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We describe Strelka2 (https://github.com/Illumina/strelka), an open-source small variant calling 

method for clinical germline and somatic sequencing applications. Strelka2 introduces a novel 

mixture-model based estimation of indel error parameters from each sample, an efficient tiered 

haplotype modeling strategy and a normal sample contamination model to improve liquid tumor 

analysis. For both germline and somatic calling, Strelka2 substantially outperforms current leading 

tools on both variant calling accuracy and compute cost. 

Whole-genome sequencing is rapidly transitioning into a tool for clinical research and diagnosis, a shift 

which brings new challenges for sequence analysis methods. While there has been considerable 

progress in developing methods to improve germline and somatic small variant calling accuracy in 

research applications1–6, such methods can be further improved in many respects for the clinical whole-

genome sequencing scenario. These improvements include reducing the compute cost/turn-around 

time of whole-genome analysis, further increasing indel calling accuracy, automating parameter tuning 

without expert user intervention, and reducing multiple indicators of call quality to a single confidence 

score for variant prioritization. Here we describe Strelka2, a variant calling method building upon the 

innovative Strelka somatic variant caller7, to improve upon these aspects of variant calling for both 

germline and somatic analysis. We demonstrate that Strelka2 is both more accurate and substantially 

faster when compared to current best-in-class small variant calling methods. 

Strelka2 germline and somatic analyses share a common series of high-level stages, including parameter 

estimation from sample data, candidate variant discovery, realignment, variant probability inference, 

and empirical re-scoring/filtration. The composition of these steps is described in more detail for each 

type of analysis in Supplementary Fig. 1.  

Strelka2’s germline analysis introduces a novel step to adaptively estimate indel error rates from 

preliminary allele counts in each sample, using a mixture model to estimate both indel variant mutation 

rates and indel noise rates from a set of error processes (Supplementary Fig. 2). This mixture approach 

mitigates the impact of context-specific indel error rate variation on variant call accuracy and obviates 

the need to specify a prior set of common population variants. 

Similar to previous work2,3,5,6, Strelka2’s germline analysis models haplotypes to provide read-backed 

variant phasing and reduce the impact of sequencing noise, incorrect read mapping and inconsistent 

alignment. Strelka2’s haplotype model uses an efficient tiered scheme for haplotype discovery, 
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combining the advantages of a simple model based on input read alignments3, and a more complex 

model using local assembly2,5,6, where the appropriate method is selected based on the properties of 

each variant locus. This tiered haplotype modeling approach is essential to optimize runtime without 

precision loss. The haplotype model also introduces a novel heuristic filter for sequencer phasing noise, 

improving the caller’s robustness to a wider variety of potential sequencing artifacts. 

In Strelka2’s germline and somatic variant probability models, additional runtime improvements are 

made in the computation of read likelihoods by enumerating a small number of candidate alignments 

and using the maximum alignment-specific likelihood to approximate the marginal likelihood, avoiding 

the computational cost of a complete implementation such as a pair HMM8. Within the somatic variant 

probability model, the original Strelka method has been redesigned with a further novel innovation to 

account for contamination of tumor cells in the matched normal sample such that somatic recall is 

improved, especially for liquid tumor analysis. Consistent with the emphasis on automated sample 

adaption in Strelka2, the liquid tumor model is an expansion of the model’s state space applied to all 

cases, and thus does not require prior knowledge of the normal sample contamination level. 

For both germline and somatic calling workflows, the variant probability model is supplemented by a 

final empirical variant scoring (EVS) step, motivated in part by machine learning-based variant 

classification approaches9,10. This step uses a random forest model trained on numerous features 

indicative of call quality to improve precision by accounting for error phenomena that are not 

adequately represented in the generative variant probability model. Strelka2’s EVS models are pre-

trained on data from a variety of sequencing conditions to improve robustness, and produce a single 

aggregate score which can be used to set application-specific precision levels or prioritize variants for 

follow-up. 

To assess its germline calling performance, we ran Strelka2 on the recent PrecisionFDA Consistency and 

Truth challenge data11 and compared its results with the challenge submissions (Fig. 1a). This 

comparison shows that for the noisier sequence datasets in the Consistency challenge, Strelka2’s indel 

accuracy is remarkably higher than the winning challenge submissions, improving upon the indel F-score 

of the best challenge submission by 3.1%. For the other two Truth challenge data sets with lower 

sequencing noise, Strelka2 still improves upon the best challenge submission with an indel F-score 

improvement of 0.08%. For single nucleotide variants, Strelka2 gave competitive results within only 

0.05% - 0.1% of the best submissions (Supplementary Fig. 3). These results are striking when 

considering that all Strelka2 analyses used default parameters, a single read mapper and no input from 

population variant databases, whereas the top results of the PrecisionFDA challenge were obtained 

using pipelines specially trained for the challenge data or by combining results from multiple read 

mappers and variant callers. 

To assess runtime, we benchmarked Strelka2 against a recently released high-speed GATK Haplotyper 

reimplementation (Sentieon DNAseq Haplotyper) that is over 10x faster than the original 

HaplotypeCaller12. On the PrecisionFDA datasets discussed above, Strelka2 was 2.1 times faster than 

Sentieon DNAseq Haplotyper on average on the same computer hardware while also outperforming it in 

accuracy, with an average F-score improvement of 2.1% for indels and 0.29% for SNVs (Fig. 1).  

We evaluated Strelka2’s somatic variant calling accuracy by mixing sequencing data of unrelated 

individuals to simulate impure tumor and matched normal samples. For this purpose, we used NA12878 

and NA12877 to represent, respectively, the tumor and normal samples. We simulated datasets with 
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tumor purities of 20%, 50%, and 80%, and one matched normal sample with 90% purity. The truth set 

for these evaluations were the Platinum Genomes13 variants in NA12878 where the corresponding 

NA12877 genotype is homozygous reference. Using the in-silico mixtures, we compared the somatic 

variant call accuracy of Strelka2 with a recent high-speed MuTect24 reimplementation (Sentieon TNseq 

TNhaplotyper). As summarized in Fig. 2a, Strelka2 shows substantially higher precision than 

TNhaplotyper at all recall thresholds over all test datasets, with an average F-score improvement of 29% 

for SNVs and 35% for indels. We note in particular Strelka2’s superior tolerance to normal sample 

impurity, reflecting updates in Strelka2’s somatic calling model to better support such contamination in 

liquid and late-stage solid tumor analyses. This was tested using the 80% purity tumor sample and 

noting the impact on somatic F-score when the normal sample purity changed from 100% to 90%. 

Strikingly, for TNhaplotyper the F-score dropped from 77% to 30% for SNVs and from 47% to 17% for 

indels. For Strelka2, the impact was substantially smaller, changing from 96% to 90% for SNVs and from 

82% to 65% for indels.  

We assessed runtime for Strelka2’s somatic analysis and found that, as for the germline analysis, 

Strelka2 is substantially faster than available alternatives. For the above somatic analysis using in-silico 

sample mixtures, Strelka2 demonstrated an average runtime advantage of 3.2x over TNhaplotyper, 

which itself is over 10x faster than the original MuTect2 implementation (Fig. 2b)12.  

In the above analyses, we demonstrate the effectiveness of multiple statistical modeling and algorithmic 

innovations in Strelka2, resulting in remarkable improvements to accuracy and runtime for both 

germline and somatic calling. We reiterate that results were generated with default method settings 

appropriate for factory-scale analysis, not requiring human intervention to parameterize or connect 

complex sequences of tools. All results use only a reference genome and one alignment file per sample 

as input. Additionally, no prior variant databases are used in the calling process, reducing the potential 

for bias against rare variants or ancestry-dependent artifacts. 

Improvements to Strelka2 continue in several areas. We have already generalized Strelka2’s germline 

analysis for RNA-Seq (not described here) and efforts are ongoing to improve mitochondrial variant 

calling and to integrate with structural variant predictions. Generalization of Strelka2’s adaptive indel 

error estimation methods to mitigate the impact of context-sensitive base-calling errors on SNV calling 

has been prototyped and shows promise. The application of these techniques to somatic variant 

analysis, while considerably more challenging, could substantially improve our ability to call very low-

frequency variants. We see such adaptive parameterization improvements as complementing rather 

than competing with recent trends emphasizing a greater focus on empirical machine learning 

approaches to variant calling. Indeed, the improvement of generative sequencing error models to more 

closely represent the sample data should sharpen the effectiveness of downstream machine-learning 

approaches by reducing confounding error terms, a circumstance we have already leveraged to improve 

the accuracy of Strelka2. 
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Online Methods 

Parameter estimation. Chromosome depth estimation. An initial step in all workflows is the rapid 

estimation of the sequencing depth for each chromosome, which for somatic analysis is computed only 

for the normal sample.  

Indel error model. Indel sequencing errors are modeled in the variant calling steps below as a process 

which occurs independently in each read, with some fixed probability of an indel error occurring as a 

function of the short tandem repeat (STR) context (Supplementary Fig. 2). For germline variant calling, 

these error probabilities are estimated from the sequencing data of each input sample in two steps. First, 

mapped sequencing data are analyzed at a subset of sites across the genome to produce error counts for 

various sequencing contexts. Second, the counts are used to estimate the parameters of interest. For 

somatic variant calling, a simpler non-adaptive approach is used in which the indel error parameters are 

pre-set based on empirical observation of indel calling performance and error rates are a function of the 

homopolymer context length r  only. 

Error counting. At every counted site in the genome, the number of reads supporting each potential allele 

are accumulated by context. The counting process uses a read realignment strategy similar to that used 

by the variant calling process explained below.  

Each STR tract with pattern size s  and repeat count r  at locus � is counted as a single observation for the 

context },{ rs  and the resulting locus count vector lc  for that observation (with elements ,),( Yyycl ∈  

corresponding to the observed set of alleles Y ) is included in the set of locus count observations ),( rsC .  

Error rate estimation. Every indel locus is modeled as belonging to either a clean state (generating 

essentially no indel errors) or a noisy state (generating indel errors independently across reads according 

to a set of error probabilities to be estimated), with the overall error probabilities being drawn from the 

resulting two-state mixture model. The allele counts, in turn, are modeled as drawn from a mixture over 

possible genotypes, with the genotype-specific distributions being multinomial for homozygous 

genotypes and mixtures of two multinomials for heterozygous genotypes. The multinomial distributions 

are governed by the local coverage � = ∑ �(�)	  and by rates selected from the vector of available error 

rates according to the alleles 
1h  and 

2h  comprising the genotype (Supplementary Fig. 2a). 

For every STR context { }rs,  we define the following parameters. Together, the 
 parameters comprise 

�(�, �):  
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    • ),( rspn : probability of being in the noisy state  

    • ),( rsei : noisy-state probability of insertion error resulting in a non-reference variant  

    • ),( rsed : noisy-state probability of deletion error resulting in a non-reference variant  

    • ),(ref rse : noisy-state probability of indel error resulting in reversion to reference  

    • ),(clean, rsei : clean-state probability of insertion error resulting in a non-reference variant  

    • ),(clean, rsed : clean-state probability of deletion error resulting in a non-reference variant  

    • ),(clean,ref rse : clean-state probability of indel error resulting in reversion to reference  

    • ),( rsθ : probability that a locus with the given context has an indel allele. 

We fix all of the clean-state error probabilities to a small constant value: 
8101 −×  and set refe  to 0.01  

during parameter estimation. During variant calling (described below), the value of refe  is a function of 

the corresponding ie  or de . To improve robustness, the indel mutation rates θ  were pre-estimated from 

all autosomes of a fixed human training sample and set as constant values in the workflow. The remaining 

parameters are estimated on a per-sample basis by maximizing the likelihood of the observed counts: 

),),(),,(,),(|(=)),(),,(,),(|),((
),(:

rsrsprsEcPrsrsprsErsCP nl

rsC
l

cl

n θθ ∏
∈

 

where ∑
NH

lnnl rsEHNcPrsHPrspNPrsrsprsEcP
,

)),(,,|()),(|()),(|(=)),(),,(,),(|( θθ , 

� = (ℎ�, ℎ�) is a variable indicating the specific allele hypotheses under consideration and 

}clean,noisy{∈N  is a variable indicating whether the observation was generated by the noisy or the 

clean state. For each possible genotype },,,{ hetalthomalthethomref ggggG∈  we consider only one 

hypothesis �, obtained by finding the two most likely (by number of supporting counts) non-reference 

indel alleles 1y  and 2y  and setting 
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The noisy-state prior is �(� = �����|�, �) = 	��(�, �); �(� = ��
��|�, �) = 1−��(�, �) and the 

genotype prior )),(|( rsGP θ  is defined in the Germline Probability Model below. 

For an allele y other than ref, 1y , and 2y , assign the error probability )( ye  as ),( rsei , ),( rsed , 

),(clean, rsei , or ),(clean, rsed  according to the value of N and whether y is an insertion or deletion with 

respect to the reference allele. For refy = , assign ),()( ref rseye = or ),()( clean,ref rseye =  according to 

the value of N. The probabilities )( 1ye  and )( 2ye  of errors resulting in 1y  and 2y  respectively do not 

need to be assigned specific values due to the approximation below. Finally, let )( ihe  be the probability 

with which ih  is sequenced correctly, with di eerefe −−= 1)(  in the noisy state and 

cleandcleani eerefe ,,1)( −−=  in the clean state. 

When ℎ� = ℎ� (homref or homalt genotype), the likelihood of the count vector is: 

)()(

121 )()]([=),,|(
1

1 yc

hy

hc

c yehemhhnEcP ∏
≠

= , 

where !" = #∑ �(�)	 $! ∏ (�(�)!)	'  is the corresponding multinomial coefficient. Since this coefficient 

does not depend on any model parameters, it is ignored during parameter estimation. 

When ℎ� ≠ ℎ� (het or hetalt genotype), the likelihood is: 
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Approximating with 
̅(ℎ�) + 
(ℎ�) ≈ 1 and 
̅(ℎ�) + 
(ℎ�) ≈ 1, this simplifies to: 

)(
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)()(

21 )(5.0=),,|(
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hhy
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c yemhhnEcP ∏
∉

+≠ . 

To reduce the number of estimated parameters, we model homopolymer repeats ( 1=s ) with repeat 

counts 162 ≤≤ r  and dinucleotide repeats ( 2=s ) with 92 ≤≤ r  as log-linear in r, allowing us to 

estimate values for (�, �) ∈ 	 -(1,1), (1,2), (1,16), (2,2), (2,9)1 and interpolate between these values. The 

values at (1,16) and (2,9) are used for 16>r or 9>r  respectively. 

When using the estimated parameters for variant calling (Supplementary Fig. 2b, described below), we 

assume that all sites at which candidate haplotypes have been generated belong to the noisy state, so 

that the mixture model formulation is not needed. For this reason, only the noisy-state error probabilities 

are passed on for downstream use. We also fix the insertion and deletion error rates to be used for calling 

to the geometric mean of the insertion and deletion estimates for each STR context. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/192872doi: bioRxiv preprint 

https://doi.org/10.1101/192872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Candidate variant discovery. Input read processing. The input alignment files are scanned for reads. Reads 

are filtered out if they are marked as not passing primary analysis filters, PCR/optical duplicates, 

unmapped, secondary or supplemental. Indels in the remaining reads are left-shifted and normalized. 

Tiered haplotype model. Each sample’s ploidy introduces constraints that can be used to reduce errors 

due to sequencing noise, incorrect read mapping, and inconsistent alignment. In a simple haplotype model, 

such as that described in FreeBayes3, candidate haplotypes can be identified from existing read alignments. 

More advanced haplotype generation methods are less dependent on the input read alignments, often 

using local assembly to identify longer consensus haplotypes, such as the haplotype generation methods 

used in Platypus5, Scalpel6 and GATK HaplotypeCaller2, among others. Strelka2’s germline caller uses a 

tiered haplotype model where a fast alignment-based approach is used to handle simpler variant loci, and 

an assembly-based approach is selected to improve accuracy in more complex cases.  

The haplotyping steps are: detecting short clusters of sequence variation called active regions, generating 

candidate haplotypes in active regions, filtering candidate haplotypes to reduce noise, and discovering 

primitive SNVs and indels. Haplotyping is currently performed independently for each sample and is not 

available for somatic variant calling.  

Active region detection. To detect active regions, we first identify loci that are likely to have variants, which 

we call variant loci. To identify variant loci, for each locus we calculate a variant evidence score while 

reading alignments as follows: a mismatch at locus i  increases the score at i  by 1, an insertion between 

locus i  and 1+i  increases the scores at i  and 1+i  by 4, a deletion of loci ],[ ji  increases the scores in 

]1,[ ji −  by 4, and a soft-clipped segment ending (starting) at locus i  increases the scores at i  and 1+i  

( 1−i ) by 4. A locus with a variant evidence score c  and a coverage d  becomes a variant locus if (1) 

dc ⋅≥ 0.35  or (2) 9≥c  and dc ⋅≥ 0.2 . Afterwards, nearby variant loci are clustered if they are no more 

than 13 bases of each other. For the clusters including two or more variant loci, the cluster region is further 

extended to the surrounding loci so that the first and last locus are not within a homopolymer or STR 

region. This extension is needed because alignments that do not fully span such repeats are often 

erroneous and relying on them may lead to generating incorrect haplotypes. To accomplish this, we detect 

anchor loci that are not variant loci and also do not belong to a homopolymer (of lengths no less than 3) 

or STR (of repeat unit lengths between 2 and 50). Given a cluster of variant loci, the active region is created 

between the closest anchor loci before and after the first and last variant loci.  

Haplotype generation. Given an active region of size of 250 or smaller, haplotype generation is attempted 

using either the alignment-based or assembly-based model. The decision is made based on the fraction 

of reads that fully cover the active region (called covering reads): the assembly-based model is used if 

fewer than 65% of all reads that overlap with an active region are covering reads. 

If the alignment-based model is selected, then for each covering read, the segment aligned to the active 

region is extracted as a candidate haplotype. If a candidate haplotype s  is extracted from a read r , we 

call r  a supporting read of s , such that for each candidate haplotype s  a set of supporting reads is 

identified. 
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If the assembly-based model is selected, local de novo assembly is run using a de Bruijn graph approach 

similar to that described in TIGRA14. Prior to assembly, the target active region ],[ ji  is expanded to 

],[ ji ′′  to improve the identification of contigs which span the full locus. i′  and j′ are chosen as the 

mininum and maximum value satisfying the following conditions: iii ≤′≤− 9 , 9+≤′≤ jjj , and there 

is no variant locus in 1−≤≤′ iposi  and jposj ′≤≤+1 . This expansion allows the identification of 

assembled contigs which span the full locus by identifying those that share the same prefix (reference 

segment at ],[ ii′ ; denoted by a prefix anchor) and suffix (reference segment at ],[ jj ′ ; denoted by a suffix 

anchor). All the reads that (fully or partially) overlap with the expanded active region are used as input to 

the assembly procedure. After assembly is finished, only the contigs including both prefix and suffix 

anchors are selected and the prefix and suffix anchors are removed. Each such contig becomes a candidate 

haplotype and the set of reads supporting the contig is identified. 

Haplotype generation for an active region is considered unsuccessful if the assembly procedure is selected 

and assembly is unable to generate at least one non-reference candidate haplotype. If haplotype 

generation does not succeed, indel candidates can still be generated as detailed below without the benefit 

of haplotyping. 

Haplotype filtration. If haplotype generation is successful (using either alignment-based or assembly-

based methods), candidate haplotypes are ranked by decreasing read support; those with fewer than 3 

supporting reads or ranking below the top x , for x  the expected sample ploidy (assumed to be diploid 

in the current procedure), are excluded from further processing. If there is more than one remaining 

haplotype, an additional filtration step is applied to reduce candidates produced by phasing noise in the 

sequencing process across a homopolymer. The test assumes that the candidate haplotype with the 

highest read support, 
1h , is true, and identifies whether the candidate haplotype with next highest level 

of read support, 
2h , is a phasing noise artifact introduced while reading 

1h . The conditions which trigger 

this filter are (1) 
1h  and 

2h  are the same length with only one mismatching basecall, (2) all reads 

supporting 
2h  are observed on only one strand, and (3) the basecall mismatch between 

1h  and 
2h  occurs 

at one of the ends of the sequence, and causes 
2h  to contain an uninterrupted homopolymer at least 11 

bases long. If these conditions are met, all haplotype candidates besides 
1h  are filtered from further 

consideration. 

Primitive allele discovery. After filtration, the remaining candidate haplotypes are aligned to the reference 

and primitive alleles (SNVs and indels of size 50 and smaller) are annotated as discovered. These 

discovered primitive alleles are used to improve SNV and indel calling in downstream procedures. 

Indel candidacy. Strelka2 uses indel candidacy as a preliminary filter to eliminate indel observations likely 

to have been generated by error processes. Candidate indels are considered during read realignment and 

indel genotyping in all samples. To become a candidate, an indel variant must minimally have 2 reads 

supporting it in at least one sample. If haplotype modeling is enabled, a candidate indel belonging to an 

active region where haplotyping was successful must also have been discovered through haplotype 

alignment in at least one sample. If an indel observation satisfies these conditions, Strelka2 evaluates its 

candidacy status using a one-sided binomial exact test, with the null hypothesis being that the indel 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/192872doi: bioRxiv preprint 

https://doi.org/10.1101/192872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

coverage is generated by indel error processes. The indel is considered a candidate variant if the resulting 

p-value is below 
9101 −× .  

Read realignment and variant probability inference. Read realignment. Following the discovery of 

candidate alleles, reads are realigned to these candidates. This realignment step has two primary 

functions. The first is to generate the set of most likely alignments under the assumption that the read 

was generated by a particular candidate haplotype. Such alignments are used to assess the read’s relative 

support for different indel alleles. The second function is to create a single representative alignment to 

use for SNV calling. 

The alignment search uses a starting alignment provided by the input alignment file, as well as a set of 

intersecting candidate indels. If the read intersects at least one candidate indel, a set of alignments is built 

from the starting alignment by recursively toggling indels from the candidate set. Each toggling operation 

produces three alignments: the input alignment itself, and two alignments constructed by adding or 

removing the indel in question such that the input alignment is unchanged (1) to the left or (2) to the right 

of the indel. For efficiency, the search recursion is limited to depth 5. 

Germline Probability Model. At every locus where candidate variant alleles have been proposed, Strelka2 

calculates posterior probabilities for a range of hypotheses in each sample. Each germline hypothesis 

comprises a specific pair of alleles that determine its genotype },,,{ hetalthomalthethomref ggggG ∈ , with the 

potential genotypes respectively corresponding to non-variants and to variants which are heterozygous, 

homozygous, and heterozygous with two non-reference alleles. 

The posterior probability of a hypothesis H  conditioned on the observed data D  and Q  is: 

).(),|(),|( HPQHDPQDHP ∝  

The hypothesis-specific likelihood ),|( QHDP  is described under “Shared Probability Model” below. 

The hypothesis prior depends on the corresponding genotype prior )(GP , defined for variant calls in 

terms of the prior probability that a chromosome locus is non-reference, θ , as follows: 



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2
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if2/31
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if2/
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=)(
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θθ

θ

θ
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For SNVs, all three possible non-reference alleles are considered at any potential variant site, thus each 

variant genotype maps to three specific SNV hypotheses with uniform probability: 3)(=)( GPHP when 

homrefgG ≠ . For indels, up to two non-reference alleles are considered per sample and )(GP  is again 

divided between matching hypotheses. 
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Germline Variant Phasing. As previously noted, Strelka2 defines an active region around dense variants 

and infers 2 haplotypes for the region. These haplotypes are used to phase SNVs and indels within the 

same active region. The phasing is conducted after scoring and genotyping. For each heterozygous variant 

belonging to an active region, Strelka2 matches the variant alleles to the active region haplotype to 

appropriately phase the genotype allele order. 

Somatic Model. The somatic calling model assumes that the samples are diploid. For both SNVs and indels, 

the normal genotype states are },,{ homhetref gggGn ∈ , referring to a non-variant and a variant which is 

heterozygous or homozygous in the normal sample, assuming no more than one variant allele in this 

sample. The tumor genotype states are },{ somnonsom ggGt ∈ , referring to the absence and presence of a 

somatic variant in the tumor sample, respectively. The method approximates a posterior probability on 

the joint tumor and normal genotypes: 

),|(),()|,( ntntnt GGDPGGPDGGP ∝  

Here D  refers to the sequencing data from both samples. The likelihood term above is computed by 

integrating over sample-specific allele frequencies 

),|,(),|(=),|(
,

ntntnt
n

F
t

F
nt GGFFPFFDPGGDP ∫  

where tF  and nF  refer to tumor and normal allele frequencies. The allele frequency likelihood 

),|( nt FFDP  is decomposed by sample to )|()|( nntt FDPFDP , where tD  and nD  indicate tumor and 

normal sample data. The sample-specific allele frequency likelihoods )|( tt FDP  and )|( nn FDP  are as 

described in the Shared Probability Model section below. The genotype prior probability ),( nt GGP  and 

the joint allele-frequency distribution ),|,( ntnt GGFFP  are detailed in the present section. 

The posterior probability over tumor and normal genotypes )|,( DGGP nt  is used to compute the 

somatic variant probability. 

 ).|,=(=)|=( somsom DGgGPDgGP nt

n
G

t ∑  (1) 

Somatic variant calls are reported jointly with associated calls for the normal sample. For this, we use the 

joint probability of somatic variation and the maximum likelihood normal sample genotype: 

)|,=(max som DGgGP nt

n
G

. 

Given the expected rate of variants between two unrelated haplotypes θ , the normal sample genotype 

prior )( nGP  is 
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where θ  is 
310−

 for SNVs and 
410−

 for indels. Given the somatic state prior γ=)som=( tGP , the joint 

sample prior is 





=

=−

som

nonsom

if)(

if)()(1
=),(

gGGP

gGGP
GGP

tn

tn

nt γ

γ
 

where γ  is set to 
410−

 for SNVs and 
610−

 for indels. These values were chosen empirically to provide 

reasonable variant probabilities and are not adjusted for different samples in practice. 

The prior probability on the tumor and normal allele-frequencies ),|,( ntnt GGFFP  encodes the concept 

that the normal sample is a mixture of diploid germline variation and noise while the tumor sample is a 

mixture of the normal sample and somatic variation. Let 1=),( nn GFC  if ),( nn GF  is )0,( refg , 

)5,.0( hetg , or )1,( homg  and 0=),( nn GFC  otherwise. The joint frequency prior is then defined as 

follows. 
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

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≠
otherwise0

1),( and if)(
=),=|,( refsom

nnntt

ntnt

GFCFFFU
gGgGFFP  

Here, τ  and δ  represent contamination tolerance terms, )( tFU  refers to a uniform distribution over 

the allowed tumor allele frequencies, )|( tn FFU  refers to a uniform distribution over the normal allele 

frequencies satisfying tn FF τ≤  and δ≤nF , and µ  indicates the noise term. The contamination 

tolerance terms are introduced to allow for contamination in the normal sample by some fraction of 

tumor cells. This is particularly useful for analyses of liquid tumors, where the normal sample may be 

contaminated by tumor cells. By default, τ  and δ  are set to 0.15  and 0.05 . The noise term abstracts 

various sequencing, read mapping and assembly issues which could produce an unexpected allele 
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frequency shared in the tumor and normal samples. For SNVs, the noise contribution is set to a constant 

value
10

SNV 105= −×µ  and for indels it is set as a function of the indel error rate 
2.2

refindel = eµ .  

The continuous allele frequencies modeled above are efficiently computed by dividing each allele-pair 

axis into a set of equidistant points and performing the somatic probability computation over the resulting 

discrete point set. A resolution of 21 points per axis (i.e., points separated by 0.05) is used for all 

computations by default. 

Shared Probability Model. All germline and somatic hypotheses can be generalized as a list of haplotypes 

ih  with corresponding expected frequencies if  in each sample. We are interested in the hypothesis-

specific likelihood for a given sample ),|( QHDP  of the sample’s observed set D  of individual reads jd  

(assumed independent) given the observed set Q  of individual basecall quality scores jq : 

).,|(=),|( jj

j

qHdPQHDP ∏  

The likelihood for an individual read can be expressed in terms of likelihoods conditioned on each of the 

potential generating haplotypes:  

),|(=),|( qhdPfqHdP ii

i

∑  

The per-read likelihood ),|( qhdP  is the probability of an individual read d , given its associated basecall 

qualities q  and a generating haplotype h . In a complete probabilistic implementation (e.g. using a pair 

HMM), this likelihood would be computed by summing over all possible pairwise alignments A  in which 

d  is aligned to h . Strelka2 saves computation by enumerating a small number of candidate alignments 

and using the maximum alignment-specific likelihood to approximate the marginal likelihood: 

),|,(=),|( qhAdPqhdP
A

∑  

.),|,(max qhAdP
A

≈  

The alignment-specific likelihood scores can be factorized as follows:  

).|(),,|(=),|(),,|(=),|,( hAPqhAdPqhAPqhAdPqhAdP  

Ignoring possible context effects and accepting the basecall quality scores at face value, the first term is a 

product of emission scores, ),|(=),,|( kkk

k

qadPqhAdP ∏ , where emission scores are: 
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Here, kd  and kq  are the k th base in d  and the corresponding probability of the call being correct 

(obtained from the basecall quality score) and ka  is the base in h  to which kd  has been aligned or, if kd  

is aligned to an insertion relative to h, the corresponding base of the consensus insertion sequence. The 

second term is a product of state transition probabilities, using the indel error probabilities ),( rsei , 

),( rsed , and ),(ref rse  described earlier to penalize alignments whenever the read contains an indel with 

respect to the generating haplotype:  









−

−

∏
reference toreversion for ),(

deletions reference-nonfor )),()(1,(

insertions reference-nonfor )),()(1,(

=)|(

ref kk

kkikkd

kkdkki

k
rse

rserse

rserse

hAP  

where the product is taken over all positions k  at which a gap is opened and reversion to reference refers 

to indels that result in the reference allele being generated even though the generating haplotype 

contained a non-reference allele at position k . To compensate for reference-bias in the alignment process, 

the value of refe  is set to a constant factor (1.8) times the corresponding ie  or de . The probabilities 

calculated in this equation are unnormalized, due to omission of corresponding terms when a gap fails to 

open; this is corrected by normalizing explicitly during posterior probability calculation.  

Empirical scoring and filtration. The variant calling models (both germline and somatic) provide 

sufficiently accurate representations of the biology and sequencing process to produce an initial variant 

probability inference. However, there is additional information not used by the models which is 

nonetheless predictive of call accuracy. As a final step in the variant calling process, such additional 

information is extracted as a set of predictive features and used in combination with the probability 

calculated by the variant calling model to improve call precision. This is done by the Empirical Variant 

Scoring (EVS) model, a supervised random forest classifier trained on labeled data from sequencing runs 

performed under a variety of conditions (different sequencers, sample preparation, and coverage). The 

EVS model provides an aggregate quality score for each variant and allows for convenient exploration of 

the precision-recall curve. 

For each of germline and somatic variant calling, there are two separate feature sets and trained 

random forest models: one for SNVs and one for indels. In contrast to dynamic re-scoring systems such 

as the GATK VQSR procedure9, the EVS models are pre-trained, allowing Strelka2 to avoid the runtime 

cost, instability and population variant data requirement of a dynamic approach. When the EVS model is 

not used, simple cutoffs are applied to a set of features (not necessarily the same set used by EVS) to 

less precisely filter out potentially problematic calls. For details on EVS training and the full lists of EVS 

and hard-filter features, refer to Supplementary Note 2. 
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Data availability. The sequencing data and truth sets used in the germline calling benchmarking are 

publicly available at https://precision.fda.gov/ and https://github.com/genome-in-a-bottle. The 

sequencing data and truth sets used in the somatic calling benchmarking are available at http://strelka-

public.s3.amazonaws.com. 
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Figures 

 (a) 

 

(b) 

 

Figure 1.  Germline variant calling accuracy and runtime. (a) Germline indel calling accuracy of various pipelines, 

separately plotted for the Consistency (left) and Truth (right) challenge datasets. Filled and empty circles denote  

passing calls from Strelka2 and Sentieon DNAseq Haplotyper, respectively. Crosses represent passing calls from 

PrecisionFDA submissions and stars denote the submissions with the best F-scores.  For all 4 datasets from these 

challenges, we mapped each sample using bwa-mem, and ran Strelka2 on default settings. We then compared 

results against the latest genome in a bottle truth set15 using hap.py16   (see Supplementary Note 1 for details). (b) 

Runtime for Strelka2 and Haplotyper for the 4 PrecisionFDA datasets measured on the same compute hardware with 

two Indel Xeon E5-2680 v4 CPUs (total 28 cores).   The coverages of the datasets are 40x, 35x, 50x, and 50x for 

Consistency (Garvan), Consistency (HLI), Truth (HG001), Truth (HG002), respectively.
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(a) 

 

(b) 

 

Figure 2.  Somatic variant calling accuracy and runtime. (a) Somatic variant calling accuracy for Strelka2 and 

Sentieon TNseq TNhaplotyper, separately plotted for indels (left) and SNVs (right). Datasets are denoted by x / y, 

where x and y represent tumor (NA12878) and normal (NA12877) purity, respectively. Filled and empty circles 

denote the passing calls from Strelka2 and TNhaplotyper, respectively. We mapped each sample using bwa-mem, 

and ran Strelka2 on default settings. Results were compared against the truth set consisting of the variant calls in 

NA12878 where the corresponding NA12877 genotype is homozygous reference (see Supplementary Note 1 for 

details). (b) Runtime for Strelka2 and TNhaplotyper for the 4 admixture datasets, measured on the same compute 

hardware with two Indel Xeon E5-2680 v4 CPUs (total 28 cores). For each dataset, the coverages of tumor and normal 

samples are 110x and 37x, resepectively. 
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Supplementary Figures 

(a) 

 

(b) 

 

Supplementary Figure 1.  Strelka2 workflows. Strelka2 supports detection of germline variants in small sample 

cohorts (~10 individuals), and somatic variants from matched tumor-normal sample pairs. These two analyses share 

several high-level steps, including: (1) parameter estimation, (2) candidate variant discovery, (3) realignment and 

variant probability inference, and (4) empirical scoring and filtration. Here we diagram an overview of the major 

workflow components for both (a) germline and (b) somatic analyses.  
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 (a)       (b) 

  

Supplementary Figure 2. Structure of the germline indel error and variant calling models in probabilistic graphical 

model plate notation (some details omitted). (a) Indel error model. At each locus l, a preliminary estimate of the 

indel allele count vector C is modeled as a mixture binomial distribution governed by the two true haplotypes ℎ� 

and ℎ� (a function of the unobserved genotype hypothesis H), a set of indel error rates e (unobserved) and the 

total count X (observed). The error rates are selected from the full set of error parameters E according to the 

sequence context (summarized as an integer pair denoting the size s and number r of STR repeats; observed) and a 

binary state variable N (unobserved) categorizing the locus as clean (essentially zero error rates) or noisy (prone to 

indel errors). The genotype H and the noisy-clean state variable N are drawn from prior distributions that depend, 

respectively, on a context-specific mutation rate θ shared across samples and a context-specific noisy-state 

probability �� .  (b) Variant calling model. The reads 34  at every locus are modeled as depending on the 

corresponding base call quality strings	54, the unobserved haplotype ℎ4  that generated the read, and the locus-

specific error rates e. The read-specific haplotype is drawn from the set of haplotypes in the locus-specific 

hypothesis H, of which the prior again depends on a parameter selected from θ according to context. The error 

rates are again selected from the global vector E of error parameters (now treated as fixed), with the difference 

that all loci analyzed by this model are assumed to be in the noisy state. 
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(a) (b) 

 

Supplementary Figure 3. Germline SNV calling accuracy of various pipelines for the Consistency (a) and Truth (b) 

challenge datasets. Filled and empty circles denote the precision and recall of passing calls from Strelka2 and all 

calls from Sentieon DNAseq Haplotyper, respectively. For Haplotyper, the F-scores of passing calls were far lower 

than those of all calls, so we chose to plot the F-score for all calls. Crosses represent passing calls from 

PrecisionFDA submissions and stars denote the submissions with the best F-scores. 
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