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ABSTRACT

Genetic correlation is a key population parameter that describes the shared genetic architecture
of complex traits and diseases. It can be estimated by current state-of-art methods, i.e. linkage
disequilibrium score regression (LDSC) and genomic restricted maximum likelihood (GREML).
The massively reduced computing burden of LDSC compared to GREML makes it an attractive
tool, although the accuracy (i.e., magnitude of standard errors) of LDSC estimates has not been
thoroughly studied. In simulation, we show that the accuracy of GREML is generally higher than
that of LDSC. When there is genetic heterogeneity between the actual sample and reference data
from which LD scores are estimated, the accuracy of LDSC decreases further. In real data
analyses estimating the genetic correlation between schizophrenia (SCZ) and body mass index,
we show that GREML estimates based on ~150,000 individuals give a higher accuracy than
LDSC estimates based on ~400,000 individuals (from combined meta-data). A GREML genomic
partitioning analysis reveals that the genetic correlation between SCZ and height is significantly
negative for regulatory regions, which whole genome or LDSC approach has less power to
detect. We conclude that LDSC estimates should be carefully interpreted as there can be
uncertainty about homogeneity among combined meta-data sets. We suggest that any interesting
findings from massive LDSC analysis for a large number of complex traits should be followed
up, where possible, with more detailed analyses with GREML methods, even if sample sizes are

lesser.
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MAIN TEXT

Genetic correlation is a key population parameter that describes the shared genetic
architecture of complex traits and diseases 1. The genetic correlation is the additive genetic
covariance between two traits scaled by the square root of the product of the genetic variance for
each trait (i.e., the geometric mean of the trait variances). The sign of the correlation shows the
direction of sharing, and the parameter definition is based on genetic variants across the allelic
spectrum. Methods to estimate genetic correlation based on genetic covariance structure are well
established for both quantitative and disease traits, e.g. (restricted) maximum likelihood for
linear mixed models (LMM) #®. Genetic covariance structure can be derived from phenotypic
records using pedigree information in twin or family-based designs 7. Recently, genome-wide
single nucleotide polymorphism (SNP) data have been used to construct a genomic relationship
matrix for the genetic covariance structure in LMM that captures the contribution of causal
variants that are in linkage disequilibrium (LD) with the genotyped SNPs* 8 °, Such estimates
assume that the genetic correlation estimated from common SNPs is representative of the

parameter that depends on all genetic variants; this seems like a reasonable assumption.

In contrast to the genomic restricted maximum likelihood (GREML) approach, a linkage
disequilibrium score regression (LDSC) 1% ! method does not require individual-level genotype
data but instead uses GWAS summary statistics, regressing association test statistics of SNPs on
their LD scores. The LD score of a SNP is the sum of LD r? measured with all other SNPs, and
can be calculated in a reference sample of the same ethnicity when individual genotype data are
not available for the GWAS sample, under the assumption that the GWAS sample has been
drawn from the same ethnic population as the reference sample used to calculate the LD scores.

The method exploits the relationship between association test statistic and LD score expected
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under polygenicity. Because of this simplicity, and the massively reduced computing burden in
terms of memory and time, it is feasible for LDSC to be applied to a large number of multiple

traits, e.g. Bulik-Sullivan et al. 1, Zheng et al. 2, Finucane et al. 13 .

Given the attractiveness of LDSC for a massive analysis of many sets of GWAS
summary statistics, it has been widely used in the community. However, genetic correlations
estimated by LDSC are often reported without caution although the approach is known to be less
accurate, compared to GREML. In fact, the accuracies of LDSC estimates have not been

thoroughly studied.

In this report, we compare both the bias (difference between the simulated true value and
estimated value) and accuracy (i.e. magnitude of the standard error of an estimate, SE) between
GREML and LDSC for estimation of genetic correlation. We find that both methods show little
evidence of bias. However, LDSC is less accurate as reported in Bulik Sullivan et al.'!, with SE
at least more than 1.5-fold higher than that of GREML regardless of the number of samples in
data used to estimate the genetic correlation. When decreasing the number of SNPs, the accuracy
of LDSC decreases further. When increasing the degree of genetic heterogeneity between the
actual sample and reference data from which LD scores are estimated, the SE of LDSC estimates
are up to 3-fold larger than those of the GREML estimates. We also show that GREML is more
accurate in genomic partitioning analyses over LDSC or stratified LDSC (sLDSC). In genomic
partitioning analyses the genetic parameters are estimated for genomic subsets defined by user-
specified annotations. In analyses of real data, we show that GREML is more accurate and
powerful, e.g. GREML estimates based on ~ 150,000 individuals give a higher accuracy than
LDSC estimates based on 400,000 individuals in estimating genetic correlation between

schizophrenia (SCZ) and body mass index (BMI) (-0.136 (SE=0.017) and p-value=4.54E-15 for
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GREML vs. -0.087 (SE=0.019) and p-value=4.91E-06 for LDSC). In these analyses, the
GREML estimate is based on UK sample only whereas the LDSC estimate is based on combined
meta-data sets among which there is uncertainty about homogeneity. Furthermore, a GREML
genomic partitioning analysis reveals that the genetic correlation between SCZ and height is
significantly negative for regulatory regions, which is less obvious by LDSC both when using

whole-genome or partitioned estimates of genetic correlation.

In the main methods, we used GREML* > and LDSC!® ! to compare their estimates of
genetic correlation using simulated as well as real data. Simulations were based on UK Biobank
imputed genotype data (UKBB®) after stringent quality control (QC) (see Supplemental
Methods). We calculated a ratio of empirical SE and its 95% confidence interval (Cl) to assess
the accuracy of the methods for each set of simulated data. The 95% Cls of SE were estimated
based on the delta method!’. When estimating genetic correlation using simulated phenotypes
based on UKBB genotype data we found that the estimates were unbiased for both GREML and
LDSC (Figure S1), but the SE of GREML was at least 1.5 times smaller than that of LDSC
(Figure 1). The ratio of the empirical SE from LDSC to GREML was increased up to 3.5-fold
when using a smaller number of SNPs (Figure 1). All values of the ratio were significantly
different from 1. It is notable that the SE of GREML estimates showed almost no difference
across different numbers of SNPs whereas that of LDSC estimates gradually increased with a
smaller number of SNPs (Figure S2). The ratio was invariant to sample size (Figure S3). As
expected, when using the intercept constrained to zero, LDSC estimates were substantially
biased when there were overlapping samples (Figure S4). We also explored alternative genetic
architectures (Figure S5), which consistently showed that GREML gives a smaller SE than

LDSC in any scenario.
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To explore the stability of the accuracy for both methods, we used two additional
genotype data sets without imputation, Wellcome trust case control consortium 2 (WTCCC218-2
) and genetic epidemiology research on adult health and aging cohort (GERA?% 2%), which are
publicly available (see Supplemental Methods for detailed data descriptions). We also used
UKBB raw (non-imputed) genotype data (UKBBTr). We calculated the correlation between the
LD scores for the HapMap3 SNPs estimated based on the 1KG CEU reference sample
(downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/) and those based on in-
sample genotype data, i.e. UKBB, WTCCC2, GERA and UKBBr data set (Table 1). We found
that the WTCCC2, GERA or UKBBr (raw) genotypes were less similar to the 1KG reference
genotypes, compared to the UKBB (imputed) genotypes (noting that UKBB samples had been
imputed to the combined data of 1KG reference and UK10K data). Table 2 shows that the SE
ratio of LDSC estimate to GREML estimate was higher for WTCCC2, GERA or UKBBTr than
that for UKBB. Figure 2 shows that the accuracy of GREML was consistent across different data
sets, whereas that of LDSC was decreased for WTCCC2, GERA or UKBBTr, compared to UKBB
data set. This was probably due to higher (or lower) correlation between LD scores based on the
1KG reference and the in-sample genotype data sets (Table 1) which might positively or
(negatively) affect the accuracy of LDSC estimates. For WTCCC2, GERA and UKBBr data, the
SE ratio of LDSC to GREML based on different number of individuals is shown in Figures S6,

S7 and S8.

Genome partitioning analyses are an emerging tool to estimate the genetic variance and
covariance explained by functional categories (e.g. DNase I hypersensitive sites (DHS) and non-
DHS 24). Currently, genomic partitioning analyses focus on SNP-heritability enrichment

analyses, formally testing for enrichment of signal compared to the expectation that the estimates
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are proportional to the number of SNPs allocated to each annotation. Considering genomic
partitioning in cross-disorder analyses is a natural extension to identify regions where genetic
correlations between disorders are highest and lowest. Here, we assessed the performance of the
methods in the context of genome partitioning analyses using simulated phenotypes based on
UKBB genotype data. A better LDSC approach to estimate genetic correlation for each category
might be sSLDSC, stratifying by genomic annotation; however, this method is currently under
development (i.e. there is software (see Web Resources), but there is no published document or
paper verifying the method). Nonetheless, since the SLDSC is available to the research
community, we applied both LDSC and sLDSC to estimate partitioned genetic correlations for
the simulated data (Supplemental Methods). For genome partitioning analyses, we showed that
LDSC estimates of genetic correlation were biased whether using LD-scores estimated from the
1KG reference or in-sample data (UKBB) while GREML estimates gave unbiased estimates for
each functional category (Figure 3). sSLDSC estimates were unbiased only when using LD-scores
from the in-sample data, and their SEs are relatively larger than those of GREML or LDSC
(Figure 3). This was probably due to the fact that the different distribution of causal variants and
their effects between DHS and non-DHS regions were better captured by an explicit covariance
structure fitted in GREML. We also applied the methods to a range of simulation scenarios and
found similar results in that GREML performed better than LDSC or sLDSC (Figure S9 and
Table S1), which was consistent with the previous results (Figures 1 and 2). It is notable that in a
deliberately severe scenario (e.g. causal variants are simulated only within few kb of a boundary)

GREML could give biased estimation of genetic correlation 324

While focusing on the accuracy of genetic correlation estimates, there is an important

implication for the bias in SNP-heritability estimates for both GREML and LDSC (Figure S10).
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When using the WTCCC2, GERA and UKBBr data, which were less similar to the 1KG
reference genotypes, compared to the UKBB data, LDSC estimates were substantially biased
whereas GREML estimates were close to the true value in estimation of SNP heritability (Figure
S10). However, this result is well known and LDSC was not recommended for SNP heritability
by the original authors °, but rather for relative enrichment analysis. Despite this, LDSC is
widely used for SNP-heritability estimation (because it is quick and simple). Thus, for
completeness we include analyses for different scenarios to quantify the properties of the
methods. When reducing the number of SNPs, estimated SNP-heritabilities from LDSC were
consistently unbiased; however, those from GREML were proportionally underestimated (Figure
S11). When using non-HapMap3 SNPs, LDSC estimates were consistently biased (Figure S12)
and less accurate, compared to GREML estimates (Figures S13 and S14), which probably
explains why LDSC is implemented using only HapMap3 SNPs. Although the genetic
correlation is robust to such biasedness % 1!, SNP-heritability itself should be carefully
interpreted for both GREML and LDSC. We also noted that LDSC and sLDSC estimates for
SNP-heritability were biased in the genome partitioning analysis (Figure S15) although the
estimated enrichment was close to the true value when using sSLDSC and in-sample LD scores

(Figure S15).

We used real phenotype and individual genotype data from the Psychiatric Genomics
Consortium (PGC) and UKBB to estimate genetic variance and covariance between SCZ and
BMI using LDSC and GREML (Table 3 and Figure S16). We also used publicly available
GWAS summary statistics for LDSC to see how much the SE of estimates could be reduced by
increasing the number of samples and number of SNPs. For real data analyses, we obtained

theoretical SE to assess the accuracy of the methods. GREML and LDSC estimates for the SNP-
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heritability were 0.192 (SE 0.004) and 0.280 (SE 0.016) for SCZ and 0.184 (SE 0.004) and 0.255
(SE 0.014) for BMI. The notable difference between GREML and LDSC was probably because
of a relatively small number of SNPs (500K) that might result in underestimated GREML SNP-
heritability (see Figure S11). This is one of the caveats of using GREML with real data that
usually comprise multiple cohorts genotyped on different platforms, such that, even with
imputation, the overlapping set of SNPs imputed with high confidence may be limited. The
estimated genetic correlation for GREML and LDSC was -0.136 (SE 0.017) and -0.173 (SE
0.031). This indicated that the GREML estimate was 3.5 and 1.8 times more precise than LDSC
estimates for the SNP-heritability and genetic correlation, respectively. For LDSC, we also
considered using additional GWAS summary statistics from publicly available resources®> ¢,
The sample sizes used for additional LDSC analyses (LDSC-meta) are summarized in Table 3.
The estimated SNP-heritability was 0.259 (SE 0.019) for SCZ and 0.121 (SE 0.007) for BMI,
and the estimated genetic correlation was -0.087 (SE 0.019). Although sample size was increased
2.7-fold, the SE of LDSC estimate was not smaller than that for GREML estimate (SE = 0.017
vs. 0.019, and p-value = 4.54E-15 vs. 4.91E-06 for GREML vs. LDSC) (Table 3). It should be
noted that GREML estimates used a homogeneous population (within UK and after stringent QC
excluding population outliers) whereas LDSC-metal and -meta2 were based on combined meta-
data sets consisting of ~ 80 different studies for which there is much more uncertainty about
homogeneity than when using a single study cohort such as UKBB. The large difference of the
estimates between LDSC and LDSC-metal (or -meta2) was probably due to the fact that
heterogeneity among the 80 different studies resulted in underestimation of the common genetic
variance and covariance, and that the difference of LD scores between the target and 1KG

reference data would bias the LDSC estimates as shown in Figure S10. We also analysed height
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data®’ and found a similar pattern in that GREML estimates were more accurate than LDSC
estimates whether using the same data or using additional GWAS summary statistics for LDSC

(Figure S17 and Table S2).

In the real data analyses, we carried out a functional category analysis partitioning the
genome into regulatory, DHS, intronic and intergenic regions using GREML (Figure 4 for
SCZ/height and Figure S18 for SCZ/BMI). For SCZ and height, the genetic correlation for the
regulatory region was negative and significantly different from 0 (p-value = 0.0028; Figure 4).
We also compared the results with the LDSC genetic correlation estimation (Figure S19 and
S20), and show that the estimates were similar between LDSC and GREML. However, GREML
had a lower p-value (0.0028 in Figure 4) than LDSC using LD-scores from the 1KG reference
data (p-value = 0.04) or using LD-scores from the in-sample data (p-value = 0.007). We note that
current sLDSC software does not provide a SE of estimated partitioned genetic correlation for
each category; therefore we did not attempt using the software for the real data analysis. For
SNP-heritability estimation, the SE of the estimate for each category was much lower for

GREML than sLDSC, ranging from 2.2 to 5.9-fold (Table S3).

Box 1. Summary points

1. GREML and LDSC can both provide unbiased estimates of the genetic correlation between
two traits. GREML requires individual level genotype data, while LDSC requires only
association summary statistics and LD scores per SNP. If LD scores have been calculated from
the same sample as the association statistics, then GREML and LDSC provide similar estimates
of the genetic correlation. However, in practice LD scores are estimated from external reference
samples of the same broad ethnicity, which can lead to bias in the estimates (Figure S21 and

S22). As a rule of thumb, when LDSC and GREML estimates are dissimilar, we recommend
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reporting the estimate with a lower SE. The theoretical SE of the estimates is a reliable indicator
to determine the better estimator, which agrees well with the empirical SE (from simulation

replicates) (Figure S23).

2. When combining multiple data sets to estimate genetic correlations between multiple traits, it
is possible, in practice, that the number of SNPs remaining after QC is relatively small. When the
number of available SNPs is small, the SE of LDSC estimates for genetic correlation can be

increased relatively more, compared to that of GREML estimates (Figure S2).

3. SNP-heritability has a different property, compared to genetic correlation since the latter is
robust to biased estimation of genetic variance and covariance (presumably the biases occur in
the numerator and denominator and hence approximately cancel out)* 1. Especially when using
a small number of SNPs (< 500K) for GREML or when using multiple meta-data sets for LDSC,
estimated SNP-heritability itself should be reported with caution as both methods can give biased

estimates.

4. When using a study cohort, it is desirable to measure heterogeneity between the cohort and
1KG reference data (e.g. measuring the correlation between LD scores estimated based on the
cohort and 1KG reference data as in Table 1). If the correlation is not close to one, LDSC
estimates should be carefully interpreted. We recommend that when GWAS summary statistics
are provided, cohort specific LD scores are provided also. It is also warranted that an optimal
approach to meta-analyse LD scores across multiple cohorts should be developed to improve

LLDSC performance 2.

5. When using extensive meta-data that possibly include heterogeneous sources, there are two

problems. Firstly, the LD scores estimated from reference samples such 1KG reference may be a
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poor representation of the LD scores of the heterogeneous meta-data, such that the accuracy of
LDSC decreases. Second, the distribution of causal variants and pleiotropic effects may be

different between heterogeneous sources such that the estimates can be biased (capturing only
common effects between heterogeneous sources). This implies that LDSC estimates should be

reported with caution when using extensive meta-data sets (Table 3).

6. One of advantages of having access to individual-level genotype data comes when more
detailed analyses are required, such as genomic partitioning analyses. As shown in Figure 4, a
GREML genomic partitioning analysis reveals a significant negative genetic correlation between
SCZ and height for the regulatory region, which genome-wide GREML or LDSC approach has

less power to detect.

LDSC and GREML are the methods that have been widely used in estimating genetic
correlation, shedding light on the shared genetic architecture of complex traits, based on
genome-wide SNPs. Two critical parameters for assessing methods are bias (whether the
estimates over replicated analyses differ from the true value) and accuracy (reflected by the
standard error of the estimate). Although the property of the accuracy of GREML has been
thoroughly studied and tested 2%, that of LDSC has not been sufficiently investigated. In this
report, we compare the accuracy of GREML and LDSC estimates based on various scenarios

using simulated as well as real data sets, and draw simple but useful guidelines (Box 1).

Both GREML and LDSC are methods that aim to estimate the same genetic correlation
parameter based on genetic variants across the allelic spectrum as defined earlier and the

definition is invariant across the methods. The estimates from both GREML and LDSC are valid
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if all required assumptions are met. GREML estimates variance/covariance components based on
genetic covariance structure estimated from available (in-sample) individual genotypes; whereas
LDSC estimates variance/covariance components based on association test statistics corrected
for LD structure inferred from the markers in the reference panel (e.g. 1KG of the same
ethnicity). The underlying assumption is that the samples generating the GWAS summary
statistics are drawn from the same population as the samples generating the LDSC statistics, but
here we showed that there can be LD-structure (LD-scores) differences between in-sample and

reference data, which impacts parameter estimations (Tables 1 and 2 and Figure S10).

The reduced computing burden of LDSC over GREML makes it the method of choice for
generating a quick overview of the genetic relationship between disorders (Table S4). However,
our results suggest that important associations could be overlooked. For example, Bulik-Sullivan
et al.!! reported a negative genetic correlation between BMI and SCZ estimated by LDSC
(Estimate = -0.095, SE = 0.025 with p-value = 1.75E-4) which was not significant after
Bonferroni correction for the multiple testing. Because of the limited power from LDSC
analysis, the shared genetic architecture between BMI and SCZ, perhaps, has had less attention
than it is due. We confirmed the negative genetic correlation between BMI and SCZ with a
greater confidence (Estimate = -0.136, p-value = 4.54E-15) using GREML. A second example is
in analyses investigating the shared genetic architecture between height and SCZ, in which
epidemiological evidence points to a negative association 3, supported by genetic analyses .
However, there was no evidence of genetic correlation between height and SCZ in whole-
genome level analyses of Bulik-Sullivan et al. 1! (Estimate = -0.002, SE = 0.022). We used a
GREML genomic partitioning analysis and found a significant negative genetic correlation

between height and SCZ for the regulatory region (Figure 4). It was noted that the regulatory
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region was highly enriched for height (Estimate = 0.094, p-value = 7.60E-92 in Table S3), which
intuitively supports a significant genetic correlation with SCZ for the region. As shown in Figure
3 and Figure S15, the GREML estimate was closer to the true values with a lower SE than LDSC
or sLDSC estimate in simulated data. For the real data analyses (Table S3), GREML had more
accurate SNP-heritability estimates (lower SE) than sSLDSC. Moreover, the sum of each category
matched well with the estimate of the whole-genome for GREML whereas this was not the case

for sLDSC (Tables S3).

Here we focused on genetic correlation estimates, and did not consider a number of
alternative approaches that have been explored in detail for estimation of SNP-heritability, e.g.
LDAK approach®, Weighted genomic relationship matrix3*, MAF stratified?® and LD-MAF
stratified approaches *. It was beyond the scope of our study to assess if biasedness and
accuracy can be improved with these methods, although a general observation is that biases in
SNP-heritability estimation can ‘cancel’ in estimates of genetic correlations, as biases impact
both the numerator and denominator of the genetic correlation quotient® 1. We note that while
under review, two new methods to estimate stratified genetic correlations via GWAS summary
statistics %% 37 have been published as alternatives to SLDSC. Those approaches also need
external reference samples to infer LD-structure in the actual sample, implying the same problem
as for LDSC (#4 and 5 in Box 1). However, to partially address this problem one method ¢
achieves smaller standard errors than sLDSC through a block diagonalization of the LD matrix.

A further study is needed to make explicit comparisons with GREML.

In conclusion, LDSC may be the best tool for a massive analysis of multiple sets of
GWAS summary statistics in estimating genetic correlation between complex traits, because of

its low computing burden and because summary statistics may be available for much larger
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sample sizes than those with individual genotype data. However, LDSC estimates should be
carefully interpreted, considering the summary points (Box 1). Any interesting findings from
LDSC analyses should be followed up, where possible, with more detailed analyses using
individual genotype data and with GREML methods, even though sample sizes with individual

genotype data may be smaller.

SUPPLEMENTAL DATA DESCRIPTION

The Supplemental Data include 23 figures, four tables, supplementary methods, consortium

members and affiliations, and supplementary references.
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Figure 1. The ratio of SE of LDSC estimate to that of GREML estimate using simulated

phenotypes based on UK Biobank genotypes.

Bars are 95% CI based on 100 replicates. The unit for the number of SNPs is thousand. This
result was based on 858K SNPs (after QC) and 10,000 individuals that were randomly selected
from UK Biobank. SNPs in each bin were randomly drawn from the 858K SNPs independently.
The number of causal SNPs was 10,000 that were randomly selected in each bin. The true
simulated value for the genetic correlation was 0.6 and that for the heritability was 0.5 for both
traits. Overlap (0%, 10% and 20%) stands for the percentage of overlapping individuals in the
first and second traits.
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Figure 2. Estimated genetic correlation with GREML and LDSC (without constrain to the
intercept) based on different genetic data sets.

Simulation was based on 10,000 individuals that were randomly selected from UKBB,
WTCCC2, GERA and UKBBFr (the raw genotype of UKBB), with 858K, 432K, 239K, and 124K
SNPs, respectively. Bars are 95% CI based on 100 replicates. Overlap (0%, 10% and 20%)
stands for the percentage of overlapping individuals in the first and second traits. The grey
dashed line stands for the true simulated genetic correlation 0.6.
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Figure 3. Estimated genetic correlation of simulated data based on a genomic partitioning

model.

Simulation was based on 10,000 individuals that were randomly selected from UKBB with 858K
SNP. Based on Gusev et al.?*, the 858K SNPs across the genome were stratified as two
categories: DHS (194K SNPs with 2268 causal SNPs) and non-DHS (664K SNPs with 7732
causal SNPs). The genetic correlation for the simulated phenotypes between the first and second
traits was 0.6 and -0.6 in DHS and non-DHS region, respectively. Bars are 95% CI based on 100
replicates. LDSC-CEU: Using LD-scores estimated from 1KG reference data. LDSC-OWN:
Using LD-scores estimated from UKBB. sLDSC-CEU: Using stratified LD-scores estimated
from 1KG reference data. sSLDSC-OWN: Using stratified LD-scores estimated from UKBB. The
presented results were based on 0% overlapping samples between the first and second traits and
those based on other scenarios (e.g. 10% and 20%) are presented in Table S1.
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Figure 4. Genetic correlation between SCZ and height and heritability based on SNPs in

partitioned genomic regions estimated with GREML.

A joint model was applied by fitting four genomic relationship matrices simultaneously, each
estimated based on the set of SNPs belong to each of the functional categories (regulatory,
intron, intergene and DHS). The bars are standard errors. P-value for the estimate significantly
different from 0 was 0.0028, 0.52, 0.91 and 0.67 for regulatory, intronic, intergenic and DHS
region, respectively.
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TABLE TITLES AND LEGENDS

Table 1. Correlation between LD scores estimated based on the HapMap3 SNPs using the 1KG

CEU reference sample and that from different target populations

Correlation Nr.SNPs

UKBB? 0.946 858,991
UKBBr® 0.720 123,615°
WTCCC2 0.899 421,035¢
GERA 0.661 238,089°

4UKBB was imputed to the combined data of the 1KG reference and UK10K data.
PUKBBr was based on the raw genotype data of UK Biobank data.

“The number of SNPs reduced further from the set of the QCed SNPs because of using only
SNPs matched with the HapMap3 SNPs used in calculating LD scores.

Table 2. The ratio of SE of LDSC estimate to that of GREML estimate using simulated
phenotypes based on UKBB, WTCCC2, GERA and UKBBTr genotypes in the scenarios without

overlapping individuals

800K 400K 200K 100K
UKBB 1.60(0.15) 1.70 (0.18) 1.85(0.25) 2.04 (0.33)
WTCCC2 NA  2.15(0.31) 2.35(0.43) 2.68(0.61)
GERA NA NA  2.87(0.56) 3.31(1.17)

UKBBr NA NA NA 3.74 (0.79)
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Table 3. Heritability and genetic correlation based on different data sets

h? SCZ (liability

- - - 2 - -
Method  #SNPs Data #individuals h= BMI scale) Genetic correlation
Mean SD Estimate SE Estimate SE Estimate SE p
GREML 518,992 UKBB+ 152,961 0.184 3.80E-03 0.192 4.39E-03 -0.136 1.74E-02  4.54E-15
SCZ(qgced)
LDSC 516519 gggﬁ; g 151262 14327 0255  138E-02 0280  163E-02 -0173  308E-02  1O1E-08
LDSC- UKBB+
477,163 GIANT+ 422,499 20226.0 0.111 8.10E-03 0.259 1.28E-02 -0.091 2.44E-02 1.95E-04
metal
PGCSCZ
L DSC- UKBB+
1,011,748 GIANT+ 414,707 32697.8 0.121 6.50E-03 0.261 1.03E-02 -0.087 1.90E-02  4.91E-06
meta2 PGCSCZ

GREML.: Analysis was based on quality controlled genetic data for BMI (from UK Biobank with 111,019 individuals and 518,992
SNPs) and schizophrenia (from PGC with 41,630 individuals and 518,992 SNPs).

LDSC: The data sets used in LDSC were the same as in GREML.

LDSC-metal: GWAS summary statistics for BMI were based on meta-analysed GWAS results of UKBB individual-level genetic data
(with 111,019 individuals and 518,992 SNPs) and of GIANT (245,051 individuals and 477,163 SNPs). For SCZ, the GWAS summary
statistics from the full PGC sample based on 77,096 individuals were used.

LDSC-meta2: The data sets used in LDSC-meta2 were the same as in LDSC-metal except the increased number of SNPs (1,011,748)
with which its performance was to check.

Mean and SD of #individuals: Due to different call rates of each SNP, number of individuals for each SNP used in GWAS were
different.
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