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Abstract 

During the 3rd trimester, large-scale of neural circuits are formed in the human brain, resulting in 

the adult-like brain networks at birth. However, how the brain circuits develop into a highly 

efficient and segregated connectome during this period is unknown. We hypothesized that faster 

increases of connectivity efficiency and strength at the brain hubs and rich-club are critical for 

emergence of an efficient and segregated brain connectome. Here, using high resolution diffusion 

MRI of 77 preterm-born and term-born neonates scanned at 31-42 postmenstrual weeks (PMW), 

we constructed the structural connectivity matrices and performed graph-theory-based analyses. We 

found faster increases of nodal efficiency mainly at the brain hubs, distributed in primary 

sensorimotor regions, superior-middle frontal and posterior cingulate gyrus during 31-42PMW. The 

rich-club and within-module connections were characterized by higher rates of edge strength 

increases. Edge strength of short-range connections increased faster than that of long-range 

connections. The nodal efficiencies of the hubs predicted individual postmenstrual ages more 

accurately than those of non-hubs. Collectively, these findings revealed regionally differentiated 

maturation in the baby brain structural connectome and more rapid increases of the hub and 

rich-club connections, which underlie network segregation and differentiated brain function 

emergence. 

Keywords: brain maturation, baby connectome, structural connectivity, segregation, diffusion MRI 
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Introduction 

In the last a few weeks prior to normal time of birth, a large scale of brain circuit formation 

underlies the emergence of human connectome at a macroscale. Massive development of 

cortico-cortical axonal pathways before birth offers structural basis to establish an adult-like brain 

network (e.g. Kostović and Jovanov-Milošević 2006; Kostović and Judaš 2010). The neuronal 

activities associated with the circuit formation undergo substantial remodeling after birth (e.g. 

LaMantia and Rakic 1990; Innocenti and Price 2005). As suggested by previous neuropathological 

studies (e.g. Huttenlocher and Dabholkar 1997), regionally differentiated developments of neuronal 

connections are associated with heterogeneous emergence of brain functions, with primary 

sensorimotor function generally emerging earlier than higher-order cognitive functions. However, 

little is known about the structural organization of neural networks at the macroscale during this 

critical period. Knowledge of the ontogeny of the human connectome during late fetal development 

may provide not only insight into normal brain development, but also a reference for elucidating 

the complex trajectories of atypical or abberant neurodevelopment. 

 

The structural connections have recently been extensively studied by magnetic resonance imaging 

(MRI), capable of surveying entire brain connectivity noninvasively. Diffusion MRI (dMRI), a type 

of MRI methods, has been applied as an approach to infer axonal pathways constituting the 

structural brain connectivity in vivo. With dMRI-based tractography (e.g. Mori et al. 1999), the 

emergence of brain white matter (WM) fibers has been delineated in the fetal brain as early as the 

beginning of 2nd trimester (e.g. Huang et al. 2006; Huang et al. 2009; Vasung et al. 2010; Takahashi 

et al. 2012; Ouyang et al. 2015), consistent to the histological atlases (Bayer and Altman 2004). 

These dMRI studies have demonstrated, for example, that limbic WM fibers appear earlier while 
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the association WM fibers constituting major cortico-cortical connectivity appear later. By the start 

of the 3rd trimester, except arcuate fasciculus, all major WM fibers can be identified with dMRI 

(Feng et al., 2016). The asynchronous and heterogeneous maturation of WM across regions in the 

3rd trimester has also been suggested by other neuroimaging studies (e.g. Hüppi et al. 1998; 

Partridge et al. 2004; Bui et al. 2006; Aeby et al. 2009). In addition, it has been found that different 

cortical regions undergo differential maturation pattern in terms of cortical microstructure 

(McKinstry et al. 2002; DeIpolyi et al. 2005; Huang et al. 2013; Yu et al. 2016), also assessed with 

dMRI.  

 

Although the literature above revealed spatiotemporally heterogeneous development of both 

cortical regions and WM pathways linking them, few studies have delineated the differential 

maturation pattern of structural connectivity from the perspective of a macro-scale connectome 

during the 3rd trimester. The baby brain connectome (For a review, see e.g. Cao et al. 2017b) 

reveals the inter-regional connectivity pattern, in contrast to individual WM fiber bundles or brain 

regions. In a brain connectome, some regions are more interconnected with other brain regions, 

constituting “hubs” within the global network topography (e.g. Hagmann et al. 2008; Gong et al. 

2009). Further, these hub regions tend to be densely interconnected with each other forming a 

rich-club organization (van den Heuvel and Sporns 2011), which serves as a highly efficient 

backbone for integration of neuronal activity across distributed circuits and presumably forms the 

foundation of complex neurological functions (van den Heuvel et al. 2012). With the structural 

connectivity underlying functional connectivity, the present connectomic study offers a unique 

view of understanding the structural substrate of emerging brain functions. The preterm and 

term-born brain connectome has been investigated with dMRI tractography and subsequent 
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graph-theory analysis (Tymofiyeva et al. 2013; Ball et al. 2014; Brown et al. 2014; van den Heuvel 

et al. 2015; Batalle et al. 2017). These studies support the emergence of the hub regions and rich 

club organization during the 3rd trimester (Ball et al. 2014; van den Heuvel et al. 2015). However, 

regionally differential maturational rates during the 3rd trimester quantified by connectomic 

measures of brain hubs, rich-club and modules as well as short-range and long-range connections 

have not been determined. In addition, it remains to be determined how differentiated connectional 

maturation contributes to the segregation process of structural organization of baby brain.  

 

In this study, we hypothesized that differentiated maturation of structural connectivity across brain 

regions plays a central role in emergence of an efficient and segregated brain connectome at birth. 

Relatively high resolution (1.5 × 1.5 × 1.6 mm3) dMRI images of 77 preterm-born or term-born 

neonates scanned around 31 to 42 postmenstrual weeks (PMW) (Engle 2004) were acquired. The 

structural connectivity matrix of each neonate was constructed with dMRI tractography. With the 

comprehensive graph theory analysis at global, modular and regional connection levels, we 

examined cross-sectional age-dependent developmental rate of the preterm and term-born brain 

network measures across different brain regions and connections. 
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Materials and Methods 

Preterm subjects  

The study was approved by the Institutional Review Board (IRB) of the University of Texas 

Southwestern Medical Center. 77 normal neonates (47 males and 30 females) were recruited from 

Parkland Memorial Hospital at Dallas. These neonates were scanned between 31.9 to 41.7 PMW, 

with postmenstrual age defined in accordance with Engle’s criteria (Engle 2004). All neonates 

underwent MR imaging as part of a study of normal prenatal and perinatal development; no 

neonates were scanned under clinical indications. Moreover, these neonates were recruited after 

rigorous screening procedures conducted by a board-certified neonatologist (LC) and an 

experienced pediatric radiologist (NR), based on subjects’ ultrasound, clinical MRI and medical 

record of the neonates and their mothers. Exclusion criteria include evidence of bleeding or 

intracranial abnormality by serial sonography; mother’s excessive drug or alcohol abuse during 

pregnancy; grade III-IV intraventricular hemorrhage; periventricular leukomalacia; 

hypoxic-ischemic encephalopathy; lung disease or brochopulmonary dysplasia; body or heart 

malformations; chromosomal abnormalities; necrotizing enterocolitis that requires intestinal 

resection or complex feeding/nutritional disorders; defects or anomalies of forebrain, brainstem or 

cerebellum; brain tissue dys- or hypoplasias; abnormal meninges; alterations in the pial or 

ventricular surface; or white matter lesions. Written and informed parental consents were obtained 

from the subject’s mother (or father if married). Detailed characteristics regarding this cohort are 

provided in Table 1.    

 

MRI Acquisition 

All neonates were scanned with a Philips 3.0 T Achieva MR scanner at the Children’s Medical 
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Center, Dallas. They were well-fed before scanning. During scan, all neonates were asleep 

naturally without sedation. Earplugs, earphones and extra foam padding were applied to reduce the 

sound of the scanner while the neonates were asleep. A single-shot EPI sequence (SENSE factor = 

2.5) was used for dMRI acquisition, with the following parameters: TE=78ms, TR=6850ms, 

in-plane field of view = 168 × 168mm2, in-plane imaging matrix = 112 × 112, in-plane imaging 

resolution =1.5 × 1.5mm2, slice thickness =1.6mm without gap, slice number=60, 30 independent 

diffusion encoding directions with b value = 1000 s/mm2. The images were reconstructed to 256 × 

256 in-plane matrix. Two repetitions were conducted for dMRI acquisition, resulting in scan time 

of 11 minutes. As described in our previous publication (Huang et al. 2015), with 30 diffusion 

weighted image (DWI) volumes and 2 repetitions, we accepted those dMRI datasets with less than 

5 DWI volumes affected by severe motion. The affected volumes were replaced by the good 

volumes of another dMRI repetition during postprocessing. 

 

Data preprocessing 

Small motion and eddy current of dMRI of each neonate were corrected by registering all the DWIs 

to the b0 image using a 12-parameter (affine) automated image registration (AIR) algorithm 

(Woods et al. 1998). After AIR, six independent elements of the 3×3 diffusion tensor were 

determined by multivariate least-square fitting of DWIs (Basser et al. 1994). The tensor was 

diagonalized to obtain three eigenvalues ( 31−λ ) and eigenvectors ( 31−ν ). Then the diffusion metrics, 

such as fractional anisotropy (FA) and apparent diffusion coefficient (ADC) images were calculated. 

All above-mentioned procedures were conducted offline using DTIStudio (Jiang et al. 2006). 

 

Network construction 
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Nodes and edges, the two fundamental elements of a network, were defined using the following 

procedures to construct the individual structural network. 

Network node definition. The nodes of each subject in the native dMRI space were obtained by 

transferring the parcellated cortical regions in the Johns Hopkins University (JHU) neonate atlas 

(Oishi et al. 2011). The contrasts of the single-subject b0 (ss-b0) image in the JHU atlas space (Fig. 

1D) and individual neonate subject’s b0 image in the native space (Fig. 1A) were used to drive the 

nonlinear registration that transfers JHU atlas cortical parcellation to the individual neonate 

subjects. Briefly, neonate b0 image in the native space was registered to the ss-b0 images in the 

JHU atlas space with transformation T(•). The inverse transformation T-1(•) was used to map JHU 

atlas labels (Fig. 1E) to the native space of individual neonate (Fig. 1F). Discrete labeling values 

were preserved using a nearest-neighbor interpolation. The structural network (Fig. 1G) of each 

neonate was constructed with 58 cortical regions (Fig. 1F) representing 58 nodes of the brain 

network. The registration procedures were conducted using SPM8 software 

(http://www.fil.ion.ucl.ac.uk/spm/). Of note, the cortical regions were dilated by 9 voxels in order 

to allow traced WM fibers (see Network edge definition below) to reach the cortical nodes. To 

minimize spurious structural connections between the nodes, the voxels in the dilated cortical 

regions with ADC greater than 1.9 × 10-3mm2/s were likely to be those of cerebrospinal fluid (CSF) 

and removed. 

Network edge definition. Network edges were defined with reconstructed WM fibers by dMRI 

tractography. Brute-force deterministic fiber tractography in the whole brain was performed with 

Diffusion Toolkit (http://trackvis.org/) (Mori et al. 1999; Huang et al. 2004). Due to low FA in 

preterm brains, the FA threshold was 0 (no FA threshold) (Takahashi et al., 2012) and angle 

threshold was 35o for tractography. Only reconstructed streamlines with two end points located in 
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the dilated cortical ribbon were kept, as shown in Fig. 1C. Two regions were considered 

structurally connected if there exists at least one streamline with two end-points located in these 

two regions. Anisotropy diffusivity such as FA and the streamlines obtained by tractography have 

both been proved as good markers for characterization of tissue microstructure and WM changes 

during development (Wimberger et al. 1995; Drobyshevsky et al. 2005; Huang et al. 2006; Huang 

et al. 2009; Takahashi et al. 2012). Therefore, we defined the number of fiber streamlines 

multiplied by the mean FA (FN × FA) of all connected fibers between two regions as the edge 

weight. As a result, we constructed a weighted structural network (Fig. 1H) for each neonate, 

represented by a symmetric 58 × 58 connectivity matrix (Fig. 1G). 

 

Network analysis 

To describe the topological organization of the neonatal structural connectome, the following graph 

metrics were estimated, with detailed definitions of the network metrics provided in the 

Supplement material. 

Global network organization. For the global network metrics, we quantified the network 

sparsity, network strength (Sp), global efficiency (Eglob), local efficiency (Eloc), shortest path length 

(Lp), clustering coefficient (Cp) small-world parameters (λ, γ and σ) (Rubinov and Sporns 2010).  

Regional network efficiency. To determine the nodal (regional) characteristics of the brain 

networks, we computed the nodal efficiency which is defined as (Achard and Bullmore 2007). 

Hub distribution. To identify the hub regions of the neonate connectome, we constructed the 

group-based backbone network by detecting the significant nonzero connections across all 

participants, with a nonparametric one-tailed sign test (p < 0.05, corrected) and assigning the edge 

weight with the group-averaged one. Based on the group-averaged backbone network, we identified 
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the hub regions by sorting the nodal efficiency (Enodal(i) > mean+0.5*std). Next, the rich-club 

coefficient ( φ ) and normalized rich-club (RC) coefficient ( φ norm) were calculated for the 

backbone network based on averaged network of all neonates, according to van den Heuvel and 

Sporns (2011). On the basis of the categorization of the nodes of the network into hub and non-hub 

regions, edges of the network were classified into. Finally, the rich-club, feeder and local edge 

strength was averaged edge weight of rich-club, feeder and local connections, respectively. 

Short- and long- range edges. For the reconstructed fibers, length was defined as the physical 

length of the streamline obtained by tractography (Fig. 6A) and the average physical length of all 

streamlines connecting each pair of brain regions was defined as the length of each connection. 

Then, the connections of each individual network were grouped into long-range and short-range 

ones based on the length of these connections. Considering the increasing brain size with age, we 

did not use a constant length threshold. Individual connections with length smaller/greater than 

average length of all connections were defined as short-/long- range connections, respectively.  

Modular parcellation. Module detection was performed with an optimized simulated 

annealing approach (Guimera et al. 2004) to parcellate the brain network into different modules 

(Newman and Girvan 2004). Briefly, the aim of this module identification process is to find a 

specific partition (p) which yields the largest network modularity, Q(p). Q(p) quantifies the 

difference between the number of intra-module links of actual network and that of random network 

in which connections are linked at random. The modular parcellation was performed on the 

individual network of each neonate brain with the modularity and module number of the individual 

network calculated. In addition, to apply a consistent modular parcellation across subjects, we also 

performed module detection on the backbone network. Based on the modular parcellation of 

backbone network, the participation coefficient (PC) of each node was calculated (Guimera et al. 
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2004; Sporns et al. 2007; Rubinov and Sporns 2010) to assess the contribution of each node to 

modular segregation or integration. Then, the hub regions were categorized as connector hubs (with 

PC > 0.5) which occupied high inter-module connections and provincial hubs (with PC < 0.5) 

which occupied high intra-module connections. Based on the backbone modular parcellation, the 

whole within- and between-module edge strength was the summation of edge weights of within- 

and between-module connections, respectively. 

All network analyses were performed using GRETNA software 

(http://www.nitrc.org/projects/gretna/) (Wang et al. 2015) and the results were visualized using 

BrainNet Viewer software (https://www.nitrc.org/projects/bnv/) (Xia et al. 2013). 

 

Statistical analysis 

Age effects on network properties. To examine the age effects on the network topological properties, 

a general linear model (GLM) analysis was implemented between each network metric and 

postmenstrual age across all subjects, with gender and total brain volume (TBV) as covariates: 

0 1 2 3Y age gender TBVβ β β β= + × + × + ×  

The slope of each metric against age 1β  was used to represent the developmental rate. 

Network-based statistic (NBS). To identify structural connections showing significant age 

effects from the whole connectome, we used the NBS approach (Zalesky et al. 2010). First, the 

same GLM analysis with gender and TBV as covariates was applied for the entire connectome. A 

threshold of p < 0.01 was used to yield t statistic matrix of suprathreshold connections. After that, 

the nonparametric NBS approach was used for controlling family wise error (FWE). By generate 

5000 times permutation null distribution, the statistical significance of the observed component 

sizes in the un-corrected connection matrix was evaluated. Finally, the interconnected sub-network 
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components with a corrected p < 0.01 were considered statistically significant. 

 

Clustering analysis 

To group the brain regions with similar developmental trajectories, we used a data-driven k-means 

clustering method (Seber 2009). The set of brain regions with significant age-dependent nodal 

efficiency increase was used as the input and the developmental trajectory of each region’s 

efficiency was used as the feature of clustering. The k-means algorithm was initialized with 

randomized estimates for the trajectory centers and iterated multiple times to convergence. In our 

study, ten repetitions with different random initial cluster centroids were used to minimize the 

effect of start condition. The whole process was repeated with varying numbers of clusters from 

two to six and the final number of clusters was determined by the clustering results with the largest 

average silhouette value (Rousseeuw 1987). To test if nodal efficiency increases faster in the hubs 

than non-hubs during 32-41PMW, a two-cluster model with the highest silhouette value among the 

priori designs (2~6 clusters) was adopted. 

 

Prediction of the neonate age using support vector regression  

A support vector regression (SVR) with a linear kernel function was used to test the prediction 

power of nodal efficiency on individual neonate postemenstrual age. The default settings with C = 

1 and epsilon = 0.001 in the LIBSVM Toolbox (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) were 

used to evaluate the SVR model (Dosenbach et al. 2010; Iuculano et al. 2014). A Leave-one-out 

cross-validation (LOOCV) was used to evaluate the prediction accuracy of the model. Each neonate 

was designated as the test data in turns while the remaining ones were used to train the SVR 

predictor which aimed at making a prediction about the test neonate’s age. Pearson correlation 
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coefficient between the actual and predicted ages was calculated to assess the prediction accuracy. 

The nodal efficiencies of all regions or only hub/non-hub regions defined based on the networks of 

train samples were used as features for the SVR predictor separately. In each iteration, the hub 

distribution obtained from train sample was similar to that obtained from the whole cohort. 

 

Evaluation of the effects of different parcellation schemes  

To evaluate the potential effects of the parcellation schemes (e.g. Zalesky et al., 2010) on the 

results, the neonate cortex was further randomly subdivided into 256 nodes with equal size to 

examine the age-dependent network property changes with a high-resolution parcellation. For each 

neonate, a high-resolution structural connectivity matrix in 256 by 256 was constructed. Same 

network analysis procedures and statistical analyses as those used in the low-resolution networks 

(58 nodes) were repeated.  
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Results 

Age-dependent changes of global topological properties of neonate structural 

connectome 

The global structural networks became stronger and more efficient from 32 to 41 PMW. About 

5-fold increase of network strength (r = 0.46, p = 3.3 × 10-5), 6-fold increase of global efficiency (r 

= 0.46, p = 2.9 × 10-5) and 7-fold increase of local efficiency (r = 0.48, p = 1.1 × 10-5) were found 

(Fig. 2, upper panel). Prominent small-world organization was observed with λ ≈1 and γ>1 for 

the structural networks of all neonates aged 32 to 41 PMW. However, no significant age-dependent 

changes were found in number of edges (network sparsity) and small-worldness σ  (p > 0.05, Fig. 

2, lower panel). Age-dependent changes of other network measurements can be found in 

Supplemental Figure S1. 

 

Differential nodal efficiency increases with faster nodal efficiency increases at 

the brain hubs 

Differential nodal efficiency increases across brain regions: The heterogeneous distribution of 

nodal efficiency across brain regions is clear as shown by the fitted nodal efficiency maps of each 

week during 32-41PMW (Fig. 3A, left panel), with higher efficiency in prefrontal cortex, precentral 

and postcentral gyrus and lower efficiency in occipital cortex. Both the mean and the standard 

deviation (SD) of the nodal efficiency increased significantly with age (Mean: r = 0.46, p = 2.9 × 

10-5; SD: r = 0.39, p = 6.1× 10-4) (Fig. 3A, right panel), indicating that both the average and the 

variability of nodal efficiency across the brain regions increased with age. As shown in Fig. 3B, 31 

cortical regions widely distributed all over the brain in bilateral frontal, parietal, temporal and 

limbic regions exhibited significant age-related linear increases (p < 0.05, Bonferroni corrected) 
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during 31-42PMW with GLM analysis. Importantly, the developmental rates of nodal efficiency 

varied across regions. More rapid, age-dependent increases were found in the precentral and 

postcentral gyrus, superior and middle frontal gyrus, precuneus and posterior cingulate gyrus 

relative to other brain regions (Fig. 3B). The scatter plots of three representative regions (left 

precentral gyrus: PrCG.L, left angular gyrus: ANG.L, and right parahippocampal gyrus: PHG.R) 

with distinguished nodal efficiency increase rates are shown in the right panel of Figure 3B. 

Hub distribution, rich-club organization and faster nodal efficiency increases at the brain hubs: 

Figure 4A shows that the hub regions (red balls) are mainly distributed in the bilateral superior and 

middle frontal cortex, precentral and postcentral gyrus, superior parietal cortex and cingulate cortex. 

Consistent hub distribution across different PMW age groups from 31 to 41PMW was observed, as 

shown in Figure S2. Moreover, a characteristic rich-club organization with the normalized RC 

exceeding 1 (φ norm = 1.21) was found for the backbone network, revealing a densely connected 

component between hub regions of the neonate structural connectome. Based on a data-driven 

two-cluster model for categorizing nodal efficiency, among 31 brain regions (shown in Fig. 3B) 

with significant age-dependent nodal efficiency increases, all 11 cluster-1 brain regions (blue 

circles in Fig. 4A and listed in Table 2) were part of the 16 hub regions (red balls in Fig. 4A) of the 

neonate connectome, indicating distinctively higher rate of efficiency increases during 31-42PMW 

at hub regions. Note that not all hub regions were characterized by statistically significant 

efficiency increases; however, those with significant efficiency increases were all cluster-1 brain 

regions. Fig. 4B shows significantly steeper efficiency increase trend line at the hub regions 

compared to non-hub regions (t = 6.85, interaction p < 10-3). Furthermore, by correlating the nodal 

efficiency increase rates and nodal efficiency measurements at 31 brain regions with significant 

age-dependent changes, we found significantly positive correlation between efficiency increase rate 
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and efficiency measurements themselves (r = 0.78, p < 10-3) (Fig. 4C). 

 

Faster edge strength increases in rich-club organization, in short-range 

connections and in intra-module connections 

Faster edge strength increases in rich-club organization: NBS analysis revealed 101 significantly 

increasing edges (10% of all edges) connecting 56 nodes, which were widely distributed in bilateral 

frontal, parietal, temporal and limbic areas (Fig. 5A). For the connections with significant 

age-dependent changes, the rate of changes varied across the edges, reflected by differentially 

encoded edge width (Fig. 5A). Higher increase rates of edge strength were found in a few 

symmetric and short-range connections, including bilateral connections between superior and 

middle frontal gyrus, bilateral connections between precentral and postcentral gyrus, and bilateral 

connections between precuneus and posterior cingulate gyrus (Fig. 5A). With the connections 

classified into rich-club, feeder, and local connections (Figs 5A and 5B), significant differences in 

edge strength change rates were found among these three types of connections (Fig. 5B). 

Specifically, highest rate of edge strength increase was found in rich-club connections, followed by 

feeder and local connections (Fig. 5B). 

Faster edge strength increases in short-range connections: Representative short- and long-range 

connections based on the pathway length were demonstrated in Fig. 6A. Amongst short-range 

connections, rich-club (r = 0.37, p = 1.0 × 10--3), feeder (r = 0.49, p = 9.6 × 10-6) and local (r = 0.48, 

p = 1.0 × 10-5) connections (Fig. 6B) all increased significantly with age. By contrast, amongst 

long-range connections, only feeder (r = 0.24, p = 3.9 × 10-2) and local (r = 0.30, p = 8.7 × 10-3) 

connections increased significantly with age while no significant age-dependent changes were 

found for rich-club connections (r = -0.03, p = 0.75) (Fig. 6C). 
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Neonate brain modular organization and faster edge strength increases in intra-module 

connections: Significant modular organization was found in the structural networks of all 

individual subjects (Q > 0.34 for all subjects). No significant age-dependent alterations in the 

modularity and module number were found (all p > 0.05), suggesting that the modular organization 

remained stable during 32-41 PMW. Therefore, we only examined the modular parcellation of the 

group-based backbone network. A significant modular architecture of the backbone network was 

identified (Qmax = 0.42), separating the brain into five different modules (Fig. 7A, left panel). Hub 

regions were evenly distributed in different modules with provincial hubs located in the center of 

modules and connector hubs located in the boundaries. The bilateral precentral and postcentral 

gyrus and left superior and middle frontal gyrus were detected as provincial hubs, and the other hub 

regions were connector hubs (Fig. 7A). By comparing nodal efficiency increasing rates of these two 

types of hubs, we found the nodal efficiency increasing rate of provincial hubs are significantly 

higher than that of connector hubs (t = 2.91, p = 0.01) (Fig. 7B). In addition, we found that the 

age-dependent edge strength increase rate of within-module connections was higher than that of the 

between-module connections (t = 5.25, p = 0.003) (Fig. 7C). R values, p values and age-dependent 

edge strength increase rates from the correlation of edge strength and age for within-module and 

between-module connections are listed in the Supplemental Table S1. 

 

Age prediction and reproducible findings with a high-resolution parcellation 

scheme  

Age prediction: Fig. 8A shows that the postmenstrual ages in weeks of the neonates can be 

predicted by the nodal efficiency of brain structural connectome, with a correlation r = 0.76 

between the actual and the predicted postmenstrual age. It is noteworthy that hub regions showed 
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higher prediction accuracy (r = 0.81) (Fig. 8B) than non-hub regions (r = 0.66) (Fig. 8C), 

suggesting a stronger association between hubs and postmenstrual age as compared to non-hubs. 

Reproducible findings with a high-resolution parcellation scheme: Similar age-related development 

trend lines of global and regional network properties were observed when the analyses were 

repeated utilizing the higher resolution parcellation. This included significant age-dependent 

increases in global and local network efficiency (Eglob: r = 0.58, p = 5.9 × 10-8; Eloc: r = 0.63, p = 

1.2 × 10-9) (Fig. 9B). Likewise, the brain regions with most rapid age-dependent increases of nodal 

efficiency were distributed in the precentral and postcentral gyrus cortex and posterior parietal 

cortex (Fig. 9C), consistent with the findings from low-resolution parcellation. Similar hub regions 

were found mainly located in the bilateral orbito-frontal cortex, bilateral precentral and postcentral 

cortex, bilateral superior parietal cortex and temporal cortex (Fig. 9D). Finally, similar to Fig 4C, a 

significant positive correlation between mean nodal efficiency and their developmental rate was 

also observed (r = 0.43, p = 9.0 × 10-12) in regions with significant age-related alterations in 

high-resolution networks (Fig. 9E). These results jointly indicated that the maturation patterns of 

the neonate connectome were largely independent of the cortical parcellation schemes. 
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Discussion 

Using connectomic analyses of dMRI images with relatively high resolution (1.5 × 1.5 × 1.6 mm3) 

from 77 preterm and term-born neonates scanned at 31 to 42 PMW, we found rapid and regionally 

differentiated maturation with faster connectivity increases taking place mainly at the brain hubs 

and rich-club, especially for the short-range and within-module connections, resulting in a more 

segregated structural connectome near term-equivalency. The brain hubs with faster age-dependent 

nodal efficiency increases are distributed in primary sensorimotor regions, superior-middle frontal 

and posterior cingulate gyrus, while the hub distribution remains almost unchanged during 

31-42PMW. The faster connectional maturation at these hub regions was supported by a 

data-driven cluster analysis. Compared to long-range or between-module connections, short-range 

and within-module connections appeared to develop more rapidly during 31-42PMW, contributing 

to emergence of the rich-club organization and brain modules. Efficiency measures of all brain 

regions, especially those of hub regions, accurately predicted neonatal age in PMW. The findings in 

this study shed light on the spatiotemporal principles of brain connectome development during this 

critical period, offering references for aberrant brain organization that may be associated with 

neurodevelopmental disorders. The highly accurate prediction of age at the identified hubs suggests 

that these core regions may serve as biomarkers indicating the ontogeny of early brain development. 

Collectively, the results revealed rapid increases of the hub and rich-club connections, resulting in 

structural segregation that underlies functional segregation (Cao et al. 2017a) and emergence of 

certain primary brain functions during the same developmental period. 

 

Segregation of neonate brain structural connectome  

As shown in Figure 2, dramatic global and local efficiency increases during 31-42PMW were found 
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with global topology analysis, suggesting that the white matter maturation contributes to a more 

topographically efficient and compact network during this critical period, consistent to the existing 

literature (van den Heuvel et al. 2015). The increases of regional efficiency of structural network 

are widespread in Figure 3, contributing to global efficiency increases in global topology analysis. 

Despite overall increases, the pattern of age-dependent nodal efficiency increases is not uniform 

across the brain regions (Fig. 3), with some regions demonstrating rapid increases in nodal 

efficiency while other regions remain almost unchanged, contributing to the segregation of baby 

brain connectome during 31-42 PMW. It is noteworthy that the regions with higher nodal efficiency 

exhibited higher developmental rate too (Fig. 3). Figure 4 further demonstrated that among all the 

nodes with significant age-dependent efficiency increases, fastest efficiency increases coincided 

with the brain hubs. More accurate prediction of individual age was found at the hub regions of the 

structural connectome than other regions (Fig. 8). These results suggest that selective strengthening 

of hubs is prominent during the last several weeks before normal time of birth. On the other hand, 

the hub distribution across the ages during 31-42PMW are almost unchanged (Supp Fig. 2). This 

supports that the increased segregation of the developing connectome is achieved by increasing the 

connectivity to and from key hubs, established early in gestation, rather than by altering of hub 

distribution. Brain hubs occupy a dominant position in information transfer (Xu et al. 2010) and 

have higher levels of metabolic energy consumption and higher rates of cerebral blood flow than 

peripheral nodes (Liang et al. 2013; Tomasi et al. 2014). The rich club of hub regions observed here 

in bilateral precentral and postcentral gyrus, posterior cingulate gyrus, superior and middle frontal 

cortex, are consistent with prior observation in neonates (Ball et al. 2014; Pandit et al. 2014; van 

den Heuvel et al. 2015). Moreover, these hubs show a strong correspondence with those of the adult 

structural connectome (Hagmann et al. 2008; Gong et al. 2009; van den Heuvel and Sporns 2011). 
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Our findings and previous studies jointly suggest that these network hubs are not only critical for 

the neonatal brain to get ready for postnatal neural growth, but also play a key role in organizing 

the connectome throughout brain development. In addition, functional network segregation was 

observed in a subset of the same preterm cohort by analyzing resting-state fMRI dataset (Cao et al. 

2017a). The structural network segregation in the present study is likely to underlie the functional 

segregation. 

 Higher increase rates of edge strength in rich-club edges were found in short-range connections, 

compared to those in long-range connections (Fig. 6). Moreover, higher developmental rates were 

found in provincial hubs than connector ones (Fig. 7B) and in within-module connections than 

between-module ones (Fig. 7C), with the module distribution of the neonate brains at 31-42PMW 

(Fig. 7A) similar to that of adult brains (Hagmann et al. 2008). The edges within modules and 

provincial hubs mainly contribute to connections within particular systems, as compared to global 

integration. Faster increases of edge strength and nodal efficiency in particular systems make the 

network more specialized and segregated during maturation. These results are consistent to general 

understanding of normal developmental course of structural network characterized by gradual 

maturation from local and proximity-based connections supporting primary functions to a more 

distributed and integrative topology supporting higher cogntive functions (Hagmann et al. 2010; 

Yap et al. 2011; Bullmore and Sporns 2012; van den Heuvel et al. 2012; Tymofiyeva et al. 2013; 

Collin et al. 2014; Vertes and Bullmore 2015).  

 

Differentiated maturation of brain regions with higher rate of efficiency 

increases at the brain hubs  

The nodal efficiency is heterogeneously distributed and the increase rate of the nodal efficiency is 
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also differentiated across the brain regions from Figure 3. Among all brain nodes with statistically 

significant increases of nodal efficiency, higher rates of nodal efficiency increases were found at 

certain brain hubs (Fig. 4). From Table 2, these hub regions with significant nodal efficiency 

changes are the left and right precentral and postcentral gyrus, left and right dorsal cingulate gyrus 

and posterior cingulate gyrus, as well as some frontal gyri. As elaborated below, these regions were 

consistently found to play an important role in early brain development. The left and right 

precentral and postcentral gyrus are essential for primary sensorimotor functions. Previous 

functional connectivity studies (Doria et al. 2010; Smyser et al. 2010; Fransson et al. 2011) found 

these regions among the earliest appearing functional networks identified from resting-state fMRI. 

Moreover, the identified hubs of neonate functional connectome are largely confined to primary 

sensorimotor regions (Fransson et al. 2011; Gao et al. 2011; Cao et al. 2017a), which distinguishes 

the neonate brain from adult brain. Considering that this differential pattern is observed across 

modalities, including PET (Chugani et al. 1987; Chugani 1998), it is likely that early maturation of 

receptive sensory areas may not only be helpful for the basic survival functions at birth (Buckner 

and Krienen 2013) but also support the later maturation of higher order and multimodal integrative 

areas (Guillery 2005). Left and right posterior cingulate gyri, as a functional core of the 

default-mode-network (Fransson and Marrelec, 2008), are also regions with high rates of nodal 

efficiency increases (Table 2). The higher rate of efficiency increases of these gyri may underlie in 

infancy the emergence of primitive default-mode network (Gao, et al., 2009) which is critical for 

the neonates to develop a sense of self (e.g. Uddin et al. 2007). Observation of the most significant 

nodal efficiency increases in the hub regions of primary sensorimotor region and posterior cingulate 

gyrus offers the structural connectivity basis for the coupling of structural and functional topology 

development in the baby brain connectome at these regions. Other hubs with significant nodal 
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efficiency increases include middle and superior frontal gyri (Fig. 4 and Table 2). The higher rates 

of connection increases in frontal lobe during preterm development have been observed in recent 

structural connectivity studies (Brown, et al., 2014; Pandit et al., 2014). Active frontal cortical 

maturation has also been reflected by cortical FA changes. Sharp decrease of frontal cortical FA, a 

measure quantifying the dendritic arborization in the cerebral cortex, has been consistently found in 

several studies using cortical FA to delineate the cortical microstructural developmental pattern of 

the preterm brains (DeIpolyi, et al., 2005; Ball et al., 2013; Yu et al., 2016). The observation of 

structural connectivity hubs at superior and middle frontal cortex could be related to active cortical 

microstructural activities in these regions.   

 

Emergence of rich-club organization in early developing brain 

Figure 5 shows rich-club organization (van den Heuvel and Sporns 2011) consisting of all hubs 

exhibited in Figure 4A. In the present study, rich-club organization was found in the structural 

connectome of preterm brain at the age of as early as 31PMW. Despite that the early emergence of 

rich-club organization has also been revealed in recent studies of neonate structural connectome 

(Ball et al. 2014; van den Heuvel et al. 2015), the present study revealed the developmental rate of 

rich-club and other network properties by employing the neonate dataset with relatively large 

sample and evenly distributed ages from 31- 42 PMWs, offering a new insight into the 

asynchronous development across brain regions. Heterogeneous increases of nodal efficiency 

among brain regions and faster increases at the brain hubs may drive the emergence of rich-club 

organization in the period of 31-42 PMW. Rich-club organization was also contributed by more 

rapidly strengthened edges in rich-club connections than those in other connections, as 

demonstrated by fastest edge strength increases in rich-club connections, followed by the feeder 
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connections and the local connections (Fig. 5B). The “rich-get-richer” principle of network 

evolution (Barabasi and Albert 1999) means that new connections are preferentially associated to 

the nodes with many connections and is reflected by the findings of more rapid growth of hubs and 

rich-club connections in the present study. Additionally, the accelerated growth of hub regions leads 

to a wider degree distribution including more highly-connected hubs as well as more non-hub 

nodes with few local connections (Kaiser 2017), possibly underlying important functional roles of 

hub regions after birth and functional segregation of brain regions. 

 

Short-range and long-range connections  

As can be observed from Figure 5, most of significantly increasing edges were short-range 

connections. The present study revealed that faster increasing edge strength of short-range 

connectivity compared to that of long-range connectivity may facilitate the structural connectome 

segregation process centered at rich-club organization (Figs. 5 and 6) during 31-42PMW. 

Developmental rates of short-range cortical-cortical connections in rich-club edges were higher 

than those of long-range connections (Fig. 6). Particular growth of short rich-club edges may also 

enhance local neuronal operations and segregation of modules, supported by modular analysis 

shown in Figure 7. Delineation of the brain connectivity pathways with dMRI has revealed white 

matter morphological dynamics from early 2nd trimester to birth (Huang et al. 2006; Huang et al. 

2009; Takahashi et al. 2012; Ouyang et al. 2015). Among all white matter tract groups, the 

long-range association tracts connecting cortical regions are those emerging relatively late. For 

example, the arcuate fasciculus, key for the language function development, is not well developed 

until 2 years of age (Zhang et al, 2007). Other connectomic studies have found that the increasing 

edges in prenatal and preterm developmental stage consisted of many short local connections and 
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limited long-range connections (Takahashi et al. 2012; Brown et al. 2014). Faster increasing 

short-range connections during 31-42PMW may constitute the pivotal edges of the rich-club 

backbone and mediate specialized functional process in local integration (Park and Friston 2013).  

 

Limitations, technical considerations and future directions  

We tested the effects of different cortical pacellation schemes and found that the maturation 

patterns of the neonate connectome were largely independent of the cortical parcellation schemes, 

as demonstrated by Figure 9. Besides effects of different parcellation schemes on connectomic 

analysis results, several issues need to be further considered for future studies. First, the dataset 

used in this study was obtained using a cross-sectional design. Future studies with longitudinal 

design may need be considered to eliminate the effects of individual differences, despite that the 

age-related structural connectomic changes are dominant in this very dynamic early developmental 

period. Second, deterministic tractography was used for the reconstruction of WM tracts, which 

may have resulted in the loss of existing fibers due to the “fiber-crossing” problem (Mori and van 

Zijl 2002). The tractography techniques more robust to fiber-crossing, such as probabilistic 

tractography (Behrens et al. 2007), can be considered to define the network edges in future studies. 

Third, it has been found that preterm birth was associated with altered microstructural development 

(e.g. Boardman et al. 2010; Rathbone et al. 2011) and adverse neurodevelopmental outcomes 

(Woodward et al. 2006). Despite preterm birth effects, MRI examinations of preterm infants have 

been predominantly used to understand brain development during the 3rd trimester. Several other 

studies using dMRI also indicated dramatic reconfiguration during the last 10 weeks prior to 

normal time of birth (e.g. Ball et al. 2013; Brown et al. 2014; van den Heuvel et al. 2015). 

Exposure to the extrauterine environment could constitute part of the observed network 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2017. ; https://doi.org/10.1101/195800doi: bioRxiv preprint 

https://doi.org/10.1101/195800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

reorganization (Karolis et al. 2016; Batalle et al. 2017), but these effects would be relatively subtle 

compared with effects of very dynamic development during 3rd trimester (Bourgeois et al. 1989; 

Kostović 1990). Nevertheless, it is likely that the disruption of the network could become apparent 

in years subsequent to premature birth. Recent advances of in-utero MRI (e.g. Kasprian et al. 2008; 

Thomason et al. 2013; Mitter et al. 2015; van den Heuvel and Thomason 2016) could alleviate the 

preterm effects. Fourth, the segregation has also been found in functional connectome development 

during this period in our previous study (Cao et al. 2017a). It is noteworthy that the cohort of 

functional connectome study (Cao et al. 2017a) was a subset of the cohort used in the present one. 

With the same segregation processes found in the structural connectome, the mechanistic 

relationship on how structural connections underlie functional ones has yet to be delineated. 

Recently developed approach, such as the one used for understanding network level 

structure-function relationships (Mišić et al. 2016), could offer the insights of mechanistic 

structure-function relationship in this specific developmental period.  Finally, further studies on 

relationship of maturation of hubs or rich-clubs at certain brain regions and emergence of the brain 

functions could contribute to understanding of general developmental principle.  
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Figure legends 

Figure 1. The flowchart of brain network construction. The b0 image of each neonate subject in its 

native space (A) was registered to the b0 image of the single-subject template in the JHU atlas 

space (D) with the transformation T(•). (B) and (C) are FA map and dMRI tractography results in 

the native space, respectively. The JHU atlas labels (E) were inversely transferred to the native 

space (F) with the transformation T-1(•). With delineation of network edges (C) and nodes (F) in the 

native space, the connectivity matrix (G) and network graph (H) were established. The flowchart 

was drawn demonstrating analysis of a representative neonate dataset. The reconstructed 

whole-brain fiber streamlines (C) and 3D representation of the structural network (H) were 

generated using TrackVis (http://trackvis.org/) and BrainNet Viewer software (Xia et al. 2013), 

respectively. 

 

Figure 2. Age-related changes in the global network metrics of the neonate connectome. 

Significant age-related linear increases of the network strength, global efficiency and local 

efficiency (top panels) and non-significant age-related changes of sparsity and small-worldness 

(bottom panels) are demonstrated in the scatter plots. 

 

Figure 3. The heterogeneous development of nodal efficiency across brain regions. (A) On the left 

panel, fitted nodal efficiency maps at each week from 32 to 41 PMW demonstrate heterogeneous 

nodal efficiency distribution across the cortical surface. On the right panel, both mean and the 

standard deviation of nodal efficiency increased significantly with age. (B) On the left panel, 31 

brain regions with significant and heterogeneous age-related increases of nodal efficiency are 

displayed as small spheres with colors (from blue to red) encoding different increase rates of nodal 
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efficiency and sizes encoding the R values of the correlation between the nodal efficiency and age. 

The scatter plots on the right panel show significant age-related increases in nodal efficiency of 

three representative regions, namely, PrCG.L, ANG.L and PHG.R, from highest to lowest 

efficiency increase rate. The colors of the dots and the fitted lines for each representative region in 

the scatter plots are consistent with those encoding nodal efficiency increase rates shown on the left 

panel. Abbreviations: AMYG: amygdala; ANG: angular gyrus; DCG: dorsal cingulate gyrus; HIP: 

hippocampus; INS: insular cortex; IOG: inferior occipital gyrus; L/R: left/right; LFOG: lateral 

fronto-orbital gyrus; PCG: posterior cingulate gyrus; PCUN: precuneus; PHG: parahippocampal 

gyrus; PrCG/PoCG: precentral/postcentral gyrus; SFG/MFG/IFG: superior/middle/inferior frontal 

gyrus; SMG: supramarginal gyrus; STG/MTG/ITG: superior/middle/ inferior temporal gyrus. 

 

Figure 4. Hub distribution of the neonate connectome and higher developmental rates in hub 

regions compared to non-hubs. (A) A 3D representation of the hub distribution of the neonate 

structural connectome with the hub nodes in red and non-hub nodes in gray overlaid on the 

group-averaged backbone network. The size of the spheres encodes the averaged nodal efficiency 

across all neonates. Cluster-1 nodes identified by a data-driven clustering analysis were marked 

with blue circle. Of note, all cluster-1 nodes overlapped with the hub regions of the connectome. (B) 

Scatter plot showing more rapid age-related increases of nodal efficiency in hub regions than 

non-hub regions. The partial correlation between age and regional efficiency were fitted separately 

in all hub regions (red dots) and non-hub regions (gray dots). The interaction effect between age 

and hub category was significant (p <10-3).  (C) Scatter plot showing significant linear correlation 

between the average nodal efficiency and developmental rate of nodal efficiency across the brain 

regions with significant nodal efficiency increases, with the hub regions in red and non-hub regions 
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in gray. See legend of Figure 3 for abbreviations of brain regions. 

 

Figure 5. The components with significant age-related alterations revealed by NBS analysis and 

differential development rates of edge strengths in rich-club organization. (A) The NBS component 

is shown in a circle view with the color of the edges encoded by the categories of rich-club (red) 

feeder (blue) and local (gray) edges and size of edges encoded by the developmental rate. (B) The 

bar plot showing significant differences in edge strength developmental rate among the rich-club, 

feeder and local connections. See legend of Figure 3 for abbreviations of brain regions. 

 

Figure 6. The development pattern of short- and long-range connections with age. (A) The 

definition of physical fiber length is shown in the upper panel. The physical length of a streamline 

reconstructed from deterministic tractography by following the main diffusion direction within 

each voxel was the length of the red curve. An illustration of short- and long-range fibers is 

presented in the lower panel. (B) Scatter plots showing significantly and relatively sharp 

age-related edge strength increases in different categories of short-range connections. (C) Scatter 

plots showing non-significant age-related changes of edge strength of rich-club long-range 

connections as well as significant but relatively mild age-related edge strength increases of feeder 

and local long-range connections. 

 

Figure 7. Higher developmental rates of edge strength of provincial hubs and within-module 

connections compared with connector hubs and between-module connections, respectively. (A) A 

3D representation of the modular structure of the group-averaged backbone network with nodes in 

different colors corresponding to different modules and size encoding average regional efficiency. 
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Module I was composed of bilateral orbital-frontal regions (yellow). Module II was composed of 

bilateral prefrontal regions (purple). Module � mainly consisted of left pre/postcentral gyrus, 

temporal and superior parietal regions (green). Module � mainly consisted of right pre/postcentral 

gyrus, temporal and parietal regions (blue). Module � mainly consisted of bilateral posterior 

parietal regions (red). The provincial hubs and connector hubs were marked with blue and red 

circles, respectively. (B) The bar plot showing higher developmental rate of provincial hubs than 

that of connector hubs. (C) The bar plot showing higher developmental rate of within-module 

(Within Mod) connections compared with that of between-module (Between Mod) connections. 

 

Figure 8. The prediction of individual age based on nodal efficiency of all brain regions (A), hub 

regions (B) and non-hub regions (C). The scatter plots depict actual versus predicted age. Pearson 

correlation coefficient between the actual and predicted ages are shown to assess the prediction 

accuracy.  

 

Figure 9. Reproducible age-dependent alterations with a high-resolution parcellation scheme. (A) 

The parcellation with JHU-58-region neonate atlas (Oishi et al. 2011) and the high resolution 

cortical parcellation with 256 ROIs. (B) Scatter plot showing significantly linear increases with age 

for the global efficiency and local efficiency in both low- and high-resolution networks. (C) Region 

distributions with significant age-dependent changes of nodal efficiency for low- and 

high-resolution network displaying as small spheres with colors encoding the developmental rates 

of nodal efficiency and sizes encoding the R values. (D) Similar hub distributions between low- and 

high-resolution networks with the hub nodes in red and non-hub nodes in gray and size encoding 

average regional efficiency across all neonates, overlaid on the group-averaged network backbone. 
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(E) Scatter plots showing significant linear correlation between the average nodal efficiency and 

developmental rate of nodal efficiency across the brain regions, in both low- and high-resolution 

networks.   
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Supplemental Figures 

Figure S1. Age-related changes of the preterm brain global network metrics, Lp (shortest path 

length), Cp, Gamma (normalized Cp) and Lamda (normalized Lp). Significant decrease of Lp with 

age and non-significant changes of Cp, Gamma and Lamda with age are demonstrated in the scatter 

plots.  

 

Figure S2. Almost unchanged brain hub distributions across different age groups, 31-34, 34-36, 

36-38, 38-40 and 40-42 PMW (week). The distribution is represented in 3D with the hub nodes in 

red and non-hub nodes in gray overlaid on the group-averaged backbone network. The size of the 

spheres encodes the nodal efficiency normalized in a given age range. 
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Table 1. Demographic information of scanned neonates (aC for C-section and V for vaginal birth; bB for 
breast-feeding and F for formula). 
 

 

 

Number 

of 

infants 

Age 

range 

(weeks) 

Age 

mean 

(weeks) 

Weight 

range 

(kg) 

Weight 

mean 

(kg) 

Male,  

n (%) 

White, 

n (%) 

Mode of 

delivery 

Feeding 

practice 

Antibiotic 

exposure 

during 

pregnancy 

At 

birth 
77 

 

25.0-41

.4 

33.7 
 

0.8–4.0  
2.1 

47 

(61)  
59 (77)  

C:29; 

V:48 

B: 77; F: 

0 
Yes 

At 

scan 
77 

31.9-41

.7 
37.2 1.4-4.1 2.6 

47 

(61)  
59 (77)  

C:29; 

V:48 

B: 77; F: 

0 
Yes 
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Table 2. The brain hub regions with the statistically significant age-related increases in nodal 

efficiency. The hub regions were sorted by descending developmental rate. See legend of Figure 1 

for abbreviation of brain regions. 

Regions Mean Enodal (std) R value P value 
Developmental  

rate 
SFG.R 57.4 (17.85) 0.38 6.8 × 10-4 3.5 

MFG.L 49.2 (15.65) 0.42 1.6 × 10-4 3.29 

PoCG.L 45.0 (13.24) 0.53 <10-5 3.15 

PrCG.L 46.1 (13.57) 0.52 <10-5 3.15 

MFG.R 48.9 (14.74) 0.43 1.1 × 10-4 3.01 

PoCG.R 43.9 (12.34) 0.52 <10-5 2.73 

PrCG.R 42.9 (11.78) 0.5 <10-5 2.45 

DCG.R 49.7 (13.14) 0.43 1.4 × 10-4 2.31 

DCG.L 46.5 (11.46) 0.45 4.8 × 10-5 2.17 

PCG.R 51.0 (11.56) 0.4 3.4 × 10-4 2.03 

PCG.L 47.7 (10.78) 0.41 2.2 × 10-4 1.96 
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