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Summary 

The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants 

(ARDs) that could potentially be transferred to bacterial pathogens. Yet, this question remains 

hypothetical because of the difficulty to identify ARDs from intestinal bacteria. Here, we developed and 

validated a new annotation method (called pairwise comparative modelling, PCM) based on homology 

modelling in order to characterize the Human resistome. We were able to predict 6,095 ARDs in a 3.9 

million protein catalogue from the Human intestinal microbiota. We found that predicted ARDs 

(pdARDs) were distantly related to known ARDs (mean amino-acid identity 29.8%). Among 3,651 

pdARDs that were identified in metagenomic species, 3,489 (95.6%) were assumed to be located on 

the bacterial chromosome. Furthermore, genes associated with mobility were found in the 

neighbourhood of only 7.9% (482/6,095) of pdARDs. According to the composition of their resistome, 

we were able to cluster subjects from the MetaHIT cohort (n=663) into 6 “resistotypes”. Eventually, we 

found that the relative abundance of pdARDs was positively associated with gene richness, but not 

when subjects were exposed to antibiotics. Altogether, our results support that most ARDs in the 

intestinal microbiota should be considered as intrinsic genes of commensal microbiota with a low risk 

of transfer to bacterial pathogens.  
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Introduction  

Antimicrobial resistance is one of the major threats to health identified by the World Health 

Organization for the next decades1. The intestinal microbiota plays a pivotal role in this phenomenon 

as it harbours a vast diversity of bacterial species2, some of them possessing antibiotic resistance 

determinants (ARDs) that may enable their survival under antibiotic exposure3. Many of these ARDs 

did not evolve as “antibiotic resistance genes”, but provide a coincidental intrinsic resistance to 

antimicrobial drugs4. Previous studies have identified ARDs in the intestinal microbiota5–7 but the 

current bioinformatic tools for the annotation of ARDs, as well as in the case of other genes (based on 

sequence homology) are challenged by the important identity gap between known ARDs (mostly 

coming from culturable bacteria) and ARDs from the intestinal microbiota (mostly unculturable), that 

compromise the use of bioinformatic tools8,9. Thus, the real census of intestinal ARDs i.e. the intestinal 

resistome10 has not been comprehensively analysed to date.  

While pathogenic bacteria have intrinsic, chromosomally-encoded ARDs and the capability of 

increasing resistance through mutation, they can also enrich their resistance capabilities through the 

acquisition of exogenous ARDs located on mobile genetic elements (MGEs) such as plasmids, 

transposons or phages. Thus, high-risk ARDs are commonly assumed to be highly mobile and widely 

transferable from various bacterial reservoirs to the pathogens11. Thereby the intestinal microbiota is 

assumed to be a potential reservoir of ARDs for bacterial pathogens, and even the origin of resistance 

determinants that have moved to such pathogens12. Still, despite the high selective pressure exerted 

on the intestinal microbiota by antibiotics that human have used for more than six decades, a very low 

number of transfer events from an intestinal commensal to a bacterial pathogen have been observed 

so far13,14. This could suggest that most ARDs from the intestinal microbiota are not located on MGEs, 

and thus less harmful in terms of public health since they would not substantially be fuelling pathogens 

for ARDs.  

Previous studies have shown that individuals with no recent antibiotic exposure could be stratified 

according to the composition of their intestinal microbiota15. In agreement with the aforementioned 

hypothesis of a “mobile resistome”, stratifying subjects according to their intestinal resistome would not 

be feasible using the current bioinformatic tools. But if ARDs were to be mostly found located on the 

chromosome of their bacterial hosts, such stratification would be possible and would also open 

perspectives such as whether the microbiota of some subjects could resist the damage resulting from 

antibiotics exposure thanks to an inner important resistome when compared to subjects who would 

carry less ARDs. Indeed, whatever the route of administration or the purpose antibiotics may cause 

alterations in the composition of the intestinal microbiota and promotes the overgrowth of low-

abundant, potentially pathogenic resistant bacteria over the susceptible ones16,17. Perturbations of the 

intestinal microbiota can be long-lasting, and could have consequences on health18,19. The scarce 

available data suggest that this effect is variable16, perhaps because of individual pharmacokinetics 

but also because of variations in the composition of the intestinal microbiota. Interestingly, some 

bacteria harbouring intrinsic ARDs might be involved in the protection of the intestinal microbiota 

towards antibiotics20,21, acting as “resilience” ARDs. Thereby, variable effects of antibiotics on the 

intestinal microbiota could possibly be explained by variations in the composition of the resistome. 
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Furthermore, the blossoming use of faecal material transplantation (FMT) or synthetic preparations of 

particular commensal bacteria (synthetic microbiota)22,23 calls for a careful description of the intestinal 

resistome and of the risk of ARDs transfers to bacterial pathogens. 

To address those issues, we first searched for ARDs in the intestinal microbiota with a new functional 

annotation method and searched proteins associated with MGEs in their neighbourhood. We found 

that most ARDs we predicted (pdARDs) were distantly related to known ARDs and that they were not 

located on MGEs. Accordingly, we were able to cluster individuals with no recent exposure to 

antibiotics according to their resistome. We also found that the microbial gene richness was positively 

correlated to the abundance of the pdARDs, but this relationship was impacted by an exposure to 

antibiotics. 

 

Prediction of ARDs in the intestinal microbiota 

To predict ARDs in the intestinal microbiota, we used a new method based on homology modelling 

(see methods) that we named PCM (for “pairwise comparative modelling”). PCM is a generic method 

using homology modelling to increase the specificity of functional prediction of proteins, especially 

when they are distantly related from proteins for which a function is known. The principle of PCM is to 

build structural models and assess their relevance using a specific training approach. PCM uses the 

list of sequences of reference proteins from a given family, the structures related to this family (they 

will be used as structural templates in the PDB format) and a series of negative references (Fig. 1A, 

Extended Data Fig. 1 and 2). The performances of PCM to predict ARDs were assessed with in vitro 

and in silico experiments. First, we performed in vitro experiments and synthesized 29 candidates for 

beta-lactamases further expressed in Escherichia coli (see methods). We detected a beta-lactamase 

activity in 20/29 (69.0%) of the tested candidates (Fig. 1B, see methods for the selection of 

candidates). The mean amino acid identity with known beta-lactamase of the 20 beta-lactamases 

successfully predicted by PCM and validated in vitro was 28.2% (range 19.4%-82.6%, Supplementary 

Table 1). Then, we used a functional metagenomics dataset from soils24, from which PCM could 

accurately identify 1,374 ARDs out of 1,423 hits (sensitivity 96.6%) with no false positive prediction 

(see methods). Eventually, we assessed the performances of PCM with incomplete proteins as inputs, 

and showed that PCM could correctly predict a function from proteins with >40% completeness 

(Extended Data Fig. 3). After the in vitro and in silico validation of the method, we used PCM to search 

for ARDs in the in a catalogue made of 3,871,657 proteins which was built from the sequencing of 

faecal samples of 396 human individuals (177 Danes and 219 Spanish) recruited in the MetaHIT 

project25 and for which metagenomic units (MGUs, referred to as clusters of co-abundant and co-

occurring genes) have been determined25. In total, we predicted 6,095 ARDs (0.2% of the catalogue) 

from 20 ARD classes conferring resistance to nine major antibiotic families26: beta-lactams (classes A, 

B1-B2, B3, C and D beta-lactamases), aminoglycosides (AAC(2), AAC(3)-I, AAC(3)-II, AAC(6'), ANT, 

APH, RNA methylases), tetracyclines (Tet(M), Tet(X)), quinolones (Qnr), sulphonamides (Sul), 

trimethoprim (DfrA), fosfomycin (Fos) and glycopeptides (Van ligases) (Table 1 and Supplementary 

Table 1). With the same, extensively curated reference ARDs census as input, only 67 ARDs would 

have been predicted according to conventional search with a specific identity threshold (80%)6,7. Other 
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specific tools Resfams27, ARG-ANNOT28 and Resfinder29 were able to predict 895, 54 and 50 ARDs, 

respectively (Fig. 1C). The mean identity shared between predicted and reference ARDs was 29.8%; it 

was significantly higher than candidates not predicted as ARDs (mean 23.0%, p<0.001, Figure 1D). 

Indeed, most of the pdARDs were distantly related to reference ARDs (Extended Data Fig. 4 and 5).  

 

Taxonomic distribution of ARDs 

A host bacterial phylum could be attributed to 72.3% (4405/6095) pdARDs. The majority was identified 

as from Firmicutes (2962/4405, 72.3%) and from Bacteroidetes (858/4405, 19.5%) (Extended Data 

Fig. 6) with only 5.8% (225/4405) of pdARDs being from Proteobacteria. Of note, 7 pdARDs were 

predicted to be harboured by Archaea (Methanobrevibacter and Methanoculleus genera), putatively 

conferring resistance to macrolides, tetracyclines, aminoglycosides, sulphonamides and glycopeptides 

(Supplementary Table 1). Also, we predicted ARDs in genera of medical interest where no ARDs had 

been identified such as Akkermansia30 (10 pdARDs) and Faecalibacterium31 (44 pdARDs). Only 23 out 

of 6,095 (0.4%) had already been identified in families and genera that include human pathogens 

(Enterobacteriaceae, Campylobacter, Enterococcus, Streptococcus and Acinetobacter). Of note, PCM 

did not predict as ARD a total of 16 proteins sharing at least 40% identity with a reference ARD 

(Supplementary Table 2). pdARDs specifically distributed according to the taxa (Extended Data Fig. 

7): Firmicutes and Proteobacteria were enriched with aminoglycosides-modifying enzymes (AMEs, 

spanning APH, ANT, and AACs) whereas Bacteroidetes were enriched in Sul and class A beta-

lactamases. Interestingly, the tigecycline-degrading monooxygenase Tet(X) was frequently found in 

Bacteroidetes and Proteobacteria, the two phyla between which transfer of tet(X) gene has been 

reported13,32. Furthermore, we aimed to support these associations by in vitro experiments, and 

sequenced the metagenome of four human faecal samples before and after an overnight culture under 

conditions that favoured the growth of oxygen-tolerant bacteria such as Enterobacteriaceae and 

enterococci (see methods). We indeed observed a bloom of Proteobacteria (over Firmicutes and 

Bacteroidetes, Extended Data Fig. 8), in parallel to an increase of class C beta-lactamases, Fos and 

Tet(X), but also Van ligases (Extended Data Fig. 8).  

 

Location of the pdARDs and presence of neighbour mobile genetic elements 

We investigated the mobility potential of the pdARDs at two levels. First, we assessed whether 

pdARDs were located on the chromosome or on a MGE. By using the 3.9M gene catalogue 

structuration into 7381 MGUs25, the 6095 pdARDS were assigned to their respective MGUs. Of note, 

MGUs which size exceeds 700 genes are assumed to be partial chromosomes and are referred as 

“metagenomic species” (MGS)25. Conversely, MGUs of smaller size can include MGEs such as 

plasmids, phages or transposable elements, but also incomplete chromosomal sequences. A total of 

3,651 (59.9%) pdARDs could be mapped onto an MGU. The distribution of pdARDs according to the 

MGU gene content size is shown in Figure 2A. Most (95.6%, 3,489/3,651) pdARDs mapped onto 

MGS, strongly suggesting a chromosomal location. Then, we investigated whether genes associated 

with gene mobility such as transposases or conjugative elements were present in the genetic 

environment of the pdARDs. We first returned to the redundant catalogue (i.e. the non-dereplicated 
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catalogue of genes)25 in order to obtain the homologues of the pdARDs and their respective contigs 

(n=16,955) containing a total of 908,888 genes (excluding the pdARDs). We searched for 

transposition and conjugative elements using ISFinder33 and Conjscan34 with sensitive parameters 

(see methods) and found that 7.9% (482/6,095) of pdARDs were co-located with genes putatively 

associated with gene mobility. Expectedly, we observed that the mean size of MGU that contained 

pdARDs co-locating with MGE were smaller than those who did not (Fig. 2B, p<0.001). Still, most 

MGE co-located with pdARDs were found in MGS (Fig. 2A). The phyla Bacteroidetes, Firmicutes and 

Tenericutes had the higher proportions of ARDs co-locating with MGEs (Fig. 2C). No ARD family was 

found to be enriched in MGE, with the exception of the Tet(X) family in which 3 out of 9 (33.3%) 

predictions (2 from Bacteroides fragilis and 1 from E. coli) were associated with transposases (Fig. 

2D).  

 

Distribution of pdARDs in human hosts’ microbiota 

From the MetaHIT cohort (663 subjects), we found that subjects carried pdARDs with a median 

relative abundance of 0.22% (range 0.14%-0.38%), with pdARDs from the Tet(M) family being the 

most abundant (0.07%) and those from class B3 beta-lactamases the least (median: 0.004%). The 

average number of unique pdARDs genes detected per metagenome was 1,377 (range 258-2,367). 

Most pdARDs were shared within subjects with only 106/6,095 (1.7%) with a single occurrence, and 

987/6,095 (16.2%) found in at least 50% of individuals. All ARD families with the exception of RNA 

methylases and AAC(2') families were found in more than 80% of individuals.  

As pdARDs were found to be mostly chromosomal and not in the close neighbourhood of MGE-

associated genes, we assessed whether subjects with no recent exposure to antibiotics could cluster 

according to their intestinal resistome as predicted by PCM. Based on the pdARDs family patterns, six 

clusters (that we named “resistotypes” by analogy with the enterotypes15) were detected using 

Dirichlet multinomial mixture models (Fig. 3A). The four most frequent resistotypes each represented 

around 20% of the cohort (the fifth and the sixth representing 8.7% and 7.5%, respectively). The three 

first resistotypes were characterized by an abundance enrichment of Van ligases (Extended Data Fig. 

9), resistotype 1 was enriched in ANT, while resistotype 3 was driven by Tet(M) and class C beta-

lactamases. Eventually, resistotype 4 was enriched with Tet(X) and class A beta-lactamases and 

resistotype 6 in class B1 beta-lactamases and Sul. We also observed that in the MetaHIT cohort, the 

relative abundance of pdARDs was positively correlated to the gene richness (Fig. 4A, Rho=0.3, 

p<0.001) and was associated with the enterotype classification (Fig. 3, chi square test, p<0.01). 

Resistotypes 1 and 3 had higher gene richness and were associated with the Clostridiales – driven 

enterotype. Resistotype 4 was more prevalent in enterotypes driven by Bacteroides (known to harbour 

Tet(X) and class A beta-lactamases) while resistotype 6 was very specific to the Prevotella enterotype 

(Fig. 3). Conversely, we did not find any link between resistotypes with body mass index, age or 

gender.  

  

Dynamics of the pdARDs under various exposures to antibiotics 
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Eventually, we investigated the variations of the abundances of pdARDs in subjects who experienced 

various exposures to antibiotics and healthcare environment. Three types of exposure were 

considered (see methods for details): passive (hospitalization in a French hospital without receiving 

antibiotics, n=17), chronic (Spanish cystic fibrosis patients frequently exposed to antibiotics, n=30) and 

quick and strong (selective digestive decontamination [SDD, made of oral colistin and tobramycin, and 

parenteral cefotaxime] at admission in intensive care units in Netherlands, n=10). We confirmed the 

positive relationship between relative abundance of pdARDs and gene richness among patients 

unexposed to antibiotics (Fig. 4B, Rho=0.37, p<0.05, see methods). When considering all the samples 

with regards to the recent exposure of the subjects, this relationship was not found anymore (Fig. 4C). 

Instead, we observed that the relative abundance of pdARDs was higher in subjects with a chronic 

exposure than in subjects with no recent exposure (Fig. 4D, p<0.01), while the gene richness was 

lower (Fig. 4E, p<0.001) In particular, subjects with chronic exposure carried more class B1-B2 beta-

lactamases, AAC(6'), ANT, APH, Erm, DfrA while they had a lower abundance of Sul (Extended Data 

Fig. 10). At the phylum level, we observed a decrease of Bacteroidetes and Verrucomicrobia and an 

increase of Firmicutes and Actinobacteria in patients chronically exposed to antibiotics (Extended Data 

Fig. 11). A total of 74 MGS were found to be differentially abundant among subjects with or without 

chronic exposure to antibiotics (Supplementary Table 3).  

This was different with subjects before and after they had SDD. We first observed a drastic loss of 

richness (Fig. 4E): from a mean of 295,919 genes to 95,286 (67.8 % reduction, Wilcoxon paired test, 

p=0.006). Meanwhile, the relative abundance of pdARDs did not significantly change (Fig. 4D, p=0.4). 

At the ARD family level, we observed that some bacterial families significantly decreased: class C 

beta-lactamases (commonly found in Enterobacteriaceae and Pseudomonadaceae which are the 

actual target of SDD), Fos, Tet(X), APH and ANT (Extended Data Fig. 12). We then analysed the 

MGS at the phylum level and found that Proteobacteria, Actinobacteria, Firmicutes and Fusobacteria 

significantly decreased after SDD (Extended Data Fig. 13). A total of 358 MGS were found in this 

cohort. Despite the small number of subjects (n=10), we found 133 MGS for which a significant 

variation was observed (a decrease after SDD in all cases but one, Supplementary Table 4). We 

tested whether a high abundance of pdARDs could be protective against the antibiotics used in SDD, 

but found not association: the relative abundance of pdARDs before SDD was not linked to the gene 

richness after SDD. Perhaps, as SDD uses a combination of antibiotics, bacteria that would be 

resistant to one antibiotic could be killed by one of the two others. Eventually, hospitalization without 

antibiotic therapy, that is, potential passive exposure to antibiotic resistant nosocomial organisms, did 

affect neither the gene richness nor the relative abundance of pdARDs, indicating selection as a key-

factor in the microbiota incorporation of resistant microorganisms (Extended Data Fig. 4D and 4E).  

 

Discussion 

Altogether, the results of this study support that the vast majority of ARDs from the intestinal 

microbiota could be considered as hosted by commensal bacteria, and that their transfer to an 

opportunistic pathogen is a rare event. We provide several findings to support this assumption: 1) we 

could assess the diversity of ARDs in the intestinal microbiota with a novel method that could predict 
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functions for proteins which sequences were besides distant to known proteins, and confirmed that 

ARDs from the intestinal microbiota were distant from known ARDs from pathogens, 2) this method 

was validated by gene synthesis and application on an external, validation metagenomic dataset, 3) 

the majority of pdARDs showed no significant signature of genetic mobility, 4) this stability was 

illustrated by that we could stratify subjects into 'resistotypes', 5) we observed that gene richness, 

otherwise associated with a healthy status19, was positively correlated to the abundance of ARDs in 

subjects not exposed to antibiotics. 

Our results indeed support that the threat to health by ARDs should be interpreted according to their 

genetic context, and strongly underlines the need of classifying ARDs accordingly to their risk for 

human health11. As it was previously demonstrated for soils24, ARDs tend to cluster by environment 

and the transfer of ARDs to pathogens occurs at a very low frequency. Our results suggest that the 

dominant intestinal microbiota (that is covered by metagenomic sequencing) is not a major reservoir 

that could fuel pathogens with ARDs, even though we acknowledge that such transfers did already 

occur13,14. Instead, the ARDs from our microbiota might not be a harm to public health, but they could 

furthermore act as potential protector against antibiotics as it was previously demonstrated for 

Bacteroides or Prevotella species producing beta-lactamases that protected the microbiota when a 

beta-lactam was given20,21,35,36. Our results call for further experiments to identify protective species 

with ARDs of low human risk concern27 that could potentially be included in synthetic microbiota as 

“bodyguards” for the bacteria of interest.  

Our study has limitations, though. As mentioned earlier, metagenomic sequencing only covers the 

dominant bacteria, so that we could not cover the ARDs present in subdominant bacteria. Hence, we 

cannot rule out that the subdominant bacteria could be a reservoir of ARDs that could be transferred to 

pathogens. Besides, the method we used to identify distantly related proteins is based on homology 

modelling and takes advantage that proteins sharing the same function have more similar structures 

than amino acid sequences. While PCM showed excellent results on a soil dataset and on synthesized 

beta-lactamases, we nonetheless acknowledge it remains a prediction tool Indeed, two proteins 

sharing similar structures do not necessarily share the same functions and PCM shall yield false 

positive (as observed in the functional validation of synthesized beta-lactamases) so the number of 

ARDs in the intestinal microbiota may have been overestimated. Conversely, we are confident that 

PCM as it was built is a very sensitive method and that the true ARDs were identified. Indeed, PCM 

could identify functional beta-lactamases with an amino acid identity with known beta-lactamases 

below 20%. In all, we believe that PCM yields specific predictions but that in vitro experiments will 

remain necessary to confirm the functional annotation.  

In all, we developed a novel method that could unveil the diversity of ARDs in the intestinal microbiota. 

Starting from this, we gathered evidence that the vast majority of the ARDs we predicted were, in 

majority, not mobile and that their abundance was correlated to the gene richness. Altogether, our 

results show that the ARDs from the intestinal microbiota could be considered as our “resilience 

allies”37 assuring the preservation of the healthy commensal microbiota under antibiotic exposure. 
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Methods 

Constitution of the databases of antibiotic resistance determinants 

An ARD may be defined as a gene that decreases susceptibility to antibiotics when it is present or that 

increases susceptibility to antibiotics when it is lost11. This definition excluded intrinsic efflux pumps, 

target genes (in which mutations can confer resistance to some antibiotics) and genes involved in the 

regulation of antibiotic resistance genes. Amino acid sequences of functionally characterized ARDs 

from the major antibiotic families in human therapeutics (beta-lactam, aminoglycosides, tetracyclines, 

trimethoprim, sulfonamides, macrolides-lincosamides-synergistines, fluoroquinolones, fosfomycin and 

glycopeptides)38 were obtained from the following antibiotic resistance databases: Resfinder29, ARG-

ANNOT39, the Lahey Clinic (http://www.lahey.org/studies/), RED-DB 

(http://www.fibim.unisi.it/REDDB/), Marilyn Roberts’ website for macrolides and tetracycline resistance 

(http://faculty.washington.edu/marilynr/) and from functional metagenomics studies5,6,31. Non-

redundancy of the reference ARDs was assessed with CD-HIT v4.5.710. The final database was 

manually curated. The cluster of orthologous genes (COG) of each member of the reference dataset 

was assigned from the v3 eggNOG database40. The mean size of the reference dataset sequences 

was determined. In total, we collected 1,651 non-redundant amino acid sequences spanning 20 ARDs 

families: Class A beta-lactamases (Blaa), class B1-B2 beta-lactamases (Blab1), class B3 beta-

lactamases (Blab3), class C beta-lactamases (Blac), class D beta-lactamases (Blad), aminoglycosides 

acetyltransferases (AAC) AAC(2), AAC(3)-I, AAC(3)-II, and AAC(6), aminoglycosides 

nucleotidyltransferases (ANT), aminoglycosides phosphotransferases (APH), 16S rRNA methylases, 

Tet(M), Tet(X), type A dihydrofolate reductase (DfrA), dihydropteroate reductase (Sul), erythromycin 

ribosome methylase (Erm), quinolone resistance proteins (Qnr), fosfomycin resistance proteins (Fos), 

and D-Ala – D-Lac/Ser ligases (Van) (Table 1). The recently described plasmid-mediated colistin 

resistance mcr-1 gene41 could not be included because of the lack of a reliable PDB template at the 

time of the study.  

 

Interrogation of the catalogue for ARDs 

For each ARD family, we interrogated the 3,871,657 M proteins catalogue16 using three methods: (i) 

we built a hidden Markov model file for each ARD family and searched the catalogue with Hmmsearch 

(v3. 1)42, (ii) we performed a Blastp (v. 2. 2. 28+) search43 and (iii) a Smith-Waterman search (SSearch 

v. 36. 3. 6)44 with an e-value threshold of 1E-5. Only the hits with a size ranging from 75% and 125% 

of the mean amino acid size of the ARD family were further considered. All candidates were assigned 

a COG/NOG from eggNOG v3. When candidates were found in different ARD families, the candidate 

was assigned the family including a reference for which it had the highest amino acid identity. We also 

searched for ARDs in the catalogue using conventional methods i.e. the same combination of 

Hmmsearch, Blastp and SSearch with both a minimal identity and a coverage over or equal to 80% of 

the candidate against a reference ARD.  

 

Negative references 
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For each ARD family, the COGs/NOGs attributed to candidates, that were not the COGs/NOGs of the 

reference dataset were further considered (Extended Data Fig. 2). We assumed that it reproduced the 

errors of functional assignment likely to be generated in sequence-only annotations. The hits from the 

Blast search against the eggNOG v3 database were added to the negative reference dataset. A 

manual curation step was performed in order to ensure that no references were eventually included in 

the negative references.  

 

Selection of structural templates 

The list of protein structures that could be used as structural templates was downloaded (June 2014, 

and November 2014) from the PDB library (Protein DataBank45, http://www.rcsb.org/). Using the 

reference dataset and the negative references as found previously, Hmmer46, Blastp43 and SSearch47 

were performed on the PDB database with default setting and e-values of 1E-5 and results merged 

into a non-redundant PDB list. Both lists (references and negative templates) were manually curated 

to ensure that no references were represented in the negative templates dataset, and reciprocally. If 

more than one PDB shared the same Uniprot number, we applied the following criteria: no ligand, 

completeness of the protein and high resolution in order in include a unique structure per Uniprot 

number.  

 

Pairwise comparative modelling 

The concept of pairwise comparative modelling (PCM) is shown in Extended Data Fig. 1 and 2, and 

the framework is available at https://github.com/aghozlane/pcm. Each candidate was subjected to 

homology modelling with reference templates and negative templates, generating two 3D-structures 

for each candidate (Fig 1A). The main idea is that if the sequence is really associated to the reference 

fold, its model must be significantly different from the ones obtained with the negative structural 

template. Homology modelling was performed by PCM in seven main steps: 

1. Three structural templates were identified by Blastp (among the lists produced as described 

above) that shared the highest homology with the candidate protein.  

2. A multiple sequence alignment was performed between the candidate and the three templates 

sequences using Clustalo48. 

3. A prediction of the secondary structure was performed using psipred (v3.5)49. The residues 

predicted to fold in helix or in beta-sheet conformation with a level of confidence higher or equal to 7 

were considered to constrain the model that will be produced.  

4. A comparative modelling was performed with the MODELLER programming interface50. 

MODELLER automatically calculates a model by satisfaction of spatial restraints such as atomic 

distance and dihedral angles in the target sequence, extracted from its alignment with the template 

structures. Stereo-chemical restraints for lasting residues are obtained from the CHARMM-22 

molecular force field and statistical preferences obtained from a representative set of known protein 

structures.  

5. The best model out of a hundred produced by MODELLER (based on the Dope score) was 

considered for structure assessment analysis using ProQ51 and Prosa-web52. The Dope score 
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(Modeller), z-score (Prosa), MaxSub and LG score (ProQ) are statistical potential variables used to 

predict the model quality. Theses scores are trained on the PDB and they estimate the energetic 

favourability of the conformation of each residue in the model.  

6. The best model was aligned with the reference set of structures using TM-align16 and 

MAMMOTH53. The RMSD (TM-align), z-score (MAMMOTH), TM-score (MAMMOTH, TM-align) 

estimates the degree of superposition of the residue between two structures.  

The differences (delta) between the scores determined from each modelling path (with the reference 

set or the negative set) were calculated and used for the PCM machine learning program (see below).  

For one given candidate, the PCM whole process took an average of 8 CPU-hours (30 minutes on 16 

CPUs). 

 

Statistical analysis 

To discriminate reference proteins from negative references, we used model quality predictors and 

alignment scores (inferred from the semi-automatic pipeline described in the section above) and 

developed a custom pipeline in R (R Core Team, 2013, http://www.R-project.org) to perform the 

classification. The LASSO penalized logistic regression54 implemented in LIBLINEAR55 was used to 

compute the classifier. Ten-fold stratified cross validation (re-sampled 100 times to obtain more stable 

accuracy estimates) was used to partition the data into a training set and a test set. The LASSO 

hyper-parameter was optimized for each model in a nested 5-fold cross-validation on the training 

dataset using the area under curve (AUC) as model selection criterion. From the 100 times re-sampled 

ten-fold cross validation, receiver operating characteristic (ROC) analysis was used to evaluate the 

model performances using the median AUC. Coefficients extracted for each modelling or alignment 

score were also evaluated for their stability throughout the computed models. The PCM score was the 

ratio (expressed as a percentage) between the numbers of time a candidate was classified as a 

reference and the number of bootstraps. Predicted ARDs were candidates with a PCM score over or 

equal to 50% and a TM score given by TM-align over or equal to 0. 516. 

 

Validation of the method with a functional metagenomic dataset 

In order to assess the performances of PCM, we took advantage of the publication by Forsberg et al. 

in 2014 where the ARD content of different North American soils was analysed using functional 

metagenomics24. The screening of the clones was performed on aztreonam, chloramphenicol, 

ciprofloxacin, colistin, cefepime, cefotaxime, cefoxitin, D-cycloserine, ceftazidime, gentamicin, 

meropenem, penicillin, piperacillin, piperacillin-tazobactam, tetracycline, tigecycline, trimethoprim and 

trimethoprim-sulfamethoxazole (cotrimoxazole). For the present study, we collected the nucleotide 

sequences of the inserts deposited on Genbank (KJ691878–KJ696532). The sequence translation of 

the open reading frames was performed by Prodigal (using default parameters)56. A total of 4,654 

sequences of inserts were collected, in which 12,904 amino acid sequences were predicted. We then 

searched for ARDs belonging to the relevant ARD families according to the antibiotics used for the 

screening of the clones: beta-lactamases (all classes), APH, ANT, AAC(2), AAC(3)-I, AAC(3)-II, 

AAC(6), RNA methylases, Tet(M), Tet(X), Qnr, Sul and DfrA, using the supplementary table 2 of the 
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paper. Inserts with no ARDs were removed (n=269). Also, inserts selected on cycloserine (n=868) and 

chloramphenicol (n=129) were not considered here. Fourteen inserts which contained more than one 

ARD that could be predicted to confer resistance to the antibiotic used for the screening (e. g.; two 

beta-lactamases) were not considered in this analysis. Eventually, 1,658 inserts containing no 

identified ARDs or ARDs that did not confer resistance to the antibiotic used for selection were 

discarded and 294 containing efflux pumps (not considered in this study). Thus, the validation set was 

made of 1,423 inserts (containing a resistance gene) for a total of 3,778 genes. Class B1-B2 and class 

B3 beta-lactamases were modelled separately then doublets were removed and results were shown 

as class B beta-lactamases as the precise class annotation was not provided in the dataset.  

In total, 1,390 unique hits were found during the initial screen of PCM, of which 1,374 were predicted 

as ARDs (Supplementary Table 5). Among the 33 ARDs not included for PCM, 12 were not 

considered because they were undersized and 10 because they were oversized. No hits for AAC(2), 

ANT, Qnr or Sul were found. The mean identity shared with reference ARDs was 37.6% (range 18.8-

94.5). Overall, the sensitivity and negative predictive value were 96.6% and 98.0%, respectively. In 

comparison, only 8 ARDs would have been identified by a conventional method (combination of 

Hmmsearch, Blastp and SSearch with both a minimal identity with a reference ARD and coverage 

over or equal to 80%). Conversely, Resfams27 that was specifically designed to identify ARDs from 

functional metagenomic datasets showed similar sensitivity to PCM with 1,346 correct predictions of 

ARDs (94.6% sensitivity).  

 

Validation of the method for incomplete genes 

The 3.9M gene catalogue harbours 41.4% of genes that are predicted to be incomplete either on the 

5', the 3' or both extremities25. As the size parameter is crucial for homology modelling, we tested to 

which extent the prediction of incomplete ARDs by PCM could remain correct. We selected 12 

reference class A beta-lactamases (BlaZ, CblA-1, CepA-29, CfxA2, CfxA6, CTX-M-8, KPC-10, OXY-1, 

PER-1, SHV-100, TEM-101 and VEB-1) for that we iteratively removed 5% of the amino acid 

sequence at both edges in order to obtain 16 bi-directionally trimmed candidates (from 100% to 25%) 

per reference ARD. A total of 192 PCM were performed: we observed that the 12 references were 

correctly predicted as ARDs when the trimming proportion degree was over 40% (i.e. 30% trim from 

each extremity, Supplementary Data Fig. 3). Thus, we are confident that with the 75% size threshold 

we chose (25% maximal cut from one edge), no misclassification due to an incompleteness gene 

could be expected.  

 

Gene synthesis 

We selected 35 predicted beta-lactamases (14 from class A, 8 from class B1-B2, 7 from class B3, 4 

from class C and 2 from class D) for gene synthesis and sub-cloning into E. coli to test the beta-

lactamase function. We used the plasmid vector pET-26b+ (embedding a kanamycin resistance - 

conferring gene). The selection of the predicted beta-lactamases for synthesis was performed as 

follows:  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2017. ; https://doi.org/10.1101/196014doi: bioRxiv preprint 

https://doi.org/10.1101/196014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

- Reference beta-lactamases (n=6): ≥95% amino acid identity and ≥80% coverage with known 

ARDs.  

- Beta-lactamases with the highest degree of confidence for the prediction (n=16): PCM score >99%, 

Tm score TmAlign>0.9 and <70% amino acid identity with a reference beta-lactamase. 

- Beta-lactamases with the lowest degree of confidence for the prediction (n=8): PCM score <80%, 

Tm score TmAlign<0.8. 

- Beta-lactamases randomly selected (n=5) 

The E. coli transformed with the plasmids embedding the predicted beta-lactamases were then tested 

for their activity in using a broth culture containing nitrocefin as chromogenic indicator of beta-

lactamase activity. The degree of hydrolysis was semi-quantified according to the intensity of the 

coloration: negative (pink), + (orange), ++ (dark orange) and +++ (yellow). Of note, we chose to 

synthesize beta-lactamases to test the hypothesis that secreted ARDs could detoxify antibiotics in the 

gut (see results). As the candidates ranged into two main families that are structurally distinct (class A, 

C and D being serine beta-lactamases and class B being metallo-enzymes), we assume that the 

observations from this experiment could apply to the other non-beta-lactamases families.  

 

Searching for signatures of mobile genetic elements nearby the predictions of ARDs 

Mobile genetic elements (MGE) - associated proteins were searched in the genetic environment of the 

pdARDs. First, homologues of insertion sequences were searched in the redundant gene catalog, 

contigs where an ARD was predicted (n=908,888) using ISfinder33 and blastp (query size threshold 

150 amino acids, e-value 1E-30, identity threshold 40%) against the ISfinder database. Furthermore, 

conjugative elements were searched among the same gene set (n=908,888) with Conjscan34, using 

the default parameters and the filters recommended by the authors (best e-value<0.001 and sequence 

coverage of at least 50%). A pdARD was considered to be linked to a conjugative element when at 

least two distinct elements and/or one mob element were found in the contig(s) of its homologues 

(irrespective of the genetic distance between the pdARD gene and the MGE-associated gene).  

 

Distribution of the ARDs in the MetaHIT cohort (n=663 subjects) 

pdARDs profiles were obtained from the abundance matrix of the 3.9M genes as described in Nielsen 

et al25. The "reads per kilobase per million mapped reads" (RPKM) method was used to normalize the 

mapping counts. After summing the relative abundances of pdARDs genes belonging to the same 

family, Dirichlet multinomial mixture models were used to find ARDs clusters (i.e. resistotypes) using 

the Dirichlet Mulitnomial R package. The same methods was applied to detect gut microbiota clusters 

(i.e. enterotypes)57. Laplace criterion was used to define optimal number of clusters as described on 

oral and faecal microbial dataset58. By analogy with the term enterotype, we chose to name as 

“resistotype” a cluster of subjects based on their similarity of their faecal relative abundance of 

pdARDs. Chi-squared test was used to assess the associations between resistotypes and 

enterotypes. Rarefaction analysis at one million read was done to determine the gene richness per 

samples. RLQ analysis59 was conducted to assess the associations between the relative abundances 

of pdARDs, their characteristics (family, size of the cluster of associated genes [CAG]) and those of 
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subjects (enterotypes, resistotypes, gender, body mass index [BMI], age). Of note, we excluded the 

patients suffering from inflammatory bowel disorders from this analysis.  

 

Constitution of cohorts of patients with various antibiotic exposures 

We included three cohorts of patients with various exposures to antibiotics:  

- Passive exposure: a total of 32 patients with no exposure to antibiotics or hospitalisation during the 

preceding 3 months and admitted to the medicine ward of the Beaujon University Teaching Hospital 

(Clichy, France) were included and provided a faecal sample. Among them, 17 could provide a stool at 

discharge. Two received some antibiotics during their stay and their samples at discharge were not 

considered for the analysis. In total, 15 patients could provide a stool sample soon after admission 

(T0) and at discharge (T1). The mean duration of passive exposure (mean time between T0 and T1 

samples) was 10. 7 days. We also could include 13 subjects who could provide a sample at admission 

and who had not been exposed to antibiotics in the three months preceding their visit.  

- Chronic exposure: 30 cystic fibrosis (CF) - suffering patients were enrolled at the Cystic Fibrosis Unit 

of the Ramon y Cajal Hospital in Madrid, mostly non-hospitalized. Cystic fibrosis is a genetic disease 

that leads to an impairment of the lung function through an uncontrolled production of mucus. The 

consequence is chronic bacterial colonization, resulting in deleterious reactive fibrosis of the lung. 

Bacterial load is controlled by chronic exposure to antibiotics (home-therapy, mostly oral and inhaled 

in our cohort), which has resulted in significant life prolongation, and almost absence of need of 

hospital care. One faecal sample was collected at the occasion of a consultation.  

- Quick and strong: selective digestive decontamination (SDD) consists in administering an association 

of topical and parenteral antibiotics and antifungal agents to a patient at admission in order to 

eliminate potential bacterial and fungal pathogens. SDD has been showed to significantly reduce 

mortality in the intensive care unit (ICU)60 and is now part of standard care in Netherlands. Still, the 

selection for antibiotic-resistant pathogens by SDD remains a concern, especially resistance to 

colistin61 which is a last-resort antibiotic in infections caused by extensively-resistant Gram-negative 

bacilli. To assess the effect of SDD on the intestinal microbiota, we analysed the faecal samples from 

13 patients admitted to the ICU of the University Medical Center of Utrecht (UMCU, Netherlands). The 

samples were collected at admission (T0, first sample passed after admission) and after SDD (T1). 

Among the 13 patients for whom a faecal sample could be obtained at T0, 10 could provide a faecal 

sample at T1. SDD consisted in of 4 days of intravenous cefotaxime and topical application of 

tobramycin, colistin, and amphotericin B. Besides, a subset of samples (n=4) from this cohort were 

cultured in a brain-heart infusion broth overnight in ambient atmosphere at 37°C.  

 

Metagenomic sequencing and mapping.  

Total faecal DNA was extracted51,52 and sequenced using SOLiD 5500 wildfire (Life Technologies) 

resulting in a mean of 68.5M sequences of 35-base-long single-end reads. High-quality reads were 

generated with quality score cut-off >20. Reads with a positive match with human, plant, cow or SOLiD 

adapter sequences were removed.  
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Filtered high-quality reads were mapped to the MetaHIT 3.9M gene catalog 25 using the METEOR 

software64. The read alignments were performed in colorspace with Bowtie software (version 1.1.0) 65 

with options: -v 3 (maximum number of mismatch) and -k 10000 (maximum number of alignment per 

reads). The gene abundance profiling table was generated using a two-step procedure. First, the 

unique mapped reads (reads mapping to a unique gene from the catalogue) were attributed to the 

corresponding genes. Then the shared reads (mapping different genes of the catalogue) were 

attributed according to the ratio of their unique mapping counts, as following: as a read can map on 

different genes of the catalogue, the abundance of a gene �(��) depends on the abundance of 

uniquely mapped reads (��), i.e. reads that map only to the gene �, and on the abundance of � 

shared reads (��) that aligned with 	 genes in addition to the gene G: 

�� = ��  +  �� 

where 

�� = 
 ���

�

���
 

 

For each shared read, the gain of abundance corresponds to a coefficient �� that takes in account the 

total number of uniquely mapped reads on the 	 genes: 

��� = ��
�� + ∑ ���

����
 

 

For instance, if a gene G is mapped by 10 reads that only map to it (unique reads), but also with 1 

read that also align on a gene M that was mapped by 5 unique reads, then: 

�� = 10 + 10
10 + 5 ≈ 10. 7 

  

To decrease technical biases due to different sequencing depth, samples with at least 5M mapped 

reads were downsized to 5M mapped reads (random sampling of 7M mapped reads without 

replacement) using R package momr19. The abundance of each gene in a sample was then 

normalized by dividing the number of reads that mapped to the gene (��) by the gene nucleotide 

length and by the total number of reads from the sample. The resulting set of gene abundances, 

termed a “microbial gene profile”, was used to estimate the abundance of metagenomic species 

(MGS). 25 

 

Gene richness analysis 

Microbial gene richness was calculated by counting the number of genes that have been mapped at 

least once in a given sample. Of note, a high microbial gene richness has been associated to be a 

marker of a healthy gut microbiota, even if a specific threshold remains to be set19. Gene richness was 

calculated using R package momr for samples where 5M or more reads had mapped against the 3. 

9M catalogue.  
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MetaGenomic Species (MGS) 

MGS are co-abundance gene groups with more than 700 genes, and can thus be assumed as part or 

complete bacterial species genes contents. 741 MGS were delineated from 396 human gut 

microbiome samples25. In this study, the relative abundance of MGS were determined as the median 

abundance of 90% of the genes composing each cluster. MGS taxonomical annotation was updated 

by sequence similarity using NCBI BLASTN, when more than 50% of the genes matched the same 

reference of NCBI database (December 2014 version) at a threshold of 95% of identity and 90% of 

gene length coverage to get the species annotation.25 

 

Statistical analysis for the distribution of pdARDs and MGS between groups 

Statistical analysis for the differential abundances of ARDs and MGS in the patient cohorts were 

performed using the application SHAMAN66 (http://shaman.c3bi.pasteur.fr/, data are available at 

https://github.com/aghozlane/evotar). The relationship between richness and the abundance of ARDs 

was assessed by the Spearman correlation test. The statistical threshold was set at a p-value of 0.05. 

The p-values were represented by a single * when 0.01<p<0.05, ** when 0.001<p<0.01 and *** when 

p<0. 001.  
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Figures 

Figure 1: Illustration of the concept of “Pairwise Comparative Modelling” (PCM) with Qnr proteins 

(panel A). A1: Qnr protein structure (2W7Z) obtained from the PDB database. A2: A candidate protein 

(MC3.MG361.AS1.GP1.C32174.G14) for Qnr modelled with a reference Qnr structural template. This 

protein had 35.7% amino-acid identity with the closest Qnr protein (QnrB4). A3: The same candidate 

protein (MC3.MG361.AS1.GP1.C32174.G14) for Qnr this time modelled with a Qnr negative reference 

template. The candidate MC3.MG361.AS1.GP1.C32174.G14 was predicted to be a Qnr with 100% 

confidence by our model. Panel B: Bar-plot of the intensity of nitrocefin hydrolysis with respect to the 

degree of confidence of the prediction (“reference” meaning that the protein shares more ≥95% amino 

acid identity with a functionally proven beta-lactamase, “good” meaning a PCM score over 99% and a 

TmAlign Tm score ≥0.8, “fair” meaning a PCM score between 50% and 80%,). The intensity of the 

nitrocefin hydrolysis was determined in a semi-quantitative fashion, from duplicates experiments. 

Panel C: predictions of antibiotic resistance determinants (ARDs) from a 3.9M gene catalogue of the 

intestinal microbiota1 using PCM, Resfams2, Blastp, Resfinder3 and ARG-ANNOT.4 For Tet(M), DfrA, 

Erm and Vam, more than 500 predictions were obtained. Panel D: violin plot of the PCM prediction 

and maximal identity observed with a reference ARD. The y-axis is Log10 transformed. See 

Supplementary Table 1 for details about candidates sharing at least 40% identity with reference ARDs 

but were eventually not predicted as ARDs.  

 

AAC: aminoglycoside acetylase; ANT: aminoglycoside nucleotidyl transferase; APH: aminoglycoside 

phosphotransferase; DfrA: type A dihydrofolate reductase; Sul: dihydropteroate reductase; Erm: 

erythromycin ribosome methylase; Qnr: quinolone resistance; Fos: fosfomycin resistance (Fos); Van: 

D-Ala – D-Lac/Ser ligase (vancomycin resistance).  
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Figure 2: Mobile genetic elements (MGE) and predicted antibiotic resistance determinants (pdARDs). 

(A) Distribution of the sizes of the metagenomics unit (MGU) where an antibiotic resistance 

determinant was predicted with respect to the colocation of MGE-associated genes. The vertical line 

depicts the assumed gene size threshold above which MGUs are considered as partial chromosomes 

referred as metagenomic species (MGS)1. (B) Violin plots of the sizes of the metagenomics unit 

(MGU) where an antibiotic resistance determinant was predicted with respect to the colocation of 

MGE-associated genes. (C) Proportion of pdARDs co-locating with MGE-associated genes with 

respect to their phylum. (D) Proportion of pdARDs co-locating with MGE-associated genes according 

to the pdARD family. Of note, the AAC(2) and 16S RNA methylases only included 3 and 2 pdARDs, 

respectively and were accordingly not depicted in this panel.  
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Figure 3: Principal component analysis of the 663 subjects of the MetaHIT cohort, with respect to their 

gene richness and resistotypes (A) or enterotypes (B).  

A       B 
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Figure 4: (A) Gene richness and relative abundance of predicted antibiotic resistance determinants 

(pdARDs) in the MetaHIT cohort (n=663). (B) Gene richness and relative abundance of pdARDs in our 

cohort of subjects with no recent antibiotic exposure (n=44). (C) Gene richness and relative 

abundance of pdARDs in our cohort of subjects with regards to their antibiotic exposure. (D) Boxplots 

superimposed by dot plots of the comparisons of the relative abundance of all pdARDs between the 

various groups differing by their exposure to antibiotics. (E) Comparisons between the gene richness 

between the various groups differing by their exposure to antibiotics. The unpaired Wilcoxon test was 

used. ***: p<0.001, ** p<0.01, *: p<0.05. The shaded grey area depicts the 95% confidence interval 

around the blue, linear regression line.  
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Table 1 : Prediction of antibiotic resistance determinants (ARDs) from a 3.9M gene catalogue of the 

intestinal microbiota.1 

Family Number of 
references

Number of 
candidates

Number of 
predictions of ARDs

Rate ARD 
predictions/candidates (%)

Class A beta-lactamases 682 402 267 66
Class B1-B2 beta-lactamases 150 554 134 24
Class B3 beta-lactamases 31 493 221 45
Class C beta-lactamases 56 373 76 20
Class D beta-lactamases 248 76 27 36
AAC(2) 5 15 3 20
AAC(3)-I 7 53 15 28
AAC(3)-II 12 81 81 100
AAC(6) 36 1191 312 26
ANT 29 158 67 42
APH 30 430 279 65
RNA methylases 17 4 2 50
Tet(M) 72 2824 1682 60
Tet(X) 12 42 9 21
DfrA 35 632 632 100
Sul 33 357 353 99
Erm 58 873 781 89
Qnr 66 272 219 81
Fos 34 84 62 74
Van 16 1163 873 75  
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