MuTect 50228 23713 2792 7879 0.75 0.89 0.055 0.82 0.82
MuTect2 23779 20393 3386 11199 0.65 0.86 0.142 0.74 0.74
LoFreq 9404 9370 34 22222 0.3 0.99 0.003 0.46 0.46
128 * Fiscore: harmonic mean of precision and recall, 2x(precisionxrecall)/(precisiontrecall); ¥ Maximum Fiscore
129 computed for each combination of precision and recall along the precision/recall curve.
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130  Synthetic tumors. We performed an additional comparison using the synthetic tumors from the
131 ICGC-TCGA DREAM mutation calling challenge #4. This dataset was the most difficult to
132 analyze due to a combination of complex clonality and cellularity of the tumor sample, which
133 contained two sub-clones of 30% and 15% allelic fraction. Similarly to the virtual tumors, raw data
134 from a deeply sequenced sample was randomly sampled into two non-overlapping subsets of equal
135  size. Then a spectrum of mutations, some randomly selected and some targeting known cancer-
136  associated genes, was introduced in one of the two samples (the tumor), using BAMSurgeon
137  (https://github.com/adamewing/bamsurgeon). While somatic SNVs are spiked in by altering the
138  original reads, in the case of indels synthetic reads containing the desired mutation were simulated
139  and used to replace a fraction of the original reads from the same region. We discovered that the
140  truth set for this dataset contains many variants with supporting reads coming only from one strand
141  (thus introducing a strong strand bias), and for this experiment we turned off Lancet’s strand bias
142 filter. In real tumors, such strong strand bias is unlikely to happen. Precision/recall curve analysis
143 (Fig. 3a) together with the precision, FDR, and F,-score values (Supplementary Tables 1 and 2)
144  show that on this dataset Lancet outperforms all other somatic callers for indel calling. As reported

. . . 2. 15
145 in previous studies™

, assembly based methods, such as Lancet and MuTect2, demonstrate
146  substantially more power to detect indels of 50 base pairs or longer compared to alignment-based
147  methods (Fig. 3b). Given the longer size range of indels spiked in this dataset, we also ran Streka2
148  in combination with Manta'®, which is the recommended protocol for best somatic indel
149  performance. This combination is indeed more sensitive to longer indels, but it is still subject to
150  higher error rate compared to Lancet. Analysis of the size distribution of called variants outside of
151  STRs shows that both MuTect2 and LoFreq have strong bias towards calling longer false positive
152  indels (Fig. 3c). IGV inspection of a random subset of LoFreq calls on the ICGC-TCGA DREAM
153  data highlights that the false positive indels are typically due to mis-alignment of the supporting
154  reads in the normal (Supplementary Fig. 8). Most of the MuTect2 false positive insertions instead
155  correspond to breakpoints of larger structural variants that are misinterpreted as small insertions
156  (Supplementary Fig. 9-10). For SNV detection, Lancet shows comparable results to MuTect2, the
157  best performing method for this dataset (Supplementary Fig. 11). Strelka2 shows an impressive
158  precision/recall curve for SNVs up to 0.6 recall, however its precision drops considerably
159  afterwards.
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Figure 3. Indel performance of Lancet and other methods on the synthetic tumor #4 of the ICGC-TCGA
DREAM mutation calling challenge. (a) Precision/recall curve analysis of somatic indels called by Lancet, MuTect,
MuTect2, LoFreq, Strelka, Strelka2, and Strelka2+Manta. Lancet®® is the version of Lancet run with strand bias filter
turned off. (b) Size distribution of true positive indels for each method. Assembly based methods (Lancet, MuTect2,
and Strelka2+Manta) demonstrate substantially more power to detect longer indels, while alignment-based methods
(LoFreq, Strelka, and Strelka2) have reduced power to detect larger mutations, in particular insertions. (c¢) Size
distribution of false-positive indels, excluding STRs, plotted separately for each method. LoFreq false positive indels
are mostly due to mis-alignment of the reads supporting the indel in the normal, while most of the MuTect2 false
positive insertions instead correspond to breakpoints of larger structural variants (e.g., inversion, translocations) that
are misinterpreted as insertions. Lancet, Strelka and Strelka2 show the lowest number of false positives although
Lancet has superior sensitivity compared to Strelka and Strelka2+Manta on this dataset.

Normal tissue/tumor pair. We next analyzed real data from a case of medulloblastoma used in
the cross-centers benchmarking exercise of the International Cancer Genome Consortium
(ICGC)". Unlike the synthetic tumors of the ICGC-TCGA DREAM mutation calling challenge, no
single mutation was spiked-in, but rather a curated list of somatic mutations (SNVs and indels) was
compiled (the Gold Set). Due to the heterogeneity of the raw data (multiple library protocols,
Illumina sequencers, read lengths, and fragment sizes), this dataset is particularly noisy and
challenging to analyze. Moreover, differently from the previous datasets used in this study, the
majority of indel calls contained in the Gold Set are located within STRs (Supplementary Fig.
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180  13a). Variant calling accuracy of all tools is generally inferior in comparison to the previous
181  benchmarking experiments (Supplementary Fig. 12) but final precision and recall values are in
182  agreement with the results reported by the ICGC benchmarking team. Strelka2 and LoFreq have
183  better precison/recall curves for indels up to 0.5 recall, but Lancet shows the best final trade-off
184  between precision and recall (F;-score) and it ranks second in SNV detection, after LoFreq
185  (Supplementary Tables 3 and 4). Although LoFreq and Strelka2 have higher indel recall rates
186  (Supplementary Tables 3 and Supplementary Fig. 13b), their final precision is substantially
187  lower compared to Lancet and Strelka (Supplementary Fig. 13c), indicating that these tools may
188  have difficulties in handling the noise in the data. Inspection of the F-score values, as a function of
189  recall, shows all callers favor sensitivity over specificity in this dataset (Supplementary Fig. 14) —
190 indicating that they have likely been optimized for higher quality data. As is the case with virtual
191 tumors, false positive indels within STRs are highly discordant across callers in the
192 medulloblastoma dataset (Supplementary Fig. 13¢-d), thus confirming an overall lower quality of
193 these calls. In contrast, Lancet reports a very small number of false positive indels without losing
194  sensitivity (Supplementary Fig. 13b-c).

195  Normal tissue/primary tumor/metastasis trio. Finally, we analyzed a pair of highly genetically
196  concordant primary and metastatic cancer lesions to check the robustness of different methods to
197  identify shared and private somatic mutations. Concordance of SNVs shared between the primary
198  and metastasis is much higher compared to indels among the analyzed tools, however higher
199  agreement of the called indels is achieved when indels within STRs are removed (Supplementary
200  Fig. 15). These results once more highlight the problem of detecting somatic STRs and emphasize

201  the challenging, but necessary, task of integrating indel calls across different methods.

202 Discussion

203  Across the four datasets analyzed in this study, we discovered that the major source of
204  disagreement between callers originates from somatic variants called within STRs, in particular if
205 the motif is two base pairs or longer. Moreover, Venn diagram analysis shows substantial
206  disagreement between the callers for the false positive somatic STR calls. Since the virtual tumors
207  were created by partitioning the raw reads from a single real sample, we infer that the erroneous
208  STR indels are the results of higher replication slippage at those sites that most tools misclassify as
209  somatic events. In contrast, thanks to reliable scoring and filtering systems and the employment of
210  the local assembly engine, Lancet makes fewer errors at STR sites. Alignment based tools, such as
211  LoFreq, are inherently more prone to misclassify longer variants as somatic. Lancet instead
212 natively corrects for mis-aligned reads thanks to the joint assembly of the tumor and normal reads
213 in the same colored DeBruijn data structure, which also provides more precise estimation of the
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214  variant allele fraction. Our extensive comparative analysis also indicates that somatic callers are
215  now optimized for higher quality data, although inspection of the max F;-score values suggests that
216  better performance is achievable on noisy data with more stringent quality cutoffs.

217  The key novel feature introduced by Lancet is the usage of colored DeBruijn graphs to jointly
218 analyze tumor and normal reads. This strategy substantially increases the accuracy of identifying
219  mutations, especially indels, private to the tumor. Precision/recall curve analysis demonstrates that
220  Lancet has a reliable variant quality scoring system, which is critical for prioritizing somatic
221  variants. Lancet shows high precision when calling somatic mutations and provides robust calls
222 across data generated by different Illumina sequencers. Due to its pure local-assembly strategy,
223 Lancet currently has longer runtimes compared to alignment based methods (Supplementary
224 Table 5), which is an area we plan to improve upon in the future releases of the tool. In addition to
225  being used as a genome-wide analysis tool, Lancet can be used interactively to call variants and
226  render colored DeBruijn graphs at small genomic regions of interest. In summary, Lancet provides
227  highly accurate genome-wide somatic variant calling of SNVs and indels, and, given all its new
228  features, we anticipate Lancet to become an invaluable resource for the bioinformatics community

229  working on cancer.

230 Methods

231  Lancet workflow. Lancet uses the same local assembly engine initially developed for the Scalpel
232 variant caller” but it introduces many new features specifically designed for somatic analysis of
233 tumor and matched normal next-generation sequencing data. The algorithm starts by decomposing
234 the whole genome into overlapping windows of a few hundred base pairs (600bp by default). Each
235 region is then locally assembled, except repetitive regions that have an excessive number of
236  mapped reads (default 10,000), using the workflow depicted in Supplementary Fig. 1. Reads
237  mapping within each region are extracted from the tumor and normal BAM files and decomposed
238  into k-mers which are then used to build a colored DeBruijn graph as described in section “Colored
239  DeBruijn graph construction”. Reads used for the assembly are carefully selected to reduce the
240  number of possible artifacts in the graph that could confound variant detection. The details of the
241  read selection process and the various filters applied are described in section “Read selection”. The
242  graph is initially built using a small k-mer value (starting with a default of £ = 11) which allows
243  incorporation of reads supporting very low coverage variants. However, the k-mer parameter is
244  automatically increased along the scale of odd numbers, to avoid the presence of perfect and near-
245  perfect repeats (default up to 2 mismatches) in the graph that can confound variant detection by
246  introducing false bubbles, described in section “Repeat analysis”. The graph complexity is then
247  reduced by removing low-coverage nodes, dead-ends, short-links, and by compressing chains of
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248  uniquely linked nodes (section “Graph cleanup”). Once a repeat-free graph has been constructed, it
249  is anchored to the reference by selecting one source and one sink node corresponding to unique k-
250  mers located within the current window. All possible source-to-sink paths are then efficiently
251  enumerated using an Edmonds—Karp style algorithm described in section “Paths enumeration”.
252 The assembled sequences from each path are aligned to the reference window using a sensitive
253  Smith-Waterman-Gotoh alignment algorithm with affine-gap penalties. Finally, the alignments are
254  parsed to extract the signature of different mutations (single nucleotide variant, insertion, and
255  deletion).

256  Read selection. Reads aligning to the genome are extracted from the tumor and normal BAM files
257  and used for local assembly with the exception of the following set of reads. (1) PCR duplicates
258 marked using the Picard MarkDuplicates module ( ) —
259  removing PCR duplicates is necessary to correctly estimate coverage and support for variant calls.
260  (2) Reads aligned with low mapping quality (< MP, default 15) — reads with low mapping quality
261 may be mapped to the wrong genomic location or aligned with incorrect signature. (3) Reads
262  which are highly likely to be multi-mapped. Depending on which version of the BWA aligner is
263  employed, there are two ways to identify these reads. In the case of BWA-MEM, multi-mapped
264  reads are assigned equal values in the AS and XS tags, however we slightly relaxed this constraint
265  to identify reads which are highly likely to be multi-mapped (|JAS-XS| < 6 where 6 =5). If BWA-
266 ALN is employed, multi-mapped reads are marked using the XT:Z::R tag, nonetheless, their
267  mapping quality is not necessarily zero. This is because mapping quality is computed for the read
268  pair, while XT is only determined from a single read. For example, when the mate of a read can be
269  mapped unambiguously, the read can still be mapped confidently and thus assigned a high
270  mapping quality. In addition to the XT tag, multi-mapped reads are also identified using the XA
271  tag which is used to list the alternative hits of the read across the genome. Finally, to maximize the
272  sensitivity to detect variants that are also present in the normal sample, no filter is applied when
273  extracting the reads aligned to the normal.

274  Colored DeBruijn graph construction. The key data structure used by Lancet is the colored
275  DeBruijn graph constructed using the reads from both the tumor and the matched normal samples.
276  Fig. 1 shows an example of the DeBruijn graphs generated by Lancet. Formally the graph is
277  defined as G (V, E, C) where V' is the set of vertices/nodes corresponding to the different k-mers
278  extracted from the reads, E is the set of edges connecting two nodes having a k-1 perfect match
279  between their respective k-mers, and C is the coloring scheme (labels) used to indicate whether the
280  k-mer has been extracted from the tumor or normal sample. To account for the double-strandedness
281  of DNA, Lancet constructs a bi-directed DeBruijn graph where each node stores both forward and

282  reverse complement of each k-mer. The graph is augmented with ancillary information extracted
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283  from the raw sequencing data, specifically each node stores (i) the k-mer counts split by strand, (i7)
284  the list of reads where the k-mers were found, and (iii) the Phred quality for each base. The k-mers
285  from the reference sequence are also extracted and incorporated into the graph. Sequencing data is
286  typically generated from short-insert paired-end DNA libraries and the variable fragment size
287  distribution can sometimes cause two paired reads to overlap each other. Therefore, coverage
288  needs to be adjusted to avoid over counting the overlapping portion of the two reads. This is easily
289  accomplished in the DeBruijn graph framework since k-mers extracted from the overlapping
290 segment come from reads that share the same query template (QNAME) in the BAM file. If this

291  condition is detected, the k-mer count is adjusted to only count one copy of the two k-mers.

292  Graph cleanup. Sequencing errors, coverage fluctuations, and mapping errors increase the graph
293  complexity by introducing nodes and edges that confound the analysis. Lancet utilizes several
294  graph operations and transformations designed to remove spurious nodes and edges introduced
295  during graph construction. First, low-coverage nodes, which are typically associated with
296  sequencing errors, are removed if the corresponding k-mer count is below a specific user defined
297  threshold (default 1) or if the coverage ratio is below a certain user defined value (default 0.01).
298  Second, dead-ends are removed, which present themselves as a sequence of uniquely linked nodes
299  that do not connect back to the graph (also called short tips). Dead-ends formed by » (default 11)
300 or more nodes are removed from the graph. Next short-links are removed, which are short
301  connections composed by fewer nodes than theoretically possible given the k-mer value used to
302 build the graph. Supplementary Figure 16 illustrates one exemplary short-link scenario. This type
303  of connection is typically due to sequence homology between closely located repeats (e.g., Alu
304  repeats), but it can also happen in the case of long homopolymers, and other short tandem repeats,
305  where the tandem repetition of the motif can result in the construction of a tiny bubble in the
306  presence of a heterozygous mutation. Those tiny bubbles need to be kept in the graph as they may
307  represent true variation, while short-links like the one depicted in Supplementary Fig. 18 can be
308 safely removed. Therefore, connections at non-STR sites formed by m (<< k) or less nodes and
309  whose minimum coverage node is ¢ < \/cavg are removed from the graph, where c,,, is the average
310  coverage across the window. Finally, the graph is compressed by merging chains of uniquely

311  linked nodes into super nodes.

312 Repeat analysis. Small scale repeats are a major challenge for accurate variant calling, specifically
313 for indels'. To avoid introducing errors at those loci, Lancet employs the same repeat analysis
314  procedure introduced in the Scalpel algorithm. Specifically, the sequence composition in each
315  window is analyzed for the presence of perfect or near-perfect repeats (up to a specified number of
316  mismatches, 2 by default) of size k. Similarly, the graph is inspected for the presence of cycles

317  (perfect repeats) or near-perfect repeats in any of the source-to-sink paths. If a repeat structure is
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318  detected, a larger k-mer value is selected and the repeat analysis is performed again on both the
319  reference sequence and the newly constructed graph, until a repeat-free graph is constructed or the
320  k-mer size has reached a maximum value (101 by default). To avoid using k-mers which are
321  reverse complement of their own sequences, only odd values of k are used to build the graph. This
322 iterative strategy is a key feature of the Lancet algorithm which automatically selects the optimal .-

323 mer size according to the sequence composition of each genomic window.

324  Paths enumeration. Enumerating all possible haplotypes can take time, growing exponentially
325  with the number of bubbles present in the graph. To reduce the computational requirements of the
326  graph traversal down to polynomial time, we employ an Edmonds—Karp style algorithm for fast
327  enumeration of all possible haplotypes. The idea behind the algorithm is to find the minimum
328 number of paths from source to sink that cover every edge in the graph (edge and nodes can be
329  visited more than once). The pseudo code of the algorithm is presented below. Since every node is
330  wvisited (possibly multiple times), it is easy to show that, although the same variant could be
331  discovered multiple times, no variant is missed from the analysis. Straightforward complexity
332 analysis of the pseudocode shows that the worst-case time complexity is O(E*+EV): at least one
333 edge is visited at each iteration (step 5) accounting for O(E) time, and each call to the graph
334  traversal (step 2) takes O(E+V) where E is the number of edges and V' the number of nodes in the
335  graph. As such, a trivial upper bound for the whole procedure is O(E) x O(E+V) = O(E+EV).

336 1. while (true) {

337 2 path = bfs(source, sink, dir, ref); /* with at least one unvisited edge */
338 3 if (path == null) { break; }

339 4 processPath(path); /* align sequence to reference and extract variants */
340 5. for each edge in path {

341 6 Edge.visited = true;

342 7 }

343 8.}

344

345  Active regions. The idea behind the active region module is to avoid wasting time processing (read
346  extraction, local assembly, re-alignment) regions without evidence for variation. Regions where all
347  reads map to the reference without any mismatches can be trivially discarded. However, the error
348 rate of the Illumina sequencing technology (~0.1 percent), in combination with high coverage,
349 makes the scenario of alignments with no mismatches in a region very unlikely. The policy
350  adopted by Lancet is to consider a region as “active”, either in the tumor or the normal sample, if a
351 minimum of N (aligned) reads support a mismatch, indel, or soft-clipped sequence at the same

352  locus (Supplementary Fig. 17), where N is equal to the minimum alternative count support
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353  specified for somatic variants (3 by default). This policy is implemented on the fly by simple and
354  fast parsing of the MD and CIGAR strings. This step is functionally similar to the active region
355 module employed in MuTect and other tools, however Lancet follows a pure assembly approach,
356  where all variant types (SNVs, insertions and deletions) are detected through local assembly. When
357  tested on an 80x/40x coverage pair of tumor/normal samples sequenced with 150bp reads, Lancet’s
358 active region strategy discards on average between ~10% and ~20% of the total number of
359  windows. However, due to its pure assembly strategy, Lancet typically requires higher runtimes
360 compared to the hybrid approach employed by MuTect2 and Strelka2 (Supplementary Table 5).
361  To achieve faster runtimes and to discard more windows, the parameter N can be increased when

362  analyzing samples sequenced at coverage higher than 80x/40x.

363  Scoring variants. Fisher’s Exact test is used to determine if a mutation has non-random
364  associations between the allele counts in the tumor and in the normal samples. Specifically, given a
365  somatic mutation, reference and alternative reads supporting the variant both in the tumor and the
366  normal are collected and stored into a 2-by-2 contingency table which is then used to compute a
367  Phred-scaled Fisher’s exact test score, Sy, according to the following formula:

368 Stren) = {—10loglo(p) otherwise

369  where p is the exact probability of the 2-by-2 contingency table given by the hypergeometric
370  distribution.

371  Variant filters. Lancet generates the list of mutations in VCF format'’ (v4.1). All variants (SNVs
372 and indels) either shared, specific to the tumor, or specific to the normal are exported as part of the
373  output. Following the VCF format best practices, high quality variants are labelled as PASS in the
374  FILTER column. Several standard filters, all of which have tunable parameters, are applied to

375  remove germline calls and low quality somatic variants as describe here:

376 1. Low/high coverage: mutations located in substantially low coverage regions of the normal
377 (default < 10) or tumor (default < 4) are removed since there is a high chance for coverage
378 bias towards one of the alleles.

379 2. Variant allele fraction: mutations characterized by a very low variant allele fraction in the
380 tumor (default < 0.04) are filtered because they are likely to be false positive calls.
381 Likewise, variants whose variant allele fraction is high in the normal (default > 0.0) are
382 considered to be germline calls.
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383 3. Alternative allele count. analogously to the allele fraction filter, mutations with low
384 alternative allele count (default < 3) in the tumor are likely to be false positive calls and are
385 flagged as low quality. While variants with a high alternative allele count in the normal
386 (default > 0) are considerate to be germline mutations.

387 4. Fisher's exact test (FET) score: mutations with a very low FET score are flagged as low
388 quality. Due to their inherently different error profiles, separate thresholds are used for non-
389 STR variants (default < 5.0) and STR variants (default < 25.0).

390 5. Strand bias: this filter rejects variants where the number of alternative counts in the forward
391 or reverse strand is below a certain threshold (default < 1).

392 6. Microsatellite: microsatellites (or short tandem repeats) are highly mutable genetic
393 elements subject to high rate of replication slippage events (especially homopolymers),
394 which reduces variant callers’ ability to distinguish between sequencing errors and true
395 mutations. As such, mutations located within microsatellites or in their proximity (default 1
396 base pair away) are recognized and flagged by Lancet. By default, microsatellites are
397 defined as sequences composed of at least 7bp (total length), where the repeat sequence is
398 between 1bp and 4bp, and is repeated at least 3 times. The user can adjust these parameters
399 to define any type of microsatellite motif size and length as required by different
400 applications.

401 Read alignment and BAM file generation. Sequencing reads were aligned to the human
402  reference hgl9 using BWA-MEM (v.0.7.8-r455) with default parameters. Alignments were
403  converted from SAM format to sorted and indexed BAM files with SAMtools (v.1.1). GATK
404  software tools (v.2.7-4) were used for improving alignments around indels (GATK IndelRealigner)
405 and base quality recalibration (GATK base quality recalibration tool) using recommended
406  parameters. Finally, the Picard tool set (v.1.119) was used to remove duplicate reads. The final

407  BAM files generated by this process were used as input for all the variant callers used in this study.

408  Virtual tumors. We created virtual tumors using a strategy similar to what was employed in the
409  MuTect paper®. We sequenced HapMap sample NA12892 at high coverage on the Illumina HiSeq
410 X system using PCR-free protocol and partitioned the set of reads into two groups of 80x and 40x
411  average coverage to use as tumor and normal respectively. Reads were mapped using the
412 alignment procedure described in section “Read alignment and BAM file generation”. We then
413 used an unrelated HapMap sample NA12891 sequenced on the same Illumina HiSeq X system to
414  introduce realistic SNVs and indels by swapping a predefined number of reads between the two

415  samples at loci where NA12892 is homozygous reference and NA12891 is homozygous variant
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416  (Supplementary Fig. 3). The list of selected loci is based on the 1000 Genomes Project phase 3'®
417  call set and the number N of reads that were swapped between the two samples followed a
418  binomial distribution with mean p = 0.05, 0.1, 0.2, 0.3. This procedure allowed us to spike-in
419  realistic mutations with known variant allele fractions, but the length of indels was limited by the
420  short size range currently included in the 1000 Genomes call set. Specifically, the longest insertion
421  and deletions that we were able to spike in were 13 bp and 35 bp respectively. We used this
422  process separately for SNVs and indels to create two pairs of tumor/normal samples with 31,592
423 somatic SNVs and 4,945 somatic indels respectively. The virtual tumor BAM files together with
424  the list of true variants are freely available for download at the New York Genome Center ftp site
425  ( ).

426 ICGC medulloblastoma benchmarking data. We downloaded the full set of FastQ files of the
427  medulloblastoma patient (accession number EGAD00001001859) from the European Genome-
428  phenome Archive (EGA, . The raw reads were generated by five
429  different sequencing centers reaching a cumulative coverage of ~300X for both the tumor and the
430  normal samples. We merged the raw FastQ files separately for the tumor and the normal samples
431  and then aligned the reads using the alignment pipeline describe in section “Read alignment and
432  BAM file generation”. Then we down-sampled the ~300X BAM files down to ~80X and ~40x for
433 the tumor and the normal respectively using the Picard DownsampleSam module. The down-
434  sampled BAM files generated by this process were then used as input for all the somatic variant

435  callers used in this study.

436  Primary and metastatic cancer lesions data. Sequencing data for the paired primary and
437  metastatic cancer lesions are publically available through the database of Genotypes and
438  Phenotypes (dbGaP, ) with accession number phs000790.v1.pl.
439  The same data is also available through the Memorial Sloan Kettering Cancer Center cBioPortal
440  for Cancer Genomics (study “Colorectal Adenocarcinoma Triplets”). In this study, we used the
441  sequencing data for sample EV-014 and the BAM files were created following the same procedure
442  described in section “Read alignment and BAM file generation”, with the only difference that the
443  normal, primary and metastatic samples have been realigned together (with GATK IndelRealigner)

444 to further improve alignments around indels.

445  Variant calling. We tested the variant calling abilities of eight different somatic variant callers:
446  Lancet (v1.0.0), MuTect (v1.1.7), MuTect2 (v2.3.5), LoFreq (v2.1.2), Strelka (v1.0.14), Strelka2
447  (v2.8.3), Scalpel® (v0.5.3), and VarDict'’ (v328e00a). Although a larger number of somatic variant
448  callers is available in the literature, we chose to compare Lancet against these methods because
449  they are some of the most widely used approaches specifically designed for whole genome

450  tumor/normal variant calling and they represent a combination of both assembly and alignment
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451  based methods. Default parameters were used for each tool. Results on the virtual tumors revealed
452  Scalpel and VarDict to be outliers in terms of specificity (Supplementary Fig. 18), so we decided
453  to exclude these two tools from the overall benchmarking experiments.

454  Benchmarking workflow. We used the following procedure to perform the Precision/Recall curve

455  analysis employed in this study:

456 1. First, we ran each tool with default parameters, as reported in the “Variant calling” section.
457 2. We kept only the PASS somatic variants within the autosomes together with chromosomes
458 X, Y and sorted the variant calls, from highest quality to the lowest, according to the
459 quality score reported by each method in the final VCF file (“FisherScore” for Lancet,
460 “SomaticEVS" for Strelka2, “QSI” for Strelka, “QUAL” for LoFreq, “TLOD” for MuTect
461 and MuTect2).

462 3. Due to the possibly ambiguous representation of indels around microsatellites and other
463 simple repeats, we left normalized all the indels.

464 4. When comparing calls to the truth set or across the different methods, we matched two
465 variants (SNV or indels) if they shared the same genomic coordinates (chromosome and
466 start position) as well as if they have the exact same sequences (both in size and base pair
467 composition) in the reference and alternative alleles.

468 5. Precision/recall values along the curve are then computed for each tool by processing the
469 somatic calls in the sorted order generated in step 2.

470  Code availability and system requirements. Lancet is written in C/C++ and is freely available
471  for academic and non-commercial research purposes as an open-source software project at

472 https://github.com/nygenome/lancet. Lancet employs two widely used next-generations sequencing

473  analysis APIs/libraries, BamTools (https://github.com/pezmaster31/bamtools) and HTSIlib

474  (http://www.htslib.org/), to read and parse the information in the BAM file, which are included in

475  the code distribution. The source code has no dependencies and it is easy to compile and runs
476  across different operating systems (Linux and Mac OSX). Lancet supports native multithreading
477  via pthreads parallelization. Analysis of one whole-genome (80x/40x) tumor-normal pair
478  sequenced with 150 base pair reads usually requires 3000 core hours and a minimum of 20 GB of

479  RAM on a modern machine after splitting the analysis by chromosome.

480 Data availability. Data used in this study was retrieved from the 1,000 Genomes website
481  (http://www.1000genomes.org), the European Genome-phenome Archive (EGA,
482  https://www.ebi.ac.uk/ega) with accession number EGAD00001001859, the database of Genotypes
483 and Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/gap) with accession number
484  phs000790.v1.p1, and the International Cancer Genome Consortium (ICGC, http://icgc.org/). The
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485  virtual tumors generated and analyzed in this study are freely available for download at the New
486  York Genome Center public ftp site ( ).
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