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Abstract

Background: High rates of comorbidity, shared risk, and overlapping therapeutic mechanisms
have led psychopathology research towards transdiagnostic dimensional investigations of
clustered symptoms. One influential framework accounts for these transdiagnostic phenomena
through a single general factor, sometimes referred to as the ‘p’ factor, associated with risk for
all common forms of mental illness.

Methods: Here we build on past research identifying unique structural neural correlates of the p
factor by conducting a data-driven analysis of connectome wide intrinsic functional connectivity
(n=605).

Results: We demonstrate that higher p factor scores and associated risk for common mental
illness maps onto hyper-connectivity between visual association cortex and both frontoparietal
and default mode networks.

Conclusions: These results provide initial evidence that the transdiagnostic risk for common
forms of mental illness is associated with patterns of inefficient connectome wide intrinsic
connectivity between visual association cortex and networks supporting executive control and

self-referential processes, networks which are often impaired across categorical disorders.
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Introduction

Emerging research has identified a general factor of psychopathology that accounts for shared
risk among internalizing, externalizing, and thought disorders across diverse samples(1-6). In
contrast to the traditional clinical science model which compares cases of individuals meeting
criteriafor a categorical disorder to those not meeting these criteria (i.e., “healthy” controls), this
general psychopathology or ‘p’ factor reflects an individuals' latent liability for mental illness(7).
For individuals with clinical disorders, higher p factor scores portend greater chronicity and
symptom severity(1, 7). In “healthy” individuals, higher p factor scores reflect relative risk for
developing future clinical disorder. Moreover, the p factor provides a framework for explaining
the high rates of comorbidity as well as the shared genetic variance among categorical mental
disorders(8, 9). As such, the p factor represents a potentially useful avenue for better
understanding the shared and unique etiology of common mental illness. However, the
biological mechanisms through which the p factor confers general risk for psychopathology
remain unclear. ldentifying such mechanisms is necessary for effectively leveraging the p factor
to derive novel targets for clinical intervention and prevention.

Clinical neuroscience has begun to adopt transdiagnostic methodologies to accelerate the
search for common neurobiological abnormalities across disorders(10). For example, a recent
large meta-analysis of six categorical disorders reported a shared pattern of reduced gray matter
volume in a distributed network supporting attention and cognitive control(11). In addition, we
have recently examined the structural neural correlates of the p factor specificaly(12). In our
work, higher p factor scores and thus risk for common mental illness was associated with
reduced gray matter volumes in the occipital lobes and neocerebellum. Furthermore, higher p

factor scores were associated with reduced fractional anisotropy in pontine pathways linking the
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neocerebellum with the thalamus and prefrontal cortex. This network of brain regions is thought
to be a forward monitor of incoming sensory information, generating and updating internal
models for motor as well as cognitive tasks(13). In addition, activation of the neocerebellum has
been associated with cognitive control tasks,(14) reflecting its contribution to the extended
cognitive control network including the dorsolateral and medial prefrontal cortex(15). Thus, our
observed p factor associations along with meta-analytic results suggest that transdiagnostic risk
for common forms of mental illness may be associated with structural deficits in a network of
brain regions supporting cognitive control. However, the putative functional consequences of
these observed structural associations have not yet been examined.

Resting-state functional connectivity is a powerful tool in clinical neuroscience because it
can be readily administered across patient populations(16, 17), demonstrates trait-like
stability(18) as well as moderate heritability(19, 20), and represents a powerful probe of the
intrinsic architecture of neural networks that play a primary role in shaping task-based network
activity and associated behaviors(21). In addition, atered intrinsic functional connectivity
within the default mode network (DMN), and frontoparietal network (FPN), both of which are
linked to higher order cognition, have been broadly linked to psychopathology across categorical
disorders(22-24). Thus, resting-state measures of intrinsic network connectivity represent one
avenue for extending the structural associations of the p factor to variability in functional neural
dynamics representing mechani sms through which risk may emerge.

Here, we investigate intrinsic functional connectivity correlates of the p factor in a
volunteer sample of 614 university students from the Duke Neurogenetics Study. While our
previous research in this sample identified discrete structural correlates of the p factor in the

occipital lobes, neocerebellum, and pons, we opted for a whole-brain exploratory analysis of
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intrinsic connectivity to capture functional differences beyond these regions and impose minimal
assumptions about the nature of p factor associations in the brain. While there are many
exploratory methods for investigating resting state functional connectivity, we performed a
Connectome-Wide Association Study (CWAS)(25) of the p factor using multidimensional matrix
regression (MDMR)(26). In contrast to traditional seed-based approaches, MDMR allows a
search across the whole brain for multivariate connectivity patterns that vary with p factor
scores, while at the same time making few assumptions about the data or expected effects.
Unlike clustering(27) or independent components analysis,(28) MDMR does not require a priori
estimates of the dimensionality of the data or choosing networks or connections of interest. In
addition, MDMR does not require arbitrary decisions about thresholding matrices (as in many
graph analysis techniques(29)), while retaining the advantages of interpretability and
visualization of traditional seed based approaches. For these reasons, we conducted a CWAS to

identify associations between p factor scores and intrinsic functional connectivity.

Methods

Participants. Data for this study come from the Duke Neurogenetics study (DNS), which was
designed to allow for examination of predictive links between genes, brain, behavior and risk for
mental illness among 18 to 22-year-old university students. DNS participants were recruited
primarily from the Duke University student body via flyers and online postings. After successful
completion of the DNS protocol, participants received financial compensation as well as a free
23andMe account. While al 1333 DNS participants completed mental health assessments and
structural neuroimaging, resting-state fMRI was only collected on a subset due to revisions of the

MRI protocol to accommodate two new task-fMRI scans which led to removal the resting-state
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scans from the protocol. Specifically, resting-state data was collected on 614 consecutive
participants, therefore, this subsample is broadly representative of the entire DNS sample and
does not suffer from further selection bias. All participants provided informed consent in
accordance with the Duke University Medical Center Institutional Review Board guidelines
before participation. All participants were in good general health and free of the following
conditions, known to artifactually influence MRI data collection: (1) medical diagnoses of
cancer, stroke, head injury with loss of consciousness, untreated migraine headaches, diabetes
requiring insulin treatment, chronic kidney or liver disease; (2) use of psychotropic,
glucocorticoid or hypolipidemic medication; and (3) conditions affecting cerebral blood flow and
metabolism (e.g., hypertension). One goal of the DNS was to study mental health and illness;
therefore, participants were not excluded if they met criteria for substance abuse or a mental

illness.

Clinical Diagnosis. Current and lifetime DSM-IV Axis | disorder or select Axis Il disorders was
assessed with the electronic Mini International Neuropsychiatric Interview(30) and Structured
Clinical Interview for the DSM-IV subtests(31) respectively. Importantly, diagnosis wasn't an
exclusion criterion, as the DNS seeks to establish broad variability in multiple behavioral
phenotypes related to psychopathology. Allowing for a broad spectrum of symptoms is
particularly critical for accurately deriving p factor scores. Nevertheless, no participants were
taking any psychoactive medication during or at least 14 days prior to their participation. Of the
605 participants with data included in our analyses, 133 individuals had at least one DSM-1V
diagnosis, including 76 with alcohol use disorders, 24 with non-alcohol substance use disorders,

33 with mgor depression disorder, 26 with bipolar disorder, 7 with panic disorder (no
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agoraphobia), 9 with panic disorder including agoraphobia, 4 with social anxiety disorder, 8 with
generalized anxiety disorder, 10 with obsessive compulsive disorder, and 7 with eating disorders.
While this is a university-based convenience sample that is not representative of the broader
population in intelligence or parental education (due to selective admissions criteria of Duke
University), the sample is broadly representative of the general population in terms rates of

mental illness(32).

Derivation of p factor scores. In previous work(12), our group replicated the p factor in the
DNS using confirmatory factor analysis of self-report and diagnostic interview measures of
internalizing, externalizing, and thought disorder symptoms. These p factor scores were
extracted using the standard regression method from those analyses and standardized to a mean
of 100 (SD = 15), with higher scores indicating a greater propensity to experience al forms of
psychiatric symptoms. Further details on the derivation of the p-factor scores can be found in the

supplement.

Image acquisition. Each participant was scanned using one of two identical research-dedicated
GE MR750 3 T scanners equipped with high-power high-duty-cycle 50-mT/m gradients at 200
T/m/s dlew rate, and an eight-channel head coil for parallel imaging at high bandwidth up to
1MHz at the Duke-UNC Brain Imaging and Analysis Center. A semi-automated high-order
shimming program was used to ensure global field homogeneity. A series of 34 interleaved axial
functional slices aligned with the anterior commissure-posterior commissure plane were acquired
for full-brain coverage using an inverse-spiral pulse sequence to reduce susceptibility artifacts

(TR/ITE/Alip angle=2000 ms/30 mg/60; FOV=240mm; 3.75x3.75x4mm voxels, interdice
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skip=0). Four initial radiofrequency excitations were performed (and discarded) to achieve
steady-state equilibrium. For each participant, 2 back-to-back 4-minute 16-second resting state
functional MRI scans were acquired. Participants were instructed to remain awake, with their
eyes open during each resting state scan. To allow for spatial registration of each participant's
data T1-weighted images were obtained using a 3D Ax FSPGR BRAVO with the following
parameters: TR = 8.148 ms; TE = 3.22 ms, 162 axia dices; flip angle, 12°; FOV, 240 mm;

matrix =256x256; glice thickness = 1 mm with no gap; and total scantime=4 minand 13 s.

Image Processing. Anatomical images for each subject were skull-stripped, intensity-
normalized, and nonlinearly warped to a study-specific average template in the standard
stereotactic space of the Montreal Neurological Institute template using the ANTs SyN
registration algorithm(33, 34). Time series images for each subject were despiked, slice-time-
corrected, realigned to the first volume in the time series to correct for head motion using AFNI
tools(35), coregistered to the anatomical image using FSL’s Boundary Based Registration(36),
gpatially normalized into MNI space using the non-linear ANTs SyN warp from the anatomical
image, resampled to 2mm isotropic voxels, and smoothed to minimize noise and residual
difference in gyral anatomy with a Gaussian filter set at 6-mm full-width at half-maximum. All
transformations were concatenated so that a single interpolation was performed.

Time-series images for each participant were furthered processed to limit the influence of
motion and other artifacts. Voxel-wise signal intensities were scaled to yield a time series mean
of 100 for each voxel. Motion regressors were created using each subject’s 6 motion correction
parameters (3 rotation and 3 trandlation) and their first derivatives(37, 38) yielding 12 motion

regressors. White matter (WM) and cerebrospinal fluid (CSF) nuisance regressors were created
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using CompCorr(39). Images were bandpass filtered to retain frequencies between .008 and .1
Hz, and volumes exceeding 0.25mm frame-wise displacement or 1.55 standardized DV ARS(40,
41) were censored. Nuisance regression, bandpass filtering and censoring for each time series
was performed in a single processing step using AFNI’s 3dTproject. Participants were excluded
if they had less than 185 TRs left after censoring (resulting in inadequate degrees of freedom to

perform nuisance regressions), resulting in afinal sample of 605 subjects.

CWAS. To make the analysis computationally tractable, time-series were extracted from a
parcellated atlas instead of using voxelwise data. We used the Lausanne atlas parcellated into
1015 equally sized regions through the program easy lausanne
(github.com/mattcieslak/easy lausanne). Time-series data for each subject were then processed
using CWAS. Described extensively elsewhere(25), CWAS consists of 3 processing steps.
First, beginning with a single ROI time-series, seed-based connectivity analysis is conducted to
generate a whole-brain functional connectivity map for each participant. Second, the average
distance (1 minus the Pearson correlation) between each pair of participant’s functional
connectivity maps is computed, resulting in a distance matrix encoding the multivariate
similarity between each participant’s connectivity map. Finaly, multi-dimensional matrix
regression (MDMR) is used to generate a pseudo-F statistic quantifying the strength of the
association between the phenotype of interest, here p factor scores, and the distance matrix
created in the second step. The advantage of MDMR is allowing covariates to be entered into
the regression and utilizing non-parametric permutation to generate p-values for each ROI.
These three steps are repeated for each of the 1015 ROIs, resulting in a whole-brain map that

represents the association between p factor scores and whole-brain connectivity at each ROI.
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CWAS was performed to identify seed regions with whole-brain patterns of connectivity are
related to p factor scores. Participant sex was included as a covariate, and 500,000 permutations
were performed to generate p-values. To minimize false positives across the 1,015 ROIs, afalse
discovery rate(42) (FDR) correction was applied. The threshold for statistical significance was

set at g=.05.

Seed-based analyses. MDMR identifies a set of ROIs with patterns of whole-brain connectivity
associated with p factor scores. However, it is still unclear how the connectivity of these ROIs
relates to the scores. Previous research using CWAS(25, 43, 44) has demonstrated the utility of
using traditional seed-based connectivity follow-up analyses to better understand the networks
and brain regions that drive the associations discovered through MDMR. Similar analyses were
performed here for each ROI identified viaMDMR. Seed-based connectivity maps were created
and correlations were converted to Z statistics via the Fischer R to Z transform.  Whole-brain
correlations between these connectivity values and p factor scores were calculated, including sex
as a covariate. Importantly, these follow-up analyses do not represent independent statistical
tests as they were performed post-hoc to the family wise error controlled MDMR findings.
Accordingly, these follow up analyses maps are not thresholded to visualize all information that

was relevant to the MDMR step.

Results

Demographics. From the 614 participants who completed two resting-state scans, 605 had data

that survived quality control procedures. Of these, 336 were women, and the mean age was

10
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20.23+1.19 years old. Scores for the p factor ranged from 76.71to 191.96 with a mean of 99.80,

sd of 15.39.

Multi-dimensional matrix regression. Whole brain maps from 1,015 ROIs were compared to
estimate the multivariate distance (dissimilarity) between each subject map a every ROI.
MDMR was then used to statistically test the association between these distances and individual
p factor scores. MDMR revealed that four ROIs had whole-brain connectivity patterns that were
significantly associated with p factor scores. This included the left lingual gyrus(x = 28,y = 85,
z = -18; corrected p = .9680), right middle occipital gyrus (x =-31,y = 94, z=-0; corrected p =
.9743), and two adjacent parcels of the left middle occipital gyrus (x = 32,y = 93, z = -5;

corrected p =.9949) and (x = 30, y = 96, z = 0; corrected p =.9949) (Figure 1).

Follow-up intrinsic connectivity analyses. The follow-up connectivity analyses of each seed
identified through MDMR revealed the primary network associations for each seed as well as
their pattern of whole-brain connectivity associated with p factor scores. These analyses showed
striking convergence across MDMR-selected ROIs wherein the mean whole-brain pattern of
connectivity for each seed showed subtle variation, but largely outlined the canonical resting-
state visual processing network(45). The connectivity of each ROI with visual and
somatosensory regions decreased with increasing p factor scores, while the connectivity between
each ROI and transmodal association regions(46) increased with increasing p scores (Figure 2).
Further analyses were conducted to better characterize the above consistent patterns of p
factor associations with the intrinsic connectivity of all seeds by averaging the independent

whole-brain connectivity maps. The resulting average z-scores were summarized for each of the

11
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7 Yeo networks(47) to quantify their respective contribution to the associations with p factor
scores (Figure 3). These analyses revealed the DMN and FPN as the major networks for which
intrinsic functional connectivity was positively correlated with p factor scores. In contrast, a
more modest but notable negative correlation was observed between p factor scores and the

intrinsic functional connectivity between the visual association cortex and somatomotor network.

Discussion
Here, we provide a novel extension of prior structural neural correlates of the p factor to the
intrinsic architecture of the whole-brain functional connectome. Our unconstrained connectome-
wide MDMR analysis revealed a circumscribed relationship between p factor scores and the
whole-brain intrinsic connectivity of 4 nodes in visual association cortex. These findings are
generally consistent with our earlier work finding a negative correlation between p factor scores
and gray matter volume in the occipital cortex(12). Further investigation of the patterns of
intrinsic connectivity driving this relationship primarily implicated hyper-connectivity between
visual association cortex and heteromodal frontoparietal (FPN) and default mode networks
(DMN). While differences in the intrinsic functional connectivity of visual areas is not
commonly thought of as a core feature of psychopathology, our findings are not unique in
pointing to dysfunction in visual association cortex and are consistent with a growing body of
literature implicating sensory processing in transdiagnostic research.

Selection and suppression of incoming sensory information is an important component of
goal directed behavior. Functional connectivity between visual and heteromodal association
cortices (including FPN and DMN) has been shown to be critical for selecting task-relevant

information(48, 49). Here we find that individual differences in the functional connectivity of
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visual association cortex with the FPN and DMN are associated with the p factor. Although
speculative, our findings may indicate more effortful or less efficient integration of bottom-up
sensory information with attentional demands and executive control processes in those at higher
risk for mental illness. The specificity of this pattern to visual and not other sensory association
cortices may reflect the dominance of the visual modality in guiding human perception of the
external world and, possibly equally, the construction of internal models necessary for higher
cognitive processes including executive control (50, 51).

Supporting evidence can be found in studies of schizophrenia and bipolar disorder, where
visual network connectivity has been implicated in deficits involving the binding of visual
objects(52) and in processing of visual stimuli(53). Functional connectivity between frontal
association and visual cortex has aso been associated with disrupted working memory in
depression(54, 55) and in neurocognitive deficits in schizophrenia(56). While the visual cortices
are not often thought of as primary to dysfunction in psychopathology, these studies suggest that
visual cortical dysfunction may play a role in neurocognitive deficits present in many forms of
psychopathology(57-59). Additionally, when assumptions are relaxed and whole-brain, resting-
state connectivity analyses are performed, connections between the visual cortex and frontal
association cortex have been shown to be predictive of psychopathology in depression(60) and
schizophrenia(61). It is possible that the relative sparsity of links between visual cortex
dysfunction and psychopathology partially reflects a bias in resting-state analyses towards strong
assumptions about where in the brain findings are expected, which could result in missing
associations with visual networks. Now that many large imaging datasets that include
psychiatric data have been publicly released, our findings encourage further unbiased, data-

driven whole-brain analyses in search of transdiagnostic neural correlates of psychopathology.
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While our findings implicate visual association cortex in the general liability for mental
illness, they do so primarily through its connectivity with the FPN and DMN. These networks
consist of heteromodal association cortex that processes information from multiple sensory
domains, and consist of brain regions most implicated in higher order thought and executive
control of other networks(46). The unique role of the FPN and DMN in complex cognition(62—
66) place them centrally in many etiologic theories of psychopathology(22, 23, 67—69), making
their primary role in driving the association between visual cortex connectivity and p factor
scores particularly relevant.

The frontoparietal network in particular has been linked to the core cognitive faculty of
executive control,(21, 63, 68) which contributes to mental health and general well-being by
shaping successful goal directed behavior(70). Fittingly, disrupted FPN activity has been linked
to psychopathology across categorical disorders including schizophrenia(71), depression,(72)
and bipolar disorder(73). Building off of this body of research, an emerging theory suggests that
the relative integrity of the FPN and associated executive control mechanisms are fundamental
for the capacity to self-regulate, manage symptoms, and succeed in treatment(22). Our current
findings are consistent with this framework by demonstrating that higher p factor scores
regardless of diagnosis are associated with relative hyper-connectivity of the FPN with the visual
association cortex, suggesting one way through which FPN dysfunction may be manifest as
psychopathology.

In addition to the frontoparietal network, our analyses implicate hyper-connectivity
between the visual association cortex and default mode network as a function of higher p factor
scores. The DMN has been generally linked to introspection, autobiographical memory, and

future-oriented thought(69). Interestingly, DMN activity is suppressed in attention demanding
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tasks(69, 74) and altered DMN activity has been broadly observed across categorical psychiatric
disorders(23, 67). Connectivity between the DMN and visual association cortex is important in
the suppression of internally generated distracting information(49). Taken together,
transdiagnostic risk for mental iliness as indexed by p factor scores may lead to more effortful or
less efficient processing when internally generated thought and externally generated sensory
information compete for attention.

While providing initial evidence that broad risk for all forms of common mental ilinessis
manifest as alterations in the intrinsic connectivity of functional neural networks, our analyses
were exploratory by design and replication in independent samples is needed. Given prior
research implicating the FPN and DMN across categorical disorders, we focused our above
discussion on the potential relevance of intrinsic connectivity between visual association cortex
and these networks in the emergence of transdiagnositic risk for mental illness. While the
intrinsic connectivity of these networks also exhibited an outsized influence on the association
with p factor scores, variation between visual association cortex and other resting-state networks
contributed as well, albeit more modestly (Figure 3). MDMR uses information from all whole-
brain connectionsin selecting seeds, and the inferential significance comes from the aggregate of
connections rather than any one in particular. Thus, formally testing the relative contributions of
different networks is not typically conducted. While we think future studies of the p factor will
benefit from using our observations of intrinsic connectivity between visual association cortex
and both DMN and FPN as a priori starting points, the potential relevance of other networks
should not beignored until the patterns reported herein are replicated.

Additional limitations, which can be addressed in future research, include the relatively

limited range of psychopathology, especially severe forms including psychosis, represented in
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our volunteer sample of young adults. Future research should extend our analyses to more
diverse populations including individuals with severe mental illness. While the DNS is broadly
representative of population base rates of common forms of mental illness(32), it is not
representative of the general population in terms of socioeconomics or intelligence. Thus,
extension of these findings to population representative samples is needed. In addition, our
results need to be replicated in well-powered independent samples to establish the reliability of
these associations and provide unbiased estimates of the true effect sizes(75). In fact, we
adopted a rigorous data-driven, unbiased approach in the current discovery analyses to minimize
false positives and effect size inflation (i.e.,, “Winners Curse’) and bolster future attempts at
replication. Our current analyses were also limited to the intrinsic connectivity of nodes within
the cerebrum as our resting-state fMRI acquisition protocol did not afford full coverage of the
cerebellum, including the neocerebellar subregion identified in our earlier structural analyses.
Thus, we are unable to determine the relationship between p factor scores and the intrinsic
functional connectivity of the cerebellum. We anticipate that current state-of-the-art multiband
image acquisition protocols will routinely alow for full coverage of the cerebellum and,
subsequently, direct analyses of how its intrinsic connectivity may scale as a function of p factor
scores. The observational nature of our study represents another limitation as we cannot
establish causal links between p factor scores and intrinsc connectivity. Longitudinal designs
may better address causality and temporal order of these phenomena. Future research employing
transcranial magnetic stimulation, closed-loop fMRI, and intervention designs can further map
causal relationships.

These limitations notwithstanding, our current work provides initial evidence for unique

connectome wide functional signatures of the p factor. Consistent with emerging transdiagnostic
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and dimensional research into the neural basis of psychopathology(11, 12, 44), our analyses
reveal that increased broad risk for all common forms of mental illness is associated with higher
intrinsic connectivity between visual association cortex and both frontoparietal and default mode
networks. Such hyper-connectivity suggests that increased risk for psychopathology may be
manifest as greater effortful or less efficient executive control as well as poor regulation of self-
referential information processing. These patterns place alterations of the functional connectome
squarely in the middle of converging theories of network dysfunction in psychopathology,

further suggesting the p factor as a promising tool in clinical neuroscience.
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Figure 1. Data driven multi-dimensional matrix regression (MDMR) analysis revealed four
regions with whole-brain connectivity patterns significantly associated with p factor scores: two
adjacent parcels of the left middle occipital gyrus (left panel), left lingual gyrus (middle panel),
and right middle occipital gyrus (right panel). These four clusters are projected onto a surface
volume for visualization.

Figure 2. Follow-up connectivity analyses of the four seeds identified through MDMR revealed
a highly-conserved pattern of altered connectivity between visual association cortex and both
frontoparietal and default mode networks as a function of p factor scores. All results were
projected from the volume onto a surface to aid visualization. Left panel: MDMR-derived seed
regions. Middle panel: average intrinsic connectivity for each seed. Right panel: connectome
wide intrinsc connectivity patterns for each seed as a function of p factor scores.
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Figure 3. Mean pattern of intrinsc connectivity as a function of p factor scores across the
networks associated with each of the four MDM R-derived seeds in visual association cortex (left
pandl). The relative contributions of seven canonical intrinsic cerebral networks(47) to this mean
pattern of connectivity (right pandl).
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