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We describe Strelka2 (https://github.com/Illumina/strelka), an open-source small variant calling
method for clinical germline and somatic sequencing applications. Strelka2 introduces a novel
mixture-model based estimation of indel error parameters from each sample, an efficient tiered
haplotype modeling strategy and a normal sample contamination model to improve liquid tumor
analysis. For both germline and somatic calling, Strelka2 substantially outperforms current leading
tools on both variant calling accuracy and compute cost.

Whole-genome sequencing is rapidly transitioning into a tool for clinical research and diagnosis, a shift
which brings new challenges for sequence analysis methods. While there has been considerable
progress in developing methods to improve germline and somatic small variant calling accuracy in
research applications!™®, such methods can be further improved in many respects for the clinical whole-
genome sequencing scenario. These improvements include reducing the compute cost/turn-around
time of whole-genome analysis, further increasing indel calling accuracy, automating parameter tuning
without expert user intervention, and reducing multiple indicators of call quality to a single confidence
score for variant prioritization. Here we describe Strelka2, a variant calling method building upon the
innovative Strelka somatic variant caller’, to improve upon these aspects of variant calling for both
germline and somatic analysis. We demonstrate that Strelka2 is both more accurate and substantially
faster when compared to current best-in-class small variant calling methods.

Strelka2 germline and somatic analyses share a common series of high-level stages, including parameter
estimation from sample data, candidate variant discovery, realignment, variant probability inference,
and empirical re-scoring/filtration. The composition of these steps is described in more detail for each
type of analysis in Supplementary Fig. 1.

Strelka2’s germline analysis introduces a novel step to adaptively estimate indel error rates from
preliminary allele counts in each sample, using a mixture model to estimate both indel variant mutation
rates and indel noise rates from a set of error processes (Supplementary Fig. 2). This mixture approach
mitigates the impact of context-specific indel error rate variation on variant call accuracy and obviates
the need to specify a prior set of common population variants.

Similar to previous work®*>®, Strelka2’s germline analysis models haplotypes to provide read-backed
variant phasing and reduce the impact of sequencing noise, incorrect read mapping and inconsistent
alignment. Strelka2’s haplotype model uses an efficient tiered scheme for haplotype discovery,
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combining the advantages of a simple model based on input read alignments?, and a more complex
model using local assembly?>>®, where the appropriate method is selected based on the properties of
each variant locus. This tiered haplotype modeling approach is essential to optimize runtime without
precision loss. The haplotype model also introduces a novel heuristic filter for sequencer phasing noise,
improving the caller’s robustness to a wider variety of potential sequencing artifacts.

In Strelka2’s germline and somatic variant probability models, additional runtime improvements are
made in the computation of read likelihoods by enumerating a small number of candidate alignments
and using the maximum alignment-specific likelihood to approximate the marginal likelihood, avoiding
the computational cost of a complete implementation such as a pair HMM&. Within the somatic variant
probability model, the original Strelka method has been redesigned with a further novel innovation to
account for contamination of tumor cells in the matched normal sample such that somatic recall is
improved, especially for liquid tumor analysis. Consistent with the emphasis on automated sample
adaption in Strelka2, the liquid tumor model is an expansion of the model’s state space applied to all
cases, and thus does not require prior knowledge of the normal sample contamination level.

For both germline and somatic calling workflows, the variant probability model is supplemented by a
final empirical variant scoring (EVS) step, motivated in part by machine learning-based variant
classification approaches®!°. This step uses a random forest model trained on numerous features
indicative of call quality to improve precision by accounting for error phenomena that are not
adequately represented in the generative variant probability model. Strelka2’s EVS models are pre-
trained on data from a variety of sequencing conditions to improve robustness, and produce a single
aggregate score which can be used to set application-specific precision levels or prioritize variants for
follow-up.

To assess its germline calling performance, we ran Strelka2 on the recent PrecisionFDA Consistency and
Truth challenge data! and compared its results with the challenge submissions (Fig. 1a). This
comparison shows that for the noisier sequence datasets in the Consistency challenge, Strelka2’s indel
accuracy is remarkably higher than the winning challenge submissions, improving upon the indel F-score
of the best challenge submission by 3.1%. For the other two Truth challenge data sets with lower
sequencing noise, Strelka?2 still improves upon the best challenge submission with an indel F-score
improvement of 0.08%. For single nucleotide variants, Strelka2 gave competitive results within only
0.05% - 0.1% of the best submissions (Supplementary Fig. 3). These results are striking when
considering that all Strelka2 analyses used default parameters, a single read mapper and no input from
population variant databases, whereas the top results of the PrecisionFDA challenge were obtained
using pipelines specially trained for the challenge data or by combining results from multiple read
mappers and variant callers.

To assess runtime, we benchmarked Strelka2 against a recently released high-speed GATK Haplotyper
reimplementation (Sentieon DNAseq Haplotyper) that is over 10x faster than the original
HaplotypeCaller!?. On the PrecisionFDA datasets discussed above, Strelka2 was 2.1 times faster than
Sentieon DNAseq Haplotyper on average on the same computer hardware while also outperforming it in
accuracy, with an average F-score improvement of 2.1% for indels and 0.29% for SNVs (Fig. 1).

We evaluated Strelka2’s somatic variant calling accuracy by mixing sequencing data of unrelated
individuals to simulate impure tumor and matched normal samples. For this purpose, we used NA12878
and NA12877 to represent, respectively, the tumor and normal samples. We simulated datasets with
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tumor purities of 20%, 50%, and 80%, and one matched normal sample with 90% purity. The truth set
for these evaluations were the Platinum Genomes?? variants in NA12878 where the corresponding
NA12877 genotype is homozygous reference. Using the in-silico mixtures, we compared the somatic
variant call accuracy of Strelka2 with a recent high-speed MuTect2* reimplementation (Sentieon TNseq
TNhaplotyper). As summarized in Fig. 2a, Strelka2 shows substantially higher precision than
TNhaplotyper at all recall thresholds over all test datasets, with an average F-score improvement of 29%
for SNVs and 35% for indels. We note in particular Strelka2’s superior tolerance to normal sample
impurity, reflecting updates in Strelka2’s somatic calling model to better support such contamination in
liquid and late-stage solid tumor analyses. This was tested using the 80% purity tumor sample and
noting the impact on somatic F-score when the normal sample purity changed from 100% to 90%.
Strikingly, for TNhaplotyper the F-score dropped from 77% to 30% for SNVs and from 47% to 17% for
indels. For Strelka2, the impact was substantially smaller, changing from 96% to 90% for SNVs and from
82% to 65% for indels.

We assessed runtime for Strelka2’s somatic analysis and found that, as for the germline analysis,
Strelka2 is substantially faster than available alternatives. For the above somatic analysis using in-silico
sample mixtures, Strelka2 demonstrated an average runtime advantage of 3.2x over TNhaplotyper,
which itself is over 10x faster than the original MuTect2 implementation (Fig. 2b)*2.

In the above analyses, we demonstrate the effectiveness of multiple statistical modeling and algorithmic
innovations in Strelka2, resulting in remarkable improvements to accuracy and runtime for both
germline and somatic calling. We reiterate that results were generated with default method settings
appropriate for factory-scale analysis, not requiring human intervention to parameterize or connect
complex sequences of tools. All results use only a reference genome and one alignment file per sample
as input. Additionally, no prior variant databases are used in the calling process, reducing the potential
for bias against rare variants or ancestry-dependent artifacts.

Improvements to Strelka2 continue in several areas. We have already generalized Strelka2’s germline
analysis for RNA-Seq (not described here) and efforts are ongoing to improve mitochondrial variant
calling and to integrate with structural variant predictions. Generalization of Strelka2’s adaptive indel
error estimation methods to mitigate the impact of context-sensitive base-calling errors on SNV calling
has been prototyped and shows promise. The application of these techniques to somatic variant
analysis, while considerably more challenging, could substantially improve our ability to call very low-
frequency variants. We see such adaptive parameterization improvements as complementing rather
than competing with recent trends emphasizing a greater focus on empirical machine learning
approaches to variant calling. Indeed, the improvement of generative sequencing error models to more
closely represent the sample data should sharpen the effectiveness of downstream machine-learning
approaches by reducing confounding error terms, a circumstance we have already leveraged to improve
the accuracy of Strelka2.
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Online Methods

Parameter estimation. Chromosome depth estimation. An initial step in all workflows is the rapid
estimation of the sequencing depth for each chromosome, which for somatic analysis is computed only
for the normal sample.

Indel error model. Indel sequencing errors are modeled in the variant calling steps below as a process
which occurs independently in each read, with some fixed probability of an indel error occurring as a
function of the short tandem repeat (STR) context (Supplementary Fig. 2). For germline variant calling,
these error probabilities are estimated from the sequencing data of each input sample in two steps. First,
mapped sequencing data are analyzed at a subset of sites across the genome to produce error counts for
various sequencing contexts. Second, the counts are used to estimate the parameters of interest. For
somatic variant calling, a simpler non-adaptive approach is used in which the indel error parameters are
pre-set based on empirical observation of indel calling performance and error rates are a function of the
homopolymer context length r only.

Error counting. At every counted site in the genome, the number of reads supporting each potential allele
are accumulated by context. The counting process uses a read realignment strategy similar to that used
by the variant calling process explained below.

Each STR tract with pattern size s and repeat count r atlocus [ is counted as a single observation for the
context {s,r} and the resulting locus count vector ¢, for that observation (with elements ¢,(y),ye Y,

corresponding to the observed set of alleles Y ) is included in the set of locus count observations C(s,r) .

Error rate estimation. Every indel locus is modeled as belonging to either a clean state (generating
essentially no indel errors) or a noisy state (generating indel errors independently across reads according
to a set of error probabilities to be estimated), with the overall error probabilities being drawn from the
resulting two-state mixture model. The allele counts, in turn, are modeled as drawn from a mixture over
possible genotypes, with the genotype-specific distributions being multinomial for homozygous
genotypes and mixtures of two multinomials for heterozygous genotypes. The multinomial distributions
are governed by the local coverage X = },, c(y) and by rates selected from the vector of available error

rates according to the alleles 4, and A, comprising the genotype (Supplementary Fig. 2a).

For every STR context {s, r} we define the following parameters. Together, the e parameters comprise
E(s,7):
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P, (s,r) : probability of being in the noisy state

* e,(s,r) : noisy-state probability of insertion error resulting in a non-reference variant
* ¢,(s,7): noisy-state probability of deletion error resulting in a non-reference variant
e e_.(s,7): noisy-state probability of indel error resulting in reversion to reference

€, qean (5, 7) : clean-state probability of insertion error resulting in a non-reference variant

® €, ean (8, 7) : clean-state probability of deletion error resulting in a non-reference variant

o ¢ (s,7): clean-state probability of indel error resulting in reversion to reference

ref ,clean

O(s,r): probability that a locus with the given context has an indel allele.

We fix all of the clean-state error probabilities to a small constant value: 1x10~* and set e, to 0.01
during parameter estimation. During variant calling (described below), the value of e, is a function of

the corresponding e, or e, . To improve robustness, the indel mutation rates € were pre-estimated from

all autosomes of a fixed human training sample and set as constant values in the workflow. The remaining
parameters are estimated on a per-sample basis by maximizing the likelihood of the observed counts:

P(C(s,r) | E(s, 1), p,(5,1),6(s,r)) =[] Plci1EGs,r), p,(s,7),6(s,7)),

l:cleC(s,r)

where P(c, | E(s,7), p,(s,7),0(s,r)) = ZP(NI p,(s,r)P(H|6(s,r)P(c,|N,H, E(s,1)),

H = (hq, hy) is a variable indicating the specific allele hypotheses under consideration and
N € {noisy,clean} is a variable indicating whether the observation was generated by the noisy or the

clean state. For each possible genotype G € { g, et> &net> Ehomale Shetar ] WE CONsider only one
hypothesis H, obtained by finding the two most likely (by number of supporting counts) non-reference

indel alleles y, and y, and setting

(ref,ref) if G=gy,

oy i G=ghn,
(}Ll,hz): 1 1 . hy It

(ref’ yl) lf G = ghetall

(yl’yZ) lf G:ghomref
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The noisy-state prior is P(N = noisy|s,r) = p,(s,7); P(N = clean|s,r) = 1—p,,(s,7) and the
genotype prior P(G | 8(s, r)) is defined in the Germline Probability Model below.

For an allele y other than ref, y,, and Y,, assign the error probability e(y) as e,(s,r),e,(s,r),

€; clean (557) , OF €, 0y (8,7) according to the value of N and whether y is an insertion or deletion with
respect to the reference allele. For y = ref', assign e(y) = €, (s,7) ore(y) = €, 0, (5, 7) according to
the value of N. The probabilities e()’1) and e(yz) of errors resulting in y, and Y, respectively do not
need to be assigned specific values due to the approximation below. Finally, let E(hi) be the probability
with which 7; is sequenced correctly, with e(ref) =1—e, —e, in the noisy state and

e(ref) =1—=e, 4, — €, ciean N the clean state.

When hy; = h, (homref or homalt genotype), the likelihood of the count vector is:

P(c|E,n,hy=h,) = mc[g(hl)]c‘(hl)ne(y)c(y)’

y#h

where m, = (Zy c(y))!/Hy(c(y)!) is the corresponding multinomial coefficient. Since this coefficient
does not depend on any model parameters, it is ignored during parameter estimation.

When hy # h, (het or hetalt genotype), the likelihood is:

P(c|E,n,h # h)) = m[0.5¢(h)+0.5e(h)]""[0.5¢(h,) +0.5e(h,)]*"’ H e(y).

ye{h,hy}
Approximating with e(h;) + e(h;) = 1 and é(h,) + e(h,) = 1, this simplifies to:

P(c| E,n, Iy # b)) = m, 0.5 TT e(y).

ye(h by}

To reduce the number of estimated parameters, we model homopolymer repeats (s =1) with repeat
counts 2<r<16 and dinucleotide repeats (s =2) with 2<r <9 as log-linear in r, allowing us to
estimate values for (s,r) € {(1,1),(1,2), (1,16),(2,2),(2,9)} and interpolate between these values. The
values at (1,16) and (2,9) are used for r >16 or r > 9 respectively.

When using the estimated parameters for variant calling (Supplementary Fig. 2b, described below), we
assume that all sites at which candidate haplotypes have been generated belong to the noisy state, so
that the mixture model formulation is not needed. For this reason, only the noisy-state error probabilities
are passed on for downstream use. We also fix the insertion and deletion error rates to be used for calling
to the geometric mean of the insertion and deletion estimates for each STR context.
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Candidate variant discovery. Input read processing. The input alignment files are scanned for reads. Reads
are filtered out if they are marked as not passing primary analysis filters, PCR/optical duplicates,
unmapped, secondary or supplemental. Indels in the remaining reads are left-shifted and normalized.

Tiered haplotype model. Each sample’s ploidy introduces constraints that can be used to reduce errors
due to sequencing noise, incorrect read mapping, and inconsistent alignment. In a simple haplotype model,
such as that described in FreeBayes?®, candidate haplotypes can be identified from existing read alignments.
More advanced haplotype generation methods are less dependent on the input read alignments, often
using local assembly to identify longer consensus haplotypes, such as the haplotype generation methods
used in Platypus®, Scalpel® and GATK HaplotypeCaller?, among others. Strelka2’s germline caller uses a
tiered haplotype model where a fast alignment-based approach is used to handle simpler variant loci, and
an assembly-based approach is selected to improve accuracy in more complex cases.

The haplotyping steps are: detecting short clusters of sequence variation called active regions, generating
candidate haplotypes in active regions, filtering candidate haplotypes to reduce noise, and discovering
primitive SNVs and indels. Haplotyping is currently performed independently for each sample and is not
available for somatic variant calling.

Active region detection. To detect active regions, we first identify loci that are likely to have variants, which
we call variant loci. To identify variant loci, for each locus we calculate a variant evidence score while
reading alignments as follows: a mismatch at locus i increases the score at i by 1, an insertion between
locus i and i+1 increases the scores at i and i+1 by 4, a deletion of loci [i, j] increases the scores in

[i—1, j] by 4, and a soft-clipped segment ending (starting) at locus i increases the scores at i and i+1

(i—1) by 4. A locus with a variant evidence score ¢ and a coverage d becomes a variant locus if (1)
c>20.35-d or(2) ¢c=29 and ¢ >0.2-d . Afterwards, nearby variant loci are clustered if they are no more
than 13 bases of each other. For the clusters including two or more variant loci, the cluster region is further
extended to the surrounding loci so that the first and last locus are not within a homopolymer or STR
region. This extension is needed because alignments that do not fully span such repeats are often
erroneous and relying on them may lead to generating incorrect haplotypes. To accomplish this, we detect
anchor loci that are not variant loci and also do not belong to a homopolymer (of lengths no less than 3)
or STR (of repeat unit lengths between 2 and 50). Given a cluster of variant loci, the active region is created
between the closest anchor loci before and after the first and last variant loci.

Haplotype generation. Given an active region of size of 250 or smaller, haplotype generation is attempted
using either the alignment-based or assembly-based model. The decision is made based on the fraction
of reads that fully cover the active region (called covering reads): the assembly-based model is used if
fewer than 65% of all reads that overlap with an active region are covering reads.

If the alignment-based model is selected, then for each covering read, the segment aligned to the active
region is extracted as a candidate haplotype. If a candidate haplotype § is extracted from a read r, we
call r a supporting read of §, such that for each candidate haplotype § a set of supporting reads is
identified.
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If the assembly-based model is selected, local de novo assembly is run using a de Bruijn graph approach
similar to that described in TIGRA. Prior to assembly, the target active region [i, j] is expanded to

[, /'] to improve the identification of contigs which span the full locus. i and j are chosen as the
mininum and maximum value satisfying the following conditions: i—9 <i'<i, j< j < j+9, and there
is no variant locus in i"< pos <i—1 and j+1< pos < j . This expansion allows the identification of

assembled contigs which span the full locus by identifying those that share the same prefix (reference
segment at [’,i]; denoted by a prefix anchor) and suffix (reference segment at [ j, j’]; denoted by a suffix

anchor). All the reads that (fully or partially) overlap with the expanded active region are used as input to
the assembly procedure. After assembly is finished, only the contigs including both prefix and suffix
anchors are selected and the prefix and suffix anchors are removed. Each such contig becomes a candidate
haplotype and the set of reads supporting the contig is identified.

Haplotype generation for an active region is considered unsuccessful if the assembly procedure is selected
and assembly is unable to generate at least one non-reference candidate haplotype. If haplotype
generation does not succeed, indel candidates can still be generated as detailed below without the benefit
of haplotyping.

Haplotype filtration. If haplotype generation is successful (using either alighment-based or assembly-
based methods), candidate haplotypes are ranked by decreasing read support; those with fewer than 3
supporting reads or ranking below the top x, for x the expected sample ploidy (assumed to be diploid
in the current procedure), are excluded from further processing. If there is more than one remaining
haplotype, an additional filtration step is applied to reduce candidates produced by phasing noise in the
sequencing process across a homopolymer. The test assumes that the candidate haplotype with the
highest read support, #,, is true, and identifies whether the candidate haplotype with next highest level

of read support, #,, is a phasing noise artifact introduced while reading £, . The conditions which trigger
this filter are (1) 4, and h, are the same length with only one mismatching basecall, (2) all reads
supporting &, are observed on only one strand, and (3) the basecall mismatch between A, and A, occurs
at one of the ends of the sequence, and causes /, to contain an uninterrupted homopolymer at least 11

bases long. If these conditions are met, all haplotype candidates besides A, are filtered from further

consideration.

Primitive allele discovery. After filtration, the remaining candidate haplotypes are aligned to the reference
and primitive alleles (SNVs and indels of size 50 and smaller) are annotated as discovered. These
discovered primitive alleles are used to improve SNV and indel calling in downstream procedures.

Indel candidacy. Strelka2 uses indel candidacy as a preliminary filter to eliminate indel observations likely
to have been generated by error processes. Candidate indels are considered during read realignment and
indel genotyping in all samples. To become a candidate, an indel variant must minimally have 2 reads
supporting it in at least one sample. If haplotype modeling is enabled, a candidate indel belonging to an
active region where haplotyping was successful must also have been discovered through haplotype
alignment in at least one sample. If an indel observation satisfies these conditions, Strelka2 evaluates its
candidacy status using a one-sided binomial exact test, with the null hypothesis being that the indel
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coverage is generated by indel error processes. The indel is considered a candidate variant if the resulting

p-value is below 1x107°.

Read realignment and variant probability inference. Read realignment. Following the discovery of
candidate alleles, reads are realigned to these candidates. This realignment step has two primary
functions. The first is to generate the set of most likely alignments under the assumption that the read
was generated by a particular candidate haplotype. Such alighments are used to assess the read’s relative
support for different indel alleles. The second function is to create a single representative alignment to
use for SNV calling.

The alignment search uses a starting alignment provided by the input alignment file, as well as a set of
intersecting candidate indels. If the read intersects at least one candidate indel, a set of alighments is built
from the starting alignment by recursively toggling indels from the candidate set. Each toggling operation
produces three alignments: the input alignment itself, and two alignments constructed by adding or
removing the indel in question such that the input alignment is unchanged (1) to the left or (2) to the right
of the indel. For efficiency, the search recursion is limited to depth 5.

Germline Probability Model. At every locus where candidate variant alleles have been proposed, Strelka2
calculates posterior probabilities for a range of hypotheses in each sample. Each germline hypothesis

comprises a specific pair of alleles that determine its genotype G € { g, o> Ehets & homalt> ettt} » With the

potential genotypes respectively corresponding to non-variants and to variants which are heterozygous,
homozygous, and heterozygous with two non-reference alleles.

The posterior probability of a hypothesis H conditioned on the observed data D and Q is:
P(H|D,Q) P(D|H,Q)P(H).

The hypothesis-specific likelihood P(D| H,Q) is described under “Shared Probability Model” below.
The hypothesis prior depends on the corresponding genotype prior P(G), defined for variant calls in

terms of the prior probability that a chromosome locus is non-reference, &, as follows:

6 it G=g,
6/2 if G=g, ..

P(G): ) ' ghomdl
6 lf G:ghelalt

1-30/2-6* if G=g, .

For SNVs, all three possible non-reference alleles are considered at any potential variant site, thus each
variant genotype maps to three specific SNV hypotheses with uniform probability: P(H) = P(G)/3 when

G # gyommet - FOr indels, up to two non-reference alleles are considered per sample and P(G) is again

divided between matching hypotheses.
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Germline Variant Phasing. As previously noted, Strelka2 defines an active region around dense variants
and infers 2 haplotypes for the region. These haplotypes are used to phase SNVs and indels within the
same active region. The phasing is conducted after scoring and genotyping. For each heterozygous variant
belonging to an active region, Strelka2 matches the variant alleles to the active region haplotype to
appropriately phase the genotype allele order.

Somatic Model. The somatic calling model assumes that the samples are diploid. For both SNVs and indels,
the normal genotype states are G, € {g ;> &ner> Ehom J » FETErTing to a non-variant and a variant which is
heterozygous or homozygous in the normal sample, assuming no more than one variant allele in this
sample. The tumor genotype states are G, € { g, ..om> 8<om J » referring to the absence and presence of a

somatic variant in the tumor sample, respectively. The method approximates a posterior probability on
the joint tumor and normal genotypes:

P(G.,G,| D)< P(G,,G,)P(D|G,,G,)

Here D refers to the sequencing data from both samples. The likelihood term above is computed by
integrating over sample-specific allele frequencies

P(D|G,,G,) :J.F . P(D|\F,,F)P(F.F,|G,,G,)

where F, and F, refer to tumor and normal allele frequencies. The allele frequency likelihood
P(D|F,,F)) is decomposed by sampleto P(D, | F,)P(D, | F,), where D, and D, indicate tumor and
normal sample data. The sample-specific allele frequency likelihoods P(D, | F,) and P(D, | F),) are as
described in the Shared Probability Model section below. The genotype prior probability P(G,,G,) and

the joint allele-frequency distribution P(F,, F, | G,,G,) are detailed in the present section.

The posterior probability over tumor and normal genotypes P(G,,G, | D) is used to compute the

somatic variant probability.

P(Gt:gsomlD):ZP(Gz:gsom’GnlD)' (1)

G}’l

Somatic variant calls are reported jointly with associated calls for the normal sample. For this, we use the
joint probability of somatic variation and the maximum likelihood normal sample genotype:

n};aXP(Gt = gsom’Gn |D)

n

Given the expected rate of variants between two unrelated haplotypes 8, the normal sample genotype

prior P(G,) is
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9 lf Gn = ghet
P(G,)=16/2 if G, =g,
1-36/2 if G, =g,

where 8 is 10~ for SNVs and 10~ for indels. Given the somatic state prior P(G, = som) = ¥, the joint

sample prior is

(1 - 7)P(GI‘L) if Gl = gnonsom

P(G,.G,) ={ :
w(G,) if G, = 8eom

where 7 is set to 10~ for SNVs and 107° for indels. These values were chosen empirically to provide

reasonable variant probabilities and are not adjusted for different samples in practice.

The prior probability on the tumor and normal allele-frequencies P(F,, F, | G,,G,) encodes the concept
that the normal sample is a mixture of diploid germline variation and noise while the tumor sample is a
mixture of the normal sample and somatic variation. Let C(F,,G,)=1 if (F,,G,) is (0,8.) ,
(0.5,84.) , or (1,8,.,) and C(F,,G,) =0 otherwise. The joint frequency prior is then defined as

follows.

0 if F#F,
P(E’Fant:gnonsom’Gn): 1_/’l ifE:FnandC(Fn’Gn)zl
UU(F) if F=F and C(F,,G,)=0

U(F)U(F,|F) if F#F, F <tF,andF, <&

P(F,F |G = G, =8.4)= ]
(F By 16 = 8o 8uet) {0 otherwise
U(F,) if FF#F andC(F,,G,)=1
P(F;’Fant:gsom’Gn;tgref): .
0 otherwise

Here, T and O represent contamination tolerance terms, U(F)) refers to a uniform distribution over
the allowed tumor allele frequencies, U(Fn | E) refers to a uniform distribution over the normal allele

frequencies satisfying F, <7 F, and F, <0, and u indicates the noise term. The contamination
tolerance terms are introduced to allow for contamination in the normal sample by some fraction of
tumor cells. This is particularly useful for analyses of liquid tumors, where the normal sample may be

contaminated by tumor cells. By default, 7 and O are set to 0.15 and 0.05 . The noise term abstracts
various sequencing, read mapping and assembly issues which could produce an unexpected allele
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frequency shared in the tumor and normal samples. For SNVs, the noise contribution is set to a constant

— . s . . 2.2
value l, =5%10 ' and for indels it is set as a function of the indel error rate Hingel = Cret

T

The continuous allele frequencies modeled above are efficiently computed by dividing each allele-pair
axis into a set of equidistant points and performing the somatic probability computation over the resulting
discrete point set. A resolution of 21 points per axis (i.e., points separated by 0.05) is used for all
computations by default.

Shared Probability Model. All germline and somatic hypotheses can be generalized as a list of haplotypes

h; with corresponding expected frequencies f; in each sample. We are interested in the hypothesis-

1

specific likelihood for a given sample P(D | H,Q) of the sample’s observed set D of individual reads dj.

(assumed independent) given the observed set O of individual basecall quality scores q;:
P(D|H,Q)=]]PW,|1H.q,).
J

The likelihood for an individual read can be expressed in terms of likelihoods conditioned on each of the
potential generating haplotypes:

Pd|H.q)= ) f;Pd|h,q)

The per-read likelihood P(d | h,q) is the probability of an individual read d , given its associated basecall
qualities g and a generating haplotype /. In a complete probabilistic implementation (e.g. using a pair

HMM), this likelihood would be computed by summing over all possible pairwise alignments A in which
d is aligned to h. Strelka2 saves computation by enumerating a small number of candidate alignments
and using the maximum alignment-specific likelihood to approximate the marginal likelihood:

P(d|h,q)=) P(d,Alh,q)

~ max P(d,A|h,q).
The alignment-specific likelihood scores can be factorized as follows:
P(d,Alh,q)=P(d| A h,q)P(Alh,q) = P(d| A,h,q) P(A| h).

Ignoring possible context effects and accepting the basecall quality scores at face value, the first termis a

product of emission scores, P(d | A,h,q) = HP(a’k |a,,q,), where emission scores are:
k
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qx if d,=aq,
Pd,la,,q,)=1(1-¢q)/3 if d,#a,e{ACGT}
1/4 if a, = softclip.

Here, d, and g, are the kth base in d and the corresponding probability of the call being correct

(obtained from the basecall quality score) and @, is the base in i to which d, has been aligned or, if d,
is aligned to an insertion relative to h, the corresponding base of the consensus insertion sequence. The

second term is a product of state transition probabilities, using the indel error probabilities e;(s,7),

e,(s,r),and e (s,r) described earlier to penalize alignments whenever the read contains an indel with

respect to the generating haplotype:

e(s,,r,)(1-e,(s,,r)) fornon-referenceinsertions
P(Al|h)= H e,(s,.r,)(1—e,(s,,r,)) fornon-reference deletions

e..(s,,1) for reversion to reference

where the product is taken over all positions k at which a gap is opened and reversion to reference refers
to indels that result in the reference allele being generated even though the generating haplotype
contained a non-reference allele at position k.To compensate for reference-bias in the alignment process,

the value of e is set to a constant factor (1.8) times the corresponding ¢€; or ¢,. The probabilities

calculated in this equation are unnormalized, due to omission of corresponding terms when a gap fails to
open; this is corrected by normalizing explicitly during posterior probability calculation.

Empirical scoring and filtration. The variant calling models (both germline and somatic) provide
sufficiently accurate representations of the biology and sequencing process to produce an initial variant
probability inference. However, there is additional information not used by the models which is
nonetheless predictive of call accuracy. As a final step in the variant calling process, such additional
information is extracted as a set of predictive features and used in combination with the probability
calculated by the variant calling model to improve call precision. This is done by the Empirical Variant
Scoring (EVS) model, a supervised random forest classifier trained on labeled data from sequencing runs
performed under a variety of conditions (different sequencers, sample preparation, and coverage). The
EVS model provides an aggregate quality score for each variant and allows for convenient exploration of
the precision-recall curve.

For each of germline and somatic variant calling, there are two separate feature sets and trained
random forest models: one for SNVs and one for indels. In contrast to dynamic re-scoring systems such
as the GATK VQSR procedure®, the EVS models are pre-trained, allowing Strelka2 to avoid the runtime
cost, instability and population variant data requirement of a dynamic approach. When the EVS model is
not used, simple cutoffs are applied to a set of features (not necessarily the same set used by EVS) to
less precisely filter out potentially problematic calls. For details on EVS training and the full lists of EVS
and hard-filter features, refer to Supplementary Note 2.
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Data availability. The sequencing data and truth sets used in the germline calling benchmarking are
publicly available at https://precision.fda.gov/ and https://github.com/genome-in-a-bottle. The
sequencing data and truth sets used in the somatic calling benchmarking are available at http://strelka-
public.s3.amazonaws.com.
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Figure 1. Germline variant calling accuracy and runtime. (a) Germline indel calling accuracy of various pipelines,
separately plotted for the Consistency (left) and Truth (right) challenge datasets. Filled and empty circles denote
passing calls from Strelka2 and Sentieon DNAseq Haplotyper, respectively. Crosses represent passing calls from
PrecisionFDA submissions and stars denote the submissions with the best F-scores. For all 4 datasets from these
challenges, we mapped each sample using bwa-mem, and ran Strelka2 on default settings. We then compared
results against the latest genome in a bottle truth set?® using hap.py*® (see Supplementary Note 1 for details). (b)
Runtime for Strelka2 and Haplotyper for the 4 PrecisionFDA datasets measured on the same compute hardware with
two Indel Xeon E5-2680 v4 CPUs (total 28 cores). The coverages of the datasets are 40x, 35x, 50x, and 50x for
Consistency (Garvan), Consistency (HLI), Truth (HG001), Truth (HG002), respectively.
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Figure 2. Somatic variant calling accuracy and runtime. (a) Somatic variant calling accuracy for Strelka2 and
Sentieon TNseq TNhaplotyper, separately plotted for indels (left) and SNVs (right). Datasets are denoted by x / vy,
where x and y represent tumor (NA12878) and normal (NA12877) purity, respectively. Filled and empty circles
denote the passing calls from Strelka2 and TNhaplotyper, respectively. We mapped each sample using bwa-mem,
and ran Strelka2 on default settings. Results were compared against the truth set consisting of the variant calls in
NA12878 where the corresponding NA12877 genotype is homozygous reference (see Supplementary Note 1 for
details). (b) Runtime for Strelka2 and TNhaplotyper for the 4 admixture datasets, measured on the same compute
hardware with two Indel Xeon E5-2680 v4 CPUs (total 28 cores). For each dataset, the coverages of tumor and normal
samples are 110x and 37x, resepectively.
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Supplementary Figure 1. Strelka2 workflows. Strelka2 supports detection of germline variants in small sample
cohorts (~10 individuals), and somatic variants from matched tumor-normal sample pairs. These two analyses share
several high-level steps, including: (1) parameter estimation, (2) candidate variant discovery, (3) realignment and
variant probability inference, and (4) empirical scoring and filtration. Here we diagram an overview of the major
workflow components for both (a) germline and (b) somatic analyses.
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Supplementary Figure 2. Structure of the germline indel error and variant calling models in probabilistic graphical
model plate notation (some details omitted). (a) Indel error model. At each locus /, a preliminary estimate of the
indel allele count vector Cis modeled as a mixture binomial distribution governed by the two true haplotypes h,
and h, (a function of the unobserved genotype hypothesis H), a set of indel error rates e (unobserved) and the
total count X (observed). The error rates are selected from the full set of error parameters E according to the
sequence context (summarized as an integer pair denoting the size s and number r of STR repeats; observed) and a
binary state variable N (unobserved) categorizing the locus as clean (essentially zero error rates) or noisy (prone to
indel errors). The genotype H and the noisy-clean state variable N are drawn from prior distributions that depend,
respectively, on a context-specific mutation rate 6 shared across samples and a context-specific noisy-state
probability p,,. (b) Variant calling model. The reads d; at every locus are modeled as depending on the
corresponding base call quality strings gq;, the unobserved haplotype h; that generated the read, and the locus-
specific error rates e. The read-specific haplotype is drawn from the set of haplotypes in the locus-specific
hypothesis H, of which the prior again depends on a parameter selected from 8 according to context. The error
rates are again selected from the global vector E of error parameters (now treated as fixed), with the difference
that all loci analyzed by this model are assumed to be in the noisy state.
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Supplementary Figure 3. Germline SNV calling accuracy of various pipelines for the Consistency (a) and Truth (b)
challenge datasets. Filled and empty circles denote the precision and recall of passing calls from Strelka2 and all
calls from Sentieon DNAseq Haplotyper, respectively. For Haplotyper, the F-scores of passing calls were far lower
than those of all calls, so we chose to plot the F-score for all calls. Crosses represent passing calls from
PrecisionFDA submissions and stars denote the submissions with the best F-scores.
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