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Abstract

Bipolar disorder (BD) is a mental disorder characterized by alternating periods of
depression and mania. Individuals with BD have higher levels of early mortality than the
general population, and a substantial proportion of this may be due to increased risk for
comorbid diseases. Recent evidence suggests that pleiotropy, either in the form of a
single risk-allele or the combination of multiple loci genome-wide, may underlie medical
comorbidity between traits and diseases. To identify the molecular events that underlie
BD and related medical comorbidities, we generated imputed whole genome sequence
(WGS) data using a population specific reference panel, for an extended
multigenerational Old Order Amish pedigree (400 family members) segregating BD and
related disorders. First, we investigated all putative disease-causing variants at known
Mendelian disease loci present in this pedigree. Second, we performed genomic profiling
using polygenic risk scores to establish each individual’s risk for several complex
diseases. To explore the contribution of disease genes to BD we performed gene-based
and variant-based association tests for BD, and found that Mendelian disease genes are
enriched in the top results from both tests (OR=20.3, p=1x10~; OR=2.2, p=1x107). We
next identified a set of Mendelian variants that co-occur in individuals with BD more
frequently than their unaffected family members, including the R3527Q mutation in
APOB associated with hypercholesterolemia. Using polygenic risk scores, we
demonstrated that BD individuals from this pedigree were enriched for the same common
risk-alleles for BD as in the general population (B=0.416, p=6x10"*). Furthermore, in the
extended Amish family we find evidence for a common genetic etiology between BD and
clinical autoimmune thyroid disease (p=1x10"), diabetes (p=1x107), and lipid traits such
as triglyceride levels (p=3x10"). We identify genomic regions that contribute to the
differences between BD individuals and unaffected family members by calculating local
genetic risk for independent LD blocks. Our findings provide evidence for the extensive
genetic pleiotropy that can drive epidemiological findings of comorbidities between
diseases and other complex traits. Identifying such patterns may enable the subtyping of
complex diseases and facilitate our understanding of the genetic mechanisms underlying
phenotypic heterogeneity.
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Introduction

Psychiatric disorders frequently co-occur with other medical illnesses, markedly reducing
patients’ quality of life. Individuals with mood disorders have higher levels of early
mortality than the general population, in part due to comorbid medical disease (Parks et
al., 2006). In addition, individuals with a higher burden of medical illness display not
only a higher occurrence but also an increased severity of psychiatric symptoms (Beyer et
al., 2005). Bipolar disorder (BD) is a highly heritable mood disorder characterized by
recurrent periods of depression and mania. Individuals with BD have increased rates of
asthma, diabetes, hyperlipidemia, epilepsy and thyroid disease, among other diseases
(Forty et al., 2014).

Historically, increased rates of medical illness in patients with psychiatric disorders had
been attributed to the side effects of antipsychotic medication or to a reduced ability to
maintain a healthy lifestyle. However, recent evidence suggests that shared genetic risk
loci or common biological pathways may underlie the pervasive pleiotropy between
psychiatric and non-psychiatric disorders (Bulik-Sullivan et al., 2015; Pickrell et al.,
2016; Prieto et al., 2016; Sivakumaran et al., 2011). Pleiotropy can be identified at the
level of individual alleles, or genetic correlations between disorders can be calculated
genome-wide to quantify the proportion of shared associated loci between traits (Bulik-
Sullivan et al., 2015).

Comorbidity arising from pleiotropic loci has been noted in Mendelian disorders, with a
significant number of Mendelian disease-causing variants leading to complex phenotypes
(Zhu et al., 2014). In individual-level data gathered from medical records of over 110
million patients, Mendelian variants were found to contribute non-additively to risk for a
subset of complex diseases (Blair et al., 2013). Furthermore, common variants associated
with complex disease are enriched in Mendelian disease genes (Blair et al., 2013). Shared
genetic influences between common complex traits have also been identified. Using data
from genome-wide association studies (GWAS), several groups have identified loci
underlying multiple traits (Pickrell et al., 2016; Sivakumaran et al., 2011). Such cross-
phenotype associations (Solovieff et al., 2013) have been found even between distinct
traits; for example, a nonsynonymous variant in SLC3948 is associated with both
schizophrenia and height, among others (Pickrell et al., 2016).

Genetic correlations have demonstrated the shared genetic influences between multiple
clusters of diseases, including significant correlations between psychiatric disorders (Gale
et al., 2016; Hammerschlag et al., 2017; Lee et al., 2013; Lo et al., 2017). Shared genetic
etiology has been identified between BD and both schizophrenia and major depressive
disorder (Lee et al., 2013), suggesting extensive biological pleiotropy between these
psychiatric conditions (O'Donovan and Owen, 2016). Given the polygenic nature of these
disorders (Wray et al., 2014), this result is unsurprising, as polygenicity is consistent with
comorbidity and pleiotropy (Gratten et al., 2014). Gratten et al. (2014) also notes that
genetic correlations between BD data sets are more variable, possibly suggesting greater
genetic heterogeneity within BD compared to other psychiatric phenotypes.
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Population isolates are frequently utilized in genetic studies of disease in order to reduce
the genetic and phenotypic heterogeneity found in outbred populations. Disease-gene
identification in population isolates usually attempts to identify both common and low-
frequency variants, observed within and across families. Moreover, founder effects can
lead to an increase in allele frequencies for many deleterious alleles and clusters of
deleterious variants on shared haplotypes. Genetic studies of the Old Order Amish led to
the identification of over 200 Mendelian disease loci (Puffenberger et al., 2012; Strauss
and Puffenberger, 2009; Strauss et al., 2012), and the same population has been
extensively utilized in studies of complex metabolic and psychiatric diseases (Georgi et
al., 2014; Kember et al., 2015; Rampersaud et al., 2007; Steinle et al., 2005; Strauss et al.,
2014; Xu et al., 2017).

The Amish Study of Major Affective Disorder (ASMAD) is a large extended pedigree
collected over 30 years ago with an initial focus on bipolar disorder. In addition to a
significant enrichment of mood disorders in this family (~150 family members,
corresponding to one third of the pedigree), the pedigree includes individuals with
autoimmune thyroid disorder (Jaume et al., 1999) and Ellis-van Creveld Syndrome, an
autosomal recessively inherited chondrodysplastic dwarfism (Ginns et al., 2015;
McKusick et al., 1964). Our previous work on this pedigree revealed a complex and
polygenic inheritance of bipolar disorder with multiple linkage regions and clusters of
BD risk-alleles on different haplotypes, supporting a high degree of locus and allelic
heterogeneity (Georgi et al., 2014; Kember et al., 2015). Further dissection of the genetic
architecture of mental illness in this pedigree has been greatly enhanced by the recently
established whole-genome sequence-based imputation reference panel for the Anabaptist
population (Based on whole genome sequence for 265 Amish and Mennonite individuals;
Anabaptist Genome Reference Panel, AGRP; (Hou et al., 2017)).

In this study, we used the AGRP in combination with genotypes for the ASMAD
pedigree (394 family members) to permit the identification of all known disease-causing
and loss-of-function (LoF) variants at known Mendelian loci in subjects with mood
disorders. In parallel, we performed genomic profiling using polygenic risk scores to
establish individuals’ risk for several complex traits and diseases. Long-range phased
haplotypes estimated using the extended pedigree permitted the exploration of co-
segregation between bipolar risk factors and medical disease loci. We find that a set of 12
Mendelian diseases co-occur in BD individuals more or less frequently than in their
unaffected family-members, and that risk scores for metabolic traits are higher in BD
individuals, indicating a common genetic etiology for these traits in the extended Amish
family.
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Methods

Sample

The genetic-epidemiologic study of bipolar disorder among the Old Order Amish in
Pennsylvania (The Amish Study of Major Affective Disorder) has been well documented
(Egeland et al., 1990; Hostetter et al., 1983) and the sample collection methods
previously described in detail (Georgi et al., 2014; Kember et al., 2015). Briefly, it
consists of a large, extended bipolar disorder pedigree of 700 individuals with a small
number of founders. Diagnoses of individuals were made following structured interviews
(SADS-L) and a review of medical records by a psychiatric board using strict Research
Diagnostic Criteria (RDC) and the Diagnostic and Statistical Manual of Mental
Disorders, 4™ Edition (DSM-IV) for uniform clinical criteria (Egeland et al., 1990). The
majority of affected individuals in the current pedigree are diagnosed as either BPI, BPII,
or Major Depressive Disorder. Collection of blood samples followed diagnostic
consensus, and lymphoblastoid cell lines were established by the Coriell Institute of
Medical Research (CIMR). Signed informed consents were obtained, using language
appropriate for Old Order Amish, to a) access medical records for the Amish Study
clinicians exclusively to do diagnostic evaluations and clinical studies, and b) to perform
collection of blood/tissue samples. In addition, all work contained within this study was
approved by the IRB of the Perelman School of Medicine at the University of
Pennsylvania.

Phasing and Imputation

Genotyping was performed on 394 samples from the extended Amish pedigree using
[llumina Omni 2.5 M SNP arrays at the Center for Applied Genomics (Children’s
Hospital of Pennsylvania, Philadelphia, PA). Quality control of the raw genotype calls
and imputed genotype calls was conducted using PLINK (Purcell et al., 2007).
Individuals were excluded if they (1) had a call rate < 97% or (2) exhibited elevated
levels of Mendelian inconsistencies. Variants were excluded from analysis if they: (1)
had a call rate < 97% or (2) had minor allele frequencies < 0.002% (i.e., were
singletons). Genotypes were phased and imputed with SHAPEIT2 (Delaneau et al., 2011)
and IMPUTE2 (Howie et al., 2009), respectively, using the Anabaptist reference panel
(Hou et al., 2017). Phasing was performed with SHAPEIT s duoHMM option to account
for known familial relationships, using the known ASMAD pedigree, with the genetic
map from the HapMap phase Il (Frazer et al., 2007), in SMb windows. Imputation was
performed with IMPUTE2 in 5Mb windows with the following options: -
use prephased g -known haps g $SAMPLE.haps -phase -buffer 500°’. Following
imputation, genotype dosages were converted to hard calls if above/below a threshold of
1.9/0.1, or otherwise set to missing. In total, 2,379,855 variants were imputed in 394
individuals. Quality control of the imputed calls included removing individuals who had
a call rate < 97% (0 individuals), setting Mendelian errors to missing (124,668 variants),
and removing variants with a call rate of <99% (120,611 variants) or had minor allele
frequencies < 0.002% (869,901 variants). 1,372,783 variants and 394 individuals passed
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QC. Imputation accuracy was assessed by comparing to whole genome sequence data
available for a subset of family members (99.3% concordance).

Whole genome sequencing

Whole genome sequencing (WGS) for 80 Old Order Amish family members (including
30 parent child trios) was performed by Complete Genomics Inc. (CGI; Mountain View,
CA) using a sequence-by-ligation method (Drmanac et al., 2010). Paired-end reads of
length 70 bp (35 bp at each end) were mapped to the National Center for Biotechnology
Information (NCBI) human reference genome (build 37.2) using a Bayesian mapping
pipeline (Carnevali et al., 2012). Variant calls were performed by CGI using version
2.0.3.1 of their pipeline. False discovery rate estimates for SNP calls of the CGI platform
are 0.2-0.6% (Drmanac et al., 2010). Gene annotations were based on the NCBI build
37.2 seq_gene file contained in a NCBI annotation build. The variant calls within the
WGS were processed using the cgatools software (version 1.5.0, build 31) made available
by CGI. The listvar tool was used to generate a master list of the 11.1 M variants present
in the 80 Amish samples. The testvar tool was used to determine presence and absence of
each variant within the 80 Amish WGS. Only variants with high variant call scores
(“VQHIGH?” tag in the data files) were included.

Human disease catalog

The Human Genome Mutation Database (HGMD) catalogs known disease associated
variants (http://www.hgmd.org/; (Stenson et al., 2014)). Most of the clinical phenotypes
in the database are monogenic diseases. In the June 2013 release it contained 141,000
different variants in ~5,700 genes (“HGMD disease genes”). We examined all variants
present in ASMAD in 3456 HGMD disease genes (‘DM’ tag in HGMD).

Curation of HGMD disease causing variants

251 variants present in ASMAD were annotated as being a ‘disease mutation’ in HGMD.
In order to further refine this list to identify true disease causing mutations, we first
removed all variants found to be present at >1% frequency in 1000 Genomes (Auton et
al., 2015) or ExAC (Lek et al., 2016), assuming that disease causing alleles will be rare in
a population (total remaining variants=154). Next, we merged this list with annotation
from ClinVar (Landrum et al., 2016) and selected all variants annotated as pathogenic
(n=62). We then identified whether each variant caused disease in a recessive or
dominant model, and used this information to identify individuals in the ASMAD family
predicted to display the disease phenotype based on their allelic status (n=25 variants).
For these 25 variants, we expanded upon the HGMD and ClinVar annotation by applying
criteria recommended by the American College of Medical Genetics and Genomics
(ACMG; (Richards et al., 2015)) for the interpretation of sequence variants, and
classified the variants into the categories “pathogenic”, “likely pathogenic”, “uncertain
significance”, “likely benign” and “benign”. Out of the 25, ACMG criteria classified 3
variants as “benign”, 6 variants as ‘“uncertain significance”, 10 variants as “likely
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pathogenic” and 6 variants as “pathogenic”. For analyses we removed the 3 variants
classified as benign and retained the others (n=22 variants).

EMMAX and MONSTER

A Balding-Nichols kinship matrix was constructed from the imputed whole genome
sequence data following removal of all variants with >5% missing and <1% allele
frequency, using the command emmax-kin in the EMMAX package. Association analysis
for all variants was performed using EMMAX (Version from February 2012, (Kang et
al., 2010)), a statistical test for association analysis using mixed models that accounts for
the population structure within the sample. Gene-based association tests were performed
using MONSTER (Jiang and McPeek, 2014), a statistical test that generalizes the SKAT-
O method and uses a mixed effects model to account for population structure. The
kinship matrix used in the EMMAX analysis was also used in the MONSTER analysis.

Loss of function variants

Variants were annotated using VEP LOFTEE (McLaren et al., 2016). We detect 1177
putative protein truncating (frameshift, splice donor, splice acceptor, and stop-gained)
variants. Using filters supplied by LOFTEE, we removed 176 variants (see tables below),
resulting in 1001 high confidence loss of function variants (HC-LoF).

Filter Description Number of variants
END TRUNC Variant falls in the last 5% of 28
the transcript
EXON INTRON UNDEF | Exon or intron boundaries 1
undefined for this transcript
NON_CAN _SPLICE Variant falls in non-canonical 3
splice site
NON_CAN_SPLICE SURR | Variant falls in exon with non- 7
canonical splice site

Flag Description Number of variants
NAGNAG_SITE Splice acceptor has in-frame AG | 24

acceptor site one codon away
SINGLE EXON Variant falls in a single exon 113

transcript

We identified 167 HC-LoF variants in disease genes, of which 71 are in a homozygous
state in one or more individuals. There are 83 rare (<1% in ExAC and 1000G) HC-LoF in
disease genes, 17 of which are found in a homozygous state in one or more individuals.

Association rule discovery

Association rules for the comorbidity of mood disorder and Mendelian diseases in
individuals within the ASMAD pedigree were determined using the apriori algorithm
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from the arules package in R (Hahsler et al., 2005). An itemset was created for each
individual, consisting of the affected status for mood disorder (“unaffected” or “broad
extended” phenotype) and any comorbid Mendelian disease as determined by the allelic
status of the disease causing variant in that individual. Association rules for the frequent
itemsets were generated using the apriori command. Rules were then limited to those
with either “broad extended” or “unaffected” on the left hand side of the rule
(antecedents) and Mendelian diseases on the right hand side of the rule (consequents).

Polygenic risk scores

A polygenic risk score is generated for each individual as the sum of all variants they
carry, weighted by the effect that variant has on phenotype. Polygenic risk scores were
generated using the PRSice package (Euesden et al.,, 2015), with multiple GWAS
summary statistics as the base dataset (see Supplemental table 9), and imputed whole
genome sequence data in ASMAD as the target dataset. As recommended in the software,
we performed p-value informed clumping on the genotype data with an 12 = 0.1 and a
distance threshold of 250kb, following exclusion of the MHC region. The optimal p-
value threshold for PRS was defined as that which explained the most phenotypic
variation for mood disorder in the ASMAD pedigree, out of a set of pre-determined
thresholds (p < 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5). For traits identified as
significantly associated with mood disorder in this pedigree, we show barplots indicating
the model fit and p-value for association at each p-value threshold tested (Supplemental
figure 29).

Statistical analysis

Polygenic risk scores for the optimal p-value threshold for each trait were standardized
mean=0 and standard deviation=1. Linear mixed model analyses were selected to model
outcomes (Narrow phenotype, Broad phenotype, Broad extended phenotype, Depression
phenotype) while accounting for relatedness. The analysis was performed using the
pedigreemm package in R (Vazquez et al., 2010), with PRS as the independent variable
and phenotype as the dependent variable. An empirical kinship matrix, constructed from
the genome-wide SNP data, by the Balding-Nicols method using rvtests (Zhan et al.,
2016) was fitted as a random effect to account for relatedness between individuals. Risk
scores were evaluated for 22 traits, and so a bonferroni corrected p-value<0.0023
(0.05/22) was selected as the level for statistical significance.

Polygenic transmission disequilibrium

A test for polygenic transmission disequilibrium has recently been described by Weiner
et al. (Weiner et al., 2017). We modified this test to allow the comparison of multiple
affected and unaffected siblings. We selected all nuclear families with at least one child
with Broad phenotype (BPI, BPII, BP:NOS, MDDR, number of families=46). For each
family, the polygenic transmission disequilibrium deviation was calculated as follows:
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Average PRS affected — Average PRS unaffected
SD(PRS all siblings)

pTDTdeviation =

The test statistic for pTDT deviation was then calculated based on all families as follows:

Mean(pTDT deviation)
SD(pTDT deviation) /N'n

tpTDT =

Where n is the number of families.
Local polygenic risk score

Drawing on work from Shi et al. (Shi et al., 2016), on local genetic correlation, we
developed a method for establishing local genetic risk, i.e. genetic risk based on specific
regions of the genome. First, we apportioned variants and their corresponding GWAS
summary statistics into approximately independent LD blocks (Berisa and Pickrell,
2016). Polygenic risk scores were then generated for each individual in the pedigree
based on just the variants within each LD block. For each disease or trait the p-value cut-
off for local genetic risk was based on that which explained the most phenotypic variation
for mood disorder in the ASMAD pedigree in the genome-wide PRS (calculated as
described above). Local risk scores were standardized mean=0 and standard deviation=1.
As above, the association of local risk scores with presence of mood disorder were
calculated using a linear mixed model with an empirical kinship matrix (constructed from
the genome-wide SNP data) fitted as a random effect to account for relatedness between
individuals.
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Results
Identifying the spectrum of mutations in disease genes

By combining SNP genotype data from 394 ASMAD family members with the
Anabaptist Genome Reference Panel (Hou et al., 2017) we established high quality
phased whole genome sequence for the entire ASMAD extended family. Although
available phenotype records for this collection are limited to information about bipolar
and related neuropsychiatric disorders (Supplemental table 1), the availability of imputed
genotypes allows the identification of ASMAD family members who are carriers of
known Mendelian disease variants; and to determine the individual-level burden of
common and rare variants in genes associated with a wide range of medical conditions.
To ascertain the role of co-morbid diseases in BD in the ASMAD pedigree, we used
gene-based and variant-based association tests to explore the role of disease genes in BD
enriched loci, identified all variants in known disease genes and investigated segregation
of specific disease variants in BD individuals, and used polygenic risk scores to explore
the wider genetic architecture of disease in this pedigree.

Disease genes were identified using the Human Genome Mutation Database (HGMD,
(Stenson et al., 2014)) by selecting genes with known disease causing mutations
(HGMD-DM). The set of HGMD-DM genes were enriched among all genes with
predicted damaging variants that are rare in 1000 Genomes and ExAC (<2%) and
common in ASMAD (>5%) (57 HGMD-DM out of 239 genes, OR=1.58, p=3.7x107,
two-sided Fisher’s exact test, Supplemental Table 2). Using both gene-based and
variant-based association tests we identified loci enriched in affected individuals (none
were genome-wide significant, see Supplemental Figures 1 and 2 for Q-Q plots of these
results). However, HGMD-DM genes are enriched among both sets of genes (Gene-based
test for BD association — MONSTER) and sets of variants (variant-based test for
association — EMMAX) that are nominally associated with BD in this pedigree. Out of
the top 6 genes that have p-values<0.001, 5 of these are known disease genes (OR=20.3,
p=1x10", two-sided Fisher’s exact test, Supplemental Table 3). Out of the top 44
exonic variants that have p-values <0.001, 17 of these are in known disease genes
(OR=2.2, p=1x107, two-sided Fisher’s exact test, Supplemental Table 4).

In light of these initial results, and the previously noted trend towards a higher burden of
CNVs in HGMD-DM genes in subjects with bipolar disorder (Kember et al., 2015), we
closely examined variants in disease genes to screen for the presence of Mendelian
diseases in the entire pedigree (both affected and unaffected individuals), and to query
their contribution to the clinical heterogeneity of BD. Out of 3,456 HGMD-DM genes,
239 contain either known disease causing variants or LoF variants in the ASMAD
imputed whole genome sequence. Following extensive curation of variants (see
Methods), 62 variants were identified as high confidence disease-causing, of which 17
are known to be more common in the Amish (>5% difference) (Supplemental Figure 3,
Supplemental Table 5). Based on the allelic state of these variants in all individuals, we
predict that 22 of these are likely to cause disease due to being present in a homozygous
(for recessive diseases) or heterozygous (for dominant diseases) state (Supplemental
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Table 6). Burden of genomically-predicted medical conditions varies between nuclear
families, with some families (and individuals within these families) carrying variants for
up to 5 Mendelian diseases (Supplemental Figures 4-21). Furthermore, each individual
has on average 31 LoF variants in disease genes with 5 disease genes predicted to be
completely inactivated.

BD individuals show comorbidity with a specific set of Mendelian diseases

Overall burden of disease causing variants and LoF variants in disease genes is not
associated with BD status in the pedigree. However, the percentage of individuals
carrying specific Mendelian disease-causing variants differs between BD individuals and
unaffected individuals (Figure 1). To identify if a specific set of Mendelian diseases show
comorbidity with BD, we applied association rule discovery to determine diseases that
co-occur more frequently than expected with affected or unaffected status of mood
disorders (Figure 1, A and B; rule confidence: 0.015-0.123, rule lift: 1.012-1.694). In the
ASMAD pedigree, BD individuals are more likely to carry variants causing familial
hypercholesterolemia, small fiber neuropathy, and Xerocytosis hereditary (Figure 1, C).
Variants causing Adrenocortical hyperplasia and Apolipoprotein C-III deficiency are
found more frequently in unaffected individuals.

Half of the Mendelian diseases (6 out of 12) that were identified by association rule
discovery as either enriched or depleted in BD individuals are associated with
cardiovascular disease or endocrine traits. We therefore explored additional damaging
variants associated with lipid phenotypes (Table 1), and found that they are present at a
higher frequency in individuals with BD compared to unaffected individuals, including
the G574R mutation in ABCGS associated with hyperabsorption and sisterolemia, and the
R3527Q mutation in APOB. In addition to the heterozygotes detected, three homozygotes
for the R3527Q mutation were found within the same nuclear family. Strikingly,
protective lipid variants are found at a lower frequency in BD individuals compared to
unaffected individuals, including a variant in LPA, associated with a reduction in
thermogenic lipoprotein. Variants associated with heart rhythm (in KCNH2, SCN5A4 and
SNTAI) show no allele frequency difference between affected and unaffected individuals.
We also found that a higher percentage of BD individuals than expected have multiple
lipid variants, whereas a lower percentage of unaffected individuals carry multiple lipid
variants (Supplemental figure 22). Overall, over one third (34.0%) of affected individuals
(broad extended phenotype, dispersed throughout the pedigree) carry at least one variant
associated with damaging lipid or iron overload effects, compared to just under one
quarter of unaffected individuals (24.7%).

Common polygenic risk for bipolar disorder

To compare the genetic architecture of BD in the Amish with a non-founder population,
and to further explore the enrichment of variants associated with lipid traits in BD
subjects, we sought to measure the aggregate effect of common variants underlying both
psychiatric and endocrine/metabolic traits in family members with and without mood
disorders. To achieve this, we evaluated different phenotypic models from the most
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defined (BPI individuals only) to the most general (all individuals with any psychiatric
phenotype, including minor psychiatric symptoms). Heritability estimates generated for
this pedigree previously have shown significant heritability for mood disorder phenotypes
(Georgi et al.,, 2014). Using a refined pedigree structure, updated from accurate
genealogical records, we estimated narrow sense heritability for the following phenotype
models: narrow (BPI and BPII only), broad (BPI, BPII, and MDDR), broad extended
(presence of any psychiatric phenotype), depression (MDDR, MDD, and Minor
Depression), and well. We found significant heritability for all phenotype models
(Supplemental Table 7), with broad extended being the most heritable phenotype
(h*=0.81, p=9.76x10""). We generated polygenic risk scores based on GWAS summary
data (from Europeans) for multiple traits (see Supplemental Table 9 for full list) and
tested for an association between the risk score and presence of mood disorder (Figure 2,
Table 2, Supplemental Table 8). Polygenic risk scores (PRS) incorporate multiple SNPs,
including those that do not reach the threshold for genome-wide significance, to predict
an individual’s risk for disorder. First, we used summary statistics from a GWAS for
bipolar disorder by the Psychiatric Genomics Consortium (PGC BD2, (Stahl et al.,
2017)), to generate risk scores for bipolar disorder for all individuals in the ASMAD
pedigree. Linear mixed model analyses (Vazquez et al., 2010) permitted an association
test for risk scores while accounting for relatedness within the pedigree. We tested the
difference in risk scores between unaffected and affected individuals for the above
phenotype models.

Bipolar disorder risk score was significantly associated with affected phenotype for broad
extended ($=0.416, SE=0.121, p=5.9x10™), broad (p=0.523, SE=0.129, p=4.8x107), and
narrow phenotypes (=0.499, SE=0.138, p=3x10), but not for depression phenotype
(B=0.273, SE=0.155, p=7.8x10). To verify this result, we used a modified polygenic
transmission disequilibrium test (see Methods) and found a statistically significant
deviation in risk scores, with affected individuals having a higher polygenic risk than
their unaffected siblings (mean deviation 0.27, p=3x107). This increase is mostly driven
by higher risk scores of individuals with BPI, BPII, BP:NOS, and MDDR (Supplemental
Figure 23). The percentage of affected individuals, on average, increases with increasing
deciles of PRS (Figure 3A). Furthermore, the percentage of individuals with BPI, BPII
and BP:NOS is highest in the 10™ PRS decile, whereas the percentage of individuals with
minor depression or other non-specified disorder is lowest in this decile (Figure 3B).
Offspring with an affected parent (either one or both parents affected) have higher risk
scores than offspring from unaffected parents (Supplemental Figure 24). Furthermore,
descendants that can trace their lineage back to the two pioneer members of this pedigree
(“in family”) have significantly higher risk scores for bipolar disorder than Amish
individuals who are “married in” (B=1.653, SE=0.370, p=8x10°, Supplemental Figure
25), suggesting that the pioneer individuals carried high risk for bipolar disorder. Risk
scores vary across the pedigree, although they are more similar within nuclear families
(Supplemental Figure 26).

Common risk variants for disease suggest pleiotropy between common complex
traits and bipolar disorder
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Risk score analyses can also be used to query genetic associations between complex
disorders that have shown comorbidity in individuals but were otherwise thought to be
unrelated (Wray et al., 2014). Therefore we compiled published GWAS summary
statistics data (Supplemental table 9) and generated risk scores for 22 additional traits,
including common psychiatric disorders, personality measures, educational attainment,
Alzheimer’s, Type 2 diabetes, autoimmune thyroid disease, lipid traits, and
cardiovascular disease (Figure 2, Table 2). Risk scores for clinical autoimmune thyroid
disease, lipid traits (Total cholesterol, Triglycerides, LDL, HDL) and type 2 diabetes
were found to be significantly higher in individuals with mood disorder even after
accounting for pedigree structure, suggesting that in this pedigree there are shared loci
between bipolar disorder and both lipid traits and diabetes. Thyroid hormone levels,
positive thyroid antibodies, HDL, LDL, triglyceride, total cholesterol, and diabetes risk
scores were significantly associated with affected phenotype, but only thyroid hormone,
LDL and triglyceride risk scores were nominally associated with depression phenotype
(for full results, see Supplemental table 8).

In the extended Amish pedigree, risk scores for bipolar disorder are positively correlated
with risk scores for lipid traits (TG r=0.55, p<2.2x10'°, TC r=0.55, p<2.2x10', LDL
1=0.52, p<2.2x107'°, HDL r=0.57, p<2.2x10'®, Supplemental Figure 27), diabetes
(r=0.54, p<2.2x107'°), thyroid levels (thyroid hormone levels r=0.31, p=1.6x10"'%), major
depression (1=0.39, p=6.4x107"°), schizophrenia (r=0.55, p<2.2x10"°), and Alzheimer’s
disease (r=0.40, p=2.9x107"%), and negatively correlated with years of education (r=-0.21,
p=2x10"), suggesting an overlap between loci that contribute to risk for these traits.
Furthermore, we explored the effect of inbreeding on risk score values, as increased
homozygosity in offspring of closely related parents is known to increase the incidence of
recessive Mendelian disorders, but the effect on complex disorders is less well quantified.
We found that higher inbreeding values (measured as a higher number of observed
homozygous genotypes than expected), but not increased average length of homozygous
regions, are correlated with an increased risk score for bipolar disorder (r=0.69,
p=2.2x10"", Supplemental Figure 28), suggesting a role for increased homozygosity in
common disease risk.

Identifying pleiotropic regions of the genome

To establish which genomic regions contribute to the genome-wide risk score differences
between affected and unaffected individuals, we calculated risk scores for each
approximately independent LD block (n=1,703) as defined by Berisa and Pickrell (2016).
This allowed us to partition the genome and analyze risk for each local region to identify
whether a) a single region or multiple regions are underlying the overall difference in
polygenic risk between affected and unaffected family members, and b) if the regions
underlying differences in risk are the same between the different traits and disorders
analyzed. We calculated local polygenic risk for bipolar disorder, total cholesterol, LDL,
HDL, triglycerides, diabetes, and thyroid disorder, and tested for association with mood
disorder (Broad extended phenotype) using linear mixed model analyses to account for
relatedness (as above).
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We identified a single genomic region on chromosome 15 for bipolar disorder local
polygenic risk (15925.2-q25.3) that was significantly associated with mood disorder in
the ASMAD pedigree (B=0.495, SE=0.113, p=1.19x10") following bonferroni correction
to account for the number of regions tested. This region contains one of the genome wide
significant loci identified in the PGC BD2 study (Stahl et al., 2017), near ZNF592, a gene
thought to play a role in cerebellar development. None of the other regions for any of
the risk scores were significant following correction for multiple testing. We therefore
explored all regions reaching a threshold of p<0.01, to discover if any of the nominally
significant regions overlapped between traits and diseases. Using this threshold we
identified 19 genomic regions for bipolar disorder, 24 for total cholesterol, 25 for LDL,
25 for HDL, 21 for triglycerides, 25 for diabetes, 1 for presence of thyroid antibodies,
and 4 for thyroid hormone levels (Figure 4, Supplemental Table 10). Of the 144 regions
identified, there were 121 unique regions, with 17 regions overlapping between traits.

The telomeric region on chromosome 4 (4p16.4) harbored local risk for both bipolar
disorder and diabetes that associated with mood disorder status in the pedigree (BD:
p=0.449, SE=0.118, p=1.4x10"", diabetes: p=0.323, SE=0.114, p=4.6x10™). This region
was previously identified as the region with the highest linkage with bipolar disorder in
this family (LOD 3.95) (Georgi et al., 2014). Bipolar disorder and diabetes local
polygenic risk regions also overlapped on chromosome 7 (7p21.3), a region that contains
the gene NDUFA4 and has previously been associated with a psychosis phenotype
(Bramon et al., 2014), and chromosome 17 (17p12), a region containing the genes
MYOCD, ARHGAP44, and ELAC2, with no previous associations to mood disorders.
Bipolar disorder and HDL local polygenic risk associated with mood disorder overlapped
on chromosome 14 (14ql12-13.1), a region harboring the gene NPAS3, which has
previously been associated with schizophrenia susceptibility in linkage (Chiu et al., 2002)
and association studies (Huang et al., 2010; Pickard et al., 2009). Diabetes, HDL, LDL,
triglycerides, total cholesterol, and thyroid disorder local polygenic risk regions
associated with mood disorder in this pedigree overlapped at multiple locations that were
not additionally associated with polygenic bipolar local risk scores. Finally, the other
regions were not found to overlap between traits, suggesting that the association of
bipolar disorder with risk for other traits in this pedigree is due to multiple pleiotropic
regions spread across the genome.
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Discussion

Comorbidity of medical disease in individuals with psychiatric disorder is a major
contributor to early mortality and severity of phenotype. Although previously attributed
to poor lifestyle choices, recent genetic evidence suggests that pleiotropic loci that
predispose to both mental illness and non-psychiatric disease may underlie at least some
comorbidities. Here we present a large multigenerational pedigree significantly enriched
for Bipolar and related mood disorders, that we further genetically diagnose with
segregating Mendelian disease variation. In addition to identifying a unique pattern of co-
segregating low-frequency Mendelian disease variants associated with mood disorder
status, polygenic risk profiling, using several sets of common variants associated with a
wide range of complex diseases and traits, provides strong support for a shared genetic
architecture between mood disorders and specific metabolic and endocrine traits.
Although our detected associations may be unique to the Amish extended pedigree, we
propose that such patterns of phenotypic and genetically-defined pleiotropy may enable
subtyping of complex diseases and facilitate their genetic dissection.

The expectation in studies of complex disease in founder populations is that low-
frequency disease-causing variants with strong effect sizes, that are rare in the general
population but enriched or specific to the isolate, can be more easily identified compared
to studies in outbred populations. However, previously published findings from the
ASMAD population (Georgi et al., 2014; Ginns et al., 2015; Kember et al., 2015) reveal a
complex polygenic mode of inheritance, in line with findings from general population
studies. Here we corroborate this conclusion by reporting that bipolar disorder polygenic
risk profiling unequivocally supports a shared genetic architecture (i.e. shared common
risk variants) between bipolar disorder in the Amish and in an outbred population of
European ancestry. Furthermore, as expected from studies on the shared genetic etiology
of psychiatric disorders (Lee et al., 2013), polygenic risk scores for major depressive
disorder are also associated with bipolar disorder in this pedigree. Interestingly, despite
the high genetic correlation between bipolar disorder and schizophrenia in the general
population, the schizophrenia polygenic risk score was limited in its predictive ability in
the ASMAD sample (R*=0.019). This may reflect an ascertainment bias in recruitment or
a unique aspect of the phenotype in this extended pedigree. For example, out of 195
individuals with any reported psychiatric condition in the family, only a single individual
presented with schizoaffective disorder and none with schizophrenia. Similarly, a study
of major psychiatric disorders in mid-Western Amish in Ohio and Indiana reported lower
rates of psychosis compared to other populations (Hou et al., 2013).

Our previous analysis of regions of homozygosity did not reveal recessive risk variants
(SNV or CNVs) for BD in this pedigree (Georgi et al., 2014; Kember et al., 2015).
Conversely, here we report that polygenic risk scores for bipolar disorder and several
metabolic traits are positively correlated with the inbreeding co-efficient. Interestingly,
in an effort to investigate genetic diversity within Anabaptist groups represented in the
Anabaptist Genome Reference Panel (AGRP) (Hou et al., 2017), we showed that Amish
living in Lancaster County, Pennsylvania, where the ASMAD pedigree originates, have
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the longest homozygous-by-descent-regions. Therefore, we suggest that reduced genetic
diversity may underlie the accumulation of both common and low-frequency,
homozygous and compound heterozygous, risk alleles for a range of diseases and traits.

Our identification of individuals who should present with a Mendelian disease, based on
their carrier status of highly penetrant Mendelian variants, established a set of diseases
that differ in frequency between those with and without mood disorder. Moreover,
individuals carrying these variants in a manner insufficient for presentation of disease
also demonstrated differences in mood disorder status. For example, a dominant familial
hypercholesterolemia-associated APOB R3527Q variant, which has been previously
identified as being carried by around 12% of Old Order Amish individuals (Shen et al.,
2010), was found in 19.7% of individuals with BPI, BPII or BP:NOS. This finding
suggests that rather than one trait having a causal effect on the other (e.g.
hypercholesterolemia “causing” bipolar disorder) it is more likely that a gene variant, or
the haplotype containing this Mendelian variant harbors other co-segregating variants,
that convey risk for both disorders.

To further explore the biological implications of our finding that a specific set of
Mendelian variants are enriched in individuals with mood disorders, we generated risk
scores for multiple traits using common disease associated variants. We identified a
number of complex metabolic and endocrinological diseases (lipid traits, diabetes and
clinical thyroid disease) that were significantly associated with mood disorder in this
pedigree. The relationship between thyroid disorders and mood disorders has been
acknowledged for many years (Whybrow et al., 1969), with thyroid function associated
with depressive symptoms, anxiety, and mania (Chakrabarti, 2011). While metabolic
syndrome in general (Fiedorowicz et al., 2008; Vancampfort et al., 2013), and diabetes
(Golden et al., 2008) and lipid levels (Enger et al., 2013; Patel et al., 2007) specifically,
have been shown to be elevated in individuals with mood disorder, cross-trait analysis
has not provided evidence for a significant genetic correlation between bipolar disorder
and any metabolic trait (Bulik-Sullivan et al., 2015). Our study on individual level data in
a large extended family reveals evidence for a genome-wide genetic correlation between
mood disorder and specific metabolic traits. As this finding has not yet been replicated in
an outbred population, we hypothesize that BD in the ASMAD family could represent a
subtype of BD with high levels of metabolic and endocrinological disorders. This has
been termed subgroup heterogeneity (Han et al., 2016), where a genetically distinct
subset of individuals within a patient cohort is also genetically similar to individuals with
another disease. There is already emerging evidence that such a subgroup exists for major
depressive disorder (Howard et al., 2017), and the identification of a similar subgroup in
BD cohorts may help explain the epidemiological findings of associations between these
disorders.

In an effort to quantify the regions which contribute to differences in risk scores, we take
advantage of the long haplotypes shared between multiple related individuals to analyze
risk scores for each approximately independent LD block across each chromosome and
identify regions for which risk scores differ between individuals with mood disorder and
their unaffected relatives. We identified a relatively small number of regions for each
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trait, covering 0.05-2.35% of the genome, that are associated with differences in risk
scores at a p-value<(0.01. While 17 regions overlap between traits at this nominal cutoff,
the majority of these regions are unique to each trait; out of the 19 regions identified as
driving bipolar risk differences between affected and unaffected individuals, only four of
these overlap with another trait. This suggests that, overall; regions that underlie the
difference between affected and unaffected individuals polygenic risk for bipolar disorder
are not the same regions that underlie the difference between affected and unaffected
individuals polygenic risk for metabolic traits. However, we assume that each of these
regions are pleiotropic for both the trait that the risk score has been created for and for
mood disorder phenotype in this pedigree, as the regions are carrying risk variants for the
trait tested based on summary statistics from an independent data set, and the risk scores
are different between affected and unaffected individuals in this pedigree. Using this
method we are unable to determine if the variants associated with the metabolic or
endocrine trait are also influencing risk for bipolar disorder in this family (pleiotropy at
the level of the variant), or if the region contains haplotypes carrying both variants that
influence risk for the trait in addition to variants that influence risk for mood disorder
(pleiotropy at the level of the haplotype).

We acknowledge several limitations within our current work that highlight avenues for
future study. There are many cases of disease genes with different alleles leading to
different phenotypes or a specific allele leading to a range of diverse phenotypes (Lupski
et al., 2011). Although there are clear examples of homozygous variants causing a
recessive Mendelian disease and a complex condition in carriers (Lupski et al., 2011), our
study does not provide the resolution required to distinguish between a single gene vs.
haplotype effect. Specifically, we can’t determine whether variation in the Mendelian
disease gene alone, or variation at the level of the haplotype, is responsible for the shared
genetic etiology of disease in this population. We expect that the long shared haplotypes
observed in a genetic isolate are more likely to harbor multiple disease-contributing
variants, and therefore produce the observed genetic pleiotropy. Furthermore, multiple
mechanisms, such as zygosity, epistasis and other interacting genes (genetic background)
or environmental effects may modify expressivity or penetrance of a specific allele (Zhu
et al., 2014). While every attempt was made to limit our analyses to Mendelian variants
predicted to cause disease, the presentation of Mendelian disease in members of the
ASMAD pedigree could not be confirmed due to restrictions on re-contacting individuals
in this legacy collection. As pleiotropic alleles continue to be identified, future studies
would benefit from broadly phenotyping cases to fully capture the combination of traits
and diseases present in each individual.

In conclusion, we demonstrate a case of genetic pleiotropy between a complex
psychiatric disease with both Mendelian and complex metabolic and endocrine traits. We
suggest this indicates a common genetic etiology for these traits in the extended Amish
family. While our specific findings may not be extendable to other populations, we
propose that each pedigree or population segregating psychiatric disorders will have
unique combinations of additional medical traits. Taken together, our results denote that
medical comorbidity between complex diseases and Mendelian disorders arises as a
combination of chromosomal proximity of disease causing variants and pleiotropy of
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disease genes. Elucidating these patterns could enhance the ability to identify regions and
variants that contribute to disease in each unique population.
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Figure 1: Profile of co-occurring Mendelian diseases varies between affected and unaffected
individuals. A and B: Individuals genetically diagnosed with Mendelian diseases. Association
rule discovery looks for combinations of variables that occur together more frequently than
expected by chance. Diseases that co-occur more than expected differ between individuals
affected with mood disorder and unaffected individuals. A: Graph for 12 rules and B: Grouped
matrix for 34 rules with mood disorder affected status (either “broad extended” or “unaffected”)
as the antecedent and Mendelian disease as the consequent. Size of the circle demonstrates
confidence in that rule. Color indicates lift (A: darker=higher lift, B: blue=higher lift, pink=lower
lift). C: Individuals carrying disease causing variants. Percentage of Narrow, Broad and Broad
extended individuals (see “common polygenic risk for bipolar disorder” in results section for
explanation of phenotype) carrying disease causing variants compared to percentage of
unaffected individuals with disease causing variants. Some variants are found in a higher
percentage of affected individuals.
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Figure 2: Association of polygenic risk scores for multiple traits with bipolar disorder (broad
extended phenotype) in ASMAD. Risk scores for all traits tested are displayed, split by trait type.
Circles indicate the association of the risk scores with mood disorder in the ASMAD pedigree,
color of circles shows the level of significance, and error bars show +/- standard error.
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Figure 3: Percentage of individuals with affected status for each decile of polygenic risk score.
A: All individuals, including unaffected individuals, are shown. B: Affected individuals only are
shown.
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Figure 4: Locations of genomic regions that contribute to the genome-wide risk score

differences between affected and unaffected individuals for bipolar disorder (yellow), diabetes

(black), HDL (pink), LDL (red), Total cholesterol (blue), triglycerides (light green) thyroid
antibodies (lavender) and thyroid hormone (dark green). The location of Mendelian variants

which are associated with either affected or unaffected status in this pedigree are also included

(denoted by the notation: Mendelian).

Table 1: Variants associated with lipid and cardiovascular phenotypes

Gene Variant rsID Effect % % % Other

Unaffected | BPI/BPII | psychiatric
phenotype

APOB Arg3527GIn rs5742904 Damaging lipid 12.6 21.3 10.3

ABCGS Gly574Arg rs137852988 | variant 5.7 11.3 12.3

HFE Cys282Tyr rs1800562 Iron overload 8.9 15.0 8.8

CYBRDI1 | Arg226His rs62181680 1.2 3.8 4.4

LPA c.4289+1G>A | rs41272114 Cardioprotective | 5.3 3.8 1.5

APOC3 Argl9Ter rs76353203 33 2.5 1.5

KCNH?2 Gly803Arg rs199473669 | Damaging 11.0 11.3 5.9

SCN35A Glu462Lys rs199473572 | variant affecting | 2.8 1.3 0

SNTAI Ala257Gly rs56157422 heart rhythm 1.2 1.3 0
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Table 2: The associations between polygenic risk scores for the trait and mood disorder (broad extended phenotype) with the largest effect size

are presented. Statistically significant p-values following bonferroni correction (p<0.0023) are shown in bold.

' Best fit ) Beta adjusting P-Yalqe
Category Trait/GWAS #SNPs | R P-value for adjusting for
threshold
relatedness relatedness
Bipolar Disorder (PGC BD2) | 0.05 87318 0.04900 0.00021 | 0.416 0.00059
Major Depression (PGC MDD) | 0.1 140450 | 0.02865 0.00427 | 0.305 0.00945
Schizophrenia (PGC SCZ2) 0.5 453646 | 0.01937 0.01824 | 0.284 0.02079
Psychiatric Autism .(PGC AUT) 0.001 1284 0.00614 0.18422 | 0.125 0.29455
Disorder Cross disorder (PGC) 0.001 799 0.01063 0.08162 | 0.190 0.10413
Anxiety (ANGST Case-control) | 0.005 4722 0.01488 0.03899 |0.211 0.07468
Anxiety (ANGST Quantitative | 0.5 149313 | 0.01437 0.04375 0.219 0.06626
phenotype)
ADHD (EAGLE) 0.0005 383 0.00638 0.17754 |-0.114 0.34360
Personality Neuroticism (GPC2) 0.05 36987 0.00344 0.31990 | -0.072 0.53126
Extraversion (GPC2) 0.5 233177 | 0.00073 0.64621 | 0.039 0.74262
Edupa‘uonal SSGAC (EA 2016) 0.5 442230 | 0.01191 0.06386 0.150 0.19475
attainment
Alzheimer’s IGAP Stage 1 0.1 130780 | 0.02542 0.00708 | 0.279 0.01770
Diabetes GoT2D (DIAGRAM) 0.5 98118 0.04620 0.00033 | 0.414 0.00103
Thyroid Thyroid hormone levels 0.0001 118 0.04207 0.00085 | 0.386 0.00191
Thyroid antibodies 0.001 827 0.04986 0.00025 | 0.396 0.00010
HDL (Global Lipids) 0.5 75151 0.04369 0.00046 | 0.399 0.00145
Lipids LDL (Global Lipids) 0.05 12403 0.04911 0.00020 | 0.428 0.00062
TC (Global Lipids) 0.5 77622 0.04227 0.00056 | 0.391 0.00187
TG (Global Lipids) 0.1 21255 0.05670 0.00007 | 0.455 0.00027
Cardiovascular CAD additiye 0.0001 121 0.01618 0.03151 | -0.220 0.06265
Disease CAD recessive 0.001 1428 0.00871 0.11340 |0.104 0.36892
MI additive 0.001 2403 0.01154 0.06913 | 0.243 0.04220
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