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Abstract

Peripheral nerve interfaces show promise in making prosthetic limbs more biomimetic
and ultimately more intuitive and useful for patients. However, approaches to assess these
emerging technologies are limited in their scope and the insight they provide. When outfitting a
prosthesis with a new feedback system it would be helpful to quantify its physiological
correspondence, i.e. how well the experimental feedback mimics the perceived feedback in an
intact limb. Here we present an approach to quantify physiological correspondence using a
modified crossmodal congruency task. We trained 60 able-bodied subjects to control a bypass
prosthesis under different feedback conditions and training durations. We find that the
crossmodal congruency effect (CCE) score is sensitive to changes in feedback modality (multi-
way ANOVA; F(2,48) = 6.02, p<0.05). After extended training, the CCE score increased as the
spatial separation between expected and perceived feedback decreased (unpaired t-test,
p<0.05). We present a model that can quantitatively estimate physiological correspondence
given the CCE result and the measured spatial separation of the feedback. This quantification
approach gives researchers a tool to assess an aspect of emerging augmented feedback
systems that is not measurable with current motor assessments.

Introduction

The performance of clinically-available upper-limb prostheses has been partly hindered
by a lack of intuitive and useful feedback2. Direct neural stimulation to convey force or other
feedback to a user controlling a prosthetic hand may lead to improved systems that better
mimic the dynamics of the intact human hand. These peripheral nerve interfaces (PNIs) with
bidirectional communication between device and body have been shown effective in controlled
settings®>. Efforts to improve long term viability, once a concern for such invasive interfaces,
have also advanced using wireless signal transmission®, osseointegration approaches’, and
stable electrode designs®. While the promise of PNIs is apparent, the development of feedback
assessment tools has lagged these emerging technologies.

Traditional performance-based movement assessments may not capture the overall
quality of a novel feedback modality. Standard clinical motor assessments such as the Box and
Blocks Test®, the Nine Hole Peg Test!%, the Southampton Hand Assessment Procedure!! and the
Assessment of Capacity for Myoelectric Control!? focus on quantifying motor performance but
do not provide insight into other potential factors of particular feedback systems. Emerging
feedback systems may provide intrinsic value beyond motor performance gains. Evidence
suggests that user-trusted feedback can lead to aspects of incorporation and embodiment?!3,
that could improve prosthesis acceptance?, reduce phantom pain'** or provide other benefits
that would not be detected by traditional motor assessments?®.

Emerging PNI studies have relied on qualitative subjective user descriptions of feedback
quality*'’. Users report the location and sensation of the applied experimental feedback and
the quality of that feedback is inferred. For example, in one study subjects described sensations
in terms of pressure, tingle, vibration, or light moving touch®. As stimulation intensity was
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varied, one subject described the sensation as changing from “tingly” to “as natural as can be”%.
Some conclusions are clearly justifiable, for example, self-described “natural, non-tingling
feedback” is presumably better than “uncomfortable, deep, dull vibration”*. But for more
complete comparisons the subjective approach lacks consistency and reliability. When a user
perceives touch through a PNI, how closely does that percept match the touch sensation
perceived with intact anatomy? Experimental feedback with low physiological correspondence
may be difficult to interpret, or even painful'8. In this study we have sought to quantify the
physiological correspondence of supplementary sensory feedback modalities.

While quantifying the physiological correspondence of an experimental feedback system
is the ultimate goal, PNI feedback can also be spatially misaligned from what it strives to mimic.
The perceived location of the experimental feedback may differ from the expected feedback
location, which may greatly affect the feedback’s usability. For example, a visually-observed
contact on a prosthetic fingertip may be felt, as the result of neural stimulation, several
centimeters away at the base of the finger (see Fig. 1, top right panel)'’. Quantifying
physiological correspondence must also consider the effect of misaligned feedback percepts.

The crossmodal congruency effect (CCE) score provides an objective measure of
incorporation of a feedback modality!®2°, The degree of feedback incorporation is affected by
the spatial separation and physiological correspondence of the experimental feedback!®2%22
(Fig. 1). Given that a person’s CCE score and spatial separation for a particular feedback
modality are directly measurable, physiological correspondence can be quantified using an
explanatory model.
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Figure 1. Crossmodal congruency effect framework. Subjects rapidly select the experimental
feedback (e.g. vibration shown in red). The crossmodal congruency effect (CCE) score is the
difference between the response time to congruent and incongruent stimuli. Spatial separation
is the physical distance between the two paired sensory percepts. Incongruent stimuli are
defined as unpaired stimuli presented simultaneously (bottom row).

To develop a model that can quantify physiological correspondence of experimental
feedback, we completed a comprehensive study of 60 able-bodied subjects controlling a bypass
prosthesis under different feedback conditions. We found that incorporation as measured by
CCE score changes with feedback modality. After extended training, CCE score increased as the
spatial separation between expected and perceived feedback decreased. From the results we
developed a model to estimate the physiological correspondence of a feedback modality given
a CCE score and a measured spatial separation. The approach we present provides an important
first step towards quantitatively measuring the degree to which feedback actually feels
physiologically accurate.

Results

To determine if experimental feedback provided to a person could be incorporated, we
measured the CCE score®®?3 of 60 able-bodied individuals after training with a bypass
prosthesis?4(Fig. 2). Participants trained using the bypass prosthesis to move mechanical eggs
with one of three feedback modalities: vibration, electrical stimulation or skin deformation?*.
Training duration (short vs. extended) and spatial separation between the expected feedback
on the fingertip contact point and the perceived feedback (matched on fingertip vs. >12 cm
away) were also varied (see Supplementary Table S1 for all experimental conditions). We report
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the sensitivity of the CCE score to feedback modality and spatial separation. We use the results
to generate a model that can estimate the physiological correspondence of a feedback type.

Figure 2. Experimental setup. a. Bypass prosthesis to allow able-bodied subjects to control a
prosthesis with modifiable feedback. The sensorized prosthesis could detect force applied to
the thumb and the index finger and provide proportional feedback to the user conveyed as
vibration, electrical stimulation or skin deformation. The attached LEDs are used during the CCE
score measurement protocol (see Methods). During training and testing the intact hand and
harness are covered with black fabric. b. Variable weight mechanical eggs were moved during
training periods. Load cells on eggs detected grasp force and simulated an egg breakage with a
light cue when a threshold was exceeded.

We observed a main effect of feedback modality on CCE score (Fig. 3). A three-way
ANOVA with CCE score as the independent variable and three categorical dependent variables
representing spatial separation, training level and the three feedback modalities resulted in a
statistically significant effect of feedback (F(2,48) = 6.015, p<0.01, w=0.28). Interactions terms
between independent variables were not significant and not included in further analysis
(p>0.05). Bonferroni post-hoc tests showed that the CCE score was significantly higher for
vibration feedback [u=120.49ms + 53.25] compared to skin deformation feedback [u=70.99ms +
46.04] (p<0.05) and non-significantly higher than electrical stimulation [u=84.06ms + 35.5]
(p=0.052). A higher CCE score indicates a higher level of incorporation for that feedback
modality'®. The trends observed with data binned for each modality are also seen with the CCE
scores of each of the 12 treatment groups (Supplementary Fig. S1). Changes in the provided
feedback modality had a significant effect on the measured CCE score.
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Figure 3. Feedback modality affects CCE score. Means and standard error plotted for 20 subjects
in each feedback modality group. Statistical significance verified using three-way ANOVA with
Bonferroni post-hoc comparison . * = p<0.05.

The spatial separation between perceived and expected feedback affects CCE score, but
only after extended training (Fig. 4). Due to the global differences in CCE scores across modality
(see Fig. 3), we use CCE scores normalized within each modality to observe the effect of spatial
separation. In subjects with long training periods, there was a significant effect of spatial
separation on normalized CCE score (unpaired t-test, p<0.05)(Fig 4a). CCE scores decreased as
spatial separation increased, indicating that incorporation diminished as the perceived
feedback did not align with the expected feedback location. Spatial separation appeared to
have no effect on CCE score in subjects with a short training period (unpaired t-test, p>0.05)(Fig
4B). Short training involved 50 minutes of practice moving mechanical eggs and extended-
training lasted 80 minutes. Since spatial separation only had a significant effect on the
measured CCE score after extended training, we do not include the short training data in
further analysis.
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Figure 4. Spatial separation affects CCE score after training. a. CCE score decreased with
increased spatial separation for extended-training subjects. b. There was no observed effect of
spatial separation on CCE score after short periods of training. Statistical significance tested
using unpaired two-sample equal variance t-tests: * = p<0.05. Reported results are normalized
to the group mean within each feedback type to account for global differences across
modalities.

Given the significant effects of feedback modality and spatial separation after extended
training on CCE score, we attempted to fit a model to estimate the physiological
correspondence of the provided feedback. Feedback modalities differ in their level of
physiological correspondence to intact biological feedback. Thus we defined physiological
correspondence numerically as the average CCE score for all treatment groups within a
modality (i.e. the normalization factors used in Fig. 4). This allowed for the conversion of the
feedback modality categorical variable into a continuous scale. Since CCE score is a function of
physiological correspondence and spatial separation®®?%22, we fit a multiple linear regression to
the data from the 30 extended-training subjects (F(2,27) = 4.93, p < 0.05, R?=0.27). The model
can be expressed as

CCEscore = 22.85+ B, (PhysiologicalCorrespondence) + B, (SpatialSeparation) (1)

where Bo =0.98 (p < 0.05) and B1 =-37.6 (p < 0.05). The spatial separation term was defined as
zero for spatial separations of 3.0cm or less, and one for spatial separations greater than
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12.0cm. Given measured values for CCE score and spatial separation, the physiological
correspondence of a feedback system can be estimated with this model as

CCEscore + 37.6* SpatialSeparation — 22.8

PhysiologicalCorrespondence =
y g P 0.98

(2)

This equation was used to calculate the physiological correspondence for all subjects. The effect
of spatial separation on CCE score (Fig. 4a) was observed as trends within the extended-training
results for each modality (Fig. 5, top panel). The effect of spatial separation is not present when
observing physiological correspondence results converted from the CCE scores of the same
subjects (Fig. 5, bottom panel), supporting the model’s ability to account for the effect of
spatial separation.
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Figure 5. Physiological correspondence quantification is not affected by spatial separation. Top
panel. CCE score means and standard error for the extended-training subjects. For each
modality, the CCE score is lower for the high spatial separation group. Bottom panel.
Physiological correspondence results for the extended-training subjects. The effect of the
spatial separation observed in the CCE score results is not present.
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We further analyzed the data to investigate possible explanations for the low CCE score
observed with skin deformation feedback. The low CCE score could not be attributed to the
latency of the skin deformation feedback application (Supplementary Data S1). Additionally, we
observed a non-significant inversely proportional trend between motor performance
(movement success rate during training) and CCE score (Supplementary Fig. S2).

Discussion

We demonstrated that CCE scores can be used to assess feedback quality, specifically
the physiological correspondence of a feedback modality. We collected data from 60 able-
bodied subjects controlling a bypass prosthesis and developed a predictive model to output
physiological correspondence estimates. This model can be applied to other novel sensory
feedback systems, such as amputees using peripheral nerve interfaces. The psychophysics-
based technique we have presented fills a need for more informative assessment of advanced
prosthetic systems.

Given the physiological correspondence estimation model (equation (2)) and the
extended-training data we collected, we provide a scale to contextualize physiological
correspondence scores (Fig. 6). Researchers who measure the CCE score and spatial separation
of a feedback system can calculate the physiological correspondence using equation (2) and
compare the results to the scale presented to better classify their conclusions. For example, if a
feedback modality’s assessed physiological correspondence is 130, then the feedback would
have a similar level of correspondence to vibration feedback. This example feedback modality
would have a high level of physiological correspondence. Researchers assessing the
physiological correspondence of a novel feedback modalities can use the scale in Fig. 6 as a
benchmark for the analysis of results.

- Vibration
_ Electrical stimulation

Skin deformation ph)l/gtig%gy»
Low Physiological correspondence High
0 90 180

Figure 6. Physiological correspondence benchmark scale. Benchmark data for different feedback
modalities to allow for comparison and contextualization of results from the assessment of
novel feedback systems.

Our results support previous findings®2> that CCE score is influenced by feedback
modality and spatial separation, i.e. the offset between visually-observed feedback and the
location of experimentally-provided feedback. Although PNIs strive to minimize spatial
separation, the imprecision of neural stimulation makes the generation of perfectly-aligned
percepts quite difficult. A high spatial separation will affect the incorporation of the feedback,
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resulting in a lower CCE score®. In regard to different types of feedback, the dynamics and
timing of experimental feedback can affect its subjective user-assessment of “naturalness”4.
Researchers often strive to elicit natural feeling percepts with experimental feedback systems.
But to our knowledge we have not seen any attempts at objectively quantifying this
“naturalness” sensation. We use physiological correspondence, i.e. how well a feedback
modality mimics the feedback experienced with intact anatomy, as a proxy for “naturalness”.
Since CCE score and spatial separation are easily measurable, we can use the relationship
between these three variables to quantify the physiological correspondence of supplementary
sensory feedback.

One potential limitation of the model we developed is that CCE scores may be affected
by additional factors besides physiological correspondence, spatial separation and training. We
did not factor in the effect of fatigue, time of day, baseline reaction time, and feedback
characteristics such as latency, consistency and dynamics. Variability in feedback characteristics
were limited by our use of a real-time embedded system to provide feedback with
correspondingly low latency (<30ms for vibration and skin deformation). However, the method
used to calibrate the skin deformation feedback may have led to variable levels of
incorporation. For example, the tactor starting position was not clearly visible in the
experimental setup and for some subjects it may have been in contact with the skin or arm hair
at zero force levels. Although we could not eliminate the effects of all potential factors affecting
CCE score, physiological correspondence, spatial separation and training seem to be the most
significant factors as evidenced by their effects on our CCE results and by previous
observations!®?>,

CCE scores were affected by training duration; spatial separation only affected CCE
score in the extended-training subjects (Fig. 4). It seems that the short-training subjects did not
have enough exposure to the feedback to reach a maximum level of incorporation, a qualitative
finding observed elsewhere although on different timescales?®. Therefore, to generate the
physiological correspondence quantification model we used only extended-training data. The
extended-training group had 80 minutes of practice with the feedback system, which is less
training than would be typical for patients using this assessment. A patient with a novel
feedback system will often complete a take-home trial, wearing the device for days to weeks,
before running this assessment. Therefore, we consider only extended-training data and define
the 80-minute duration as the minimum exposure necessary for this assessment to be effective.
We expect the effect of training to plateau and that the model should be applicable to longer
training times; nevertheless, this should be verified with an additional study.

Although the model’s goodness-of-fit seems low (R?=0.27), this is a consequence of the
noisiness of human movement data and it can still be used to assess PNI feedback quality.
However, the variability of CCE scores across individuals may make one-to-one comparison
between individuals difficult. We based our model development on a population level analysis
that, while statistically valid, could lead to misinterpretation of a single CCE result. Therefore,
we recommend comparisons of CCE scores from the same individual across different feedback
modalities or with different training periods. Alternatively, when data from several subjects are
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available, a population-level comparison can be made. A power analysis should be run to
determine the number of subjects necessary to detect a certain level of improvement supplied
by a novel feedback system?’. To detect the maximum intergroup difference observed in our
study (93.06ms), and assuming the observed overall variability across all 60 subjects (SD =
45.57ms, normalized to the mean within each group), three subjects would be needed to
achieve a statistical power of 0.8 at a confidence level of 95%. Increasing the number of
subjects tested would allow for smaller CCE score differences to be detected. For example, to
detect half of the maximum difference observed (6=46.53ms), eight subjects should be tested.
The exact number of subjects required depends on the CCE score variability that will vary
depending on the feedback system and patient population. In either the repeat-individual
testing approach or the small-group population analysis, a washout period between repeat
assessments is required to reduce a previously reported crossmodal congruency task learning
effect?3.

The low CCE score observed for skin deformation feedback (Fig. 3) was an unexpected
result. Originally we hypothesized that using skin deformation feedback to represent the grasp
force of the training movements would result in the highest level of incorporation. Skin
deformation more closely resembles the physical activation of a grasping force compared to
vibration and electrical stimulation. However, skin deformation feedback resulted in the lowest
CCE score compared to electrical stimulation and vibration, a statistically significant result that
does not appear to be the result of noise or random fluctuation. We confirmed that the poor
incorporation of skin deformation was not due to mediocre actuation as latency results were
consistent across feedback modalities. In some subjects the tactor may have been in contact
with the skin at a zero force level. Variable skin contact would result in variable perception
across subjects as the discrete initial skin contact has been shown to be important in improving
feedback effectiveness?®. The low incorporation of skin deformation feedback could
alternatively be explained by long-term depression of afferents due to repeated stimulation or
slipping actuators; both explanations would be supported by an observed change in detection
threshold over the course of the experiment (see Supplementary Data S1). A future study is
planned to combine the CCE score assessment with an outcome metric that assesses feedback
uncertainty to more carefully characterize the utility of the skin deformation feedback??.

Subjects performed very well using skin deformation feedback (Supplementary Fig. S2),
but we still observed poor incorporation. The inversely proportional trend between motor
performance and CCE score may seem counterintuitive but implies that performance and
incorporation are distinct, or even competing concepts. An individual’s quantifiable motor
performance may be inflated through the adoption of alternative strategies and compensatory
movements3%31, Further, motor performance does not necessarily correspond to other
important aspects of prosthesis use such as device acceptance!?, phantom pain reduction'**> or
cognitive burdens?®. Therefore, clinical movement assessments relying only on motor
performance may not be suitable to analyze the performance of PNIs. These assessments also
suffer from other limitations such as a reliance on movement timing and variability introduced
by rater subjectivity32. Available motor assessments may be sufficient to monitor clinical
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progress but no single outcome metric captures all relevant performance information33. The
CCE-based assessment and supporting model we have presented could augment the battery of
performance-based assessments currently in use to provide more detailed insight into PNI
performance.

We have presented a CCE score assessment coupled with a data-driven model that can
qguantify the physiological correspondence of a feedback modality. This approach represents a
way to provide more informative assessment of prosthetic feedback systems. Further steps will
require the clinical validation of this assessment tool in patient populations, such as amputees
outfitted with peripheral nerve feedback systems. Novel feedback systems for amputees
require novel assessment tools; this work provides an advanced outcome metric to fill that
need.

Methods
Participant recruitment

Participants were recruited by word-of-mouth and provided informed consent under
the guidelines and approval of University of New Brunswick’s Research Ethics Board. Sixty
volunteer participants completed the study [mean age = 31.9yrs, range = 18 — 76yrs, 22 female,
5 left-handed]. Participants were randomly assigned to a treatment condition which specified
feedback modality [vibration, electrical stimulation or skin deformation], training duration
[short or extended], and spatial separation between visual and experimental feedback [low or
high].

Bypass prosthesis

Subjects first trained using a bypass prosthesis with myoelectric control and embedded
force sensors in the thumb and index finger that proportionally drove experimental feedback.
The bypass is described in detail elsewhere?*.

Skin deformation feedback was applied using linear mechanotactile haptic tactors
attached to the subject (design courtesy of the University of Alberta3?). Each tactor used a rack
and pinion gear system to convert rotational motion generated by a servo motor (HiTec, HS-
35HD) to linear motion that was applied to the subject’s skin via an 8mm diameter domed
head. Measured force from the sensorized prosthetic hand (custom retrofitting of Ottobock
MyoHand VariPlus Speed by HDT Global) was mapped to servo displacement. Zero force was
mapped to a displacement that was a step below the minimum detectable level. The maximum
displacement was based on the current draw of the servos and limited to approximately
100mA. This level was selected to keep the actuation at a level below which the plastic rack and
pinion system would not slip. During the training phase, the tactor displacements were
proportionally controlled to match the measured forces on the thumb and index finger of the
instrumented prosthetic hand. During the CCE score assessment, the tactors were displaced to
approximately 20-25% of the maximum experienced during the training phase.

Vibration feedback was provided by two 10mm linear resonant actuators (LRAs:
Precision Microdrives, C10-100) taped to the skin with medical tape (3M, Micropore). During
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the training phase, the LRAs were proportionally controlled to correspond to the measured
forces on the thumb and index finger of the instrumented prosthetic hand. During the CCE
score assessment, the stimuli were set to approximately 20-25% of the maximum intensity
experienced during the training phase.

Electrical stimulation was provided by a 2-channel TENS electro-stimulator (Proactive,
Pulse). The device was modified such that the electrical stimulation intensity could be
controlled with isolated analog outputs from a myRIO embedded hardware system (National
Instruments). During the training phase, the stimulator outputs were proportionally controlled
to produce paresthetic sensations that corresponded to the measured forces on the thumb and
index finger of the instrumented prosthetic hand. During CCE score assessment, the stimuli
were set to the maximum intensity experienced during the training phase. The protocol for
electrical stimulation was modified compared to the other modalities to limit participant
discomfort and avoid painful percepts.

For feedback with low spatial separation, the experimental feedback was applied at the
fingertip to match the visually-observed contact point on the prosthetic hand. For feedback
with high spatial separation, the actuators were attached to the wrist for skin deformation and
vibration. For the electrical stimulation low spatial separation group, the self-adhesive electrical
stimulation pads were wrapped around the index finger or thumb. Electrical stimulation on the
wrist interfered with EMG control signals so for the high spatial separation group the pads were
placed on the back of the hand near the major knuckles of the index finger and thumb.

Feedback detection thresholds were measured for each subject to calibrate the
stimulation before the training phase. The stimulus intensity was slowly increased until the
subject indicated that the stimulation was felt. This was repeated three times and the lowest
reported stimulus level was used to set the range of stimulus. A proportional mapping was used
to convert the hand’s force detection range to the subject’s stimulus detection range. The low
end of the force detection range was set slightly below the reported detection threshold (~1%
PWM duty cycle decrease for vibration and skin deformation feedback; ~10mV decrease for
electrical stimulation). The maximum feedback was set to correspond to 1.2x the breaking
threshold of the heaviest egg (19.4N). The maximum stimulus level was set based on the type
of feedback. The LRAs were set to their maximum achievable intensity for the maximum
stimulus level. The electrical stimulus maximum level was set based on the subject’s comfort
and to avoid muscle twitch. The feedback detection threshold was measured again after the
training phase, immediately preceding CCE score assessment.

The one-degree-of-freedom prosthetic hand of the bypass was controlled with a
Complete Control (Coapt) pattern recognition system. Subjects trained hand open and close
control using isometric wrist flexor and wrist extensor muscle contractions using the
commercial software provided by Coapt.

Training
Subjects in the short-training group completed five training sessions, each lasting <10
minutes with 10-minute intervening breaks, for 50 minutes of total training. Extended-training
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subjects completed eight sessions for 80 minutes of total training. In each training session
subjects attempted to move instrumented mechanical eggs of three different weights and
“breaking” thresholds over a 5cm high barrier. The lightest egg weighed 2.78N with a breaking
threshold of 6.84N. The medium-weight egg weighed 5.45N with a breaking threshold of
10.52N. The heaviest egg weighed 9.55N with a breaking threshold of 16.19N. Each session
ended after 100 movement attempts or ten minutes, whichever occurred first. Successful and
unsuccessful movements were recorded manually by the experimenter. When too much force
was applied to the mechanical egg, an on-egg LED would illuminate to indicate a broken egg.
After breaking a mechanical egg, the subject had to release the egg and restart the movement.
Subjects wore earplugs and over-ear noise-canceling headphones playing Brownian noise to
mask actuator and background noise.

CCE assessment

The CCE score assessment and associated hardware is as described in Gill et al.?3,
Subjects completed three familiarization sessions of ten trials each and then four assessment
blocks of 64 trials each. Subjects were seated beside a height adjustable table that was set to a
comfortable height. A pillow was placed under each subject’s arm to ensure vibrations were not
transmitted through the table surface. CCE score for each block was computed as mean
congruent time minus mean congruent time. The overall CCE score was calculated as the
median of the scores from the four blocks.

Statistical analysis

Statistical analysis was run using IBM’s SPSS Statistics and MATLAB software. A multi-
way ANOVA was run with dummy categorical variables used to represent feedback modality,
spatial separation and training level. Effect sizes were calculated as w? and reported as the
square root, w.> For the linear regression analysis (see equation (1)), only extended-training
data were used. CCE score was the dependent variable and Feedback Location and
Physiological Correspondence were the independent variables. The Feedback Location variable
was set to either zero (distances of 0 to 3 cm, at or near the fingertips) or one (distances of
more than 12 cm from finger tips, on the wrist or back of hand). Physiological correspondence
was set as the mean CCE score for a particular feedback type (71 for skin deformation feedback,
120.5 for vibration, 84.1 for electrical stimulation).

Data availability

All data are available in the Supplementary Data S2 file that accompanies this
manuscript.
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Supplementary information

Supplementary Table S1. Experimental conditions for 60 able-bodied subjects. Spatial
separation is marked as @ for 3cm or less and v for greater than 12cm.

Feedback modality 2> Vibration Electrical stimulation Skin deformation
Training level 2> Short Extended Short Extended Short Extended
Spatial separation > g |v I | Y| ||V i o|VvY | o @ |V
# of subjects 2> 5 5 5 5 5 5 5 5 5 5 5 5

Supplementary Figure S1. Mean CCE scores and standard error from all 12 treatment groups.
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Supplementary Data S1. Additional investigation of low CCE score with skin deformation
feedback.

Surprisingly, skin deformation feedback resulted in the lowest CCE score, corresponding to the
lowest level of incorporation (Fig. 3). We sought to investigate this result by analyzing the
success rate of movements during training. CCE score tended to increase as the percent of
successful egg movements (no drops and no breaks) decreased (Supplementary Fig. 2).
Differences in success rates between feedback modality were not significantly different
determined with one-way ANOVA (F(2,57)=2.48, p = 0.093).

The incorporation of skin deformation feedback may have been affected by the
intensity, timing or other characteristics of the feedback provided. We observed a significant
difference (unpaired t-test, p<0.05) in the change in detection threshold over the course of
training between vibration (0% change) and skin deformation modalities (+51.4% average
change). Detection thresholds were measured at the start of the training phase and at the end
of training just before CCE score assessment. The detection threshold of the electrical
stimulation feedback was set differently to avoid painful sensations and was not included in this
analysis. There were no differences measured between the timing precision of the different
feedback modalities. The initial position of the tactor may have affected the effectiveness of
the skin deformation feedback. In some subjects the tactor may have been in contact with the
skin or arm hair before any sensed force. In future studies, body hair should be shaved and the
tactor should be initially positioned to ensure no contact with the subject at zero force levels.

Supplementary Figure S2. CCE score and movement success rate show an inversely proportional
trend. Differences in movement success rates were not significantly different (one-way ANOVA;
F(2,57)=2.48, p = 0.093).
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