

Age-related decline in behavioral discrimination of amplitude modulation frequencies compared to envelope-following responses

Jesinyin Lai^{a, c}, Edward L. Bartlett^{a, b,*}

^a Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA

^b Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA

^c Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA

*** Corresponding Author:**

Edward L. Bartlett

Purdue University
Weldon School of Biomedical Engineering
206 S. Martin Jischke Drive
West Lafayette, IN 47907-2032

ebartle@purdue.edu

1 Abstract

The ability to discriminate modulation frequencies is important for speech intelligibility because speech has amplitude and frequency modulations. Neurophysiological responses assessed by envelope following responses (EFRs) significantly decline at faster amplitude modulation frequencies (AMF) in older subjects. A typical assumption is that a decline in EFRs will necessarily result in corresponding perceptual deficits. To test this assumption, we investigated young and aged Fischer-344 rats' behavioral AMF discrimination abilities and compared to their EFRs. A modified version of prepulse inhibition (PPI) of acoustic startle reflex (ASR) was used to obtain behavioral performance. A PPI trial contains pulses of sinusoidal AM (SAM) at 128 Hz presented sequentially, a SAM prepulse with different AMF and a startle-eliciting-stimulus. To account for hearing threshold shift or age-related synaptopathy, stimulus levels were presented at 10-dB lower or match to the aged peripheral neural activation (using auditory brainstem response wave I amplitude). When AMF differences and modulation depths were large, young and aged animals' behavioral performances were comparable. Aged animals' AMF discrimination abilities declined as the AMF difference or the modulation depth reduced, even compared to the young with peripheral matching. Young animals showed smaller relative decreases in EFRs with reduced modulation depths. The correlation of EFRs and AM perception was identified to be more consistent in young animals. The overall

results revealed larger age-related deficits in behavioral perception compared to EFRs, suggesting additional factors that affect perception despite smaller degradation in neural responses. Hence, behavioral and physiological measurements are critical in unveiling a more complete picture on the auditory function.

2

3 1. Introduction

4 Presbycusis is common and unavoidable in the elderly due to its properties
5 of chronic deterioration and is asymptomatic early in life [66, 20]. It has
6 been reported as the third most prevalent chronic disorder in the elderly
7 (\leq 65 years old) after hypertension and arthritis in the United States [40].
8 Age-related changes in auditory structures and functions exist in both the
9 peripheral and central auditory systems [58, 59, 66, 6, 18, 72]. Age-related
10 degradation of the auditory periphery comprises loss or dysfunction of the
11 inner and outer hair cells [24, 59], alterations in the stria vascularis leading
12 to endocochlear potential reduction [8], and/or diminished auditory nerve
13 fibers (ANFs) and synapses [60]. Meanwhile, changes in excitatory/inhibitory
14 balance are reported and described as one of the main causes of age-related
15 auditory deficits in the central auditory system [6, 7, 53, 46]. Auditory central
16 degradation could result in degraded processing of complex sounds especially
17 in challenging situations, for example speech recognition in a cocktail party
18 [22].

19 Human speech consists of complex and rapid modulations in amplitude
20 and frequency over time that are crucial for precise speech recognition [54,
21 61, 75]. Previously, our research team and others have revealed significant
22 age-related differences in temporal processing, assessed physiologically by en-
23 velope following responses (EFRs) at the levels of the auditory midbrain and
24 brainstem, at faster AM frequencies (AMFs) [47, 52]. Psychoacoustic stud-
25 ies using temporal modulation transfer functions (tMTFs) have also shown
26 that older adults have poor periodicity coding due to higher thresholds in
27 modulation depth and frequency modulation (FM) detection [25, 26]. We
28 have collected neurophysiological evidence from young and aged rats show-
29 ing age-related differences in temporal processing of AM and FM [48, 47]. It
30 is assumed that larger EFR responses elicited by AM sounds are associated
31 with better perceptual performance [48, 2, 43]. However, there is a lack of be-
32 havioral evidence that clarifies and confirms the relationship of physiological
33 and behavioral responses.

34 To assess and determine changes in neural processing related to auditory
35 impairments or brain disorders, the acoustic startle response (ASR) with its
36 modulation by a non-startling prepulse is broadly applied in behavioral sen-
37 sory studies [37, 14, 62]. The ASR is a type of reflexive behavior manifested
38 as a transient contraction of facial and skeletal muscles in respond to a sud-
39 den, brief and intensely loud sound [64, 39]. In rats, the ASR can be elicited
40 by an acoustic stimulus that is approximately more than 80 dB above the
41 hearing threshold [50]. Therefore, measurement of ASR can be used as an

42 indicator for the behavioral responsiveness or perception to acoustic stimuli.
43 Startle reflex behavior is convenient for age-related auditory studies because
44 it is an unconditioned reflex reaction and no animal training is required. It
45 has also been demonstrated that the ASR can be measured at any age past
46 juvenile in rats [67, 69]. The primary ASR circuit comprises the cochlear root
47 neurons, neurons in the caudal pontine reticular nucleus (PnC) and spinal
48 motor neurons [36, 10, 21]. This simple neural circuit has extremely short
49 latency because it involves only a few synapses located in the lower brainstem
50 [36, 10].

51 The amplitude and probability of a startle movement following a SES can
52 be modulated by non-startling prepulses. A prepulse is a stimulus presented
53 prior to the SES. The amplitude of the ASR is attenuated significantly when
54 the prepulse is detected and processed by the subject [13]. Therefore, inhibi-
55 tion of the startle reaction using a prepulse is termed prepulse inhibition
56 (PPI). The magnitude of PPI is proportional to the subject's detectability
57 of the prepulse [33]. Prepulses have been used in the forms of acoustic [29],
58 visual [4] and tactile [51]. Animal studies have shown that auditory PPI is
59 associated with the function of the cochlear nucleus, the inferior and superior
60 colliculi (I/SC) and the pedunculopontine tegmental nucleus [36]. When a
61 prepulse is presented, the signal travels from the level of the cochlea to the
62 IC and then travels collaterally to the SC. Subsequently, the SC excites the
63 pedunculopontine tegmental nucleus, which inhibits the PnC, resulting in re-
64 duced startle response [13, 36]. Hence, an interval of 20-500 ms between the

65 prepulse and the SES should provide sufficient time for the signal to inhibit
66 the ASR via PnC inhibition [13, 36, 37].

67 PPI can be induced by prepulses with various temporal characteristics.

68 Prepulse duration up to 100 ms are generally used in most PPI experiments
69 [32, 31, 17, 65]. Recently, other applications of the PPI paradigm were de-
70 veloped using complex modulatory stimuli with relatively long duration, for
71 example 50-1000 ms gap prepulses in background noise [62]. Detection of an
72 amplitude modulated prepulse, which was presented during 1 s before the
73 SES, from a background of unmodulated noise has been demonstrated in
74 gerbils of two-month age [41]. Speech sounds of 100-300 ms have also been
75 used as prepulses in rats [15, 16]. Floody and Kilgard (2007) showed that
76 Sprague-Dawley rats of approximately four-month age were able to distin-
77 guish syllable [pae] from [bae] with the application of the PPI paradigm.

78 In this study, we investigated AMF discrimination abilities of young and
79 aged F344 rats using the PPI paradigm. A modified test paradigm, adapted
80 from Floody and Kilgard's (2007) speech discrimination tasks, was applied
81 by replacing speech sounds with AM sounds. AM sounds modulated with
82 AMFs different from the AMF of background sounds were used as prepulses.
83 The behavioral results were then compared to EFRs of tMTFs recorded from
84 each of the tested animal. Sound levels that accounted for average sensation
85 level as well as sound levels that accounted for age-related cochlear synaptic
86 degeneration were used. As a whole, the results of this study should aid
87 in unveiling the relationship of neural AM processing and behavioral AM

88 perception in aging.

89 **2. Methods**

90 *2.1. Animals*

91 Twelve young (3-11 months; mean b.w.: male = 264 g and female = 183
92 g) and 14 aged (20-24 months; mean b.w.: male = 408 g and female = 242 g)
93 Fischer-344 (F344) rats obtained from Taconic (NIA colony) were used. All
94 animals were housed in the animal care facility during the period of this study
95 in a relatively quiet and standard condition. They were also maintained on
96 12-hour light and 12-hour dark cycle (light on at 6:00 and off at 18:00) with
97 water and food ad libitum. Behavioral experiments were performed during
98 the light phase of the light-dark cycle, mainly in between 13:00 and 18:00.
99 All protocols were approved by the Purdue Animal Care and Use Committee
100 (PACUC-1111000167).

101 *2.2. Behavioral tests (ASR and PPI)*

102 *2.2.1. Setup and experimental procedure*

103 All behavioral tests were performed in a sound attenuating cubicle (Med
104 Associates) within a larger anechoic chamber (Industrial Acoustics). During
105 the testing procedure, animals were placed on a grid rod animal holder on
106 a motion-sensitive platform. Animals' startle responses were detected and
107 transduced via an amplifier connecting to a TDT RZ6 system and the com-
108 puter. The vertical movement of the platform, which resulted from a startle
109 reaction, was converted into a voltage signal by a transducer.

110 Startle responses were measured from the beginning of each trial to 1.5
111 s after the offset of the SES. Acoustic stimuli, including background sounds
112 and prepulses, were generated by a TDT RZ6 system and presented via a
113 Fostex (FT28D Dome Tweeter) speaker. The SES was also generated by
114 the same TDT system and presented through a high frequency neodymium
115 compression driver (BMS speaker). Both speakers were placed behind the
116 animal holder. Stimulus presentation and response acquisition were manipu-
117 lated by custom-written scripts using RPvdEx and MATLAB (MathWorks).
118 Calibration of the apparatus was carried out for frequencies 1-20 kHz using a
119 1/2" Brüel & Kjaer microphone connecting to Nexus preamplifier and an os-
120 ciloscope (Tektronix). The microphone was placed inside the animal holder
121 at the middle of the cage, as recommended by the manual of Med Associates,
122 during the process of sound calibration.

123 For every animal that has not performed any behavioral PPI test before,
124 each of them was habituated to stay in the animal holder for 5-10 min for 3
125 successive days [68]. After 3 days of habituation, animals were then proceed
126 to perform an 8 kHz pure tone detection task or AMF discrimination task.
127 Each animal completed only one task (about 60 min) on one test day. A
128 complete task encompassed a total of 3 phases, which were named as phase
129 0, 1 and 2. In summary, phase 0 is an acclimation period for animals to
130 adapt to the animal holder, phase 1 is for habituation and association, and
131 phase 2 is the period in which the detection or discrimination task used for
132 analysis was carried out.

133 *2.2.2. 8 kHz pure tone detection task*

134 Animals' abilities in detecting 8 kHz pure tones in a quiet background
135 were tested using prepulses of 8 kHz pure tones at sound levels of 25-75
136 dB SPL in 10-dB difference. In phase 0, animals underwent acclimation for
137 5 min. In phase 1, 30 trials of SES alone were performed for animals to
138 habituate to around 60 % of their initial startle responses [68]. Wideband
139 noise of 20 ms duration with zero rise fall times was used as the SES. The
140 intensity of the SES was set at 105 dB SPL for young animals and 115 dB
141 SPL for aged animals. The interval between the onset of each trial was
142 randomized between 15 and 30 sec so that animals could not estimate the
143 appearance of a SES. Phase 2 contains trials with a SES alone (served as
144 positive controls), trials with a prepulse placed before a SES and trials with
145 a prepulse alone (served as negative controls). The prepulses were 8 kHz
146 pure tones with a duration of 50 ms (5 ms rise fall times). The intensity of
147 a prepulse in each trial was pseudorandomized between 25 and 75 dB SPL
148 (10-dB gap). As each type of prepulse intensity repeated 9 times within one
149 complete task, a total of 72 trials were consisted in phase 2. Similar to phase
150 1, the intertrial interval in phase 2 was also randomized between 15 to 30 s.

151 Behavioral 8 kHz detection threshold was estimated for each animal by
152 comparing the ASR or RMS ratio measurements of no prepulse to the ASR
153 or RMS ratio measurements of 8 kHz prepulses at various sound levels. Sig-
154 nificant decreases in the ASR or RMS ratio measurements of prepulses from
155 those of no prepulse were quantified using a one-sided t-test [41]. The mini-

156 mum sound levels that elicited a significant decrease in both of the measure-
157 ment were averaged. This mean threshold was then taken as the behavioral
158 8 kHz detection threshold for the particular animal.

159 *2.2.3. AMF discrimination task*

160 AMF discrimination task was performed in a background of SAM tones.
161 An 8 kHz carrier (200 ms) with 128 Hz AMF at 100, 50 or 25 % AM depth
162 was presented as a background tone throughout the task. This SAM tone
163 was repeated multiple times (about 12-27 times) before a prepulse and a SES
164 were presented (Fig. 1). In phase 0, the background SAM tone was presented
165 at 1 /s for 5 min to allow animals to acclimate to the animal holder and the
166 background sounds. Phase 1, consisted of 20 trials, was used to habituate
167 animals in associating the prepulse, which has an AMF different from the
168 background, with a SES. In these 20 trials, the AMF of the prepulse was
169 set at the highest or lowest AMF (depending on the range of the AMF that
170 was tested in Phase 2) and presented alternatively. Fifty milliseconds after
171 the prepulse (200 ms) offset, the SES was released. The intertrial interval
172 was randomized between 15 and 30 s. The background AM tone was played
173 during the 15-30 s interval but became silent for 2.6 s after the generation of
174 a SES. The background AM tone was then resumed at the start of the next
175 trial. Phase 2 contained a total 81 trials (each trial type repeated 9 times)
176 and was used to measured PPI for AMF discrimination. The AMF of the
177 prepulse was varied from trial to trial to test animals' abilities in discrimi-

178 nating it from the background AMF. The startle magnitude was expected to
179 be smaller if animals could discriminate the prepulse's AMF from the back-
180 ground. In contrast, if animals could not discriminate the prepulse's AMF
181 from the background, the loud noise should trigger a relatively larger startle
182 response. All the trials in phase 2 could be categorized into four conditions:
183 (1) background only (negative control); (2) background and prepulse (neg-
184 ative control); (3) background and SES (positive control); and (4) background,
185 prepulse and SES. Conditions (1) and (2) were negative controls because no
186 startle response should be induced in these two conditions. Condition (3)
187 served as a positive control since it contained a SES with no prepulse and a
188 large startle response should be triggered. In condition (4), reduced startle
189 response was expected if animals were able to discriminate a change in AMF
190 from the background. The AMFs that were tested in both young and aged
191 animals includes 16, 32, 64, 256, 512, 1024 Hz (± 3 - to ± 1 -octave away from
192 128 Hz). A narrower AMF range was also tested in young animals and the
193 AMFs are 45, 64, 90, 181, 256 and 362 Hz (± 1.5 - to ± 0.5 -octave away from
194 128 Hz). The background SAM tones was randomly presented between 12 to
195 27 times (at 1/s for 12-27 s) from trial to trial in order to remove any other
196 possible cues that could be used by animals to predict the SES. The only
197 cue that should be used by animals to predict the SES would be based on
198 their abilities to distinguish a change in AMF from the background's AM.
199 Each animal repeated the same PPI behavioral test for 2 times to confirm
200 consistency. Overall, the experimental procedure, stimulus presentation and

201 parameters for AMF discrimination task were designed by referring to the
202 published literature [68, 56, 15].

203 In term of stimulus intensity, the background and the prepulse levels
204 were set at 85 dB SPL for aged animals and 75 dB SPL for young animals.
205 This 10-dB difference in the sound level used in young and aged animals
206 accounted for the average difference in sensation level at 8 kHz for young
207 and aged animals [49]. In addition, for the first set of AMFs at 100 or 50 %
208 AM depth, we also tested young animals using sound levels that matched to
209 the aged's median ABR tone 8 kHz wave I amplitude at 85 dB SPL in order
210 to attain equivalent peripheral neural activation. This accounted for cochlear
211 synaptopathy and/or neuropathy as well as age-related differences in hearing
212 thresholds [60]. In this case, the average sound intensity was approximately
213 57.2 +/- 5.1 dB SPL in the young based on the measurement of tone 8 kHz
214 ABR wave I amplitudes, which would be about 30 dB sensation level.

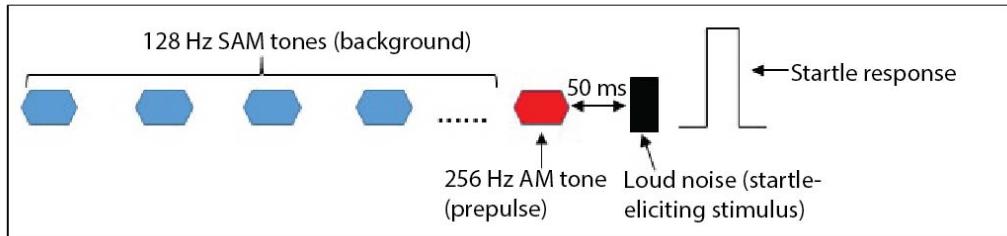


Figure 1: **Presentation of background sounds, prepulse and startle-eliciting stimulus in a typical trial of the PPI behavioral task for AMF discrimination.** The schematic shows an example of a PPI trial with multiple 128 Hz SAM tones presented in the background and a 256 Hz SAM tone used as a prepulse placing right before a startle-eliciting stimulus.

215 *2.2.4. Startle response measurements and PPI calculation*

216 Animal startle responses were recorded by the platform and then filtered
217 off-line with high-pass at 2 Hz and low-pass at 50 Hz. After filtering, a typical
218 startle response has a specific waveform as shown in Figure 2. Two different
219 methods were used to measure ASR responses [23]: (1) ASR magnitude:
220 the maximal peak-to-peak amplitude of transient voltage occurring within
221 300 ms after the offset of the SES; (2) ASR root mean square (RMS) ratio:
222 the RMS of the startle response (t_{ASR} , corresponding to a -100 to +200 ms
223 window relative to the first peak that occurred within 300 ms after the offset
224 of the SES) over the RMS of the baseline (t_{NF} , ref. Fig.2). The measured
225 mean ASR amplitude or mean RMS ratio for each trial type was estimated
226 as the average of all the ASR amplitudes or the RMS ratios after the highest
227 and lowest values were excluded [67]. This is to remove any possible outliers
228 as well as reduce variability of the responses. The percent of PPI (i.e. the
229 percent of startle magnitude reduced by the prepulse as compared to the
230 positive control) for each trial type was calculated using the below formula:

231
$$PPI\% = [1 - (ASR\text{ magnitude or RMS ratio to prepulse - baseline}) / (ASR$$

232
$$\text{magnitude or RMS ratio of startle only - baseline})] \times 100\%.$$

233 Magnitude or RMS ratio of baseline was measured from negative controls
234 (trials with no SES) while startle only was measured from positive controls
235 (trials of background and loud noise with no prepulse). A PPI % value that
236 is close to or at 0 indicates that the prepulse does not have an inhibitory
237 effect on animals' startle responses, which also indicates that animals could

238 not discriminate the prepulse from the background. However, a PPI % that
239 is near to 100 % indicates an almost complete inhibition of startle responses
240 by the prepulse.

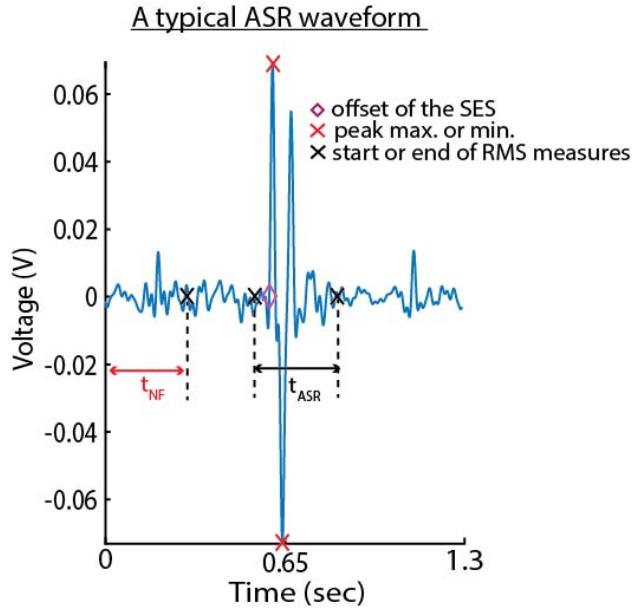


Figure 2: **A typical acoustic startle response (ASR) waveform with distinct peaks and troughs that are above or below the noise floor (NF).** The schematic shows an example of an ASR waveform obtained from a PPI trial. The offset of the startle-eliciting stimulus (SES), the start and end for root-mean-square (RMS) measures are labeled on the plot. For RMS ratio calculation, the time window of an ASR response is denoted by t_{ASR} while t_{NF} indicates the time window used for the noise floor. Both t_{ASR} and t_{NF} are 300 ms in duration.

241 *2.3. Auditory evoked potentials*

242 The experimental protocols used for ABR and EFR recordings were sim-
243 ilar to previously described details in Parthasarathy and Bartlett (2012). All
244 recordings were performed in a 9'x9' double-walled anechoic chamber (Indus-
245 trial Acoustic Corporation). The animals were anesthetized using isofluorane

246 at 4 % and later maintained under 1.5-2 % isofluorane for placing the elec-
247 trodes. Subdermal needle electrodes (Ambu) were placed on the animals'
248 scalps in a two-channel configuration. For channel 1, a positive electrode
249 was placed along the midline of the forehead in the the Cz to Fz position.
250 For channel 2, another positive electrode was placed horizontally along the
251 interaural line, which is above the location of the inferior IC. The negative
252 electrode was placed under the ipsilateral ear, along the mastoid, while the
253 ground electrode was placed in the nape of the neck. Electrode impedance
254 was confirmed to be less than $1\text{ k}\Omega$ by testing with a low-impedance amplifier
255 (RA4LI, Tucker Davis Technologies or TDT). Before taking off isofluorane,
256 the animals were injected (intramuscular) with dexmedetomidine (Dexdomi-
257 tor, 0.2 mg/kg), an α -adrenergic agonist acting as a sedative and an anal-
258 gesic. Recording was then started after a 15-min waiting time for the effects
259 of isofluorane to wear off. The animals were maintained in an unanesthetized
260 and immobile condition during the whole session of recording.

261 Tone 8 kHz ABRs were recorded using brief 8 kHz pure tones of 2 ms
262 duration (0.5 ms cos^2 rise/fall time), alternating polarity and presenting at
263 26.6/sec. The acquisition window was set to 30 ms and each ABR was
264 acquired as an average of 1500 repetitions (750 each polarity). Stimulus
265 intensity of the pure tone was decreased from 95 dB SPL to 15 dB SPL in 5-
266 dB steps. This enabled us to obtain the animal's hearing threshold at 8 kHz
267 as well as the magnitude of wave I at each sound level, which was used as an
268 indicator for the amount of activated ANFs. The median of tone 8 kHz ABR

269 wave I amplitudes at 85 dB SPL from aged animals was used for stimulus
270 intensity matching of peripheral activation in young animals. Sinusoidally
271 amplitude modulated (SAM) tones with a 8 kHz carrier were used as acoustic
272 stimuli for EFRs. At 100 %, 50 % or 25 % modulation depth, the AMF of
273 the SAM tones was systematically increased from 16 to 2048 Hz in 0.5-octave
274 steps to generate the tMTF. The stimulus intensity was set at 75 dB SPL for
275 young animals and 85 dB SPL for aged animals. In young animals, sound
276 levels that matched to the aged's median ABR tone 8 kHz wave I amplitude
277 at 85 dB SPL were also recorded.

278 All stimuli were presented free-field to the right ear of the animal at a
279 distance of 115 cm from a speaker (Bower and Wilkins DM601). Stimuli
280 were generated using SigGenRP (TDT) at a 100-kHz sampling rate. Stimuli
281 presentation and response acquisition were conducted using BioSig software
282 (TDT). Waveforms were converted to sounds and delivered through a multi-
283 channel processor (RX6, TDT) via the speaker. Digitized response waveform
284 was recorded with a multichannel recording and stimulation system (Rz5,
285 TDT). Responses were analyzed with BioSig and a custom-written program
286 in MATLAB.

287 All collected EFRs were low-pass filtered at 3000 Hz. EFRs were also
288 high-pass filtered at 12 Hz for AMFs of 12-24 Hz, 30 Hz for AMFs of 32-64 Hz
289 and 80 Hz for AMFs faster than 90 Hz. Filtered data were then exported as
290 text files and analyzed using custom-written MATLAB scripts. Fast Fourier
291 transform (FFT) were performed on time-domain waveforms from 10 to 190

292 ms relative to stimulus onset to exclude transient auditory brainstem re-
293 sponses at the beginning. The maximum magnitude of the evoked response
294 at one of the three frequency bins (3 Hz/ bin) around AMF was measured
295 as the peak FFT amplitude. The noise floor was calculated as the average
296 magnitude of five frequency bins above and below the central three bins. A
297 peak response was taken to be significantly above noise level if the FFT am-
298 plitude was at least 6 dB above the noise floor for the slower AMFs and at
299 least 10 dB above the noise floor for AMFs faster than 64 Hz to account for
300 the sharply decreasing noise floor.

301 *2.4. Statistical analysis*

302 Repeated measures ANOVAs (rmANOVAs) were performed to compare
303 ASR responses or FFT amplitudes of young and aged groups as well as
304 across different stimulus conditions using custom written scripts in SAS (Proc
305 MIXED, SAS Institute, Cary, NC, USA). Main effects and interactions ef-
306 fects of each factor were analyzed based on comparisons of least squares (LS)
307 means. Data distributions were checked for normality using normal prob-
308 ability plots of the residuals (proc UNIVARIATE). The differences in LS
309 means with a confidence level of 95 % was used when reporting significant
310 differences. LS means +/- standard error of mean (SEM) are shown in the
311 figures.

³¹² **3. Results**

³¹³ *3.1. 8 kHz tone detection in a quiet background*

³¹⁴ Prepulses of 8 kHz pure tones at sound intensities of 25-75 dB SPL, in
³¹⁵ 10-dB difference, were used to test animals' hearing sensitivities at 8 kHz.
³¹⁶ The growth of PPI as a function of sound level, i.e. PPI values increased as
³¹⁷ 8 kHz prepulse intensity increased, was observed in young and aged animals
³¹⁸ as shown in Fig. 3. For almost all of the sound levels, young animals had
³¹⁹ larger PPI values than old animals although age-related differences were not
³²⁰ statistically significant. For each age group, PPI values at higher sound levels
³²¹ were significantly larger than PPI values at lower sound levels, e.g. $75 > 35$
³²² db SPL. Table 1 shows sound levels with PPI that are significantly different
³²³ from each other in young and aged animals for each of the measurement.
³²⁴ In addition, SEM of aged animals tended to be larger at lower sound levels
³²⁵ (25-45 dB SPL). This indicates that young animals were more behaviorally
³²⁶ consistent at perceiving 8 kHz tones at lower sound levels because of having
³²⁷ better hearing sensitivity. In young animals, the mean PPI values at each
³²⁸ sound level were significantly larger than 0 when tested using a t-test. How-
³²⁹ ever, the mean PPI values were significantly larger than 0 in aged animals at
³³⁰ higher sound levels. Statistical analysis using rmANOVA revealed a signif-
³³¹ icant main effect of sound level for the measurement of ASR magnitude (F
³³² $= 17.52$, $p < 0.05$) and ASR RMS ratio ($F = 13.05$, $p < 0.05$). However, no
³³³ significant age or age*sound level effect was observed for both measurements.

334 Behavioral 8 kHz detection threshold estimation using the measurements
335 of ASR and RMS ratio was performed for each animal. Young animals gen-
336 erally have lower 8 kHz detection thresholds than aged animals. The mean
337 8 kHz detection threshold of the young was $39.5 +/ - 0.2$ dB SPL while the
338 mean 8 kHz detection threshold of the aged was $61.9 +/ - 0.17$ dB SPL. How-
339 ever, these thresholds were higher than the 8 kHz hearing thresholds obtained
340 from ABRs elicited by brief 8 kHz tones. The measured mean tone 8 kHz
341 ABR threshold for the young was $25.5 +/ - 0.04$ dB SPL and for the aged
342 was $37.2 +/ - 0.09$ dB SPL. Statistical comparisons of hearing thresholds for
343 age vs. young or behavior vs. ABR were performed using rmANOVAs. The
344 results show main effect of Age ($F = 12.44$, $p < 0.05$) and Measure type (F
345 = 22.61 , $p < 0.05$) but no significant interaction effect.

Sound level (dB SPL)	25	35	45	55	65
<u>ASR magnitue</u>					
Young	55, 65, 75	65, 75	65, 75	75	
Aged	45, 55, 65, 75	55, 65, 75	65, 75	75	
<u>RMS ratio</u>					
Young	65, 75	65, 75	65, 75	75	
Aged	55, 65, 75	55, 65, 75	75		75

Table 1: For 8 kHz prepulse detection, PPI values of lower sound levels were mostly significantly different from PPI values of higher sound levels. This table shows sound levels with PPI that are significantly different from each other within each age group according to the results of rmANOVAs for Figure 3.

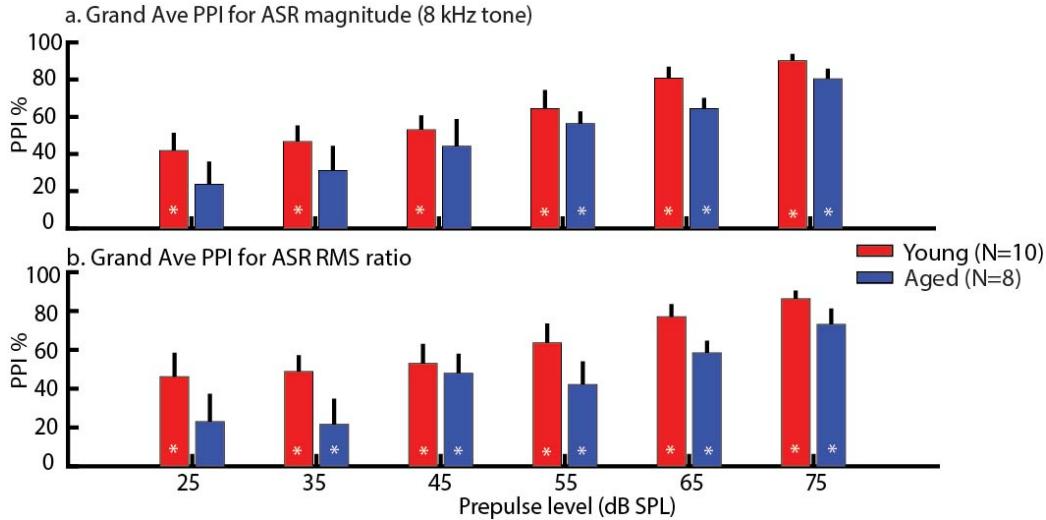


Figure 3: **Prepulse inhibition (PPI) using prepulses of 25-75 dB SPL 8 kHz pure tones in a quiet background showed similar growth in PPI as sound intensity increased in young and aged animals.** PPI values of higher sound intensities were larger than those of lower sound intensities. The black asterisks indicate $p < 0.05$ for PPI comparison between age groups and at the same sound level. The white asterisks in bars indicate $p < 0.05$ for mean PPI not equal to zero using a t-test. All statistically significant differences were obtained using least squares means comparison from rmANOVA and PPI comparison between sound levels within an age group is summarized in Table 1.

346 *3.2. Behavioral discrimination of AMFs*

347 *3.3. In young animals*

348 The first set of frequencies tested in young animals for AMF discrimina-
349 tion includes the range of 16-1024 Hz with 1-octave difference. Each AMF is
350 1, 2 or 3 octaves higher or lower than 128 Hz AM. The same AMF discrim-
351 ination task was performed by fixing AM depths of all SAM tones at either
352 100, 50 or 25 %. The PPI results obtained with these three AM depths
353 using either ASR magnitude or RMS ratio were shown in Figure 4. When
354 comparing PPI values among different AM depths but at one single AMF,

355 higher inhibition was observed for larger AM depths compared to smaller
356 AM depths, e.g. 100 % > 50 % > 25 %. Statistical significance for PPI
357 values being higher at larger AM depths compared to smaller AM depths
358 was observed at most AMFs. In addition, when comparing PPI values across
359 different AMFs but within the same AM depth, a trend of higher PPI was
360 observed at AMFs that were further away from 128 Hz for 50 and 25 % AM
361 depths. At 25 % AM depth, grand average PPIs of almost all the tested
362 AMFs generally had larger SEMs. This indicates that behavioral variability
363 among young animals in AMF discrimination increased when AM depth re-
364 duced. According to the results of t-tests, the mean PPI values at each AMF
365 at 100 and 50 % depth were all significantly different from 0 indicating signif-
366 icant inhibitory effects. In contrast, the mean PPI values at 25 % depth were
367 not significantly different from 0 at most AMFs except 1024 Hz. In addition,
368 a significant main effect of AM depth was obtained from rmANOVA for the
369 measurements of ASR magnitude ($F = 10.51, p < 0.05$) and RMS ratio (F
370 $= 14.54, p < 0.05$).

371 The second set of frequencies tested on the young includes the range of 45-
372 362 Hz separated in 0.5-octave difference. Each AMF is 0.5-, 1- or 1.5-octave
373 away from 128 Hz AM. In Figure 5, PPI values at 100 % depth were relatively
374 higher than 50 % depth. When comparing PPI across different AMFs at 50 %
375 AM depth, a trend of increased PPI was observed when AMFs were further
376 away from 128 Hz. Moreover, for 50 % AM depth, grand average PPI of
377 most AMFs had larger SEM indicating variability among young animals in

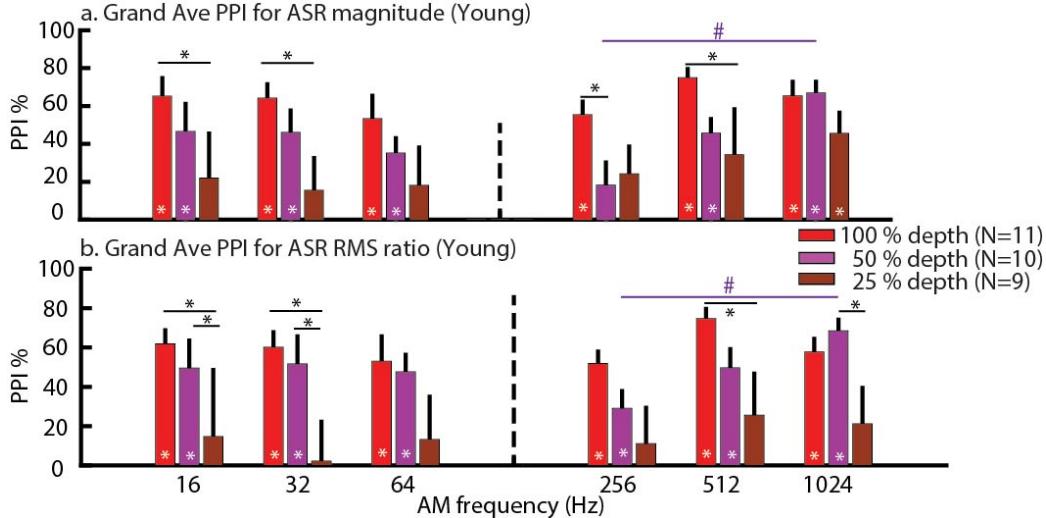


Figure 4: In young animals, PPI values were higher for larger AM depths compared to lower AM depths (e.g. 100 % > 50 % > 25 %) at various AMFs (16-1024 Hz in 1-octave difference). For 50 % AM depths, PPI tended to increase as AMFs were further away from 128 Hz. The black asterisks indicate $p < 0.05$ for PPI comparison between different AM depths within the same AMF while the pound signs indicate $p < 0.05$ for PPI comparison between different AMFs but within the same AM depth. All statistically significant differences were obtained using least squares means comparison from rmANOVA. The white asterisks in bars indicate $p < 0.05$ for mean PPI not equal to zero using a t-test.

378 AMF discrimination increased as AM depth reduced. The mean PPI values
 379 were significantly larger than 0 for almost all AMFs at 100 % depth but not
 380 for 50 % depth. According to rmANOVA, there is a significant main effect
 381 of AM depth for both ASR magnitude measurement ($F = 17.69$, $p < 0.05$)
 382 and RMS ratio measurement ($F = 11.74$, $p < 0.05$).

383 *3.4. Young vs. aged animals*

384 AMF discrimination was tested in young and aged animals using stimulus
 385 intensity of either 75 (young) or 85 db SPL (aged). The tests were performed
 386 at either 100 or 50 % AM depth. Young animals were also tested at sound

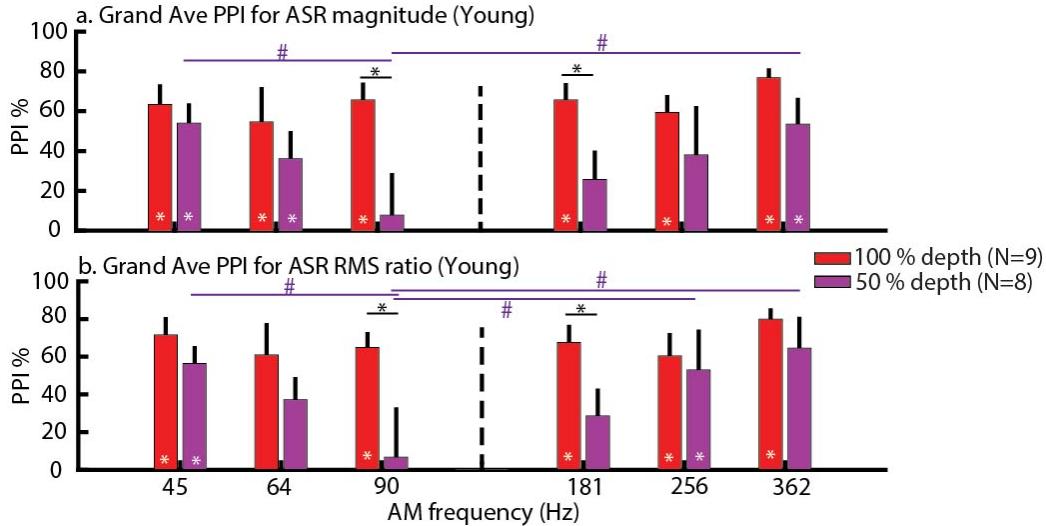


Figure 5: **A trend of higher PPI was observed for 100 % AM depth compared to 50 %.** The PPI results were obtained from a more difficult task in which the AMF range was set at 0.5-1.5 octave away from 128 Hz. Indications for the asterisk and the pound signs are similar to Figure 4.

387 levels (an average of about 55.3 db SPL) that matched to the aged median
388 tone 8 kHz ABR wave I amplitude to achieve equivalent peripheral neural
389 activation. This accounted for cochlear synaptopathy and/or neuropathy
390 [60] as well as age-related differences in hearing thresholds because ABR
391 wave I amplitude reflects the amount of activated and synchronized auditory
392 neurons [55, 9]. Figure 6 shows the results of PPI obtained at 100 % AM
393 depth. There was a trend of aged PPI values at 85 dB SPL being lower
394 than PPI of the young at 75 dB SPL and at matched peripheral activation.
395 Young PPI values at 75 dB SPL and at matched peripheral activation were
396 similar except at 1024 Hz AMF. Statistical analysis using rmANOVA revealed
397 significant main effect of AMF for PPI measured with ASR magnitude ($F =$

398 4.1, $p < 0.05$) and RMS ratio ($F = 3.42$, $p < 0.05$).

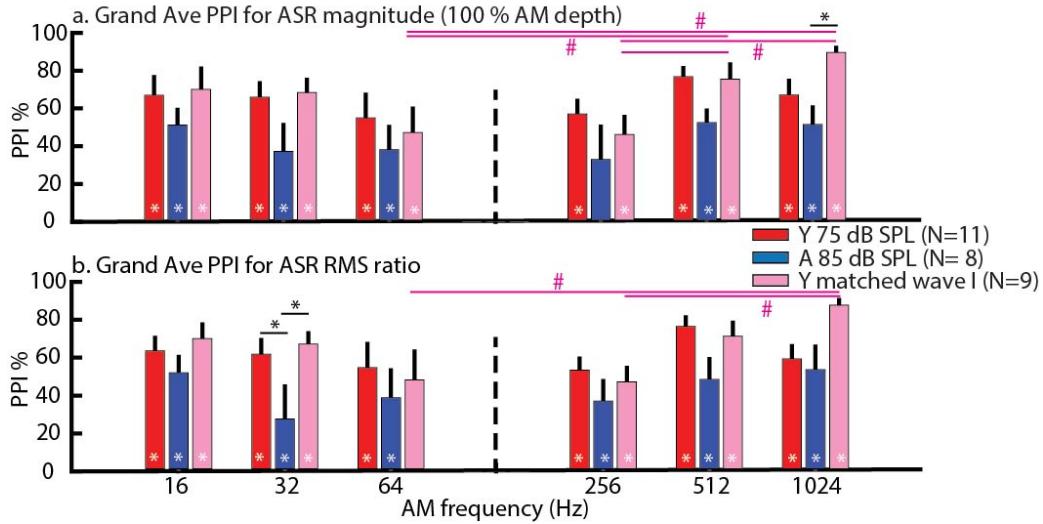


Figure 6: **PPI was detectable in aged animals for almost all AMF differences for one octave spacing and 100% AM depth.** There was a trend of aged PPI values being lower than the young at 75 dB SPL and at matched peripheral activation. The pound signs indicate $p < 0.05$ for PPI comparison between different AMFs within the same age group. All statistically significant differences were obtained using least squares means comparison from rmANOVA. In the legend, Y indicates young animals while A indicates aged animals. The white asterisks in bars indicate $p < 0.05$ in t-test for mean PPI not equal to zero. In the legend, Y indicates young animals while A indicates aged animals.

399 Figure 7 shows the results of PPI obtained at 50 % AM depth. In the
 400 young 75 dB SPL, PPI values were generally smaller than for 100 % depth
 401 (cf. Fig 6), but still showed PPI significantly higher than zero. By contrast,
 402 the PPI responses for the aged 85 dB SPL and the young with peripheral
 403 matching were not significantly above zero at some AMFs (e.g. 16, 256 and
 404 512 Hz). When AM depth reduced to 50 %, AMF discrimination abilities
 405 for the aged at 85 dB SPL and the young at matched peripheral activation
 406 reduced, especially at 256 Hz AMF. According to rmANOVAs, there was a

407 significant main effect of AMF obtained from rmANOVAs for PPI measured
408 using the ASR magnitude method ($F = 6.71, p < 0.05$) and the ASR RMS
409 ratio method ($F = 7.55, p < 0.05$). The rmANOVA results for the ASR RMS
410 ratio also showed a significant main effect of Age ($F = 9.28, p < 0.05$).

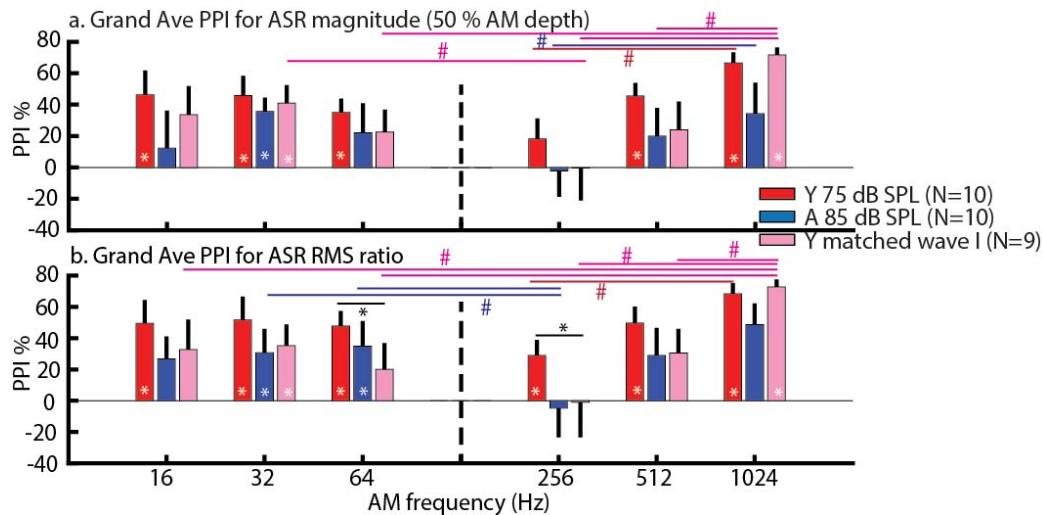


Figure 7: **For AMF discrimination at 50 % AM depth, a trend of higher PPI values in young animals (75 dB SPL) across AMFs was observed.** Aged animals had PPI close to baseline or in negative values especially when responses were measured using RMS ratio. PPI values of young animals at 75 dB SPL or matched wave I were mostly not significantly different from the aged. The black asterisks indicate $p < 0.05$ for PPI comparison between age groups but at the same AMF. All statistically significant differences were obtained using least squares means comparison from rmANOVA. The white asterisks in bars indicate $p < 0.05$ in t-test for mean PPI not equal to zero. In the legend, Y indicates young animals while A indicates aged animals.

411 *3.5. Electrophysiological responses for AMF perception*

412 Electrophysiological responses elicited by AMFs ranging from 16-2048 Hz
413 were recorded in both young and aged animals via EFRs using 8 kHz tone
414 carriers (Fig. 8a). Sound levels were set at 75 dB SPL for the young and 85
415 dB SPL for the aged, which has been shown to evoke peak EFR responses in

416 most animals [47]. Fig. 8a shows EFRs of tMTFs with 100, 50 or 25 % AM
417 depth in young and aged animals. At 100 % AM depth, the young EFRs
418 were generally higher than the aged even though the stimulus level used in
419 the aged was 10 dB SPL louder. For aged animals, their EFRs at 100 % AM
420 depth were similar to the young EFRs at 50 % AM depth. Moreover, the aged
421 EFRs at 50 % AM depth were also similar to the young EFRs at 25 % AM
422 depth. However, when EFRs of tMTFs were recorded at equivalent peripheral
423 activation, the aged EFRs at 100 % AM depth were significantly higher than
424 the young EFRs at 100 % AM depth (Fig. 8b). Although differences were
425 smaller, the aged EFRs at 50 % AM depth were still significantly larger than
426 the young EFRs at 50 % AM depth. According to statistical analysis using
427 rmANOVA for EFRs recorded at equivalent peripheral activation, the main
428 effects of age and AMF as well as their interaction effect were statistically
429 significant ($p < 0.05$). At 100 % AM depth, the F-values of age and AMF
430 main effects were 19.97 and 52.92, respectively. The interaction effect of
431 age*AMF had an F-value of 5.68. For 50 % AM depth, the F-values of
432 age and AMF main effects were 6.68 and 179.12, respectively while the F-
433 value for the interaction effect of age*AMF was 2.13. We did not perform
434 statistical analysis for EFRs in Fig. 8a because the emphasis was to observe
435 the trends and how EFRs of tMTFs with different AM depths were distinct
436 or overlapped.

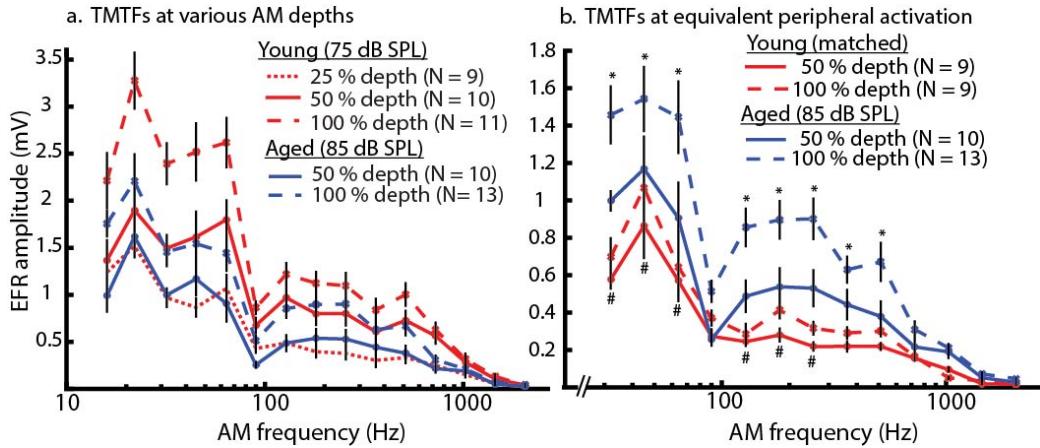


Figure 8: **Young animals' EFR amplitudes were generally larger at 75 dB SPL compared to aged animals at 85 dB SPL but their EFR amplitudes were lower than the aged at equivalent peripheral activation.** (a) EFRs of temporal modulation transfer functions (tMTFs) with 100, 50 or 25 % AM depth recorded in young and aged animals, respectively. (b) EFRs of tMTFs with 100 or 50 % AM depth recorded in both age groups at matched peripheral activation. The asterisks indicate $p < 0.05$ for comparison of EFR amplitudes between young and aged animals for tMTFs with 100 % AM depth while the pound signs indicate $p < 0.05$ for comparison of EFR amplitudes between young and aged animals for tMTFs with 50 % AM depth. All statistically significant differences were obtained using least squares means comparison from rMANOVA.

437 *3.6. Relationship of EFRs and behavioral PPI*

438 To identify the relationship between neurophysiological responses and be-
 439 havioral AMF discrimination at each of the tested AMFs, changes in each
 440 of these measures due to a change in temporal salience of AM depth were
 441 compared simultaneously. The changes in behavioral PPI or the changes in
 442 EFR amplitudes as temporal salience of AM depth dropped from 100 to 50 %
 443 were measured at each of the tested AMF and in each age group. As shown
 444 in Figure 9, changes in PPI values were plotted on the left ordinate while
 445 changes in EFR amplitudes were plotted on the right ordinate. The changes

446 in PPI values (Δ PPI) were measured as PPI % at 100 % AM depth minus
447 PPI % at 50 % AM depth from the same animals. The changes in EFRs
448 (EFR ratio) were measured as EFR amplitudes at 50 % depth divided EFR
449 amplitudes at 100 % depth from the same animal as well.

450 For young animals (75 dB SPL), consistent smaller changes in EFRs and
451 PPIs due to a decrease in stimulus AM depth were observed. This indicates
452 that their abilities in AMF discrimination and EFR responses to the tested
453 AMFs were not much affected by a reduction in AM depth. For aged animal
454 (85 dB SPL), the trend of EFR ratio over AMF behaved similarly to young
455 animals (75 dB SPL) but their Δ PPIs were larger compared to young animals
456 (75 dB SPL). There was a larger change in behavioral AMF discrimination
457 performance due to a reduction in AM depth although changes in EFRs
458 were relatively smaller. The trend observed in young animals seemed to
459 hold even when they were tested at matched peripheral activation. The
460 changes in behavioral PPI were slightly larger compared to those at 75 dB
461 SPL. Overall, a smaller change in EFR correlated with a smaller change in
462 behavioral PPI value in young animals at both 75 dB SPL and at equivalent
463 peripheral activation. However, this correlation was no longer consistent in
464 aged animals.

465 **4. Discussion**

466 *4.1. Behavioral PPI audiometry versus ABRs*

467 The paradigm of behavioral ASR and PPI has been used to assess audi-
468 tory behavior in rodents [56, 65, 63, 42, 45, 19, 62, 41]. Using standard PPI
469 techniques in the absence of a background sound, both younger and older
470 animals exhibited PPI whose amplitude increased with increasing salience of
471 the prepulse (Fig. 3). For a 25 dB prepulse, PPI was significantly larger
472 than 0 in younger animals, comparable to their ABR thresholds and consis-
473 tent with previous studies [42]. As expected based on the ABR thresholds,
474 PPI magnitudes tended to be smaller in older animals for lower prepulse
475 levels, but still grew with increasing level and achieved similar peak PPI.
476 Therefore, animals of all ages tested exhibited the PPI behavior and to a
477 similar degree.

478 *4.2. Aging effects on PPI of ASR*

479 Age-dependent reduction on startle responses elicited by acoustic stim-
480 uli in rodents, including F344 rats, have been reported in previous studies
481 [56, 69, 45, 30, 38]. It has been suggested that age-related changes in ASR
482 cannot be directly attributed to hearing loss because different ASR ampli-
483 tudes were obtained from young adult rats of different strains with similar
484 hearing sensitivities [56]. In our study, we observed comparable PPI val-
485 ues, especially at supra-threshold prepulse levels, for 8 kHz detection task
486 in young and aged animals (Fig. 3). This is different that the reduction of

487 PPI efficiency associated with aging reported in F344 rats by Rybaklo et al.
488 (2012). At 100 % AM depth (Fig. 6), the aged and young had similar PPI
489 values for AMF differences of 2-3 octaves. For 1 octave AMF difference, PPI
490 tended to be reduced in the aged 85 dB SPL and the young with periph-
491 eral matching (Fig. 6). When AM depth salience decreased (Fig. 6), the
492 observed age-related reductions of PPI further suggest a deficit in temporal
493 processing leading to impaired perception.

494 *4.3. AM frequency discrimination*

495 Amplitude modulation is used by humans and animals to aid in auditory
496 object formation [5, 3]. Many studies have used tMTFs as a measure of
497 temporal acuity of the auditory system in psychoacoustic [71, 26, 1, 35] as
498 well as in electrophysiological studies [12, 47, 52]. AM depth sensitivity
499 as a function of AMF has been demonstrated as similar for rats [35] and
500 other mammals, including humans [71] and chinchillas [27]. A progressive
501 decrease in AM depth sensitivity (behavioral threshold became worse) of a
502 noise carrier modulated between 5-2000 Hz were observed in rats [35] and
503 rats having better AM depth sensitivity at AMFs of 10-60 Hz was also found
504 to be similar to humans [71]. The behavioral tMTFs of humans [44], rats
505 [35], barn owls [11] and chinchilla [57] showed a low-pass characteristic for
506 AM detection resembling the electrophysiological tMTFs in F344 rats shown
507 in this study (Fig. 8) and in our previous study [47]. For low modulation
508 depths (25%), there was little evidence of discrimination in young animals

509 for most AMFs. Despite this, PPI was evident for 1024 Hz AM (Fig. 4a),
510 suggesting that AM discrimination even at low modulation depths (25%) is
511 possible at AMF well above those that thalamic and cortical neurons can
512 phase-lock to [34], suggesting that spectral cues and rate coding may be
513 used. As task difficulty increased by reducing AM depth (Fig. 7), aged
514 animals performed worse. Young animals tested at equivalent peripheral
515 activation (55.3 dB SPL) performed better than the aged 85 dB SPL (Fig.
516 7) implying that peripheral activation by itself does not fully account for
517 behavioral performance.

518 *4.4. Correlation of behavioral auditory responses and the underlying neural
519 responses*

520 When the temporal salience of AM depth was decreased from 100 to 50
521 % depth, the degree of the EFR phase-locking to the SAM stimuli decreased
522 (Fig. 8 and 9). If EFR amplitudes have a strong link to behavioral perfor-
523 mance, we expect that this should result in a decline in temporal perception
524 (Fig. 9). When we compared changes in EFRs versus changes in behavioral
525 PPI values due to a change in AM depth, Figure 9 reveals that both neuro-
526 physiological and behavioral changes in young animals were correlated at 75
527 dB SPL as well as at softer sound levels (equivalent peripheral activation).
528 A relative smaller change in behavioral PPI was associated with a relative
529 smaller change in neural responses to SAM stimuli at the tested AMFs in the
530 young 75 dB SPL. However, this correlation was no longer seemed to hold in

531 the aged 85 dB SPL. A relatively smaller reduction in EFRs was observed to
532 result in a larger decline in behavioral PPI in aged animals. This observa-
533 tion is analogous to the findings of Xu and Gong (2014). When behavioral
534 frequency difference limens (FDLs) and two-tone evoked frequency-following
535 responses (FFRs) were measured in normal hearing young adults, they ob-
536 served that frequency difference of two-tone, which was able to evoke FFRs,
537 was smaller than behavioral FDL threshold [74]. Therefore, these and our re-
538 sults show that the neurophysiological measurements of EFRs or FFRs may
539 be more sensitive than behavioral measurements because a smaller change
540 in stimulus parameters can be detected physiologically but the response is
541 not expressed behaviorally. Other behavioral tasks may be more sensitive,
542 or it may be that phase-locking physiological measures are too sensitive [28].
543 These data also suggest that age-related degradation that exists beyond the
544 auditory brainstem and midbrain could have a larger contribution to the de-
545 cline in behavioral perception [73]. In addition, since we performed tone 8
546 kHz ABR wave I amplitude matching to achieve equivalent peripheral ac-
547 tivation, which accounts for age-related increase of hearing threshold and
548 age-related neuropathy/synaptopathy [60, 70], age-related decline in behav-
549 ioral AMF discrimination should be due to more of a central effect and less
550 to a peripheral effect.

551 In conclusion, we examined the relationship of behavioral AM percep-
552 tion and neurophysiological responses to similar stimuli by measuring PPI of
553 ASRs and EFRs. The young behavioral performance in discriminating dif-

554 ferent AMFs dropped gradually as salience of AM depth reduced from 100 to
555 25 % depth. Comparable behavioral performances at AMFs 1-2 octaves away
556 from 128 Hz were observed in young and aged animals when AMF spacing
557 was larger and at 100 % AM depth. At 50 % AM depth, age-related decline
558 of EFRs was smaller but aged animals' AMF discrimination performance was
559 highly compromised. When physiological and behavioral results were com-
560 pared, the correlation of AM processing and AM perception were identified
561 to be more consistent in the young, including even when peripheral activa-
562 tion was matched. Overall, the results reveal a larger age-related deficit in
563 behavioral perception compared to auditory evoked potentials using similar
564 SAM stimuli. This suggests that behavioral and physiological measurements
565 should be combined to capture a more complete view on the auditory function
566 and aid in identifying the localization of age-related auditory deficits.

567 **5. References**

568 [1] Bacon, S. P. and Viemeister, N. F. (1985). Temporal modulation transfer
569 functions in normal-hearing and hearing-impaired listeners. *Audiology*,
570 24(2):117–34.

571 [2] Boettcher, F. A., Poth, E. A., Mills, J. H., and Dubno, J. R. (2001).
572 The amplitude-modulation following response in young and aged human
573 subjects. *Hearing Research*, 153(1-2):32–42.

574 [3] Bohlen, P., Dylla, M., Timms, C., and Ramachandran, R. (2014). De-

575 tection of Modulated Tones in Modulated Noise by Non-human Primates.

576 *Journal of the Association for Research in Otolaryngology*, 15(5):801–21.

577 [4] Buckland, G., Buckland, J., Jamieson, C., and Ison, J. R. (1969). Inhibi-
578 tion of startle response to acoustic stimulation produced by visual prestim-
579 ulation. *Journal of Comparative and Physiological Psychology*, 67(4):493–
580 6.

581 [5] Bürck, M. and van Hemmen, J. L. (2009). Neuronal identification of signal
582 periodicity by balanced inhibition. *Biological Cybernetics*, 100(4):261–70.

583 [6] Caspary, D. M., Ling, L., Turner, J. G., and Hughes, L. F. (2008). In-
584 hibitory neurotransmission, plasticity and aging in the mammalian central
585 auditory system. *J Exp Biol*, 211(Pt 11):1781–91.

586 [7] Caspary, D. M., Schatteman, T. A., and Hughes, L. F. (2005). Age-
587 related changes in the inhibitory response properties of dorsal cochlear nu-
588 cleus output neurons: Role of inhibitory inputs. *Journal of Neuroscience*,
589 25(47):10952–9.

590 [8] Chen, G. D., Li, M., Tanaka, C., Bielefeld, E. C., Hu, B. H., Kermany,
591 M. H., Salvi, R., and Henderson, D. (2009). Aging outer hair cells (OHCs)
592 in the Fischer 344 rat cochlea: function and morphology. *Hearing Research*,
593 248(1-2):39–47.

594 [9] Chen, T. and Chen, S. (1991). Generator study of brainstem auditory

595 evoked potentials by a radiofrequency lesion method in rats. *Experimental*
596 *brain research*, 85(3):537–42.

597 [10] Davis, M., Gendelman, D. S., Tischler, M. D., and Gendelman, P. M.
598 (1982). A primary acoustic startle circuit: lesion and stimulation studies.
599 *The Journal of Neuroscience*, 2(6):791–805.

600 [11] Dent, M., Klump, G., and Schwenzfeier, C. (2002). Temporal mod-
601 ulation transfer functions in the barn owl (*Tyto alba*). *Journal of*
602 *Comparative Physiology A: Sensory, Neural, and Behavioral Physiology*,
603 187(12):937–43.

604 [12] Fay, R. (1980). Psychophysics and neurophysiology of temporal factors
605 in hearing by the goldfish - amplitude-modulation detection. *Journal of*
606 *Neurophysiology*, 44(2):312–32.

607 [13] Fendt, M., Li, L., and Yeomans, J. S. (2001). Brain stem circuits medi-
608 ating prepulse inhibition of the startle reflex. *Psychopharmacology*, 156(2-
609 3):216–24.

610 [14] Fitch, R. H., Threlkeld, S. W., McClure, M. M., and Peiffer, A. M.
611 (2008). Use of a modified prepulse inhibition paradigm to assess complex
612 auditory discrimination in rodents. *Brain Research Bulletin*, 76(1):1–7.

613 [15] Floody, O. R. and Kilgard, M. P. (2007). Differential reductions in
614 acoustic startle document the discrimination of speech sounds in rats. *The*
615 *Journal of the Acoustical Society of America*, 122(4):1884–7.

616 [16] Floody, O. R., Ouda, L., Porter, B. A., and Kilgard, M. P. (2010). Effects
617 of damage to auditory cortex on the discrimination of speech sounds by
618 rats. *Physiology & Behavior*, 101(2):260–8.

619 [17] Friedman, J. T., Peiffer, A. M., Clark, M. G., Benasich, A. A., and Fitch,
620 R. H. (2004). Age and experience-related improvements in gap detection
621 in the rat. *Developmental Brain Research*, 152(2):83–91.

622 [18] Frisina, R. D. (2010). Aging changes in the central auditory system. In
623 Palmer, A. R. and Rees, A., editors, *The Oxford Handbook of Auditory
624 Science: The Auditory Brain*, pages 415–36. Oxford University Press.

625 [19] Gaese, B. H., Nowotny, M., and Pilz, P. K. (2009). Acoustic startle
626 and prepulse inhibition in the Mongolian gerbil. *Physiology & Behavior*,
627 98(4):460–6.

628 [20] Gates, G. A. and Mills, J. H. (2005). Presbycusis. *The Lancet*,
629 366(9491):1111–20.

630 [21] Gomez-Nieto, R., Horta-Junior, J. d. A. C., Castellano, O., Millian-
631 Morell, L., Rubio, M. E., and Lopez, D. E. (2014). Origin and function
632 of short-latency inputs to the neural substrates underlying the acoustic
633 startle reflex. *Frontiers in Neuroscience*, 8.

634 [22] Gordon-Salant, S. (2005). Hearing loss and aging: New research find-
635 ings and clinical implications. *The Journal of Rehabilitation Research and
636 Development*, 42(4s):9.

637 [23] Grimsley, C. A., Longenecker, R. J., Rosen, M. J., Young, J. W., Grimsley, J. M., and Galazyuk, A. V. (2015). An improved approach to separating startle data from noise. *Journal of Neuroscience Methods*, 253:206–17.

640 [24] Harding, G. W., Bohne, B. A., and Vos, J. D. (2005). The effect of
641 an age-related hearing loss gene (Ahl) on noise-induced hearing loss and
642 cochlear damage from low-frequency noise. *Hearing Research*, 204(1-2):90–
643 100.

644 [25] He, N. J., Mills, J. H., Ahlstrom, J. B., and Dubno, J. R. (2008).
645 Age-related differences in the temporal modulation transfer function with
646 pure-tone carriers. *The Journal of the Acoustical Society of America*,
647 124(6):3841–9.

648 [26] He, N.-j., Mills, J. H., and Dubno, J. R. (2007). Frequency modulation
649 detection: Effects of age, psychophysical method, and modulation wave-
650 form. *The Journal of the Acoustical Society of America*, 122(1):467–77.

651 [27] Henderson, D., Salvi, R., Pavek, G., and Hamernik, R. (1984). Am-
652 plitude modulation thresholds in chinchillas with high-frequency hearing
653 loss. *J Acoust Soc Am*, 75(4):1177–83.

654 [28] Henry, K. S., Abrams, K. S., Forst, J., Mender, M. J., Neilans, E. G.,
655 Idrobo, F., and Carney, L. H. (2016). Midbrain Synchrony to Envelope
656 Structure Supports Behavioral Sensitivity to Single-Formant Vowel-Like

657 Sounds in Noise. *Journal of the Association for Research in Otolaryngol-*

658 *ogy.*

659 [29] Hoormann, J., Falkenstein, M., Hohnsbein, J., and Blanke, L. (1992).

660 The human frequency-following response (FFR) - normal variability and

661 relation to the click-evoked brain-stem response. *Hearing Research*,

662 59(2):179–88.

663 [30] Ison, J., Bowen, G., Pak, J., and Gutierrez, E. (1997). Changes in

664 the strength of prepulse inhibition with variation in the startle baseline

665 associated with individual differences and with old age in rats and mice.

666 *Psychobiology*, 25(3):266–74.

667 [31] Ison, J. R., Allen, P. D., Rivoli, P. J., and Moore, J. T. (2005). The

668 behavioral response of mice to gaps in noise depends on its spectral compo-

669 nents and its bandwidth. *The Journal of the Acoustical Society of America*,

670 117(6):3944.

671 [32] Ison, J. R. and Bowen, G. (2000). Scopolamine reduces sensitivity to

672 auditory gaps in the rat, suggesting a cholinergic contribution to temporal

673 acuity. *Hearing Research*, 145(1-2):169–76.

674 [33] Ison, J. R. and Hoffman, H. S. (1983). Reflex modification in the do-

675 main of startle: II. The anomalous history of a robust and ubiquitous

676 phenomenon. *Psychological bulletin*, 94(1):3–17.

677 [34] Joris, P. X., Schreiner, C. E., and Rees, A. (2004). Neural processing of
678 amplitude-modulated sounds. *Physiological Reviews*, 84:541–77.

679 [35] Kelly, J. B., Cooke, J. E., Gilbride, P. C., Mitchell, C., and Zhang,
680 H. (2006). Behavioral limits of auditory temporal resolution in the rat:
681 amplitude modulation and duration discrimination. *Journal of comparative
682 psychology (Washington, D.C. : 1983)*, 120(2):98–105.

683 [36] Koch, M. (1999). The neurobiology of startle. *Progress in Neurobiology*,
684 59(2):107–28.

685 [37] Koch, M. and Schnitzler, H.-U. (1997). The acoustic startle response
686 in rats—circuits mediating evocation, inhibition and potentiation. *Be-
687 havioural Brain Research*, 89(1):35–49.

688 [38] Krauter, E., Wallace, J., and Campbell, B. (1981). Sensory-motor func-
689 tion in the aging rat. *Behavioral and neural biology*, 31(4):367–92.

690 [39] Landis, C. and Hunt, W. A. (1939). The startle patter. *New York, NY:
691 Farrar & Rinehart*.

692 [40] Li-Korotky, H. S. (2012). Age-related hearing loss: quality of care for
693 quality of life. *Gerontologist*, 52(2):265–71.

694 [41] Lingner, A., Kugler, K., Grothe, B., and Wiegreb, L. (2013).
695 Amplitude-modulation detection by gerbils in reverberant sound fields.
696 *Hearing Research*, 302:107–12.

697 [42] Longenecker, R., Alghamdi, F., Rosen, M., and Galazyuk, A. (2016).
698 Prepulse inhibition of the acoustic startle reflex vs. auditory brainstem
699 response for hearing assessment. *Hearing Research*, 339:80–93.

700 [43] Mamo, S. K., Grose, J. H., and Buss, E. (2016). Speech-evoked ABR:
701 Effects of age and simulated neural temporal jitter. *Hearing Research*,
702 333:201–9.

703 [44] O'Connor, K. N., Johnson, J. S., Niwa, M., Noriega, N. C., Marshall,
704 E. A., and Sutter, M. L. (2011). Amplitude modulation detection as a
705 function of modulation frequency and stimulus duration: comparisons be-
706 tween macaques and humans. *Hearing research*, 277(1-2):37–43.

707 [45] Ouagazzal, A.-M., Reiss, D., and Romand, R. (2006). Effects of age-
708 related hearing loss on startle reflex and prepulse inhibition in mice on
709 pure and mixed C57BL and 129 genetic background. *Behavioural Brain
710 Research*, 172(2):307–15.

711 [46] Ouda, L., Profant, O., and Syka, J. (2015). Age-related changes in the
712 central auditory system. *Cell and Tissue Research*, 361(1):337–58.

713 [47] Parthasarathy, A. and Bartlett, E. (2012). Two-channel recording of
714 auditory-evoked potentials to detect age-related deficits in temporal pro-
715 cessing. *Hearing Research*, 289(1-2):52–62.

716 [48] Parthasarathy, A. and Bartlett, E. L. (2011). Age-related auditory
717 deficits in temporal processing in F-344 rats. *Neuroscience*, 192:619–30.

718 [49] Parthasarathy, A., Datta, J., Torres, J. A., Hopkins, C., and Bartlett,
719 E. L. (2014). Age-related changes in the relationship between auditory
720 brainstem responses and envelope-following responses. *Journal of the As-*
721 *sociation for Research in Otolaryngology*, 15(4):649–61.

722 [50] Pilz, P. K., Schnitzler, H. U., and Menne, D. (1987). Acoustic startle
723 threshold of the albino rat (*Rattus norvegicus*). *Journal of comparative*
724 *psychology (Washington, D.C. : 1983)*, 101(1):67–72.

725 [51] Pinckney, L. A. (1976). Inhibition of the startle reflex in the rat by prior
726 tactile stimulation. *Animal Learning & Behavior*, 4(4):467–72.

727 [52] Purcell, D. W., John, S. M., Schneider, B. A., and Picton, T. W. (2004).
728 Human temporal auditory acuity as assessed by envelope following re-
729 sponds. *The Journal of the Acoustical Society of America*, 116(6):3581–
730 93.

731 [53] Rabang, C. F., Parthasarathy, A., Venkataraman, Y., Fisher, Z. L.,
732 Gardner, S. M., and Bartlett, E. L. (2012). A Computational Model of
733 Inferior Colliculus Responses to Amplitude Modulated Sounds in Young
734 and Aged Rats. *Frontiers in Neural Circuits*, 6:77.

735 [54] Rosen, S. (1992). Temporal information in speech: acoustic, auditory
736 and linguistic aspects. *Philos Trans R Soc Lond B Biol Sci*, 336(1278):367–
737 73.

738 [55] Rowe, M. J. (1981). The brainstem auditory evoked response in neuro-
739 logical disease: a review. *Ear and Hearing*, 2(1):41–51.

740 [56] Rybalko, N., Bureš, Z., Burianová, J., Popelář, J., Poon, P. W., and
741 Syka, J. (2012). Age-related changes in the acoustic startle reflex in Fischer
742 344 and Long Evans rats. *Exp Gerontol*, 47(12):966–73.

743 [57] Salvi, R. J. (1982). Detection of sinusoidally amplitude modulated
744 noise by the chinchilla. *The Journal of the Acoustical Society of Amer-
745 ica*, 71(2):424–9.

746 [58] Schuknecht, H. F. (1964). Further observations on the pathology of
747 presbycusis. *Arch Otolaryngol*, 80:369–82.

748 [59] Schuknecht, H. F. and Gacek, M. R. (1993). Cochlear pathology in
749 presbycusis. *Ann Otol Rhinol Laryngol*, 102:1–16.

750 [60] Sergeyenko, Y., Lall, K., Liberman, M. C., and Kujawa, S. G. (2013).
751 Age-related cochlear synaptopathy: an early-onset contributor to auditory
752 functional decline. *Journal of Neuroscience*, 33(34):13686–94.

753 [61] Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., and Ekelid,
754 M. (1995). Speech recognition with primarily temporal cues. *Science*,
755 270(5234):303–4.

756 [62] Steube, N., Nowotny, M., Pilz, P. K. D., and Gaese, B. H. (2016). De-
757 pendence of the Startle Response on Temporal and Spectral Characteris-

758 tics of Acoustic Modulatory Influences in Rats and Gerbils. *Frontiers in*
759 *Behavioral Neuroscience*, 10:133.

760 [63] Šuta, D., Rybalko, N., Shen, D.-W., Popelář, J., Poon, P. W. F., and
761 Syka, J. (2015). Frequency discrimination in rats exposed to noise as
762 juveniles. *Physiology & Behavior*, 144:60–5.

763 [64] Swerdlow, N. R., Braff, D. L., and Geyer, M. A. (1999). Cross-species
764 Studies of Sensorimotor Gating of the Startle Reflex. *Annals of the New*
765 *York Academy of Sciences*, 877:202–16.

766 [65] Swetter, B. J., Fitch, R. H., and Markus, E. J. (2010). Age-related
767 decline in auditory plasticity: Experience dependent changes in gap detec-
768 tion as measured by prepulse inhibition in young and aged rats. *Behavioral*
769 *Neuroscience*, 124(3):370–380.

770 [66] Syka, J. (2002). Plastic Changes in the Central Auditory System After
771 Hearing Loss, Restoration of Function, and During Learning. *Physiol Rev*,
772 82(3):601–36.

773 [67] Syka, J. (2010). The Fischer 344 rat as a model of presbycusis. *Hear*
774 *Res*, 264:70–8.

775 [68] Valsamis, B. and Schmid, S. (2011). Habituation and Prepulse Inhibi-
776 tion of Acoustic Startle in Rodents. *Journal of Visualized Experiments*,
777 (55):e3446.

778 [69] Varty, G., Hauger, R., and Geyer, M. (1998). Aging Effects on the
779 Startle Response and Startle Plasticity in Fischer F344 Rats. *Neurobiology*
780 *of Aging*, 19(3):243–51.

781 [70] Viana, L. M., O’Malley, J. T., Burgess, B. J., Jones, D. D., Oliveira,
782 C. A. C. P., Santos, F., Merchant, S. N., Liberman, L. D., and Liber-
783 man, M. C. (2015). Cochlear neuropathy in human presbycusis: Confocal
784 analysis of hidden hearing loss in post-mortem tissue. *Hearing Research*,
785 327:78–88.

786 [71] Viemeister, N. F. (1979). Temporal modulation transfer functions based
787 upon modulation thresholds. *The Journal of the Acoustical Society of*
788 *America*, 66(5):1364–80.

789 [72] Walton, J. P. (2010). Timing is everything: Temporal processing deficits
790 in the aged auditory brainstem. *Hearing Research*, 264:63–9.

791 [73] Wojtczak, M., Nelson, P. C., Viemeister, N. F., and Carney, L. H. (2011).
792 Forward Masking in the Amplitude-Modulation Domain for Tone Carriers:
793 Psychophysical Results and Physiological Correlates. *Jaro-Journal of the*
794 *Association for Research in Otolaryngology*, 12:361–373.

795 [74] Xu, Q. and Gong, Q. (2014). Frequency difference beyond behavioral
796 limen reflected by frequency following response of human auditory Brain-
797 stem. *BioMedical Engineering OnLine*, 13(1):114–27.

798 [75] Zeng, F. G., Nie, K., Stickney, G. S., Kong, Y. Y., Vongphoe, M., Bhar-
799 gave, A., Wei, C., and Cao, K. (2005). Speech recognition with amplitude
800 and frequency modulations. *Proc Natl Acad Sci U S A*, 102(7):2293–8.

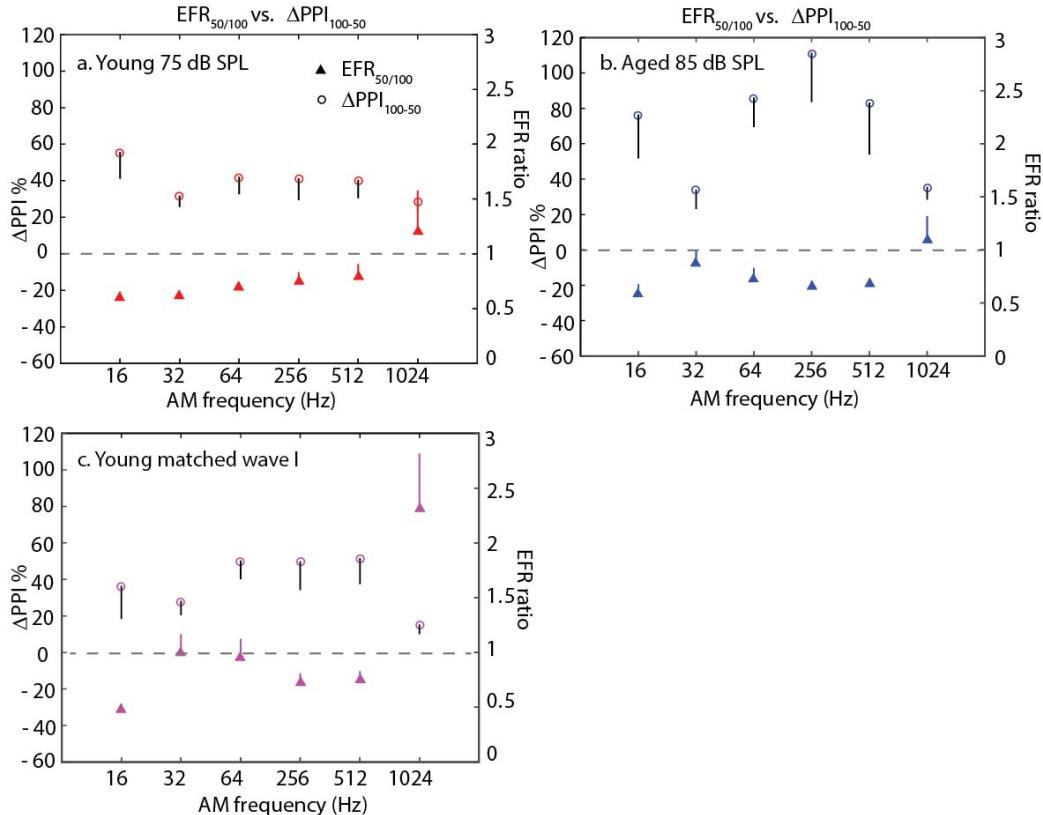


Figure 9: **Greater changes of behavioral PPI values compared to changes of EFRs in aged animals when salience of AM depth reduced.** Left ordinate indicates the measure of ΔPPI , which is the difference of PPI % at 100 % AM depth versus 50 % AM depth. Right ordinate indicates the measure of EFR ratio, which is the ratio of EFR amplitude at 50 % AM depth versus 100 % AM depth. The change in PPI value or EFR amplitude due to a change in AM depth was measured from the same animal in (a) young animals (75 dB SPL), (b) aged animals (85 dB SPL), and (c) young animals at equivalent peripheral activation. The paired changes were then averaged and the means of paired differences $+$ SEM were plotted.