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Abstract 
Peripheral nerve interfaces show promise in making prosthetic limbs more biomimetic 

and ultimately more intuitive and useful for patients. However, approaches to assess these 

emerging technologies are limited in their scope and the insight they provide. When outfitting a 

prosthesis with a new feedback system it would be helpful to quantify its physiological 

correspondence, i.e. how well the experimental feedback mimics the perceived feedback in an 

intact limb. Here we present an approach to quantify physiological correspondence using a 

modified crossmodal congruency task. We trained 60 able-bodied subjects to control a bypass 

prosthesis under different feedback conditions and training durations. We find that the 

crossmodal congruency effect (CCE) score is sensitive to changes in feedback modality (multi-

way ANOVA; F(2,48) = 6.02, p<0.05). After extended training, the CCE score increased as the 

spatial separation between expected and perceived feedback decreased (unpaired t-test, 

p<0.05). We present a model that can quantitatively estimate physiological correspondence 

given the CCE result and the measured spatial separation of the feedback. This quantification 

approach gives researchers a tool to assess an aspect of emerging augmented feedback 

systems that is not measurable with current motor assessments.  

 

Introduction 
The performance of clinically-available upper-limb prostheses has been partly hindered 

by a lack of intuitive and useful feedback1,2. Direct neural stimulation to convey force or other 

feedback to a user controlling a prosthetic hand may lead to improved systems that better 

mimic the dynamics of the intact human hand. These peripheral nerve interfaces (PNIs) with 

bidirectional communication between device and body have been shown effective in controlled 

settings3-5. Efforts to improve long term viability, once a concern for such invasive interfaces, 

have also advanced using wireless signal transmission6, osseointegration approaches7, and 

stable electrode designs8. While the promise of PNIs is apparent, the development of feedback 

assessment tools has lagged these emerging technologies. 

Traditional performance-based movement assessments may not capture the overall 

quality of a novel feedback modality. Standard clinical motor assessments such as the Box and 

Blocks Test9, the Nine Hole Peg Test10, the Southampton Hand Assessment Procedure11 and the 

Assessment of Capacity for Myoelectric Control12 focus on quantifying motor performance but 

do not provide insight into other potential factors of particular feedback systems. Emerging 

feedback systems may provide intrinsic value beyond motor performance gains. Evidence 

suggests that user-trusted feedback can lead to aspects of incorporation and embodiment13, 

that could improve prosthesis acceptance2, reduce phantom pain14,15 or provide other benefits 

that would not be detected by traditional motor assessments16.  

Emerging PNI studies have relied on qualitative subjective user descriptions of feedback 

quality4,17. Users report the location and sensation of the applied experimental feedback and 

the quality of that feedback is inferred. For example, in one study subjects described sensations 

in terms of pressure, tingle, vibration, or light moving touch4. As stimulation intensity was 
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varied, one subject described the sensation as changing from “tingly” to “as natural as can be”4. 

Some conclusions are clearly justifiable, for example, self-described “natural, non-tingling 

feedback” is presumably better than “uncomfortable, deep, dull vibration”4. But for more 

complete comparisons the subjective approach lacks consistency and reliability. When a user 

perceives touch through a PNI, how closely does that percept match the touch sensation 

perceived with intact anatomy? Experimental feedback with low physiological correspondence 

may be difficult to interpret, or even painful18. In this study we have sought to quantify the 

physiological correspondence of supplementary sensory feedback modalities.  

While quantifying the physiological correspondence of an experimental feedback system 

is the ultimate goal, PNI feedback can also be spatially misaligned from what it strives to mimic. 

The perceived location of the experimental feedback may differ from the expected feedback 

location, which may greatly affect the feedback’s usability. For example, a visually-observed 

contact on a prosthetic fingertip may be felt, as the result of neural stimulation, several 

centimeters away at the base of the finger (see Fig. 1, top right panel)17. Quantifying 

physiological correspondence must also consider the effect of misaligned feedback percepts. 

The crossmodal congruency effect (CCE) score provides an objective measure of 

incorporation of a feedback modality19,20. The degree of feedback incorporation is affected by 

the spatial separation and physiological correspondence of the experimental feedback19,21,22 

(Fig. 1). Given that a person’s CCE score and spatial separation for a particular feedback 

modality are directly measurable, physiological correspondence can be quantified using an 

explanatory model.  
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Figure 1. Crossmodal congruency effect framework. Subjects rapidly select the experimental 

feedback (e.g. vibration shown in red). The crossmodal congruency effect (CCE) score is the 

difference between the response time to congruent and incongruent stimuli. Spatial separation 

is the physical distance between the two paired sensory percepts. Incongruent stimuli are 

defined as unpaired stimuli presented simultaneously (bottom row).  

 

 

To develop a model that can quantify physiological correspondence of experimental 

feedback, we completed a comprehensive study of 60 able-bodied subjects controlling a bypass 

prosthesis under different feedback conditions. We found that incorporation as measured by 

CCE score changes with feedback modality. After extended training, CCE score increased as the 

spatial separation between expected and perceived feedback decreased. From the results we 

developed a model to estimate the physiological correspondence of a feedback modality given 

a CCE score and a measured spatial separation. The approach we present provides an important 

first step towards quantitatively measuring the degree to which feedback actually feels 

physiologically accurate.   

 

Results 
To determine if experimental feedback provided to a person could be incorporated, we 

measured the CCE score19,23 of 60 able-bodied individuals after training with a bypass 
prosthesis24(Fig. 2). Participants trained using the bypass prosthesis to move mechanical eggs 
with one of three feedback modalities: vibration, electrical stimulation or skin deformation24. 
Training duration (short vs. extended) and spatial separation between the expected feedback 
on the fingertip contact point and the perceived feedback (matched on fingertip vs. >12 cm 
away) were also varied (see Supplementary Table S1 for all experimental conditions). We report 
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the sensitivity of the CCE score to feedback modality and spatial separation. We use the results 
to generate a model that can estimate the physiological correspondence of a feedback type.  

 
Figure 2. Experimental setup. a. Bypass prosthesis to allow able-bodied subjects to control a 
prosthesis with modifiable feedback. The sensorized prosthesis could detect force applied to 
the thumb and the index finger and provide proportional feedback to the user conveyed as 
vibration, electrical stimulation or skin deformation. The attached LEDs are used during the CCE 
score measurement protocol (see Methods). During training and testing the intact hand and 
harness are covered with black fabric. b. Variable weight mechanical eggs were moved during 
training periods. Load cells on eggs detected grasp force and simulated an egg breakage with a 
light cue when a threshold was exceeded.  
 
 

We observed a main effect of feedback modality on CCE score (Fig. 3). A three-way 
ANOVA with CCE score as the independent variable and three categorical dependent variables 
representing spatial separation, training level and the three feedback modalities resulted in a 
statistically significant effect of feedback (F(2,48) = 6.015, p<0.01, ω=0.28). Interactions terms 
between independent variables were not significant and not included in further analysis 
(p>0.05). Bonferroni post-hoc tests showed that the CCE score was significantly higher for 
vibration feedback [µ=120.49ms ± 53.25] compared to skin deformation feedback [µ=70.99ms ± 
46.04] (p<0.05) and non-significantly higher than electrical stimulation [µ=84.06ms ± 35.5] 
(p=0.052). A higher CCE score indicates a higher level of incorporation for that feedback 
modality19. The trends observed with data binned for each modality are also seen with the CCE 
scores of each of the 12 treatment groups (Supplementary Fig. S1). Changes in the provided 
feedback modality had a significant effect on the measured CCE score. 
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Figure 3. Feedback modality affects CCE score. Means and standard error plotted for 20 subjects 
in each feedback modality group. Statistical significance verified using three-way ANOVA with 
Bonferroni post-hoc comparison . * = p<0.05. 
 
 

The spatial separation between perceived and expected feedback affects CCE score, but 
only after extended training (Fig. 4). Due to the global differences in CCE scores across modality 
(see Fig. 3), we use CCE scores normalized within each modality to observe the effect of spatial 
separation. In subjects with long training periods, there was a significant effect of spatial 
separation on normalized CCE score (unpaired t-test, p<0.05)(Fig 4a). CCE scores decreased as 
spatial separation increased, indicating that incorporation diminished as the perceived 
feedback did not align with the expected feedback location. Spatial separation appeared to 
have no effect on CCE score in subjects with a short training period (unpaired t-test, p>0.05)(Fig 
4B). Short training involved 50 minutes of practice moving mechanical eggs and extended-
training lasted 80 minutes. Since spatial separation only had a significant effect on the 
measured CCE score after extended training, we do not include the short training data in 
further analysis. 
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Figure 4. Spatial separation affects CCE score after training. a. CCE score decreased with 
increased spatial separation for extended-training subjects. b. There was no observed effect of 
spatial separation on CCE score after short periods of training. Statistical significance tested 
using unpaired two-sample equal variance t-tests: * = p<0.05. Reported results are normalized 
to the group mean within each feedback type to account for global differences across 
modalities.  

 
 
 
 
Given the significant effects of feedback modality and spatial separation after extended 

training on CCE score, we attempted to fit a model to estimate the physiological 
correspondence of the provided feedback. Feedback modalities differ in their level of 
physiological correspondence to intact biological feedback. Thus we defined physiological 
correspondence numerically as the average CCE score for all treatment groups within a 
modality (i.e. the normalization factors used in Fig. 4). This allowed for the conversion of the 
feedback modality categorical variable into a continuous scale. Since CCE score is a function of 
physiological correspondence and spatial separation19,21,22, we fit a multiple linear regression to 
the data from the 30 extended-training subjects (F(2,27) = 4.93, p < 0.05, R2=0.27). The model 
can be expressed as 

 

0 122.85 ( ) ( )CCEscore B PhysiologicalCorrespondence B SpatialSeparation     (1) 

 
where B0 = 0.98 (p < 0.05) and B1 = -37.6 (p < 0.05). The spatial separation term was defined as 
zero for spatial separations of 3.0cm or less, and one for spatial separations greater than 
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12.0cm. Given measured values for CCE score and spatial separation, the physiological 
correspondence of a feedback system can be estimated with this model as 
 

37.6* 22.8

0.98

CCEscore SpatialSeparation
PhysiologicalCorrespondence

 
   (2) 

 
This equation was used to calculate the physiological correspondence for all subjects. The effect 
of spatial separation on CCE score (Fig. 4a) was observed as trends within the extended-training 
results for each modality (Fig. 5, top panel). The effect of spatial separation is not present when 
observing physiological correspondence results converted from the CCE scores of the same 
subjects (Fig. 5, bottom panel), supporting the model’s ability to account for the effect of 
spatial separation.   

 
Figure 5. Physiological correspondence quantification is not affected by spatial separation. Top 
panel. CCE score means and standard error for the extended-training subjects. For each 
modality, the CCE score is lower for the high spatial separation group. Bottom panel. 
Physiological correspondence results for the extended-training subjects. The effect of the 
spatial separation observed in the CCE score results is not present. 
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We further analyzed the data to investigate possible explanations for the low CCE score 
observed with skin deformation feedback. The low CCE score could not be attributed to the 
latency of the skin deformation feedback application (Supplementary Data S1). Additionally, we 
observed a non-significant inversely proportional trend between motor performance 
(movement success rate during training) and CCE score (Supplementary Fig. S2). 
 

Discussion 
 We demonstrated that CCE scores can be used to assess feedback quality, specifically 

the physiological correspondence of a feedback modality. We collected data from 60 able-

bodied subjects controlling a bypass prosthesis and developed a predictive model to output 

physiological correspondence estimates. This model can be applied to other novel sensory 

feedback systems, such as amputees using peripheral nerve interfaces. The psychophysics-

based technique we have presented fills a need for more informative assessment of advanced 

prosthetic systems.  

 Given the physiological correspondence estimation model (equation (2)) and the 
extended-training data we collected, we provide a scale to contextualize physiological 
correspondence scores (Fig. 6). Researchers who measure the CCE score and spatial separation 
of a feedback system can calculate the physiological correspondence using equation (2) and 
compare the results to the scale presented to better classify their conclusions. For example, if a 
feedback modality’s assessed physiological correspondence is 130, then the feedback would 
have a similar level of correspondence to vibration feedback. This example feedback modality 
would have a high level of physiological correspondence. Researchers assessing the 
physiological correspondence of a novel feedback modalities can use the scale in Fig. 6 as a 
benchmark for the analysis of results. 
 

 
Figure 6. Physiological correspondence benchmark scale. Benchmark data for different feedback 
modalities to allow for comparison and contextualization of results from the assessment of 
novel feedback systems. 
 

 Our results support previous findings19,25 that CCE score is influenced by feedback 

modality and spatial separation, i.e. the offset between visually-observed feedback and the 

location of experimentally-provided feedback. Although PNIs strive to minimize spatial 

separation, the imprecision of neural stimulation makes the generation of perfectly-aligned 

percepts quite difficult. A high spatial separation will affect the incorporation of the feedback, 
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resulting in a lower CCE score19. In regard to different types of feedback, the dynamics and 

timing of experimental feedback can affect its subjective user-assessment of “naturalness”4. 

Researchers often strive to elicit natural feeling percepts with experimental feedback systems. 

But to our knowledge we have not seen any attempts at objectively quantifying this 

“naturalness” sensation. We use physiological correspondence, i.e. how well a feedback 

modality mimics the feedback experienced with intact anatomy, as a proxy for “naturalness”. 

Since CCE score and spatial separation are easily measurable, we can use the relationship 

between these three variables to quantify the physiological correspondence of supplementary 

sensory feedback.  

 One potential limitation of the model we developed is that CCE scores may be affected 

by additional factors besides physiological correspondence, spatial separation and training. We 

did not factor in the effect of fatigue, time of day, baseline reaction time, and feedback 

characteristics such as latency, consistency and dynamics. Variability in feedback characteristics 

were limited by our use of a real-time embedded system to provide feedback with 

correspondingly low latency (<30ms for vibration and skin deformation). However, the method 

used to calibrate the skin deformation feedback may have led to variable levels of 

incorporation. For example, the tactor starting position was not clearly visible in the 

experimental setup and for some subjects it may have been in contact with the skin or arm hair 

at zero force levels. Although we could not eliminate the effects of all potential factors affecting 

CCE score, physiological correspondence, spatial separation and training seem to be the most 

significant factors as evidenced by their effects on our CCE results and by previous 

observations19,25. 

 CCE scores were affected by training duration; spatial separation only affected CCE 

score in the extended-training subjects (Fig. 4). It seems that the short-training subjects did not 

have enough exposure to the feedback to reach a maximum level of incorporation, a qualitative 

finding observed elsewhere although on different timescales26.  Therefore, to generate the 

physiological correspondence quantification model we used only extended-training data. The 

extended-training group had 80 minutes of practice with the feedback system, which is less 

training than would be typical for patients using this assessment. A patient with a novel 

feedback system will often complete a take-home trial, wearing the device for days to weeks, 

before running this assessment. Therefore, we consider only extended-training data and define 

the 80-minute duration as the minimum exposure necessary for this assessment to be effective. 

We expect the effect of training to plateau and that the model should be applicable to longer 

training times; nevertheless, this should be verified with an additional study. 

 Although the model’s goodness-of-fit seems low (R2=0.27), this is a consequence of the 

noisiness of human movement data and it can still be used to assess PNI feedback quality. 

However, the variability of CCE scores across individuals may make one-to-one comparison 

between individuals difficult. We based our model development on a population level analysis 

that, while statistically valid, could lead to misinterpretation of a single CCE result. Therefore, 

we recommend comparisons of CCE scores from the same individual across different feedback 

modalities or with different training periods. Alternatively, when data from several subjects are 
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available, a population-level comparison can be made. A power analysis should be run to 

determine the number of subjects necessary to detect a certain level of improvement supplied 

by a novel feedback system27. To detect the maximum intergroup difference observed in our 

study (93.06ms), and assuming the observed overall variability across all 60 subjects (SD = 

45.57ms, normalized to the mean within each group), three subjects would be needed to 

achieve a statistical power of 0.8 at a confidence level of 95%. Increasing the number of 

subjects tested would allow for smaller CCE score differences to be detected. For example, to 

detect half of the maximum difference observed (δ=46.53ms), eight subjects should be tested. 

The exact number of subjects required depends on the CCE score variability that will vary 

depending on the feedback system and patient population. In either the repeat-individual 

testing approach or the small-group population analysis, a washout period between repeat 

assessments is required to reduce a previously reported crossmodal congruency task learning 

effect23. 

 The low CCE score observed for skin deformation feedback (Fig. 3) was an unexpected 

result. Originally we hypothesized that using skin deformation feedback to represent the grasp 

force of the training movements would result in the highest level of incorporation. Skin 

deformation more closely resembles the physical activation of a grasping force compared to 

vibration and electrical stimulation. However, skin deformation feedback resulted in the lowest 

CCE score compared to electrical stimulation and vibration, a statistically significant result that 

does not appear to be the result of noise or random fluctuation. We confirmed that the poor 

incorporation of skin deformation was not due to mediocre actuation as latency results were 

consistent across feedback modalities. In some subjects the tactor may have been in contact 

with the skin at a zero force level. Variable skin contact would result in variable perception 

across subjects as the discrete initial skin contact has been shown to be important in improving 

feedback effectiveness28. The low incorporation of skin deformation feedback could 

alternatively be explained by long-term depression of afferents due to repeated stimulation or 

slipping actuators; both explanations would be supported by an observed change in detection 

threshold over the course of the experiment (see Supplementary Data S1). A future study is 

planned to combine the CCE score assessment with an outcome metric that assesses feedback 

uncertainty to more carefully characterize the utility of the skin deformation feedback29.  

Subjects performed very well using skin deformation feedback (Supplementary Fig. S2), 

but we still observed poor incorporation. The inversely proportional trend between motor 

performance and CCE score may seem counterintuitive but implies that performance and 

incorporation are distinct, or even competing concepts. An individual’s quantifiable motor 

performance may be inflated through the adoption of alternative strategies and compensatory 

movements30,31. Further, motor performance does not necessarily correspond to other 

important aspects of prosthesis use such as device acceptance13, phantom pain reduction14,15 or 

cognitive burdens16. Therefore, clinical movement assessments relying only on motor 

performance may not be suitable to analyze the performance of PNIs. These assessments also 

suffer from other limitations such as a reliance on movement timing and variability introduced 

by rater subjectivity32. Available motor assessments may be sufficient to monitor clinical 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/194977doi: bioRxiv preprint 

https://doi.org/10.1101/194977
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

progress but no single outcome metric captures all relevant performance information33. The 

CCE-based assessment and supporting model we have presented could augment the battery of 

performance-based assessments currently in use to provide more detailed insight into PNI 

performance.   

 We have presented a CCE score assessment coupled with a data-driven model that can 

quantify the physiological correspondence of a feedback modality. This approach represents a 

way to provide more informative assessment of prosthetic feedback systems. Further steps will 

require the clinical validation of this assessment tool in patient populations, such as amputees 

outfitted with peripheral nerve feedback systems. Novel feedback systems for amputees 

require novel assessment tools; this work provides an advanced outcome metric to fill that 

need. 

 

Methods 

Participant recruitment 

 Participants were recruited by word-of-mouth and provided informed consent under 

the guidelines and approval of University of New Brunswick’s Research Ethics Board. Sixty 

volunteer participants completed the study [mean age = 31.9yrs, range = 18 – 76yrs, 22 female, 

5 left-handed]. Participants were randomly assigned to a treatment condition which specified 

feedback modality [vibration, electrical stimulation or skin deformation], training duration 

[short or extended], and spatial separation between visual and experimental feedback [low or 

high]. 

 

Bypass prosthesis 

 Subjects first trained using a bypass prosthesis with myoelectric control and embedded 

force sensors in the thumb and index finger that proportionally drove experimental feedback. 

The bypass is described in detail elsewhere24.  

 Skin deformation feedback was applied using linear mechanotactile haptic tactors 

attached to the subject (design courtesy of the University of Alberta34). Each tactor used a rack 

and pinion gear system to convert rotational motion generated by a servo motor (HiTec, HS-

35HD) to linear motion that was applied to the subject’s skin via an 8mm diameter domed 

head. Measured force from the sensorized prosthetic hand (custom retrofitting of Ottobock 

MyoHand VariPlus Speed by HDT Global) was mapped to servo displacement. Zero force was 

mapped to a displacement that was a step below the minimum detectable level. The maximum 

displacement was based on the current draw of the servos and limited to approximately 

100mA. This level was selected to keep the actuation at a level below which the plastic rack and 

pinion system would not slip. During the training phase, the tactor displacements were 

proportionally controlled to match the measured forces on the thumb and index finger of the 

instrumented prosthetic hand. During the CCE score assessment, the tactors were displaced to 

approximately 20-25% of the maximum experienced during the training phase. 

 Vibration feedback was provided by two 10mm linear resonant actuators (LRAs: 

Precision Microdrives, C10-100) taped to the skin with medical tape (3M, Micropore). During 
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the training phase, the LRAs were proportionally controlled to correspond to the measured 

forces on the thumb and index finger of the instrumented prosthetic hand. During the CCE 

score assessment, the stimuli were set to approximately 20-25% of the maximum intensity 

experienced during the training phase. 

 Electrical stimulation was provided by a 2-channel TENS electro-stimulator (Proactive, 

Pulse). The device was modified such that the electrical stimulation intensity could be 

controlled with isolated analog outputs from a myRIO embedded hardware system (National 

Instruments). During the training phase, the stimulator outputs were proportionally controlled 

to produce paresthetic sensations that corresponded to the measured forces on the thumb and 

index finger of the instrumented prosthetic hand. During CCE score assessment, the stimuli 

were set to the maximum intensity experienced during the training phase. The protocol for 

electrical stimulation was modified compared to the other modalities to limit participant 

discomfort and avoid painful percepts.  

For feedback with low spatial separation, the experimental feedback was applied at the 

fingertip to match the visually-observed contact point on the prosthetic hand. For feedback 

with high spatial separation, the actuators were attached to the wrist for skin deformation and 

vibration. For the electrical stimulation low spatial separation group, the self-adhesive electrical 

stimulation pads were wrapped around the index finger or thumb. Electrical stimulation on the 

wrist interfered with EMG control signals so for the high spatial separation group the pads were 

placed on the back of the hand near the major knuckles of the index finger and thumb. 

 Feedback detection thresholds were measured for each subject to calibrate the 

stimulation before the training phase. The stimulus intensity was slowly increased until the 

subject indicated that the stimulation was felt. This was repeated three times and the lowest 

reported stimulus level was used to set the range of stimulus. A proportional mapping was used 

to convert the hand’s force detection range to the subject’s stimulus detection range. The low 

end of the force detection range was set slightly below the reported detection threshold (~1% 

PWM duty cycle decrease for vibration and skin deformation feedback; ~10mV decrease for 

electrical stimulation). The maximum feedback was set to correspond to 1.2x the breaking 

threshold of the heaviest egg (19.4N). The maximum stimulus level was set based on the type 

of feedback. The LRAs were set to their maximum achievable intensity for the maximum 

stimulus level. The electrical stimulus maximum level was set based on the subject’s comfort 

and to avoid muscle twitch. The feedback detection threshold was measured again after the 

training phase, immediately preceding CCE score assessment.  

The one-degree-of-freedom prosthetic hand of the bypass was controlled with a 

Complete Control (Coapt) pattern recognition system. Subjects trained hand open and close 

control using isometric wrist flexor and wrist extensor muscle contractions using the 

commercial software provided by Coapt. 

 

Training  

 Subjects in the short-training group completed five training sessions, each lasting ≤10 

minutes with 10-minute intervening breaks, for 50 minutes of total training. Extended-training 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/194977doi: bioRxiv preprint 

https://doi.org/10.1101/194977
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

subjects completed eight sessions for 80 minutes of total training. In each training session 

subjects attempted to move instrumented mechanical eggs of three different weights and 

“breaking” thresholds over a 5cm high barrier. The lightest egg weighed 2.78N with a breaking 

threshold of 6.84N. The medium-weight egg weighed 5.45N with a breaking threshold of 

10.52N. The heaviest egg weighed 9.55N with a breaking threshold of 16.19N. Each session 

ended after 100 movement attempts or ten minutes, whichever occurred first. Successful and 

unsuccessful movements were recorded manually by the experimenter. When too much force 

was applied to the mechanical egg, an on-egg LED would illuminate to indicate a broken egg.  

After breaking a mechanical egg, the subject had to release the egg and restart the movement. 

Subjects wore earplugs and over-ear noise-canceling headphones playing Brownian noise to 

mask actuator and background noise. 

 

CCE assessment 

 The CCE score assessment and associated hardware is as described in Gill et al.23. 

Subjects completed three familiarization sessions of ten trials each and then four assessment 

blocks of 64 trials each. Subjects were seated beside a height adjustable table that was set to a 

comfortable height. A pillow was placed under each subject’s arm to ensure vibrations were not 

transmitted through the table surface. CCE score for each block was computed as mean 

congruent time minus mean congruent time. The overall CCE score was calculated as the 

median of the scores from the four blocks.  

 

Statistical analysis 

 Statistical analysis was run using IBM’s SPSS Statistics and MATLAB software. A multi-

way ANOVA was run with dummy categorical variables used to represent feedback modality, 

spatial separation and training level. Effect sizes were calculated as ω2 and reported as the 

square root, ω.35 For the linear regression analysis (see equation (1)), only extended-training 

data were used. CCE score was the dependent variable and Feedback Location and 

Physiological Correspondence were the independent variables. The Feedback Location variable 

was set to either zero (distances of 0 to 3 cm, at or near the fingertips) or one (distances of 

more than 12 cm from finger tips, on the wrist or back of hand). Physiological correspondence 

was set as the mean CCE score for a particular feedback type (71 for skin deformation feedback, 

120.5 for vibration, 84.1 for electrical stimulation).  

 

Data availability 

 All data are available in the Supplementary Data S2 file that accompanies this 

manuscript. 
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Supplementary information 
 
Supplementary Table S1. Experimental conditions for 60 able-bodied subjects. Spatial 
separation is marked as Ø for 3cm or less and ✓ for greater than 12cm. 

Feedback modality  Vibration Electrical stimulation Skin deformation 

Training level  Short Extended Short Extended Short Extended 

Spatial separation  Ø ✓ Ø ✓ Ø ✓ Ø ✓ Ø ✓ Ø ✓ 

# of subjects  5 5 5 5 5 5 5 5 5 5 5 5 

 
 
 
 
 
 
Supplementary Figure S1. Mean CCE scores and standard error from all 12 treatment groups.  
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Supplementary Data S1. Additional investigation of low CCE score with skin deformation 
feedback. 
 
Surprisingly, skin deformation feedback resulted in the lowest CCE score, corresponding to the 
lowest level of incorporation (Fig. 3). We sought to investigate this result by analyzing the 
success rate of movements during training. CCE score tended to increase as the percent of 
successful egg movements (no drops and no breaks) decreased (Supplementary Fig. 2). 
Differences in success rates between feedback modality were not significantly different 
determined with one-way ANOVA (F(2,57)=2.48, p = 0.093). 

The incorporation of skin deformation feedback may have been affected by the 
intensity, timing or other characteristics of the feedback provided. We observed a significant 
difference (unpaired t-test, p<0.05) in the change in detection threshold over the course of 
training between vibration (0% change) and skin deformation modalities (+51.4% average 
change). Detection thresholds were measured at the start of the training phase and at the end 
of training just before CCE score assessment. The detection threshold of the electrical 
stimulation feedback was set differently to avoid painful sensations and was not included in this 
analysis. There were no differences measured between the timing precision of the different 
feedback modalities. The initial position of the tactor may have affected the effectiveness of 
the skin deformation feedback. In some subjects the tactor may have been in contact with the 
skin or arm hair before any sensed force. In future studies, body hair should be shaved and the 
tactor should be initially positioned to ensure no contact with the subject at zero force levels. 

 
 
 

Supplementary Figure S2. CCE score and movement success rate show an inversely proportional 
trend. Differences in movement success rates were not significantly different (one-way ANOVA; 
F(2,57)=2.48, p = 0.093). 
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