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Abstract

Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and
depression. Although genomewide association studies (GWAS) have successfully identified
genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic
discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource
for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar
Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD
against in-person diagnostic interviews (Castro et al. 2015). Here, we establish the genetic
validity of these phenotypes by determining their genetic correlation with traditionally-
ascertained samples. Case and control algorithms were derived from structured and narrative
text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years.
Genomewide genotype data for 3,330 BD cases and 3,952 controls of European ancestry were
used to estimate SNP-based heritability (hzg) and genetic correlation (rg) between EHR-based
phenotype definitions and traditionally-ascertained BD cases in GWAS by the ICCBD and
Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases
identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and 3 rule-based
algorithms using codified EHR with decreasing levels of stringency - “coded-strict”, “coded-
broad”, and “coded-broad based on a single clinical encounter” (coded-broad-SV). The analytic
sample comprised 862 95-NLP, 1,968 coded-strict, 2,581 coded-broad, 408 coded-broad-SV BD
cases, and 3,952 controls. The estimated hzg were 0.24 (p=0.015), 0.09 (p=0.064), 0.13
(p=0.003), 0.00 (p=0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD,

respectively. The hzg for all EHR-based cases combined except coded-broad-SV (excluded due to
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0 h%;) was 0.12 (p=0.004). These h’; were lower or similar to the h’; observed by the
ICCBD+PGCBD (0.23, p=3.17E-80, total N=33,181). However, the r, between ICCBD+PGCBD and
the EHR-based cases were high for 95-NLP (0.66, p=3.69x10-5), coded-strict (1.00, p=2.40x10-4),
and coded-broad (0.74, p=8.11x10-7). The r; between EHR-based BDs ranged from 0.90 to 0.98.
These results provide the first genetic validation of automated EHR-based phenotyping for BD
and suggest that this approach identifies cases that are highly genetically correlated with those
ascertained through conventional methods. High throughput phenotyping using the large data
resources available in EHRs represents a viable method for accelerating psychiatric genetic

research.
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Introduction

Although twin studies first documented the high heritability of bipolar disorder (BD)
decades ago, only recently have robustly associated genetic risk loci been identified through
genomewide association studies (GWAS)."® At present, the major rate-limiting step for GWAS
of BD is the need for ever-larger sample sizes to detect both common modest-effect variants
and rarer large effect variants. In recent years, the widespread adoption of longitudinal
electronic health records (EHRs) has provided a vast and growing repository of phenotypic data
that can be leveraged for psychiatric research.’ In particular, when linked to sample collections
through biobanks and other efforts, EHR data provide a relatively untapped opportunity to
enhance the power of genetic research. Nevertheless, establishing the validity of EHR-derived

phenotypes remains an important pre-requisite for leveraging these resources.

In an effort to rapidly increase available samples for genomewide studies of BD, we
established the International Cohort Collection for Bipolar Disorder (ICCBD) through which we
applied high-throughput phenotyping methods at sites in the United States (US), United
Kingdom (UK) and Sweden.” At the US site (Partners Healthcare), we developed and applied
EHR phenotyping algorithms to identify approximately 4,500 cases and 5,000 controls for whom
DNA was obtained from discarded blood samples. The use of EHR data to define valid
phenotypes is particularly challenging for psychiatric disorders. Because there are no
pathognomonic laboratory or pathologic findings, psychiatric diagnosis has traditionally relied
on self-reported symptoms, behavioral observations, and clinical judgment. Thus, genomic
studies have typically utilized structured or semi-structured diagnostic interviews as the gold-

standard method to establish case and control status. EHR data, on the other hand, are limited
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to information (e.g. billing codes, medication lists, narrative notes) collected in the course of
clinical care rather than for research purposes. Recognizing this, we have undertaken

systematic efforts to evaluate the validity of our EHR-based phenotyping algorithms.

In an earlier report™, we described the development of our automated phenotyping
algorithms for BD cases and controls. Briefly, we developed four case definitions, one of which
included natural language processing of narrative EHR notes and three based on structured
coded data using rule-based classifiers that differed in their stringency. Another rule-based
algorithm was developed to identify controls. To establish the clinical validity of these
algorithms, we conducted an in-person diagnostic validation study (N = 190) in which algorithm
diagnoses were compared to diagnoses made by blinded expert clinicians using a gold-standard
in-person diagnostic interview (SCID-1V). Three of the four case definitions achieved high
positive predictive value (PPV) compared with diagnostic interviews (up to 0.86) and the PPV
for the control algorithm was 1.0. Thus, we demonstrated that automated EHR-based
phenotyping can be used to identify clinically-valid case and control definitions for BD. However,
an important remaining question is whether these case and control sets are genetically
comparable to traditionally-ascertained samples that have been used in most genomic studies
of BD. This is an important issue in evaluating whether EHR-based samples can be combined
(e.g. through meta-analyses) with data from other ongoing genomic studies (e.g. by consortia

such as the Psychiatric Genomics Consortium) to enhance gene discovery.

Here, we report genetic validation of our EHR phenotyping algorithms by using

genomewide data to estimate their SNP-based heritability (hzg) and genetic correlation (rg) with
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other large-scale traditionally-ascertained BD GWAS samples. We further examined genetic
correlations with other phenotypes of interest and performed genome-wide heterogeneity
testing to validate the consistency of genome-wide association results. Our results demonstrate
that automated EHR phenotyping can be used to assemble case/control cohorts that are both
clinically and genetically comparable to traditionally-ascertained samples and thus represent a

valuable tool for accelerating psychiatric genetic research.

Materials and Methods

Study subjects
Cases and controls were collected as part of the International Cohort Collection for Bipolar
Disorder (ICCBD), a US, UK, and Swedish consortium established to accelerate genomic studies

10 The Massachusetts General

of BD by applying high throughput phenotyping methods.
Hospital site of the ICCBD aimed to collect DNA from 4,500 cases and 4,500 controls by linking
discarded blood samples to de-identified EHR data. As described in detail elsewhere', cases
and controls were identified by deriving EHR-based phenotyping algorithms applied to the
Partners Healthcare Research Patient Data Registry (RPDR), which spans more than 20 years of
data from 4.6 million patients. We first created a “datamart” of 52,235 individuals by filtering
medical records to identify patients seen at Massachusetts General Hospital, Brigham and
Women’s Hospital, or McLean Hospital who had at least one diagnosis of bipolar disorder (ICD-

9 and DSM-IV-TR codes 296.4*—-296.8*) or manic disorder (ICD 296.0%*-296.1*). Next, four

phenotyping algorithms were developed to identify cases and one algorithm to identify controls.
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The development and clinical validation of case and control algorithms described here is
adapted from Castro et al. 2015.'° The five phenotyping algorithms developed comprised the

following:

1. 95-NLP: This BD case algorithm incorporated natural language processing (NLP) of
narrative notes using the i2b2 suite of software.™ Expert clinicians manually reviewed
612 notes from 209 randomly selected patients to identify gold-standard cases and to
extract relevant features from narrative notes to be processed by NLP. We trained a
model based on 414 features to predict the probability of BD using a logistic regression
classifier with the adaptive least absolute shrinkage and selection operator (LASSO)
procedure. The final model, comprising 13 features, achieved an area under the receiver
operating curve (AUC) of 0.93, with a sensitivity of 0.53 when the specificity was set to
0.95.

2. Coded-strict: This algorithm was a rule-based classifier that required at least three ICD
codes for BD, a predominance of BD diagnoses in the longitudinal record, and either a)
treatment with lithium or valproate within a year of BD diagnosis or b) treatment at a
bipolar specialty clinic.

3. Coded-broad: This algorithm required at least two ICD codes for BD, a predominance of
BD diagnoses, and treatment with at least two bipolar medications (lithium, valproate,
carbamazepine, or an atypical antipsychotic).

4, Coded-broad-SV: This algorithm was the same as “Coded-broad” except that two or
more BD diagnoses were allowed at occur during the same inpatient or outpatient

episode of illness.
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5. Controls: This algorithm defined controls as those age 30 years or older with no ICD-9

codes or history of medications related to a psychiatric or neurological condition.

As reported earlier, we conducted a direct-interview study to examine the predictive
validity of these algorithms. Patients in the Partners Healthcare system who were identified by
each algorithm as BD cases or controls were invited by mail to participate. After informed
consent was obtained, participants underwent semistructured diagnostic interviews (SCID-1V)
conducted by experienced doctoral-level clinicians blinded to classifier diagnosis. To further
preserve clinician blinding, we recruited individuals from MGH clinics who reported a previous
diagnosis of schizophrenia or major depressive disorder, disorders commonly considered in the
differential diagnosis of BD. A total of 190 participants were interviewed and PPVs for each
algorithm were calculated as the proportion of algorithm defined BD cases (or controls) who
received a concordant diagnosis by SCID interview. The PPVs for each algorithm using a non-
hierarchical approach (where each case was assigned to any algorithm for which they satisfied

inclusion criteria) are shown in Table 1 and reported in Castro et al. 2015.%°

DNA sample collection and genotyping

The phenotyping algorithms were applied to the Partners Healthcare system to ascertain case
and control DNA samples by linking phenotypic data to discarded blood samples as previously
described.™ In brief, case and control medical record numbers are submitted to the Partners
HealthCare Crimson system, which acts as an “honest broker” to match deidentified phenotypic
data to discarded blood samples. Genotyping was performed in five batches that included case

and control samples using the lllumina PsychChip at the Broad Institute of Harvard and MIT.
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Genotype quality control (QC) and imputation

A total of 3,772 BD cases and 4,141 controls with genomewide data were available for this
analysis. We performed QC on each genotyping batch separately as follows: we removed single
nucleotide polymorphisms (SNPs) with genotype missing rate > 0.05; excluded samples with
genotype missing rate > 0.02, absolute value of heterozygosity > 0.2, or failed sex checks;
removed SNPs with missing rate > 0.02 or with differential missing rate between cases and
controls > 0.02; and removed SNPs failed Hardy-Weinberg equilibrium test (p-value < 1.0x10°
in controls and p-value < 1.0x10™'° in cases). To merge genotyping batches for imputation and
analyses, we performed batch QC by removing SNPs with differential missing rate > 0.005
between batches or significant batch association (p-value < 5.0x10°® between controls form

different batches). All QC were conducted using PLINK v1.9.%

The BD cases and controls included individuals from diverse populations. To control for
population stratification and ensure the comparability between the current sample and
previous European ancestry BD GWAS, we extracted samples with European ancestry for
imputation and analyses. We used HapMap3 samples as a population reference panel and
performed principal component analysis (PCA) with the study samples and HapMap3 samples
combined. We calculated the distance between each study sample and the average European
population samples in HapMap3 using PC1 and PC2. We selected the study samples with
distance to average European HapMap3 samples < 0.01 (Supplementary Figure 1-3)."> We also

removed one sample from each pair of related or duplicate samples (7> 0.2).

The final analytic dataset comprised 3330 BD cases (862 95-NLP, 1968 coded-strict, 2581

coded-broad, and 408 coded-broad-SV) and 3952 controls. The sum of the individual cases
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groups exceeds 3330 due to the non-hierarchical design in which cases were assigned to each
phenotype for which they met inclusion criteria. We performed 2-step genotype imputation
with Eagle2 software for pre-phasing and IMPUTE2 on the European population study

samples.’**

Statistical analysis
To assess whether our EHR-based phenotypes capture heritable components of BD, we used

LD score regression (LDSC)" %Y

to estimate SNP-based heritability (hzg) for each EHR-based BD
cohort. We then examined the degree to which heritable influences on our BD phenotypes
overlap with those traditionally-ascertained BD cases in other large-scale GWAS samples. To do
this, we used LDSC to compute the genetic correlation (rg) between EHR-based BD samples and
previously published BD GWAS by other ICCBD cohorts and the PGC (ICCBD+PGCBD).”***” The
LDSC requires association summary statistics for genome-wide SNPs to estimate h’; and r,. To
obtain these summary statistics, we first performed GWAS for each of the four EHR-based BD
definitions separately and for our combined BD case-control sample. We used a BD prevalence

821 prior studies have documented substantial

of 1% to obtain liability-scale h’; from LDSC.
genetic correlation between BD and other psychiatric disorder phenotypes, most notably
schizophrenia (SCZ) and major depressive disorder (MDD).*® To examine the genetic
relationship between EHR-based BD samples and related phenotypes, we used LD Hub** to
estimate rg with schizophrenia (SCZ), major depressive disorder (MDD), subjective well-being,

and, as a negative control, mean platelet volume (MPV). Finally, we performed genome-wide

Cochran’s Q test to look for heterogeneity between association summary statistics from the
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EHR-based BD samples and the ICCBD+PGCBD samples at single variant level, using SNPs with

association p-value < 0.001 in the ICCBD+PGCBD GWAS.

Results

We first estimated SNP-based heritability (hzg) for the four EHR-based BD samples (Table 1). The
liability-scale h2g estimates were largest for the 95-NLP BD algorithm (0.24, p =0.015) and
smallest for the coded-broad-SV algorithm (0.0, p = 0.59), with intermediate but statistically
significant values for the coded-strict and coded-broad algorithms. The hzg of BD in the
ICCBD+PGCBD sample was 0.23, which matches the hzg for the 95-NLP algorithm but is greater
than that of the rule-based algorithms. Of note, the coded-broad-SV case set had the least
power with only 408 cases. As shown in Table 1, this distribution of heritability estimates
mirrors the relative PPVs obtained in our clinical validation study. To maximize the BD case-
control sample size, we combined the BD case-control samples across algorithms into a single
case-control dataset. Since the coded-broad-SV had no evidence of heritability, we created two
combined BD datasets; one included all BD cases and one included all but the coded-broad-SV
cases). The hzg was 0.11 (p-value = 0.006) for all algorithms combined BD and 0.12 (p-value =

0.004) for all algorithms excluding coded-broad-SV.

We next estimated the SNP-based genetic correlation (rg) between the EHR-based BD
samples and the ICCBD+PGCBD samples (Table 2). The ry estimates were 95-NLP (0.66), coded-
strict (1.0), and coded-broad (0.74) were all statistically significant. (Note that r, could not be
estimated for coded-broad-SV given its hzg of 0). The r, for all algorithms excluding coded-

broad-SV was 0.83 (p= 7.19x10”). Adding coded-broad-SV BD cases to the combined case set
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did not substantially change the r; estimate although the standard error (SE) increased and p-
value rose to 2.88x10°. We also estimated the pairwise r, between the EHR-based BD case-
control samples and the final combined BD samples (Table 3). The ry estimates ranged from
0.90 to 0.98 between algorithms, and were 1.00 between each algorithm and the combined
sample (excluding coded-broad-SV). Finally, the ry between ICCBD and PGCBD was 1.00 (SE =
0.065, p-value = 1.45x107%).

Given prior evidence that traditionally-ascertained BD GWAS show significant positive

1719 and significant negative genetic correlation with

genetic correlations with SCZ and MDD
subjective weII—beingB, we examined these correlations using our EHR-based algorithms as
another index of their genetic validity. As a negative control, we also examined their genetic
correlation with mean platelet volume, a phenotype for which we would not expect significant
genetic correlation. (Figure 1; Supplementary Table 1). We used the cross-phenotype r; of
ICCBD+PGCBD as the standard for comparison. As expected based on prior data'’'*?*, the EHR-
based case-control samples positively correlated with SCZ and BD, negatively correlated with
subjective well-being, and uncorrelated with MVP (Figure 1). These patterns were mirrored
those observed for the ICCBD+PGCBD sample with one difference. Whereas the genetic
correlation was greater between EHR-based BD and MDD was larger than that seen for EHR-
based BD and SCZ, the opposite order was seen between ICCBD+PGCBD and these phenotypes.

This difference in magnitude remained when r, were estimated separately for ICCBD and

PGCBD.

We hypothesized that this difference in rg patterns might be related to differences in the

proportions of BD subtypes among the EHR-BD cases and those included in the traditionally-
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ascertained samples. To investigate this, we calculated the percentage of BD case subtypes,
including bipolar I disorder (BD1), bipolar Il disorder (BD2), schizoaffective disorder bipolar type
(SAB), and bipolar disorder not otherwise specified (NOS) for the EHR-based BD cases and the
ICCBD cases (the subtypes of PGCBD cases were not available). We found that the EHR-based
BD cases comprised a lower proportion of SAB subtype cases (0.6-1.6%) compared with the
ICCBD samples (9.1%) (Supplementary Figure 4). This difference would be consistent with a
relatively larger genetic correlation with SCZ seen with the ICCBD sample compared to the EHR-

based samples.

Finally, we performed Cochran’s Q test to identify potential heterogeneity of the
association summary statistics between EHR-based BD samples and the ICCBD+PGCBD samples.
This analysis was restricted to SNPs with association p < 0.001 in the ICCBD+PGCBD GWAS in
order to exclude SNPs with weak association results whose directionality might be less robust.
We identified a single locus with significant heterogeneity across the genome after Bonferroni
correction (SNP N = 28,320) for both coded-broad and for the combined EHR-BD sample
(excluding coded-broad-SV) (Figure 2). This locus on chromosome 22 (peak Q test p-value at
rs196065 = 3.34x10'7), showed modest association with BD (p-value = 5.78x107in
ICCBD+PGCBD) and did not overlap with any previously reported BD-associated loci. Thus, we
found negligible evidence of heterogeneity of genomewide association results between EHR-

based BD and traditionally-ascertained BD.

Discussion
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As an ever-growing longitudinal repository of the clinical phenome, EHRs represent a new and
powerful resource for psychiatric research.’ Nevertheless, their utility depends on the validity
of the clinical and phenotypic data that can be extracted. We have previously demonstrated the
feasibility of deriving diagnoses with high predictive value compared with a gold standard of
clinician-administered diagnostic interviews.'® However, in the context of psychiatric genetic
research, establishing the genetic validity of these phenotypes is crucial. In the present study,
using genomewide genotype data for more than 7,000 cases and controls, we demonstrate that
EHR-based algorithms can be used to ascertain BD phenotypes that are heritable and
genetically comparable to traditionally-ascertained samples. Automated algorithm-based
phenotyping linked to biospecimens provides substantial efficiencies in terms of the time and
costs involved in assembling large-scale samples for genetic research. Prior simulations have
documented up to a 10-fold reduction in the cost associated with phenotyping and sample
collection.™ Using our case/control BD definitions linked to discarded blood samples, we were
able to collect approximately 5,000 controls over 10 weeks and more than 4,000 cases over 3

years. As described below, three sets of findings from our analyses are particularly noteworthy.

First, our results document that EHR-based diagnostic algorithms can be used to
ascertain BD phenotypes that yield SNP-based heritability comparable to that observed in
GWAS that have relied on more time- cost-, and labor-intensive recruitment and diagnostic
evaluation. The highest heritability (0.023) was seen with our 95-NLP algorithm which
combined NLP of narrative test features and coded EHR data. This estimated heritability was
nearly identical to that derived from GWAS of the larger traditionally-ascertained cohorts of the

international ICCBD and PGC (h2g=0.24 for 13,902 cases and 19,279 controls). The 95-NLP
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algorithm also achieved the highest positive predictive value in our previous clinical validation
study. For two of the remaining three algorithms which involved rule-based algorithms of
structured EHR data, we also observed significant, though relatively lower, heritability

estimates (h2g= 0.09 —0.12). The least restrictive algorithm (coded-broad-SV) did not exhibit
significant heritability, though the small sample size of this subgroup may limited the power of
our analyses. Of note, this last algorithm also performed poorly in our prior clinical validation
study (PPV=0.5). Nevertheless, the overall heritability of our EHR-based BD was 0.12 (p = 0.004),
dropping slightly to 0.11 (p = 0.006) when the coded-broad-SV was included. In addition, the
EHR-based BD definitions were nearly perfectly genetically correlated. Pairwise genetic
correlations between the phenotypes ranged from 0.98 — 1.0 except for 95-NLP and coded-

broad-SV (rg=0.90).

Second, we found that our cohorts ascertained by automated EHR phenotyping
exhibited substantial genetic correlations (rg) with the large ICCBD+PGCBD samples. Overall, the
re between our EHR-based BD case/control samples and the ICCBD+PGCBD samples was 0.83 (p
= 2.88 x 10°°), demonstrating that our approach captures genetic influences that strongly
overlap with those acting on BD in traditionally-ascertained samples. In addition to providing
further genetic validation of EHR-derived phenotypes, these results indicate that such samples
can be combined with other existing samples to enhance the power of genetic discovery.

Finally, we demonstrate that our phenotyping approach replicates patterns of cross-
disorder genetic overlap that have previously been reported in genetic studies of BD.”**In

particular, EHR-based BD exhibited positive genetic correlations with SCZ and MDD and

negative correlations with subjective well-being. Once again, this supports the genetic validity
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of our algorithm-defined BD phenotype. Unexpectedly, the genetic correlation with SCZ was
less than that seen with MDD, a finding that may be attributable to the relatively low frequency

of SAB cases in our sample.

We acknowledge that our results have certain limitations. First, our sample size, while
substantial, is smaller than that of some other existing samples (e.g. ICCBD and PGCBD), which
may have limited the power and precision of our heritability and genetic correlation analyses.
Second, the portability of our specific phenotyping algorithms to other healthcare settings
remains to be determined. Notably, however, our results demonstrate that a range of
algorithms — with and without NLP and using diagnostic rules of varying stringency — yield
phenotypes that are clinically and genetically comparable to those obtained by in-person

standardized diagnostic assessments.

In summary, the current study provides the first genetic validation of EHR-based
phenotyping for BD and suggests that automated phenotyping algorithms can identify samples
that are highly genetically correlated with those ascertained through conventional methods.
Taken together, the present results and those of our prior clinical validation study, suggest that
the use of any or all three of the heritable EHR-based algorithms we derived (i.e. 95-NLP,
coded-strict, and coded-broad) can facilitate genetic studies of bipolar disorder. High
throughput phenotyping using the large data resources available in the EHR database

represents a viable method for accelerating psychiatric genetic research.
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Figure Legends

Figure 1: SNP-based genetic correlation (with 95% confidence interval) between bipolar
disorder based on different ascertainment methods and other traits

Figure 2: Genome-wide Cochran’s Q-test for heterogeneity of SNP effects between
ICCBD+PGCBD and EHR-based bipolar disorder. Red line shows the Bonferroni-corrected
significance level for the Q-test. SNPs are selected with association p-value threshold of 0.001

based on ICCBD+PGCBD analysis (total number of SNPs=28,320).
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Tables

Table 1. SNP-based heritability (h%;) for EHR-based bipolar disorder from the Partners
Healthcare Research Patient Data Registry

Bipolar disorder h%; (SE) Sample size
Algorithms liability scale  observed scale  P-value® PPV cases controls
95-NLP 0.24 (0.10) 0.25 (0.10) 0.015 0.86 862 3952
Coded-strict 0.09 (0.05) 0.15 (0.08) 0.064 0.84 1968 3952
Coded-broad 0.13 (0.04) 0.22 (0.08) 0.003 0.80 2581 3952
Coded-broad-SV 0.00(0.11) 0.00 (0.18) 0.591 0.50 408 3952
All algorithms 0.11 (0.04) 0.20 (0.07) 0.006 NA 3330 3952
All algorithms except

coded-broad-SV 0.12(0.04) 0.21 (0.07) 0.004 NA 3013 3952
ICCBD+PGCBD" 0.23 (0.01) 0.41(0.02) 3.17x10%*° NA 13902 19279

SNP-based heritability on liability scale was converted from observed scale based on population
prevalence of 1%. '{cCBD+PGCBD: Bipolar disorder genome-wide association study from the
ICCBD and PGC1 with cases ascertained by traditional methods (Charney et al. 2017). *Test for
different from 0. PPV: positive predictive values from clinical validation (Castro et al. 2015). 95-
NLP: probabilistic algorithm with 95% specificity based on natural language processing. Coded-
strict, Coded-broad, Coded-broad-SV: coded rule-based algorithms with decreasing stringency.
SV: single visit. SE: standard error.
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Table 2. SNP-based genetic correlation (rg)between EHR-based bipolar disorder and bipolar
disorder ascertained by traditional methods from ICCBD+PGCBD

rg (SE) P-value’
95-NLP 0.66 (0.16) 3.69x107
Coded-strict 1.00 (0.29) 2.40x10™
Coded-broad 0.74 (0.15) 8.11x107
All algorithms 0.83 (0.18) 2.88x10°
All algorithms except
Coded-broad-SV 0.83 (0.17) 7.19x107

Genetic correlation was not estimated for Coded-broad-SV due to SNP-based heritability
estimate of 0. Genetic correlation (rg) was estimated against PGC bipolar disorder GWAS. Test
for different from 0. SE: standard error.
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Table 3. SNP-based genetic correlation (rg) between EHR-based bipolar disorder

Phenotype 1 Phenotype 2 r, (SE) P-value

95-NLP Coded-strict  0.90(0.19) 1.32x10°
95-NLP Coded-broad 0.96 (0.13) 3.65x10™"
Coded-strict Coded-broad 0.98 (0.08) 1.28x10°**
All algorithms except coded-broad-SV  95-NLP 1.00 (0.12) 1.05x107*°
All algorithms except coded-broad-SV  Coded-strict  1.00 (0.07) 3.34x10™*
All algorithms except coded-broad-SV  Coded-broad 1.00 (0.01) 1.91x10°%

Test for different from 0. SE: standard error.
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