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Abstract

During the 3" trimester, large-scale of neural circuits are formed in the human brain, resulting in
the adult-like brain networks at birth. However, how the brain circuits develop into a highly
efficient and segregated connectome during this period is unknown. We hypothesized that faster
increases of connectivity efficiency and strength at the brain hubs and rich-club are critical for
emergence of an efficient and segregated brain connectome. Here, using high resolution diffusion
MRI of 77 preterm-born and term-born neonates scanned at 31-42 postmenstrual weeks (PMW),
we constructed the structural connectivity matrices and performed graph-theory-based analyses. We
found faster increases of nodal efficiency mainly at the brain hubs, distributed in primary
sensorimotor regions, superior-middle frontal and posterior cingulate gyrus during 31-42PMW. The
rich-club and within-module connections were characterized by higher rates of edge strength
increases. Edge strength of short-range connections increased faster than that of long-range
connections. The nodal efficiencies of the hubs predicted individual postmenstrual ages more
accurately than those of non-hubs. Collectively, these findings revealed regionally differentiated
maturation in the baby brain structural connectome and more rapid increases of the hub and
rich-club connections, which underlie network segregation and differentiated brain function
emergence.
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I ntroduction

In the last a few weeks prior to normal time of birth, a large scale of brain circuit formation
underlies the emergence of human connectome a a macroscale. Massive development of
cortico-cortical axonal pathways before birth offers structural basis to establish an adult-like brain
network (e.g. Kostovi¢ and Jovanov-MiloSevi¢ 2006; Kostovi¢ and JudaS 2010). The neurond
activities associated with the circuit formation undergo substantial remodeling after birth (e.g.
LaMantia and Rakic 1990; Innocenti and Price 2005). As suggested by previous neuropathological
studies (e.g. Huttenlocher and Dabholkar 1997), regionally differentiated developments of neuronal
connections are associated with heterogeneous emergence of brain functions, with primary
sensorimotor function generally emerging earlier than higher-order cognitive functions. However,
little is known about the structural organization of neural networks at the macroscale during this
critical period. Knowledge of the ontogeny of the human connectome during late fetal development
may provide not only insight into normal brain development, but also a reference for elucidating

the complex trgectories of atypical or abberant neurodevel opment.

The structural connections have recently been extensively studied by magnetic resonance imaging
(MRI), capable of surveying entire brain connectivity noninvasively. Diffusion MRI (dMRI), atype
of MRI methods, has been applied as an approach to infer axonal pathways constituting the
structural brain connectivity in vivo. With dMRI-based tractography (e.g. Mori et a. 1999), the
emergence of brain white matter (WM) fibers has been delineated in the fetal brain as early as the
beginning of 2" trimester (e.g. Huang et al. 2006; Huang et al. 2009; Vasung et al. 2010; Takahashi
et a. 2012; Ouyang et a. 2015), consistent to the histological atlases (Bayer and Altman 2004).

These dMRI studies have demonstrated, for example, that limbic WM fibers appear earlier while
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the association WM fibers constituting major cortico-cortical connectivity appear later. By the start
of the 3" trimester, except arcuate fasciculus, al major WM fibers can be identified with dMRI
(Feng et al., 2016). The asynchronous and heterogeneous maturation of WM across regions in the
3 trimester has also been suggested by other neuroimaging studies (e.g. Hiuppi et al. 1998;
Partridge et al. 2004; Bui et al. 2006; Aeby et a. 2009). In addition, it has been found that different
cortical regions undergo differential maturation pattern in terms of cortica microstructure
(McKinstry et al. 2002; Delpolyi et al. 2005; Huang et al. 2013; Yu et a. 2016), also assessed with

dMRI.

Although the literature above revealed spatiotemporally heterogeneous development of both
cortical regions and WM pathways linking them, few studies have delineated the differential
maturation pattern of structural connectivity from the perspective of a macro-scale connectome
during the 3 trimester. The baby brain connectome (For a review, see e.g. Cao et a. 2017h)
reveals the inter-regional connectivity pattern, in contrast to individual WM fiber bundles or brain
regions. In a brain connectome, some regions are more interconnected with other brain regions,
constituting “hubs’ within the globa network topography (e.g. Hagmann et al. 2008; Gong et al.
2009). Further, these hub regions tend to be densely interconnected with each other forming a
rich-club organization (van den Heuvel and Sporns 2011), which serves as a highly efficient
backbone for integration of neuronal activity across distributed circuits and presumably forms the
foundation of complex neurological functions (van den Heuvel et al. 2012). With the structural
connectivity underlying functional connectivity, the present connectomic study offers a unique
view of understanding the structural substrate of emerging brain functions. The preterm and

term-born brain connectome has been investigated with dMRI tractography and subsequent
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graph-theory analysis (Tymofiyeva et al. 2013; Ball et al. 2014; Brown et a. 2014; van den Heuvel
et a. 2015; Batalle et al. 2017). These studies support the emergence of the hub regions and rich
club organization during the 3" trimester (Ball et al. 2014; van den Heuvel et al. 2015). However,
regionally differential maturational rates during the 3™ trimester quantified by connectomic
measures of brain hubs, rich-club and modules as well as short-range and long-range connections
have not been determined. In addition, it remains to be determined how differentiated connectional

maturation contributes to the segregation process of structural organization of baby brain.

In this study, we hypothesized that differentiated maturation of structural connectivity across brain
regions plays a central role in emergence of an efficient and segregated brain connectome at birth.
Relatively high resolution (1.5 x 1.5 x 1.6 mm°) dMRI images of 77 preterm-born or term-born
neonates scanned around 31 to 42 postmenstrual weeks (PMW) (Engle 2004) were acquired. The
structural connectivity matrix of each neonate was constructed with dMRI tractography. With the
comprehensive graph theory analysis at global, modular and regional connection levels, we
examined cross-sectional age-dependent developmental rate of the preterm and term-born brain

network measures across different brain regions and connections.
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Materials and Methods

Preterm subjects

The study was approved by the Institutional Review Board (IRB) of the University of Texas
Southwestern Medical Center. 77 normal neonates (47 males and 30 females) were recruited from
Parkland Memorial Hospital at Dallas. These neonates were scanned between 31.9 to 41.7 PMW,
with postmenstrual age defined in accordance with Engle's criteria (Engle 2004). All neonates
underwent MR imaging as part of a study of norma prenatal and perinatal development; no
neonates were scanned under clinical indications. Moreover, these neonates were recruited after
rigorous screening procedures conducted by a board-certified neonatologist (LC) and an
experienced pediatric radiologist (NR), based on subjects’ ultrasound, clinical MRI and medical
record of the neonates and their mothers. Exclusion criteria include evidence of bleeding or
intracranial abnormality by serial sonography; mother’s excessive drug or alcohol abuse during
pregnancy; grade IlI-IV intraventricular hemorrhage; periventricular  leukomalacia;
hypoxic-ischemic encephalopathy; lung disease or brochopulmonary dysplasia; body or heart
malformations, chromosomal abnormalities; necrotizing enterocolitis that requires intestina
resection or complex feeding/nutritional disorders; defects or anomalies of forebrain, brainstem or
cerebellum; brain tissue dys- or hypoplasias; abnormal meninges; alterations in the pial or
ventricular surface; or white matter lesions. Written and informed parental consents were obtained
from the subject’s mother (or father if married). Detailed characteristics regarding this cohort are

provided in Table 1.

MRI Acquisition
All neonates were scanned with a Philips 3.0 T Achieva MR scanner at the Children’s Medical
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Center, Dallas. They were well-fed before scanning. During scan, all neonates were asleep
naturally without sedation. Earplugs, earphones and extra foam padding were applied to reduce the
sound of the scanner while the neonates were asleep. A single-shot EPI sequence (SENSE factor =
2.5) was used for dMRI acquisition, with the following parameters: TE=78ms, TR=6850ms,
in-plane field of view = 168 x 168mm?, in-plane imaging matrix = 112 x 112, in-plane imaging
resolution =1.5 x 1.5mm?, slice thickness =1.6mm without gap, slice number=60, 30 independent
diffusion encoding directions with b value = 1000 mm?. The images were reconstructed to 256 x
256 in-plane matrix. Two repetitions were conducted for dMRI acquisition, resulting in scan time
of 11 minutes. As described in our previous publication (Huang et a. 2015), with 30 diffusion
weighted image (DWI) volumes and 2 repetitions, we accepted those dMRI datasets with less than
5 DWI volumes affected by severe motion. The affected volumes were replaced by the good

volumes of another dMRI repetition during postprocessing.

Data preprocessing

Small motion and eddy current of dMRI of each neonate were corrected by registering all the DWIs
to the b0 image using a 12-parameter (affine) automated image registration (AIR) algorithm
(Woods et al. 1998). After AIR, six independent elements of the 3x3 diffusion tensor were
determined by multivariate least-square fitting of DWIs (Basser et a. 1994). The tensor was
diagonalized to obtain three eigenvalues (11_3) and eigenvectors (V1_3). Then the diffusion metrics,
such as fractional anisotropy (FA) and apparent diffusion coefficient (ADC) images were calculated.

All above-mentioned procedures were conducted offline using DTIStudio (Jiang et al. 2006).

Networ k construction
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Nodes and edges, the two fundamental elements of a network, were defined using the following
procedures to construct the individual structural network.

Network node definition. The nodes of each subject in the native dM RI space were obtained by

transferring the parcellated cortical regions in the Johns Hopkins University (JHU) neonate atlas
(Oishi et a. 2011). The contrasts of the single-subject b0 (ss-b0) image in the JHU atlas space (Fig.
1D) and individual neonate subject’s b0 image in the native space (Fig. 1A) were used to drive the
nonlinear registration that transfers JHU atlas cortical parcellation to the individual neonate
subjects. Briefly, neonate b0 image in the native space was registered to the ss-b0 images in the
JHU atlas space with transformation T(+). The inverse transformation T™(s) was used to map JHU
atlas labels (Fig. 1E) to the native space of individual neonate (Fig. 1F). Discrete labeling values
were preserved using a nearest-neighbor interpolation. The structural network (Fig. 1G) of each
neonate was constructed with 58 cortical regions (Fig. 1F) representing 58 nodes of the brain
network. The registration procedures were conducted using SPM8  software

(http://www.fil.ion.ucl.ac.uk/spm/). Of note, the cortical regions were dilated by 9 voxels in order

to alow traced WM fibers (see Network edge definition below) to reach the cortical nodes. To
minimize spurious structural connections between the nodes, the voxels in the dilated cortical
regions with ADC greater than 1.9 x 10 °mm?/s were likely to be those of cerebrospinal fluid (CSF)
and removed.

Network edge definition. Network edges were defined with reconstructed WM fibers by dMRI

tractography. Brute-force deterministic fiber tractography in the whole brain was performed with

Diffusion Toolkit (http://trackvis.org/) (Mori et a. 1999; Huang et al. 2004). Due to low FA in

preterm brains, the FA threshold was 0 (no FA threshold) (Takahashi et al., 2012) and angle

threshold was 35° for tractography. Only reconstructed streamlines with two end points located in
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the dilated cortica ribbon were kept, as shown in Fig. 1C. Two regions were considered
structurally connected if there exists at least one streamline with two end-points located in these
two regions. Anisotropy diffusivity such as FA and the streamlines obtained by tractography have
both been proved as good markers for characterization of tissue microstructure and WM changes
during development (Wimberger et al. 1995; Drobyshevsky et al. 2005; Huang et al. 2006; Huang
et al. 2009; Takahashi et a. 2012). Therefore, we defined the number of fiber streamlines
multiplied by the mean FA (FN x FA) of all connected fibers between two regions as the edge
weight. As a result, we constructed a weighted structural network (Fig. 1H) for each neonate,

represented by a symmetric 58 x 58 connectivity matrix (Fig. 1G).

Network analysis
To describe the topological organization of the neonatal structural connectome, the following graph
metrics were estimated, with detailed definitions of the network metrics provided in the
Supplement material.

Global network organization. For the global network metrics, we quantified the network

sparsity, network strength (S;), global efficiency (Egab), local efficiency (Eioc), shortest path length
(Lp), clustering coefficient (C,) small-world parameters (i, v and ¢) (Rubinov and Sporns 2010).

Regional network efficiency. To determine the nodal (regional) characteristics of the brain

networks, we computed the nodal efficiency which is defined as (Achard and Bullmore 2007).

Hub digtribution. To identify the hub regions of the neonate connectome, we constructed the

group-based backbone network by detecting the significant nonzero connections across all
participants, with a nonparametric one-tailed sign test (p < 0.05, corrected) and assigning the edge

weight with the group-averaged one. Based on the group-averaged backbone network, we identified
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the hub regions by sorting the nodal efficiency (Enoga(i) > mean+0.5*std). Next, the rich-club
coefficient (¢ ) and normalized rich-club (RC) coefficient (¢ norm) Were calculated for the
backbone network based on averaged network of all neonates, according to van den Heuvel and
Sporns (2011). On the basis of the categorization of the nodes of the network into hub and non-hub
regions, edges of the network were classified into. Finaly, the rich-club, feeder and local edge
strength was averaged edge weight of rich-club, feeder and local connections, respectively.

Short- and long- range edges. For the reconstructed fibers, length was defined as the physical

length of the streamline obtained by tractography (Fig. 6A) and the average physical length of all
streamlines connecting each pair of brain regions was defined as the length of each connection.
Then, the connections of each individual network were grouped into long-range and short-range
ones based on the length of these connections. Considering the increasing brain size with age, we
did not use a constant length threshold. Individual connections with length smaller/greater than
average length of all connections were defined as short-/long- range connections, respectively.

Modular parcellation. Module detection was performed with an optimized simulated

annealing approach (Guimera et al. 2004) to parcellate the brain network into different modules
(Newman and Girvan 2004). Briefly, the aim of this module identification process is to find a
specific partition (p) which yields the largest network modularity, Q(p). Q(p) quantifies the
difference between the number of intra-module links of actual network and that of random network
in which connections are linked at random. The modular parcellation was performed on the
individual network of each neonate brain with the modularity and module number of the individual
network calculated. In addition, to apply a consistent modular parcellation across subjects, we also
performed module detection on the backbone network. Based on the modular parcellation of

backbone network, the participation coefficient (PC) of each node was calculated (Guimera et al.
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2004; Sporns et a. 2007; Rubinov and Sporns 2010) to assess the contribution of each node to
modular segregation or integration. Then, the hub regions were categorized as connector hubs (with
PC > 0.5) which occupied high inter-module connections and provincial hubs (with PC < 0.5)
which occupied high intra-module connections. Based on the backbone modular parcellation, the
whole within- and between-module edge strength was the summation of edge weights of within-
and between-module connections, respectively.

All network analyses were performed using GRETNA software
(http://www.nitrc.org/projects/gretnal) (Wang et al. 2015) and the results were visualized using

BrainNet Viewer software (https://www.nitrc.org/projects/bnv/) (Xiaet al. 2013).

Statistical analysis

Age effects on network properties. To examine the age effects on the network topological properties,

a general linear model (GLM) anaysis was implemented between each network metric and
postmenstrual age across all subjects, with gender and total brain volume (TBV) as covariates:

Y =4, + 3 xage+ B, xgender + B X TBV
The slope of each metric against age ,31 was used to represent the developmental rate.

Network-based datistic (NBS). To identify structural connections showing significant age

effects from the whole connectome, we used the NBS approach (Zalesky et a. 2010). First, the
same GLM analysis with gender and TBV as covariates was applied for the entire connectome. A
threshold of p < 0.01 was used to yield t statistic matrix of suprathreshold connections. After that,
the nonparametric NBS approach was used for controlling family wise error (FWE). By generate
5000 times permutation null distribution, the statistical significance of the observed component

sizes in the un-corrected connection matrix was evaluated. Finally, the interconnected sub-network
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components with a corrected p < 0.01 were considered statistically significant.

Clustering analysis

To group the brain regions with similar developmental trgjectories, we used a data-driven k-means
clustering method (Seber 2009). The set of brain regions with significant age-dependent nodal
efficiency increase was used as the input and the developmental trajectory of each region’s
efficiency was used as the feature of clustering. The k-means algorithm was initialized with
randomized estimates for the trgectory centers and iterated multiple times to convergence. In our
study, ten repetitions with different random initial cluster centroids were used to minimize the
effect of start condition. The whole process was repeated with varying numbers of clusters from
two to six and the final number of clusters was determined by the clustering results with the largest
average silhouette value (Rousseeuw 1987). To test if nodal efficiency increases faster in the hubs
than non-hubs during 32-41PMW, a two-cluster model with the highest silhouette value among the

priori designs (2~6 clusters) was adopted.

Prediction of the neonate age using support vector regression

A support vector regression (SVR) with a linear kernel function was used to test the prediction
power of nodal efficiency on individual neonate postemenstrual age. The default settings with C =
1 and epsilon = 0.001 in the LIBSVM Toolbox (http://www.csie.ntu.edu.tw/~cjlin/libsvnv) were
used to evaluate the SVR model (Dosenbach et al. 2010; luculano et al. 2014). A Leave-one-out
cross-validation (LOOCV) was used to evaluate the prediction accuracy of the model. Each neonate
was designated as the test data in turns while the remaining ones were used to train the SVR

predictor which aimed at making a prediction about the test neonate’'s age. Pearson correlation
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coefficient between the actual and predicted ages was calculated to assess the prediction accuracy.
The nodal efficiencies of al regions or only hub/non-hub regions defined based on the networks of
train samples were used as features for the SVR predictor separately. In each iteration, the hub

distribution obtained from train sample was similar to that obtained from the whole cohort.

Evaluation of the effects of different parcellation schemes

To evauate the potential effects of the parcellation schemes (e.g. Zalesky et al., 2010) on the
results, the neonate cortex was further randomly subdivided into 256 nodes with equal size to
examine the age-dependent network property changes with a high-resolution parcellation. For each
neonate, a high-resolution structural connectivity matrix in 256 by 256 was constructed. Same
network analysis procedures and statistical analyses as those used in the low-resolution networks

(58 nodes) were repeated.
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Results

Age-dependent changes of global topological properties of neonate structural
connectome

The global structural networks became stronger and more efficient from 32 to 41 PMW. About
5-fold increase of network strength (r = 0.46, p = 3.3 x 10”°), 6-fold increase of global efficiency (r
= 0.46, p = 2.9 x 10°) and 7-fold increase of local efficiency (r = 0.48, p = 1.1 x 10°) were found
(Fig. 2, upper panel). Prominent small-world organization was observed with 4 =1 and )>1 for
the structural networks of all neonates aged 32 to 41 PMW. However, no significant age-dependent
changes were found in number of edges (network sparsity) and small-worldness O (p > 0.05, Fig.
2, lower panel). Age-dependent changes of other network measurements can be found in

Supplemental Figure S1.

Differential nodal efficiency increases with faster nodal efficiency increases at
thebrain hubs

Differential nodal efficiency increases across brain regions: The heterogeneous distribution of

nodal efficiency across brain regions is clear as shown by the fitted nodal efficiency maps of each
week during 32-41PMW (Fig. 3A, left panel), with higher efficiency in prefrontal cortex, precentral
and postcentral gyrus and lower efficiency in occipital cortex. Both the mean and the standard
deviation (SD) of the nodal efficiency increased significantly with age (Mean: r = 0.46, p = 2.9 x
10°; SD: r = 0.39, p = 6.1x 10 (Fig. 3A, right panel), indicating that both the average and the
variability of nodal efficiency across the brain regions increased with age. As shown in Fig. 3B, 31
cortical regions widely distributed al over the brain in bilateral frontal, parietal, temporal and

limbic regions exhibited significant age-related linear increases (p < 0.05, Bonferroni corrected)

15


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

during 31-42PMW with GLM analysis. Importantly, the developmental rates of nodal efficiency
varied across regions. More rapid, age-dependent increases were found in the precentral and
postcentral gyrus, superior and middle frontal gyrus, precuneus and posterior cingulate gyrus
relative to other brain regions (Fig. 3B). The scatter plots of three representative regions (left
precentral gyrus. PrCG.L, left angular gyrus: ANG.L, and right parahippocampal gyrus: PHG.R)
with distinguished nodal efficiency increase rates are shown in the right panel of Figure 3B.

Hub distribution, rich-club organization and faster nodal efficiency increases at the brain hubs:

Figure 4A shows that the hub regions (red balls) are mainly distributed in the bilateral superior and
middle frontal cortex, precentral and postcentral gyrus, superior parietal cortex and cingulate cortex.
Consistent hub distribution across different PMW age groups from 31 to 41PMW was observed, as
shown in Figure S2. Moreover, a characteristic rich-club organization with the normalized RC
exceeding 1 (¢ norm = 1.21) was found for the backbone network, revealing a densely connected
component between hub regions of the neonate structural connectome. Based on a data-driven
two-cluster model for categorizing nodal efficiency, among 31 brain regions (shown in Fig. 3B)
with significant age-dependent nodal efficiency increases, al 11 cluster-1 brain regions (blue
circlesin Fig. 4A and listed in Table 2) were part of the 16 hub regions (red ballsin Fig. 4A) of the
neonate connectome, indicating distinctively higher rate of efficiency increases during 31-42PMW
at hub regions. Note that not all hub regions were characterized by statistically significant
efficiency increases; however, those with significant efficiency increases were all cluster-1 brain
regions. Fig. 4B shows significantly steeper efficiency increase trend line at the hub regions
compared to non-hub regions (t = 6.85, interaction p < 10°®). Furthermore, by correlating the nodal
efficiency increase rates and nodal efficiency measurements a 31 brain regions with significant

age-dependent changes, we found significantly positive correlation between efficiency increase rate
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and efficiency measurements themselves (r = 0.78, p < 10 (Fig. 4C).

Faster edge strength increases in rich-club organization, in short-range

connections and in intra-module connections

Faster edge strength increases in rich-club organization: NBS analysis revealed 101 significantly

increasing edges (10% of all edges) connecting 56 nodes, which were widdly distributed in bilateral
frontal, parietal, tempora and limbic areas (Fig. 5A). For the connections with significant
age-dependent changes, the rate of changes varied across the edges, reflected by differentially
encoded edge width (Fig. 5A). Higher increase rates of edge strength were found in a few
symmetric and short-range connections, including bilateral connections between superior and
middle frontal gyrus, bilateral connections between precentral and postcentral gyrus, and bilateral
connections between precuneus and posterior cingulate gyrus (Fig. 5A). With the connections
classified into rich-club, feeder, and local connections (Figs 5A and 5B), significant differences in
edge strength change rates were found among these three types of connections (Fig. 5B).
Specifically, highest rate of edge strength increase was found in rich-club connections, followed by
feeder and local connections (Fig. 5B).

Faster edge strength increases in short-range connections. Representative short- and long-range

connections based on the pathway length were demonstrated in Fig. 6A. Amongst short-range
connections, rich-club (r = 0.37, p = 1.0 x 10™°), feeder (r = 0.49, p = 9.6 x 10®) and local (r = 0.48,
p = 1.0 x 10™) connections (Fig. 6B) all increased significantly with age. By contrast, amongst
long-range connections, only feeder (r = 0.24, p = 3.9 x 10?) and local (r = 0.30, p = 8.7 x 107)
connections increased significantly with age while no significant age-dependent changes were

found for rich-club connections (r =-0.03, p = 0.75) (Fig. 6C).
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Neonate brain modular organization and faster edge strength increases in intra-module

connections: Significant modular organization was found in the structural networks of all
individual subjects (Q > 0.34 for al subjects). No significant age-dependent alterations in the
modularity and module number were found (all p > 0.05), suggesting that the modular organization
remained stable during 32-41 PMW. Therefore, we only examined the modular parcellation of the
group-based backbone network. A significant modular architecture of the backbone network was
identified (Qmax = 0.42), separating the brain into five different modules (Fig. 7A, left panel). Hub
regions were evenly distributed in different modules with provincial hubs located in the center of
modules and connector hubs located in the boundaries. The bilateral precentral and postcentral
gyrus and left superior and middle frontal gyrus were detected as provincia hubs, and the other hub
regions were connector hubs (Fig. 7A). By comparing nodal efficiency increasing rates of these two
types of hubs, we found the nodal efficiency increasing rate of provincia hubs are significantly
higher than that of connector hubs (t = 2.91, p = 0.01) (Fig. 7B). In addition, we found that the
age-dependent edge strength increase rate of within-module connections was higher than that of the
between-module connections (t = 5.25, p = 0.003) (Fig. 7C). R values, p values and age-dependent
edge strength increase rates from the correlation of edge strength and age for within-module and

between-module connections are listed in the Supplemental Table S1.

Age prediction and reproducible findings with a high-resolution parcellation
scheme

Age prediction: Fig. 8A shows that the postmenstrual ages in weeks of the neonates can be

predicted by the noda efficiency of brain structural connectome, with a correlation r = 0.76

between the actual and the predicted postmenstrual age. It is noteworthy that hub regions showed
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higher prediction accuracy (r = 0.81) (Fig. 8B) than non-hub regions (r = 0.66) (Fig. 8C),
suggesting a stronger association between hubs and postmenstrual age as compared to non-hubs.

Reproducible findings with a high-resolution parcellation scheme: Similar age-related development

trend lines of global and regiona network properties were observed when the analyses were
repeated utilizing the higher resolution parcellation. This included significant age-dependent
increases in global and local network efficiency (Eglob: r = 0.58, p = 5.9 x 10 Eloc: r = 0.63, p =
1.2 x 10°%) (Fig. 9B). Likewise, the brain regions with most rapid age-dependent increases of nodal
efficiency were distributed in the precentra and postcentral gyrus cortex and posterior parietal
cortex (Fig. 9C), consistent with the findings from low-resolution parcellation. Similar hub regions
were found mainly located in the bilateral orbito-frontal cortex, bilateral precentral and postcentral
cortex, bilateral superior parietal cortex and temporal cortex (Fig. 9D). Finally, similar to Fig 4C, a
significant positive correlation between mean noda efficiency and their developmental rate was
aso observed (r = 043, p = 9.0 x 10 in regions with significant age-related alterations in
high-resolution networks (Fig. 9E). These results jointly indicated that the maturation patterns of

the neonate connectome were largely independent of the cortical parcellation schemes.
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Discussion

Using connectomic analyses of dMRI images with relatively high resolution (1.5 x 1.5 x 1.6 mm°)
from 77 preterm and term-born neonates scanned at 31 to 42 PMW, we found rapid and regionally
differentiated maturation with faster connectivity increases taking place mainly at the brain hubs
and rich-club, especially for the short-range and within-module connections, resulting in a more
segregated structural connectome near term-equivalency. The brain hubs with faster age-dependent
nodal efficiency increases are distributed in primary sensorimotor regions, superior-middle frontal
and posterior cingulate gyrus, while the hub distribution remains almost unchanged during
31-42PMW. The faster connectional maturation at these hub regions was supported by a
data-driven cluster analysis. Compared to long-range or between-module connections, short-range
and within-module connections appeared to develop more rapidly during 31-42PMW, contributing
to emergence of the rich-club organization and brain modules. Efficiency measures of all brain
regions, especially those of hub regions, accurately predicted neonatal agein PMW. The findings in
this study shed light on the spatiotemporal principles of brain connectome development during this
critical period, offering references for aberrant brain organization that may be associated with
neurodevelopmental disorders. The highly accurate prediction of age at the identified hubs suggests
that these core regions may serve as biomarkers indicating the ontogeny of early brain development.
Collectively, the results revealed rapid increases of the hub and rich-club connections, resulting in
structural segregation that underlies functional segregation (Cao et a. 2017a) and emergence of

certain primary brain functions during the same developmental period.

Segregation of neonate brain structural connectome

Asshown in Figure 2, dramatic global and local efficiency increases during 31-42PMW were found
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with global topology analysis, suggesting that the white matter maturation contributes to a more
topographically efficient and compact network during this critical period, consistent to the existing
literature (van den Heuvel et al. 2015). The increases of regional efficiency of structural network
are widespread in Figure 3, contributing to global efficiency increases in global topology analysis.
Despite overall increases, the pattern of age-dependent nodal efficiency increases is not uniform
across the brain regions (Fig. 3), with some regions demonstrating rapid increases in nodal
efficiency while other regions remain almost unchanged, contributing to the segregation of baby
brain connectome during 31-42 PMW. It is noteworthy that the regions with higher nodal efficiency
exhibited higher developmental rate too (Fig. 3). Figure 4 further demonstrated that among all the
nodes with significant age-dependent efficiency increases, fastest efficiency increases coincided
with the brain hubs. More accurate prediction of individual age was found at the hub regions of the
structural connectome than other regions (Fig. 8). These results suggest that selective strengthening
of hubs is prominent during the last several weeks before normal time of birth. On the other hand,
the hub distribution across the ages during 31-42PMW are almost unchanged (Supp Fig. 2). This
supports that the increased segregation of the developing connectome is achieved by increasing the
connectivity to and from key hubs, established early in gestation, rather than by altering of hub
distribution. Brain hubs occupy a dominant position in information transfer (Xu et a. 2010) and
have higher levels of metabolic energy consumption and higher rates of cerebral blood flow than
peripheral nodes (Liang et al. 2013; Tomasi et a. 2014). The rich club of hub regions observed here
in bilateral precentral and postcentral gyrus, posterior cingulate gyrus, superior and middle frontal
cortex, are consistent with prior observation in neonates (Ball et al. 2014; Pandit et al. 2014; van
den Heuvel et al. 2015). Moreover, these hubs show a strong correspondence with those of the adult

structural connectome (Hagmann et al. 2008; Gong et al. 2009; van den Heuvel and Sporns 2011).
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Our findings and previous studies jointly suggest that these network hubs are not only critical for
the neonatal brain to get ready for postnatal neural growth, but also play a key role in organizing
the connectome throughout brain development. In addition, functional network segregation was
observed in a subset of the same preterm cohort by analyzing resting-state fMRI dataset (Cao et al.
20174). The structural network segregation in the present study is likely to underlie the functional
segregation.

Higher increase rates of edge strength in rich-club edges were found in short-range connections,
compared to those in long-range connections (Fig. 6). Moreover, higher developmental rates were
found in provincial hubs than connector ones (Fig. 7B) and in within-module connections than
between-module ones (Fig. 7C), with the module distribution of the neonate brains at 31-42PMW
(Fig. 7A) similar to that of adult brains (Hagmann et al. 2008). The edges within modules and
provincial hubs mainly contribute to connections within particular systems, as compared to global
integration. Faster increases of edge strength and nodal efficiency in particular systems make the
network more specialized and segregated during maturation. These results are consistent to general
understanding of normal developmental course of structural network characterized by gradual
maturation from local and proximity-based connections supporting primary functions to a more
distributed and integrative topology supporting higher cogntive functions (Hagmann et al. 2010;
Yap et a. 2011; Bullmore and Sporns 2012; van den Heuvel et al. 2012; Tymofiyeva et al. 2013;

Collin et a. 2014; Vertes and Bullmore 2015).

Differentiated maturation of brain regions with higher rate of efficiency
increases at the brain hubs

The nodal efficiency is heterogeneously distributed and the increase rate of the nodal efficiency is
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also differentiated across the brain regions from Figure 3. Among all brain nodes with statistically
significant increases of nodal efficiency, higher rates of nodal efficiency increases were found at
certain brain hubs (Fig. 4). From Table 2, these hub regions with significant nodal efficiency
changes are the left and right precentral and postcentral gyrus, left and right dorsal cingulate gyrus
and posterior cingulate gyrus, as well as some frontal gyri. As elaborated below, these regions were
consistently found to play an important role in early brain development. The left and right
precentral and postcentral gyrus are essential for primary sensorimotor functions. Previous
functional connectivity studies (Doria et al. 2010; Smyser et a. 2010; Fransson et a. 2011) found
these regions among the earliest appearing functional networks identified from resting-state fMRI.
Moreover, the identified hubs of neonate functional connectome are largely confined to primary
sensorimotor regions (Fransson et a. 2011; Gao et a. 2011; Cao et a. 2017a), which distinguishes
the neonate brain from adult brain. Considering that this differential pattern is observed across
modalities, including PET (Chugani et al. 1987; Chugani 1998), it is likely that early maturation of
receptive sensory areas may not only be helpful for the basic survival functions at birth (Buckner
and Krienen 2013) but also support the later maturation of higher order and multimodal integrative
areas (Guillery 2005). Left and right posterior cingulate gyri, as a functional core of the
default-mode-network (Fransson and Marrelec, 2008), are also regions with high rates of nodal
efficiency increases (Table 2). The higher rate of efficiency increases of these gyri may underlie in
infancy the emergence of primitive default-mode network (Gao, et a., 2009) which is critical for
the neonates to develop a sense of self (e.g. Uddin et al. 2007). Observation of the most significant
nodal efficiency increases in the hub regions of primary sensorimotor region and posterior cingulate
gyrus offers the structural connectivity basis for the coupling of structural and functional topology

development in the baby brain connectome at these regions. Other hubs with significant nodal
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efficiency increases include middle and superior frontal gyri (Fig. 4 and Table 2). The higher rates
of connection increases in frontal lobe during preterm development have been observed in recent
structural connectivity studies (Brown, et a., 2014; Pandit et al., 2014). Active frontal cortical
maturation has also been reflected by cortical FA changes. Sharp decrease of frontal cortical FA, a
measure quantifying the dendritic arborization in the cerebral cortex, has been consistently found in
several studies using cortical FA to delineate the cortical microstructural developmental pattern of
the preterm brains (Delpolyi, et a., 2005; Ball et al., 2013; Yu et a., 2016). The observation of
structural connectivity hubs at superior and middle frontal cortex could be related to active cortical

microstructural activitiesin these regions.

Emergence of rich-club organization in early developing brain

Figure 5 shows rich-club organization (van den Heuvel and Sporns 2011) consisting of all hubs
exhibited in Figure 4A. In the present study, rich-club organization was found in the structural
connectome of preterm brain at the age of as early as 31PMW. Despite that the early emergence of
rich-club organization has also been revealed in recent studies of neonate structural connectome
(Ball et a. 2014; van den Heuvel et a. 2015), the present study revealed the developmental rate of
rich-club and other network properties by employing the neonate dataset with relatively large
sample and evenly distributed ages from 31- 42 PMWs, offering a new insight into the
asynchronous development across brain regions. Heterogeneous increases of nodal efficiency
among brain regions and faster increases at the brain hubs may drive the emergence of rich-club
organization in the period of 31-42 PMW. Rich-club organization was also contributed by more
rapidly strengthened edges in rich-club connections than those in other connections, as

demonstrated by fastest edge strength increases in rich-club connections, followed by the feeder
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connections and the local connections (Fig. 5B). The “rich-get-richer” principle of network
evolution (Barabasi and Albert 1999) means that new connections are preferentially associated to
the nodes with many connections and is reflected by the findings of more rapid growth of hubs and
rich-club connections in the present study. Additionally, the accelerated growth of hub regions leads
to a wider degree distribution including more highly-connected hubs as well as more non-hub
nodes with few local connections (Kaiser 2017), possibly underlying important functional roles of

hub regions after birth and functional segregation of brain regions.

Short-range and long-range connections

As can be observed from Figure 5 most of significantly increasing edges were short-range
connections. The present study revealed that faster increasing edge strength of short-range
connectivity compared to that of long-range connectivity may facilitate the structural connectome
segregation process centered at rich-club organization (Figs. 5 and 6) during 31-42PMW.
Developmental rates of short-range cortical-cortical connections in rich-club edges were higher
than those of long-range connections (Fig. 6). Particular growth of short rich-club edges may aso
enhance local neuronal operations and segregation of modules, supported by modular analysis
shown in Figure 7. Delineation of the brain connectivity pathways with dMRI has revealed white
matter morphological dynamics from early 2™ trimester to birth (Huang et al. 2006; Huang et al.
2009; Takahashi et al. 2012; Ouyang et al. 2015). Among all white matter tract groups, the
long-range association tracts connecting cortical regions are those emerging relatively late. For
example, the arcuate fasciculus, key for the language function development, is not well developed
until 2 years of age (Zhang et al, 2007). Other connectomic studies have found that the increasing

edges in prenatal and preterm developmental stage consisted of many short local connections and
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limited long-range connections (Takahashi et al. 2012; Brown et al. 2014). Faster increasing
short-range connections during 31-42PMW may constitute the pivotal edges of the rich-club

backbone and mediate specialized functional processin local integration (Park and Friston 2013).

Limitations, technical considerations and futuredirections

We tested the effects of different cortica pacellation schemes and found that the maturation
patterns of the neonate connectome were largely independent of the cortical parcellation schemes,
as demonstrated by Figure 9. Besides effects of different parcellation schemes on connectomic
analysis results, several issues need to be further considered for future studies. First, the dataset
used in this study was obtained using a cross-sectional design. Future studies with longitudinal
design may need be considered to eliminate the effects of individual differences, despite that the
age-related structural connectomic changes are dominant in this very dynamic early developmental
period. Second, deterministic tractography was used for the reconstruction of WM tracts, which
may have resulted in the loss of existing fibers due to the “fiber-crossing” problem (Mori and van
Zijl 2002). The tractography techniques more robust to fiber-crossing, such as probabilistic
tractography (Behrens et al. 2007), can be considered to define the network edges in future studies.
Third, it has been found that preterm birth was associated with atered microstructural development
(e.g. Boardman et al. 2010; Rathbone et al. 2011) and adverse neurodevelopmental outcomes
(Woodward et al. 2006). Despite preterm birth effects, MRI examinations of preterm infants have
been predominantly used to understand brain development during the 3" trimester. Several other
studies using dMRI also indicated dramatic reconfiguration during the last 10 weeks prior to
normal time of birth (eg. Ball et a. 2013; Brown et a. 2014; van den Heuvel et a. 2015).

Exposure to the extrauterine environment could constitute part of the observed network
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reorganization (Karolis et al. 2016; Batalle et al. 2017), but these effects would be relatively subtle
compared with effects of very dynamic development during 3¢ trimester (Bourgeois et al. 1989;
Kostovi¢ 1990). Nevertheless, it is likely that the disruption of the network could become apparent
in years subsequent to premature birth. Recent advances of in-utero MRI (e.g. Kasprian et al. 2008;
Thomason et al. 2013; Mitter et al. 2015; van den Heuvel and Thomason 2016) could alleviate the
preterm effects. Fourth, the segregation has also been found in functional connectome development
during this period in our previous study (Cao et a. 2017a). It is noteworthy that the cohort of
functional connectome study (Cao et al. 2017a) was a subset of the cohort used in the present one.
With the same segregation processes found in the structural connectome, the mechanistic
relationship on how structural connections underlie functional ones has yet to be delineated.
Recently developed approach, such as the one used for understanding network level
structure-function relationships (MiSi¢ et a. 2016), could offer the insights of mechanistic
structure-function relationship in this specific developmental period. Finally, further studies on
relationship of maturation of hubs or rich-clubs at certain brain regions and emergence of the brain

functions could contribute to understanding of general developmental principle.
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Figure legends

Figure 1. The flowchart of brain network construction. The b0 image of each neonate subject in its
native space (A) was registered to the b0 image of the single-subject template in the JHU atlas
space (D) with the transformation T(¢). (B) and (C) are FA map and dMRI tractography results in
the native space, respectively. The JHU atlas labels (E) were inversely transferred to the native
space (F) with the transformation T™(¢). With delineation of network edges (C) and nodes (F) in the
native space, the connectivity matrix (G) and network graph (H) were established. The flowchart
was drawn demonstrating analysis of a representative neonate dataset. The reconstructed
whole-brain fiber streamlines (C) and 3D representation of the structural network (H) were
generated using TrackVis (http://trackvis.org/) and BrainNet Viewer software (Xia et a. 2013),

respectively.

Figure 2. Agerelated changes in the global network metrics of the neonate connectome.
Significant age-related linear increases of the network strength, global efficiency and local
efficiency (top panels) and non-significant age-related changes of sparsity and small-worldness

(bottom panels) are demonstrated in the scatter plots.

Figure 3. The heterogeneous development of nodal efficiency across brain regions. (A) On the left
panel, fitted nodal efficiency maps at each week from 32 to 41 PMW demonstrate heterogeneous
nodal efficiency distribution across the cortical surface. On the right panel, both mean and the
standard deviation of nodal efficiency increased significantly with age. (B) On the left pandl, 31
brain regions with significant and heterogeneous age-related increases of noda efficiency are

displayed as small spheres with colors (from blue to red) encoding different increase rates of nodal
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efficiency and sizes encoding the R values of the correlation between the nodal efficiency and age.
The scatter plots on the right panel show significant age-related increases in noda efficiency of
three representative regions, namely, PrCG.L, ANG.L and PHG.R, from highest to lowest
efficiency increase rate. The colors of the dots and the fitted lines for each representative region in
the scatter plots are consistent with those encoding nodal efficiency increase rates shown on the left
panel. Abbreviations. AMY G: amygdala; ANG: angular gyrus; DCG: dorsal cingulate gyrus; HIP:
hippocampus; INS: insular cortex; 10G: inferior occipital gyrus;, L/R: left/right; LFOG: lateral
fronto-orbital gyrus; PCG: posterior cingulate gyrus, PCUN: precuneus; PHG: parahippocampal
gyrus;, PrCG/PoCG: precentral/postcentral gyrus;, SFG/MFG/IFG: superior/middle/inferior frontal

gyrus, SMG: supramargina gyrus, STG/MTG/ITG: superior/middle/ inferior temporal gyrus.

Figure 4. Hub distribution of the neonate connectome and higher developmental rates in hub
regions compared to non-hubs. (A) A 3D representation of the hub distribution of the neonate
structural connectome with the hub nodes in red and non-hub nodes in gray overlaid on the
group-averaged backbone network. The size of the spheres encodes the averaged nodal efficiency
across all neonates. Cluster-1 nodes identified by a data-driven clustering analysis were marked
with blue circle. Of note, all cluster-1 nodes overlapped with the hub regions of the connectome. (B)
Scatter plot showing more rapid age-related increases of noda efficiency in hub regions than
non-hub regions. The partial correlation between age and regional efficiency were fitted separately
in al hub regions (red dots) and non-hub regions (gray dots). The interaction effect between age
and hub category was significant (p <10°). (C) Scatter plot showing significant linear correlation
between the average nodal efficiency and developmental rate of nodal efficiency across the brain

regions with significant nodal efficiency increases, with the hub regions in red and non-hub regions
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in gray. See legend of Figure 3 for abbreviations of brain regions.

Figure 5. The components with significant age-related alterations revealed by NBS analysis and
differential development rates of edge strengths in rich-club organization. (A) The NBS component
is shown in a circle view with the color of the edges encoded by the categories of rich-club (red)
feeder (blue) and local (gray) edges and size of edges encoded by the developmental rate. (B) The
bar plot showing significant differences in edge strength developmental rate among the rich-club,

feeder and local connections. See legend of Figure 3 for abbreviations of brain regions.

Figure 6. The development pattern of short- and long-range connections with age. (A) The
definition of physical fiber length is shown in the upper panel. The physical length of a streamline
reconstructed from deterministic tractography by following the main diffusion direction within
each voxel was the length of the red curve. An illustration of short- and long-range fibers is
presented in the lower panel. (B) Scatter plots showing significantly and relatively sharp
age-related edge strength increases in different categories of short-range connections. (C) Scatter
plots showing non-significant age-related changes of edge strength of rich-club long-range
connections as well as significant but relatively mild age-related edge strength increases of feeder

and local long-range connections.

Figure 7. Higher developmental rates of edge strength of provincial hubs and within-module
connections compared with connector hubs and between-module connections, respectively. (A) A
3D representation of the modular structure of the group-averaged backbone network with nodes in

different colors corresponding to different modules and size encoding average regional efficiency.
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Module I was composed of bilateral orbital-frontal regions (yellow). Module 1l was composed of
bilateral prefrontal regions (purple). Module 7 mainly consisted of left pre/postcentral gyrus,
temporal and superior parietal regions (green). Module O mainly consisted of right pre/postcentral
gyrus, temporal and parietal regions (blue). Module 0 mainly consisted of bilateral posterior
parietal regions (red). The provincia hubs and connector hubs were marked with blue and red
circles, respectively. (B) The bar plot showing higher developmental rate of provincial hubs than
that of connector hubs. (C) The bar plot showing higher developmenta rate of within-module

(Within Mod) connections compared with that of between-module (Between Mod) connections.

Figure 8. The prediction of individua age based on nodal efficiency of all brain regions (A), hub
regions (B) and non-hub regions (C). The scatter plots depict actual versus predicted age. Pearson
correlation coefficient between the actual and predicted ages are shown to assess the prediction

accuracy.

Figure 9. Reproducible age-dependent alterations with a high-resolution parcellation scheme. (A)
The parcellation with JHU-58-region neonate atlas (Oishi et a. 2011) and the high resolution
cortical parcellation with 256 ROIs. (B) Scatter plot showing significantly linear increases with age
for the global efficiency and local efficiency in both low- and high-resolution networks. (C) Region
distributions with significant age-dependent changes of nodal efficiency for low- and
high-resolution network displaying as small spheres with colors encoding the developmental rates
of nodal efficiency and sizes encoding the R values. (D) Similar hub distributions between low- and
high-resolution networks with the hub nodes in red and non-hub nodes in gray and size encoding

average regional efficiency across all neonates, overlaid on the group-averaged network backbone.
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(E) Scatter plots showing significant linear correlation between the average nodal efficiency and
developmental rate of nodal efficiency across the brain regions, in both low- and high-resolution

networks.
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Supplemental Figures

Figure S1. Age-related changes of the preterm brain global network metrics, Lp (shortest path
length), Cp, Gamma (normalized Cp) and Lamda (normalized Lp). Significant decrease of Lp with
age and non-significant changes of Cp, Gamma and Lamda with age are demonstrated in the scatter

plots.

Figure S2. Almost unchanged brain hub distributions across different age groups, 31-34, 34-36,
36-38, 38-40 and 40-42 PMW (week). The distribution is represented in 3D with the hub nodes in
red and non-hub nodes in gray overlaid on the group-averaged backbone network. The size of the

spheres encodes the nodal efficiency normalized in a given age range.

33


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

References

Achard S, Bullmore E. 2007. Efficiency and cost of economical brain functional networks. PLoS Comput
Biol. 3:el7.

Aeby A, LiuY, De Tiege X, Denolin V, David P, Balériaux D, Kavec M, Metens T, Van Bogaert P. 2009.
Maturation of thalamic radiations between 34 and 41 weeks gestation: A combined voxel-based
sudy and probabiligic tractography with diffusion tensor imaging. American Journal of
Neuroradiology. 30:1780-1786.

Ball G, Srinivasan L, Aljabar P, Counsell SJ, Durighel G, Hajnal JV, Rutherford MA, Edwards AD. 2013.
Development of cortical microstructure in the preterm human brain. Proc Natl Acad Sci USA.
110:9541-9546.

Ball G, Aljabar P, Zebari S, Tusor N, Arichi T, Merchant N, Robinson EC, Ogundipe E, Rueckert D,
Edwards AD, Counsell SJ. 2014. Rich-club organization of the newborn human brain. Proc Natl
Acad Sci USA. 111:7456-7461.

Barabasi AL, Albert R. 1999. Emergence of scaling in random networks. Science. 286:509-512.

Basser PJ, Mattiello J, LeBihan D. 1994. MR diffusion tensor spectroscopy and imaging. Biophysical
journal. 66:259.

Batalle D, Hughes EJ, Zhang H, Tournier JD, Tusor N, Aljabar P, Wali L, Alexander DC, Hanal JV,
Nosarti C. 2017. Early development of structural networks and the impact of prematurity on brain
connectivity. Neurolmage. 149: 379-392.

Bayer SA, Altman J. 2004. Atlas of human central nervous system development; Volume 2: The Human
Brain During the Third Trimester: CRC.

Behrens TE, Berg HJ, Joabdi S, Rushworth MF, Woolrich MW. 2007. Probabilistic diffusion tractography
with multiple fibre orientations. What can we gain? Neurol mage. 34:144-155.

Boardman JP, Craven C, Vaappil S, Counsell SJ, Dyet L, Rueckert D, Aljabar P, Rutherford MA, Chew A,
Allsop JM. 2010. A common neonatal image phenotype predicts adverse neurodevelopmental
outcome in children born preterm. Neurolmage. 52:409-414.

Bourgeois JP, Jastreboff PJ, Rakic P. 1989. Synaptogenesisin visual cortex of normal and preterm monkeys:
evidence for intrinsic regulation of synaptic overproduction. Proc Natl Acad Sci USA.
86:4297-4301.

Brown CJ, Miller SP, Booth BG, Andrews S, Chau V, Poskitt KJ, Hamarneh G. 2014. Structural network
analysis of brain development in young preterm neonates. Neurolmage. 101:667-680.

Buckner RL, Krienen FM. 2013. The evolution of distributed association networks in the human brain.
Trends Cogn Sci. 17:648-665.

Bui T, Daire JL, Chalard F, Zaccaria |, Alberti C, Elmaleh M, Garel C, Luton D, Blanc N, Sebag G. 2006.
Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatric
Radiology. 36:1133-1140.

Bullmore E, Sporns O. 2012. The economy of brain network organization. Nat Rev Neurosci. 13:336-349.

Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M, Chalak L, Bi Y, Rollins N, Dong Q, Huang H. 2017a.
Early development of functional network segregation revealed by connectomic analysis of the
preterm human brain. Cereb Cortex. 27: 1949-1963.

Cao M, Huang H, He Y. 2017b. Developmental connectomics from infancy through early childhood. Trends
Neurosci. 40(8): 494-506.

Chugani HT. 1998. A critical period of brain development: Studies of cerebral glucose utilization with PET.
Preventive Medicine. 27:184-188.


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Chugani HT, Phelps ME, Mazziotta JC. 1987. Positron emission tomography study of human brain
functional development. Ann Neurol. 22:487-497.

Collin G, Sporns O, Mandl RC, van den Heuvel MP. 2014. Structural and functional aspects relating to cost
and benefit of rich club organization in the human cerebral cortex. Cereb Cortex. 24:2258-2267.

Delpolyi AR, Mukherjee P, Gill K, Henry RG, Partridge SC, Veeraraghavan S, Jin H, Lu Y, Miller SP,
Ferriero DM, Vigneron DB, Barkovich AJ. 2005. Comparing microgtructural and macrostructural
development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical
gyration. Neurolmage. 27:579-586.

Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE, Counsell SJ, Murgasova M,
Aljabar P, Nunes RG. 2010. Emergence of resting state networks in the preterm human brain. Proc
Natl Acad Sci USA. 107:20015-20020.

Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC,
Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coason RS, Pruett JR, Barch DM,
Petersen SE, Schlaggar BL. 2010. Prediction of individual brain maturity using fMRI. Science.
329:1358-1361.

Drobyshevsky A, Song SK, Gamkrelidze G, Wyrwicz AM, Derrick M, Meng F, Li L, Ji X, Trommer B,
Beardsley DJ, Luo NL, Back SA, Tan S. 2005. Developmental changes in diffusion anisotropy
coincide with immature oligodendrocyte progression and maturation of compound action potential.
Journal of Neuroscience. 25:5988-5997.

Engle WA. 2004. Age terminology during the perinatal period. Pediatrics. 114:1362-1364.

Fransson P, Aden U, Blennow M, Lagercrantz H. 2011. The functional architecture of the infant brain as
revealed by resting-state fMRI. Cereb Cortex. 21:145-154.

Fransson P, Marrelec G. 2008. The precuneus/posterior cingulate cortex plays a pivotal role in the default
mode network: Evidence from a partial correlation network analysis. Neuroimage.
42:1178-1184.Fransson P, Skiold B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U.
2007. Regting-state networks in the infant brain. Proc Natl Acad Sci USA. 104:15531-15536.

Feng L, Li H, Qishi K, MishraV, Ouyang M, Jeon T, Peng Y, Liu S, Huang H. 2016. Age-specific gray and
white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks. OHBM Conference,
Geneva.

Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D, Zhu H, Lin W. 2011. Tempora and spatial
evolution of brain network topology during the first two years of life. PLoS One. 6:€25278.

Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W. 2009. Evidence on the emergence of
the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad
Sci USA. 106:6790-6795.

Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C. 2009. Mapping anatomical
connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography.
Cereb Cortex. 19:524-536.

Guillery RW. 2005. Is postnatal neocortical maturation hierarchical? Trends Neurosci. 28:512-517.

Guimera R, Sales-Pardo M, Amaral LA. 2004. Modularity from fluctuations in random graphs and complex
networks. Phys Rev E Stat Nonlin Soft Matter Phys. 70:025101.

Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ. 1998. Microstructural
development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic
resonance imaging. Pediatric research. 44:584-590.

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. 2008. Mapping the
structural core of human cerebral cortex. PLoS Biol. 6:e159.

35


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran JP, Grant PE. 2010.
White matter maturation reshapes structural connectivity in the late developing human brain. Proc
Natl Acad Sci USA. 107:19067-19072.

Huang H, Jeon T, Sedmak G, Pletikos M, Vasung L, Xu X, Yarowsky P, Richards LJ, Kostovi¢ I, Sestan N.
2013. Coupling diffusion imaging with histological and gene expression analysis to examine the
dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex.
23:2620-2631.

Huang H, Shu N, MishraV, Jeon T, Chalak L, Wang ZJ, Rollins N, Gong G, Cheng H, Peng Y, Dong Q, He
Y. 2015. Development of human brain structural networks through infancy and childhood. Cereb
Cortex. 25:1389-1404.

Huang H, Xue R, Zhang J, Ren T, Richards LJ, Yarowsky P, Miller MI, Mori S. 2009. Anatomical
characterization of human fetal brain development with diffusion tensor magnetic resonance
imaging. Journal of Neuroscience. 29:4263-4273.

Huang H, Zhang J, van Zijl P, Mori S. 2004. Analysis of noise effects on DTI-based tractography using the

brute-force and multi-ROI approach. Magnetic Resonance in Medicine. 52;559-565.

Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards LJ, Yarowsky P, Donohue P, Graham E, van Zijl
PCM, Mori S. 2006. White and gray matter development in human fetal, newborn and pediatric
brains. Neurol mage. 33:27-38.

Huttenlocher PR, Dabholkar AS. 1997. Regional differences in synaptogenesis in human cerebral cortex.
Journal of Comparative Neurology. 387:167-178.

Innocenti GM, Price DJ. 2005. Exuberance in the development of cortical networks. Nat Rev Neurosci
6:955-965.

luculano T, Rosenberg-Lee M, Supekar K, Lynch CJ, Khouzam A, Phillips J, Uddin LQ, Menon V. 2014.
Brain organization underlying superior mathematical abilities in children with autism. Biological
Psychiatry. 75:223-230.

Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S. 2006. DtiStudio: resource program for diffusion tensor
computation and fiber bundle tracking. Computer methods and programs in biomedicine.
81:106-116.

Kaiser M. 2017. Mechanisms of connectome development. Trends Cogn Sci. 21:703-717.

Karolis VR, Froudist-Walsh S, Brittain PJ, Kroll J, Ball G, Edwards AD, Dell'Acqua F, Williams SC,
Murray RM, Nosarti C. 2016. Reinforcement of the brain's rich-club architecture following early
neurodevelopmental disruption caused by very preterm birth. Cereb Cortex. 26:1322-1335.

Kasprian G, Brugger PC, Weber M, Krssak M, Krampl E, Herold C, Prayer D. 2008. In utero tractography
of fetal white matter development. Neuroimage 43: 213-224.

Kostovi¢ 1. 1990. Structural and histochemical reorganization of the human prefrontal cortex during
perinatal and postnatal life. Prog Brain Res. 85:223-239; discussion 239-240.

Kostovi¢ I, Jovanov-MiloSevi¢ N. 2006. The development of cerebral connections during the first 2045
weeks' gestation. Seminarsin Fetal and Neonatal Medicine. 11(6): 415-422.

Kostovi¢ |, Judas M. 2010. The development of the subplate and thalamocortical connections in the human
foetal brain. Acta paediatrica. 99:1119-1127.

LaMantia AS, Rakic P. 1990. Axon overproudction and elimination in the corpus callosum of the
developing rehsus monkey. J Neurosci 10: 2156-2175.

36


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Liang X, Zou QH, He Y, Yang YH. 2013. Coupling of functional connectivity and regional cerebral blood
flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci USA.
110:1929-1934.

McKinstry RC, Mathur A, Miller JH, Ozcan A, Snyder AZ, Schefft GL, Almli CR, Shiran SI, Conturo TE,
Neil JJ. 2002. Radial organization of developing preterm human cerebral cortex revealed by
non-invasive water diffusion anisotropy MRI. Cereb Cortex. 12:1237-1243.

Mitter C, Prayer D, Brugger PC, Weber M. Kasprian G. 2015. In vivo tractography of fetal association
fibers. PloSone. 10: €0119536

Mis¢ B, Betzel RF, De Reus MA, Van Den Heuvel MP, Berman MG, Mcintosh AR, Sporns O. 2016.
Network-level structure-function relationships in human neocortex. Cereb Cortex. 26:3285-3296.

Mori S, Crain BJ, Chacko VP, van Zijl PCM. 1999. Three-dimensional tracking of axonal projectionsin the
brain by magnetic resonance imaging. Ann Neurol. 45:265-269.

Mori S, van Zijl PC. 2002. Fiber tracking: principles and strategies - a technical review. NMR Biomed.
15:468-480.

Newman ME, Girvan M. 2004. Finding and evaluating community structure in networks. Phys Rev E Stat
Nonlin Soft Matter Phys. 69:026113.

Qishi K, Mori S, Donohue PK, Ernst T, Anderson L, Buchthal S, Faria A, Jiang H, Li X, Miller Ml, van Zijl
PCM, Chang L. 2011. Multi-contrast human neonatal brain atlas: Application to normal neonate
development analysis. Neurol mage. 56:8-20.

Ouyang A, Jeon T, Sunkin SM, Pletikos M, Sedmak G, Sestan N, Lein ES, Huang H. 2015. Spatial mapping
of structural and connectional imaging data for the developing human brain with diffusion tensor
imaging. Methods. 73:27-37.

Pandit AS, Robinson E, Aljabar P, Ball G, Gousias IS, Wang Z, Hajnal JV, Rueckert D, Counsell SJ,
Montana G, Edwards AD. 2014. Whole-brain mapping of structural connectivity in infants reveals
altered connection strength associated with growth and preterm birth. Cereb Cortex. 24:2324-2333.

Park H-J, Friston K. 2013. Structural and functional brain networks: from connections to cognition. Science.
342:1238411.

Partridge SC, Mukherjee P, Henry RG, Miller SP, Berman JI, Jn H, Lu Y, Glenn OA, Ferriero DM,
Barkovich AJ, Vigneron DB. 2004. Diffusion tensor imaging: serial quantitation of white matter
tract maturity in premature newborns. Neurolmage. 22:1302-1314.

Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A. 2001. Maturation of white matter in the
human brain: A review of magnetic resonance studies. Brain Research Bulletin. 54:255-266.
Rathbone R, Counsell S, Kapellou O, Dyet L, Kennea N, Hajnal J, Allsop J, Cowan F, Edwards A. 2011.
Perinatal cortical growth and childhood neurocognitive abilities. Neurology. 77:1510-1517.
Rousseeuw PJ. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.

Journal of computational and applied mathematics. 20:53-65.

Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations.
Neurolmage. 52:1059-1069.

Seber G A F. 2009. Multivariate observationgM]. John Wiley & Sons.252.

Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ. 2010. Longitudinal analysis of
neural network development in preterm infants. Cereb Cortex. bhq035.

Sporns O, Honey CJ, Kotter R. 2007. Identification and classification of hubs in brain networks. PLoS One.
2:e1049.

Takahashi E, Folkerth RD, Galaburda AM, Grant PE. 2012. Emerging cerebral connectivity in the human
fetal brain: an MR tractography study. Cereb Cortex. 22:455-464.

37


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Thomason ME, Dassanayake MT, Shen S, Katkuri Y, Alexis M, Anderson AL, Yeo L, Mody S,
Hernandez-Andrade E, Hassan SS, Studholme C, Jeong JW, Romero R. 2013. Cross-hemispheric
functional connectivity inthe human fetal brain. Sci.Trand. Med. 5: 173ra24.

Tomasi D, Wang R, Wang G-J, Volkow ND. 2014. Functional connectivity and brain activation: a
synergistic approach. Cereb Cortex. 24:2619-2629.

Tymofiyeva O, Hess CP, Ziv E, Lee PN, Glass HC, Ferriero DM, Barkovich AJ, Xu D. 2013. A DTI-based
template-free cortical connectome study of brain maturation. PLoS One. 8.

Uddin LQ, lacoboni M, Lange C, Keenan JP. 2007. The self and social cognition: the role of cortical midline
structures and mirror neurons. Trends in Cognitive Sciences. 11:153-157.

van den Heuvel M1, Thomason ME. 2016. Functional connectivity of the human brain in utero. Trends Cogn
i, 20: 931-939.

van den Heuvel MP, Kahn RS, Goni J, Sporns O. 2012. High-cos, high-capacity backbone for global brain
communication. Proc Natl Acad Sci USA. 109:11372-11377.

van den Heuvel MP, Kersbergen KJ, de Reus MA, Keunen K, Kahn RS, Groenendaal F, de Vries LS,
Benders MJINL. 2015. The neonatal connectome during preterm brain development. Cereb Cortex.
25:3000-3013.

van den Heuvel MP, Sporns O. 2011. Rich-club organization of the human connectome. J Neurosci.
31:15775-15786.

Vasung L, Huang H, Jovanov-Milosevic N, Pletikos M, Mori S, Kostovi¢ |. 2010. Development of axonal
pathways in the human fronto-limbic brain: histochemical characterization and diffusion tensor
imaging. J Anat. 217: 400-417.

Vertes PE, Bullmore E. 2015. Annual Research Review: Growth connectomics - the organization and
reorganization of brain networks during normal and abnormal development. Journal of Child
Psychology and Psychiatry. 56:299-320.

Wang J, Wang X, Xia M, Liao X, Evans A, He Y. 2015. GRETNA: a graph theoretical network analysis
toolbox for imaging connectomics. Front Hum Neurosci. 9:386.

Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. 1995. Identification of
“premyelination” bydiffusion-weighted mri. Journal of Computer Assisted Tomography. 19:28-33.

Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. 1998. Automated image regidration: I.
General methods and intrasubject, intramodality validation. Journal of Computer Assisted
Tomography. 22:139-152.

Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. 2006. Neonatal MRI to predict
neurodevelopmental outcomes in preterm infants. New England Journal of Medicine. 355:685-694.

XiaM, Wang J, He Y. 2013. BrainNet Viewer: a network visualization tool for human brain connectomics.
PL0S One. 8:68910.

Xu X-K, Zhang J, Small M. 2010. Rich-club connectivity dominates assortativity and transitivity of complex
networks. Physical Review E. 82:046117.

Yap PT, Fan Y, Chen Y, Gilmore JH, Lin W, Shen D. 2011. Development trends of white matter
connectivity in the first years of life. PLoS One. 6:624678.

Yu Q, Ouyang A, Chalak L, Jeon T, Chia J, MishraV, Sivargian M, Jackson G, Rollins N, Liu S, Huang H.
2016. Structural development of human fetal and preterm brain cortical plate based on
population-averaged templates. Cereb Cortex. 26: 4381-4391.

Zalesky A, Fornito A, Bullmore E. 2010. Network-based statistic: identifying differences in brain networks.
Neurolmage. 53:1197-1207.

38


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Zhang J, Evans A, Hermoye L, Lee SK, Wakana S, Zhang W, Donohue P, Miller MI, Huang H, Wang X,
van Zijl, PCM, Mori S. 2007. Evidence of slow maturation of the superior longitudinal fasciculusin
early childhood by diffusion tensor imaging. Neuroimage. 38: 239-247.

39


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/195800; this version posted September 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Table 1. Demographic information of scanned neonates (°C for C-section and V for vaginal birth; °B for
breast-feeding and F for formula).

. . Antibiotic
Number Age Age | Weight | Weight ) .
Male, | White, | Modeof | Feeding | exposure
of range | mean range | mean i , )
) n(%) | n(%) | delivery | practice during
infants | (weeks) | (weeks) (kg) (kg)
pregnancy
At 47 C.29; B: 77; F:
i 77 25.0-41 | 337 21 59 (77) Yes
birth 4 0.84.0 (61) V:48 0
At -7 31.9-41 379 1441 26 a7 59 (77) C.29; B: 77; F: Ves
scan 7 ' o ' (61) V:48 0
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Table 2. The brain hub regions with the statistically significant age-related increases in nodal
efficiency. The hub regions were sorted by descending developmental rate. See legend of Figure 1

for abbreviation of brain regions.

. Developmental
Regions Mean Enoga (Std) R value P value r:te
SFG.R 57.4 (17.85) 0.38 6.8 x 10" 35
MFG.L 49.2 (15.65) 0.42 1.6 x 10" 3.29
PoCG.L 45,0 (13.24) 0.53 <10® 3.15
PrCG.L 46.1 (13.57) 0.52 <10® 3.15
MFG.R 48.9 (14.74) 0.43 1.1x 10" 3.01
PoCG.R 43.9 (12.34) 0.52 <10° 2.73
PrCG.R 42.9 (11.78) 05 <10 2.45
DCG.R 49.7 (13.14) 0.43 14 x 10" 231
DCG.L 46.5 (11.46) 0.45 4.8 % 10° 2.17
PCG.R 51.0 (11.56) 0.4 34x10" 2.03
PCG.L 47.7 (10.78) 0.41 22x 10" 1.96

a4


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

-
preprint doi: https://doi.org/10.110.

ﬁ%*
ified by peer review) is the author/funder,

s

under

ed September 29, 2017. The copyright
DiORxiv a license to display the preprint
D 4.0 International license.

o ° a g


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fitted Sp

900

500

100

r=0.46; p<0.001

r=0.46; p<0.001

r=0.48; p<20.001

Lua
©
D
[
32 37 42 32 37 42 32 37
PMA(wk) PMA(wk) PMA(wk)
0.65 r=0.04; p=0.73 r=0.013; p=0.91
> ’ ® 1 6 ]
bt L4 © |-
ﬂ s % £ L4
g t. o‘? :': -',. e ‘o:o s ° -
o 0.55 __'_eﬁ.‘.n—L—.:——. )] 13 -y ..0. " o
- ° ° ® o o0 ° T !l ..r_“*h—-—.
3 et el B TTRAEESS,
p = o o ° . E L. ° .. :..0
“ 045 . .
32 37 42 32 37 42
PMA(wk) PMA(wk)


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

r=0.46; p <0.001

g

nodal Llé
87 S
. =

h e} 0 . .
Q
=
|18

32 37 42
33 Week 34 Week 35 Week 36 Week = PMA(wk)
; 3 r=0.39; p<0.001
c
2
b
8
S
©
- _— >
b=
b L 32 37 42
37 Week 38 Week 39 Week 40 Week 41 Week PMA(wk)
A = PrcG.L A
ANG.L
H = PHGR A

nodal

Fitted E

Developmental Rate of E

&/

nodal

YT seeee(wk) . AWCR T8 o 32 37 42
1.2 3.5 \\



https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

>

@ Hubs © Non-hubs O Cluster1

MFG.L MFG.R

@ ACG.L AcGR@
‘ \@smp\

CG L'DCG.R

PrCG.R

B o

=== Hubs
=== Non-hubs

20 fnleraction:p <10
37 42
C PMA(wk)
o r=0.78; p < 0.001
1] = 3.5 °
75
< 3 25
Eu
25 15
©
$ os
[=]

25 42 58

nodal


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

1
p<0.05
1
Local

p<0.001
1

p<0.001
1

Rich-club Feeder

n 0
-

(imy) Yibueng abp3
JO ajey |eyuswdojaasq

25

= Feeder
= Local


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

Definition of Length

B

End voxel

Short-range

\
Long fiber )

19

LE (wascill@s;!}l

4

Long-range
Edge Strength

Edge Strength

Y
(=]

20

(=]

Feeder
r=0.49; p<0.001

Local

r=0.48; p<0.001

Rich-club
r=0.37; p=0.001
32 37

PMA(wk)
r=-0.03; p=0.75

°

L)
o. e o®
° % '. °
s° c..o. .:..‘...
® oo ©

42

32 37
PMA(wk)

r=024; p=0.04

42

32 42

37
PMA(wk)
r=0.30; p=0.009



https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

Connector

0.01
0.003

Provincial
P

Within Mod Between Mod

P

S S = = S S
- o ~ = e
() **3 30 (im/) yibuang abp3

B ajey |eyuswdojeneq C Jo ajey |ejuswdojarag

ModI-Vv: € C @ @

A SqnH 10jJo8uuo0) O  SANH [eldulrold O


https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

A All regions
< |r=076; p=9x107°
2
<
=
o
©
(]
©
©
o
o
32 37 42
PMA(wk)

B

Y
N

Predicted PMA(wk)
w w
N ~l

Hub regions
r=0.81; p=5x10'19

C

w oy
~l N

Predicted PMA(wk)
w
N

Non-hub regions
r=0.66; p=5x10"



https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

Low Resolution >

High Resolution

B r=0.46; p<0.001 r=0.48; p <0.001 C e D o ° A E o r=0.78; p < 0.001
- ® o 3 L S o &’ i~ 3.5
S 8 - P 4 w3
- wi - : g 5 2.5
- el Q@ 3
2 2 o e Euwqs
TN [N ¢ e -3 e » \ % “6
U @ 3 0.5
32 37 42 32 37 42 P S a] 25 42 58
PMA(wK) PMA(wk) E oca
Div.e!opmental .Ritng.E"“’ﬂ' @ Hubs ¢ Non-hubs
r=0.58; p<0.001 r=0.63; p<0.001 o8, 3. 8’ 9 1.0} r=0.43; p<0.001
9 .:vkc S e "o ! "f';o"\ » 3]
Cq P 9N i o )
WZad s&
e > & 2
> ° g_ |.|Jg
- [} .: - ) Y
1 o % oo ‘." g
32 37 42 32 37 422 \Gagh, oia a 4.0 8.5 13
PMA (wk) PMA (wk) 4 E, .



https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/

