

¹ FENNEC - Functional Exploration of Natural
² Networks and Ecological Communities

³ Markus J. Ankenbrand^{1,2}, Sonja Hohlfeld²,
Lorenz Weber³, Frank Förster^{1,2,4}, Alexander Keller^{1,2,5}

⁴ July 3, 2018

⁵ ¹Department of Bioinformatics, University of Würzburg, Würzburg, Germany

⁶ ²Center for Computational and Theoretical Biology, University of Würzburg,
⁷ Würzburg, Germany

⁸ ³Mayflower GmbH, Würzburg, Germany

⁹ ⁴Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Applied
¹⁰ Ecology and Bioresources, Gießen, Germany

¹¹ ⁵Department of Animal Ecology and Tropical Biology, University of Würzburg,
¹² Würzburg, Germany

¹³ **Abstract**

¹⁴ 1. Species composition assessment of ecological communities and networks is an
¹⁵ important aspect of biodiversity research. Yet often ecological traits of organisms
¹⁶ in a community are more informative than scientific names only. Furthermore,
¹⁷ other properties like threat status, invasiveness, or human usage are relevant for
¹⁸ many studies, but cannot be evaluated from taxonomy alone. Despite public

19 databases collecting such information, it is still a tedious manual task to enrich
20 community analyses with such, especially for large-scaled data.

21 2. Thus we aimed to develop a public and free tool that eases bulk trait mapping
22 of community data in a web browser, implemented with current standard web
23 and database technologies.

24 3. Here we present the FENNEC, a workbench that eases the process of
25 mapping publicly available trait data to the user's communities in an auto-
26 mated process. Usage is either by a local self-hosted or a public instance
27 (<https://fennec.molecular.eco>) covering exemplary traits. Alongside the software
28 we also provide usage and hosting documentation as well as online tutorials.

29 4. The FENNEC aims to motivate public trait data submission and its reuse in
30 meta-analyses. Further, it is an open-source development project with the code
31 freely available to use and open for community contributions (<https://github.com/molbiodiv/fennec>).

33 German Abstract

34 1. Die Untersuchung der taxonomischen Zusammensetzung ökologischer Gemein-
35 schaften und Netzwerke ist ein zentraler Aspekt in der Biodiversitätsforschung.
36 Eine ausschließlich taxonomische Klassifizierung ist jedoch in vielen Fällen un-
37 zreichend, um Zusammenhänge erklären zu können. Hierzu wird vielmehr
38 zusätzliches Wissen über ökologische, morphologische, funktionale und weitere
39 Eigenschaften der Organismen benötigt. Solche Informationen werden in öf-
40 fentliche Datenbanken gesammelt, aber es ist bislang ein mühsamer manueller
41 Prozess, gesamte Artgemeinschaften mit diesen Daten anzureichern, insbesondere
42 in Zeiten immer größer werdender Untersuchungen.

43 2. Daher haben wir ein öffentliches und frei nutzbares Werkzeug entwickelt,
44 welches diesen Kombinationsschritt vereinfacht. Durch den Einsatz von modernen
45 Web- und Datenbank Technologien, konnten wir dieses plattform-unabhängig
46 gestalten.

47 3. Wir präsentieren hier die webbasierte Anwendung FENNEC, welche in einem
48 automatisierten Prozess zu taxonomischen Artengemeinschaften des Nutzers öf-
49 fentlich oder privat verfügbare Informationen der Organismen hinzufügt. FENNEC
50 kann einfach in einer selbstbetriebenen Instanzen ausgeführt werden. Alterna-
51 tiv kann auch eine öffentlichen Instanz (<https://fennec.molecular.eco>) genutzt
52 werden, die zusätzlich Beispieldaten enthält. Neben einer ausführlichen Doku-
53 mentation stellen wir auch Anleitungen als Einstiegshilfe zur Verfügung.

54 4. Der FENNEC soll Wissenschaftler ermutigen Daten zu Organismen in öf-
55 fentlichen Datenbanken zu hinterlegen, für Meta-Analysen zu nutzen und für
56 andere Wissenschaftler nutzbar zu machen. Das gesamte Projekt folgt den
57 Richtlinien zu quelloffener Entwicklung. Damit ist der Quelltext frei verfügbar
58 und FENNEC selbst offen für Beiträge anderer Entwickler (<https://github.com/molbiodiv/fennec>).

60 **Keywords**

61 Traits, Community, Ecology, Functional, Database, Software

62 **Introduction**

63 An important task in biodiversity research is the analysis of species composition
64 of ecological communities and networks. This can be done using traditional

65 methods and more recently also with analytical methods designed for large scale
66 sample processing, like DNA metabarcoding (Keller, Danner, et al., 2015) or
67 automated image analysis (Oteros et al., 2015) producing data volumes hard
68 to cope with manually. Therefore, tools for automated taxonomic identification
69 have been developed, e.g. QIIME (Caporaso et al., 2010) and mothur (Schloss
70 et al., 2009).

71 Ecological or socio-economical hypotheses can however often not be evaluated by
72 looking at taxonomy alone (Junker et al., 2015; Xu et al., 2014), but meta-data
73 for each community-member (e.g. life-history, size or threat-status) becomes
74 important. In microbial ecology, development of tools has already been initiated
75 that aim to automatically map taxonomy information to functional traits, mostly
76 through mapping on known genomes (Aßhauer et al., 2015; Edgar, 2017; Keller,
77 Horn, et al., 2014; Langille et al., 2013). To our knowledge, it remains to date a
78 manual effort to enrich eukaryotic communities similarly with trait meta-data,
79 although such information is already publicly available.

80 Databases have been developed that provide trait information for eukaryotes
81 and prokaryotes, e.g. LEDA Traitbase (Kleyer et al., 2008), TRY (Kattge et al.,
82 2011), and BacDive or ProTraits for microbial traits (Brbić et al., 2016; Söhngen
83 et al., 2016). On a higher level, TraitBank (Parr, Wilson, Leary, et al., 2014;
84 Parr, Wilson, Schulz, et al., 2014) aggregates this information from different
85 sources. These sources are of course far from complete, yet the existing data is
86 already highly informative.

87 When using these databases though, currently these trait data have to be
88 manually searched and mapped to the community, which can comprise hundreds
89 or even thousands of taxa. This is impractical, trait data should be accessible
90 with automatic batch annotation procedures, not only single manual requests.
91 This becomes crucial if many taxa are regarded in an ecological community

92 or multiple traits are to be analyzed simultaneously. Furthermore, tools for
93 visualization and interactive analysis of community data like Phinch and phyloseq
94 are currently limited with respect to traits as they only accept taxonomy as
95 metadata for operational taxonomic units (OTUs) (Bik et al., 2014; McMurdie
96 et al., 2013). Here we present the FENNEC, a web-based workbench that helps
97 researchers enrich their taxonomy-based community and network interaction
98 tables with relevant traits for their research questions. The workbench includes
99 also basic tools for interactive visualization and analysis of trait data.

100 A public instance is hosted at <https://fennec.molecular.eco>, which currently
101 holds roughly 1.7 million organisms and 224 thousand trait entries (referring
102 to 73.5 thousand distinct taxa) gathered from various sources. User-provided
103 community and network data can be readily mapped to these traits.

104 An alternative way to use the FENNEC is to download and host a local instance
105 for user and private traits alongside the ones in the public database. It is freely
106 available at <https://github.com/molbiodiv/fennec> as an open-source project and
107 we encourage community development and re-use of the code.

108 Online documentation is available on how to use the public instance and set up
109 own instances (<https://fennec.readthedocs.io>). This documentation also includes
110 a case study in pollination ecology to demonstrate how the FENNEC can be used
111 to investigate specialization of solitary bees on plants with specific growth habit,
112 distribution of invasive taxa as well as occurrence of endangered organisms.

¹¹³ Material and Methods

¹¹⁴ General Structure

¹¹⁵ A FENNEC instance consists of a web server and one or multiple databases
¹¹⁶ (Figure 1), which store organism and corresponding trait information. This data
¹¹⁷ can originate from various sources and is imported by the instance administrator.
¹¹⁸ Users can interact with FENNEC exploratively or with relation to a specific project
¹¹⁹ using their web browser. The FENNEC provides mechanisms to browse and search
¹²⁰ the contents of its databases including traits (Figure 2A) and organisms. For
¹²¹ organisms detailed pages with texts and images from EOL (Parr, Wilson, Leary,
¹²² et al., 2014) as well as traits and taxonomic information are provided (Figure
¹²³ 2B).
¹²⁴ Logged in users have access to their individual project section. Users can upload
¹²⁵ their ecological community/network matrices, match these against available trait
¹²⁶ data for contained organisms and select traits of interest to the project. The
¹²⁷ enriched projects can be interactively visualized using the built-in version of
¹²⁸ Phinch (Bik et al., 2014) or exported for analysis with external tools. (Figure
2C and D).

¹²⁹ Code Implementation

¹³⁰ The FENNEC is a web application developed in PHP (<https://php.net/>) using
¹³¹ Symfony (<https://symfony.com/>) and a JavaScript (ES6) front-end. Server side
¹³² functionality is bundled in modular web services called via AJAX requests.
¹³³ Layout and interactivity are provided by multiple well-established libraries
¹³⁴ including bootstrap (<https://getbootstrap.com/>), jQuery-ui (<https://jqueryui.com/>),
¹³⁵ react (<https://facebook.github.io/react/>), lodash (<https://lodash.com/>),
¹³⁶ datatables (<https://datatables.net/>), and plotly.js (<https://plot.ly/javascript/>).

¹³⁷ Code quality is ensured by tests and strategies for continuous integration. Data is
¹³⁸ stored in a PostgreSQL (<https://www.postgresql.org/>) database and accessed via
¹³⁹ the doctrine object-relational mapper (<http://www.doctrine-project.org/>). User
¹⁴⁰ provided data is uploaded and stored in BIOM format (version 1.0) (McDonald
¹⁴¹ et al., 2012) using the biojs-io-biom library (Ankenbrand et al., 2017).

¹⁴² Results

¹⁴³ Accessibility

¹⁴⁴ There are three ways to use the FENNEC workbench:

- ¹⁴⁵ 1. Public Instance: We have set up a public instance of the FENNEC available
¹⁴⁶ at <https://fennec.molecular.eco>. Its database currently hosts trait data
¹⁴⁷ related to pollination and microbiomes from various sources. The database
¹⁴⁸ is subject to constant further extension with more traits, yet our main
¹⁴⁹ goal is to maintain high quality of the data available here. User-provided
¹⁵⁰ network and community data is private by default, requiring the user to
¹⁵¹ authenticate using a FENNEC or GitHub account.
- ¹⁵² 2. Local Instances: All program code is open-source (MIT License) and freely
¹⁵³ available at the public repository: <https://github.com/molbiodiv/fennec>.
¹⁵⁴ Alongside the code, ready-to-use (pre-configured) docker containers are
¹⁵⁵ available to be run in a virtualization environment (<https://www.docker.com>). Local instances can be restricted in accessibility for dedicated
¹⁵⁶ workgroups or users. Databases can be filled directly with arbitrary trait
¹⁵⁷ data not limited to those included in the public instance.
- ¹⁵⁸ 3. Application Programming Interface (API): We also provide an open API
¹⁵⁹ that allows third-party programs to make calls to the public instance, or if
¹⁶⁰

¹⁶¹ available also local instances.

¹⁶² Extensive documentation on the code, but also tutorials for users and guides
¹⁶³ for administrators to host local instances and software developers to use the
¹⁶⁴ API are available at the GitHub repository, the public instance and <https://fennec.readthedocs.io>.
¹⁶⁵

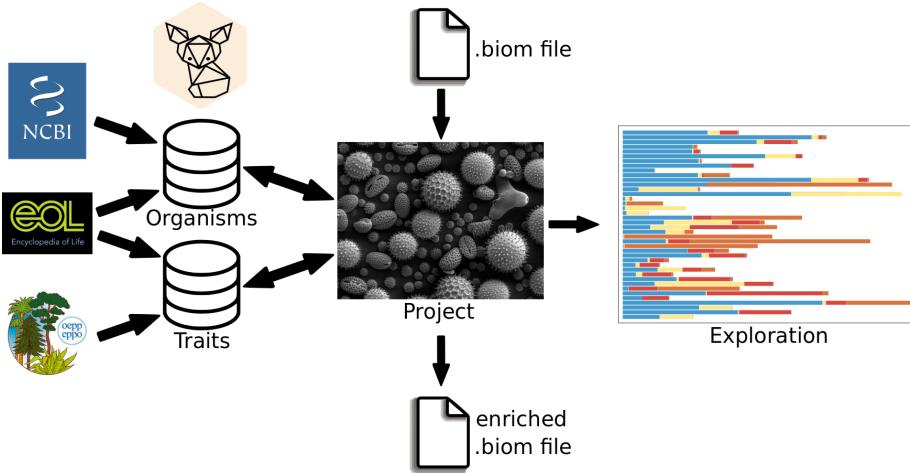


Figure 1: General structure of FENNEC. Organisms and traits from different sources are stored by the administrator. The user imports a community project e.g. in biom format. Organisms in the community are mapped against those in the database and enriched with traits. The trait composition can be interactively explored or exported as enriched projects for downstream software.

¹⁶⁶ **Mapping community and network data to traits**

¹⁶⁷ Minimum requirement for using the FENNEC is to provide a community or network
¹⁶⁸ table, including taxa as rows and samples (communities)/ taxa (networks) as
¹⁶⁹ columns. Cells are considered as abundances but also presence/absence data can
¹⁷⁰ be used. Beyond this, users may provide own taxonomy data as an alternative
¹⁷¹ to the default NCBI taxonomy (Federhen, 2012)) and meta-data for the samples.
¹⁷² These tables may be uploaded separately as tab-separated text- or combined

¹⁷³ BIOM-files (Ankenbrand et al., 2017; McDonald et al., 2012) (Figure 1). Files
¹⁷⁴ can be managed using the project page of FENNEC (Figure 2B). Depending on
¹⁷⁵ the user input, taxa are mapped using scientific names or common database
¹⁷⁶ identifiers (e.g. NCBI-taxonomy-ID, EOL-ID).

¹⁷⁷ Traits to be analyzed can be explored and selected via the web interface, and
¹⁷⁸ added as meta-data to the project (Figure 2A). All data available for the
¹⁷⁹ selected traits and taxa of interest are automatically linked into the dataset. If
¹⁸⁰ multiple values are available for a single trait and organism combination, they
¹⁸¹ are automatically aggregated, i.e. categorical traits are unified and numerical
¹⁸² traits are averaged. To make trait usage as transparent and flexible as possible
¹⁸³ and to facilitate proper attribution along with aggregated trait values, trait
¹⁸⁴ citations for individual values are provided alongside actual traits. Citations can
¹⁸⁵ be exported as a separate table and are included in any downloaded BIOM file.

¹⁸⁶ After the mapping, communities are enriched with selected meta-data and can
¹⁸⁷ be further processed with standard analytical and statistical software. Download
¹⁸⁸ options are individual tables or as a single BIOM file including all information
¹⁸⁹ (e.g. for fast integration in R with phyloseq (McMurdie et al., 2013) or QIIME
¹⁹⁰ (Caporaso et al., 2010)).

¹⁹¹ To provide basic analytical plots directly in the workbench, we integrated and
¹⁹² modified the open-source project Phinch (Bik et al., 2014). This allows quick
¹⁹³ interactive exploration of species and trait distributions in each sample, groups,
¹⁹⁴ or aggregated by trait types (Figure 2D).

¹⁹⁵ Data for the public instance

¹⁹⁶ A public instance of FENNEC is hosted at <https://fennec.molecular.eco> and
¹⁹⁷ freely available for direct usage. Taxonomy data in this instance consists of a

198 full representation of the NCBI Taxonomy database (Federhen, 2012 accessed
199 21/03/2018, >1.7 million taxa). Currently only a small fraction (about 73,500) of
200 the taxa in the database have associated traits. We aim to extend this set of traits
201 but also allow users to contribute traits to the general public database. A mapping
202 of EOL-IDs (according to https://opendata.eol.org/dataset/hierarchy_entries,
203 accessed on 04/04/2017) has also been imported, so that full-text information
204 about taxa is available where EOL offers such (Parr, Wilson, Leary, et al.,
205 2014). Currently, and as a starting seed, trait data from TraitBank (Parr,
206 Wilson, Schulz, et al., 2014), EPPO (EPPO, 2017), the World Crops Database
207 (Bijlmakers, 2017), the cavity-nesting bees and wasps database (Budrys et al.,
208 2014, part of the SCALES project (Henle et al., 2014)), IUCN (IUCN, 2017), and
209 ProTraits (Brbić et al., 2016) have been imported which is subject to continuous
210 extension. We aim to maintain the high quality of these publicly available
211 traits. The integration of more traits is a steadily ongoing process. While the
212 bulk of trait data is gathered from databases, in the next release users can also
213 participate in the uploading of trait data so that this process can be actively
214 supported by the community.

215 Importing organism and trait data

216 Traits are imported using a simple table containing, at a minimum the organism
217 and trait value, a citation and optionally ontology URL as columns, with each
218 entry as a new row. Two trait formats are currently supported: categorical and
219 numerical. Categorical traits may also include an ontology URL for their value,
220 supporting the hierarchical classification characteristics. Numerical trait types
221 may be uploaded with an associated unit.

222 Currently users can upload own traits as project-specific meta-data or in local

223 instances accessible for all users if allowed by the administrator. For the public
224 instance, we plan a moderation system for a future release. All data will
225 undergo a limited manual verification which, for example, ensures that units are
226 correctly standardized but does not verify the correctness of the underlying data.
227 Instead, the user-names of uploaders will be permanently linked to the data to
228 be able to address future changes and updates, alongside corresponding citation
229 information.

230 For local instances, arbitrary organism and trait data can be imported into the
231 FENNEC database by the local administrator using the command line interface.
232 Those trait entries are not subject to a central verification process, but available
233 instantly. This allows creation of instances tailored to specific organism groups
234 and associated research questions, with responsibility for local administrators to
235 ensure quality. Either the global NCBI-taxonomy data can be used or custom
236 taxonomy data provided. Each imported organism receives a unique FENNEC-ID
237 which can be linked on-the-fly to other identifiers like NCBI-Taxonomy-IDs
238 or EOL-IDs. The linked EOL-ID is used to provide dynamic content for each
239 organism using the EOL-API (Figure 2C).

240 Discussion

241 The FENNEC is a useful tool for automated mapping from taxonomic data to
242 functional meta-data of whole communities. This can be done with user-supplied
243 traits or traits data-mined from trait databases. A growing public instance is
244 available for analyses in pollination studies. It can be accessed via a graphical
245 web interface or by calls via an API. Local instances can be tailored to specific
246 organism groups, workgroups and research questions. The workbench provides
247 basic visualization options for mapped data, as well as export options in various

248 formats for use with downstream software.

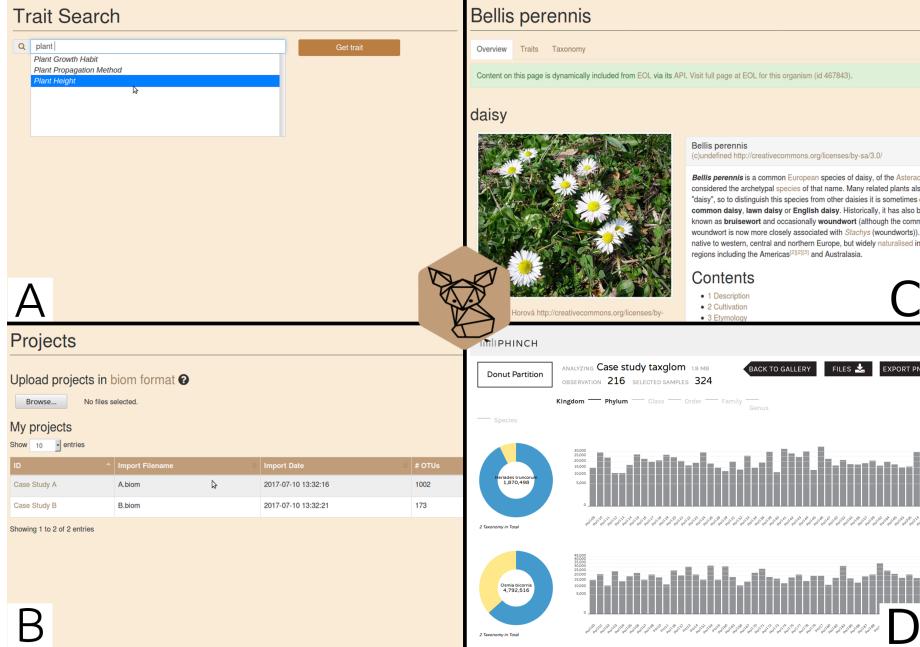


Figure 2: User interface of FENNEC. A: Explore traits stored in the database via the search. B: Upload community data, manage and analyze them. C: Get dynamic content for organisms. D: Visualize data using the “Donut Partition” chart.

249 **Usage examples**

250 The online documentation at <https://fennec.readthedocs.io> also includes a case
251 study for pollination ecology to demonstrate how the FENNEC can be used in
252 practice. We specifically provide a test data set of 384 pollen samples collected by
253 two closely related megachilid solitary bee species that were assessed using next-
254 generation sequencing based metabarcoding (Sickel et al., 2015), and analyzed
255 with the FENNEC with respect to plant growth habit. In addition, the species
256 show quantitative and qualitative differences in their choices for crop plants as a
257 pollen source. Furthermore, the tutorial covers screening for foraging on invasive

258 or vulnerable plant species, which are both easily identified using the FENNEC
259 enriched dataset and the visualization options. More generally, the FENNEC
260 proves useful wherever more than just taxonomic information is important in
261 multiple species assemblages, for example microbiome ecology, species interaction
262 networks, or plant-herbivore analyses. We aim to frequently expand the tutorials
263 and also encourage users to contribute such.

264 **Outlook and limitations**

265 The main factor restricting FENNEC's utility is the currently limited amount of
266 trait data available in a usable format. It became apparent while building the
267 FENNEC that a lot of trait data is available online, but the majority does not
268 adhere to the FAIR principles (Findable, Accessible, Interoperable, Reusable)
269 (Mons et al., 2017; Wilkinson et al., 2016). Also, licensing of the data is a common
270 problem; data can only be efficiently re-used if it is open and citable in addition
271 to being FAIR (Katz, 2017). It is essential to guarantee trait data collectors that
272 data re-users are able to properly cite all data sources, e.g. by adhering to the
273 FORCE11 data citation principles (Martone, 2014). FENNEC supports this by
274 preserving all relevant information. We therefore encourage trait data collectors
275 to make their data available via existing platforms like TraitBank (Parr, Wilson,
276 Schulz, et al., 2014), and thereby also usable for downstream analysis tools like
277 FENNEC and ultimately available to the whole research community.

278 **Conclusion**

279 FENNEC as a tool provides valuable assistance to analyze ecological data with
280 more than just taxonomy. Species traits and meta-data like threat status and

281 economic importance help to answer questions beyond the mere presence or
282 absence of organisms. The public instance can be used as a reference, to try
283 features of FENNEC and analyze datasets with data from other public databases.
284 Self-tailored local instances with private data increases the range of applications.
285 The main current limitation is trait data availability, but we expect an increase
286 with time, ongoing open-science initiatives and scientific journals requiring
287 public data deposition before publication. Besides developing a public automatic
288 mapping procedure, we also aim to demonstrate the importance of making trait
289 data publicly available and its usefulness in follow up studies. We thus advocate
290 the submission of trait data to public databases.
291 Despite limitations in data availability, the FENNEC is technically already able
292 to enrich ecological community analyses with trait information. Its usefulness
293 is expected to increase due to continued development guided by user feedback,
294 integration of more analysis tools, better taxonomic resolution, and increasing
295 availability of suitable trait data.

296 Acknowledgements

297 This study was supported by the German Excellence Initiative to the Graduate
298 School of Life Sciences, University of Würzburg (405/1517) to MJA and the DFG
299 (KE1743/7-1) to AK. We are grateful to the EOL for quick, open and helpful
300 responses to our emails. Many thanks to A. Voulgari-Kokota, N. Terhoeven,
301 J. Schultz and A. Claßen for beta testing, suggestions and valuable feedback.

302 Data Accessibility

303 The source code of FENNEC including documentation is available at <https://github.com/molbiodiv/fennec>. This source code is also archived at Zenodo
304 with doi: 10.5281/zenodo.591305.
305

306 Author Contributions

307 MJA and AK conceived the project, as well as designed methodology and
308 software; MJA and SH wrote the code with support by FF and LW; MJA
309 analyzed the case study and drafted the manuscript. All authors contributed
310 critically to the drafts and gave final approval for publication.

311 References

312 Ankenbrand, M. J. et al. (2017). “biojs-io-biom, a BioJS component for handling
313 data in Biological Observation Matrix (BIOM) format”. In: *F1000Research* 5,
314 p. 2348. doi: 10.12688/f1000research.9618.2.

315 Aßhauer, K. P. et al. (2015). “Tax4Fun: predicting functional profiles from
316 metagenomic 16S rRNA data”. In: *Bioinformatics* 31.17, pp. 2882–2884. doi:
317 10.1093/bioinformatics/btv287.

318 Bijlmakers, H. (2017). *World Crops Database - Fruits, vegetables, cereals and*
319 *other agricultural crops*. World Crops Database. URL: <http://world-crops.com/>
320 (visited on 07/25/2017).

321 Bik, H. M. and P. Interactive (2014). “Phinch: An interactive, exploratory data
322 visualization framework for -Omic datasets”. In: *bioRxiv*, p. 009944. doi:
323 10.1101/009944.

324 Brbić, M. et al. (2016). “The landscape of microbial phenotypic traits and
325 associated genes”. In: *Nucleic Acids Research* 44.21, pp. 10074–10090. DOI:
326 10.1093/nar/gkw964. eprint: /oup/backfile/content_public/journal/nar/44/
327 21/10.1093_nar_gkw964/3/gkw964.pdf.

328 Budrys, E., A. Budriene, and S. Orlovskyte (2014). *Cavity-nesting wasps and*
329 *bees database*. URL: <http://scales.ckff.si/scaletool/?menu=6&submenu=3>
330 (visited on 09/22/2017).

331 Caporaso, J. G. et al. (2010). “QIIME allows analysis of high-throughput
332 community sequencing data”. In: *Nature Methods* 7.5, pp. 335–336. DOI:
333 10.1038/nmeth.f.303.

334 Edgar, R. C. (2017). “SINAPS: Prediction of microbial traits from marker gene
335 sequences”. In: *bioRxiv*. DOI: 10.1101/124156. eprint: <https://www.biorxiv.org/content/early/2017/04/04/124156.full.pdf>.

337 EPPO (2017). *EPPO Global Database (available online)*. URL: <https://gd.eppo.int/>
338 (visited on 09/22/2017).

339 Federhen, S. (2012). “The NCBI Taxonomy database”. In: *Nucleic Acids Research*
340 40 (D1), pp. D136–D143. DOI: 10.1093/nar/gkr1178.

341 Henle, K. et al. (2014). “Scaling in Ecology and Biodiversity Conservation”. In:
342 *Advanced Books* 1, e1169. DOI: 10.3897/ab.e1169.

343 IUCN (2017). *IUCN Red List of Threatened Species. Version 2017-1*. URL: <http://www.iucnredlist.org/> (visited on 09/22/2017).

344 Junker, R. R., N. Blüthgen, and A. Keller (2015). “Functional and phylogenetic
345 diversity of plant communities differently affect the structure of flower-visitor
346 interactions and reveal convergences in floral traits”. In: *Evolutionary Ecology*
347 29.3, pp. 437–450. DOI: 10.1007/s10682-014-9747-2.

348 Kattge, J. et al. (2011). “TRY – a global database of plant traits”. In: *Global*
349 *Change Biology* 17.9, pp. 2905–2935. DOI: 10.1111/j.1365-2486.2011.02451.x.

351 Katz, D. S. (2017). *FAIR is not fair enough*. Daniel S. Katz's blog. URL: <https://danielskatzblog.wordpress.com/2017/06/22/fair-is-not-fair-enough/> (visited
352 on 09/13/2017).

353

354 Keller, A., N. Danner, et al. (2015). "Evaluating multiplexed next-generation
355 sequencing as a method in palynology for mixed pollen samples". In: *Plant*
356 *Biology* 17.2, pp. 558–566. doi: 10.1111/plb.12251.

357 Keller, A., H. Horn, et al. (2014). "Computational integration of genomic traits
358 into 16S rDNA microbiota sequencing studies". In: *Gene* 549.1, pp. 186–191.
359 doi: 10.1016/j.gene.2014.07.066.

360 Kleyer, M. et al. (2008). "The LEDA Traitbase: a database of life-history traits
361 of the Northwest European flora". In: *Journal of Ecology* 96.6, pp. 1266–1274.
362 doi: 10.1111/j.1365-2745.2008.01430.x.

363 Langille, M. G. I. et al. (2013). "Predictive functional profiling of microbial
364 communities using 16S rRNA marker gene sequences". In: *Nature Biotechnology*
365 31.9, pp. 814–821. doi: 10.1038/nbt.2676.

366 Martone, M. (2014). *Joint Declaration of Data Citation Principles*. FORCE11.
367 San Diego CA. URL: <https://force11.org/datacitation> (visited on 09/13/2017).

368 McDonald, D. et al. (2012). "The Biological Observation Matrix (BIOM) format
369 or: how I learned to stop worrying and love the ome-ome". In: *GigaScience* 1,
370 p. 7. doi: 10.1186/2047-217X-1-7.

371 McMurdie, P. J. and S. Holmes (2013). "phyloseq: an R package for reproducible
372 interactive analysis and graphics of microbiome census data." In: *PLoS one*
373 8.4, e61217. doi: 10.1371/journal.pone.0061217.

374 Mons, B. et al. (2017). "Cloudy, increasingly FAIR; revisiting the FAIR Data
375 guiding principles for the European Open Science Cloud". In: *Information*
376 *Services & Use* 37.1, pp. 49–56. doi: 10.3233/ISU-170824.

377 Oteros, J. et al. (2015). "Automatic and Online Pollen Monitoring". In: *In-*
378 *ternational Archives of Allergy and Immunology* 167.3, pp. 158–166. doi:
379 10.1159/000436968.

380 Parr, C. S., N. Wilson, P. Leary, et al. (2014). "The Encyclopedia of Life v2:
381 Providing Global Access to Knowledge About Life on Earth". In: *Biodiversity*
382 *Data Journal* 2, e1079. doi: 10.3897/BDJ.2.e1079.

383 Parr, C. S., N. Wilson, K. Schulz, et al. (2014). "TraitBank: Practical semantics
384 for organism attribute data". In: *Semant Web–Interoperability, Usability, Appl*
385 *an IOS Press J*, pp. 650–1860.

386 Schloss, P. D. et al. (2009). "Introducing mothur: Open-Source, Platform-
387 Independent, Community-Supported Software for Describing and Comparing
388 Microbial Communities". In: *Applied and Environmental Microbiology* 75.23,
389 pp. 7537–7541. doi: 10.1128/AEM.01541-09.

390 Sickel, W. et al. (2015). "Increased efficiency in identifying mixed pollen samples
391 by meta-barcoding with a dual-indexing approach". In: *BMC Ecology* 15, p. 20.
392 doi: 10.1186/s12898-015-0051-y.

393 Söhngen, C. et al. (2016). "BacDive – The Bacterial Diversity Metadatabase in
394 2016". In: *Nucleic Acids Research* 44 (D1), pp. D581–D585. doi: 10.1093/nar/
395 gkv983.

396 Wilkinson, M. D. et al. (2016). "The FAIR Guiding Principles for scientific
397 data management and stewardship". In: *Scientific Data* 3, sdata201618. doi:
398 10.1038/sdata.2016.18.

399 Xu, Z. et al. (2014). "Which is more important for classifying microbial commu-
400 nities: who's there or what they can do?" In: *The ISME Journal*, pp. 1–3. doi:
401 10.1038/ismej.2014.157.