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ABSTRACT 

Lens-free digital in-line holography (LDIH) is a promising microscopic tool that overcomes 

several drawbacks (e.g., limited field of view) of traditional lens-based microcopy. However, 

extensive computation is required to reconstruct object images from the complex diffraction 

patterns produced by LDIH, which limits LDIH utility for point-of-care applications, particularly 

in resource limited settings. Here, we describe a deep transfer learning (DTL) based approach to 

process LDIH images in the context of cellular analyses. Specifically, we captured holograms of 

cells labeled with molecular-specific microbeads and trained neural networks to classify these 

holograms without reconstruction. Using raw holograms as input, the trained networks were able 

to classify individual cells according to the number of cell-bound microbeads. The DTL-based 

approach including a VGG19 pretrained network showed robust performance with experimental 

data. Combined with the developed DTL approach, LDIH could be realized as a low-cost, 

portable tool for point-of-care diagnostics.   
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INTRODUCTION 

Lens-free digital in-line holography (LDIH) is a powerful imaging platform that overcomes 

many of the limitations of traditional microscopy1-6. LDIH records diffraction patterns produced 

by samples, which can later be used to computationally reconstruct original object images. This 

strategy enables LDIH to image a large area (~mm2) while achieving a high spatial resolution 

(~µm). Furthermore, the simplistic optical design allows for compact setups, consisting of a 

semiconductor imager chip and a coherent light source. LDIH has been previously tested for 

potential point-of-care (POC) diagnoses7. Recently, we have advanced LDIH for the purpose of 

molecular diagnostics (D3, digital diffraction diagnostics)3 wherein cancer cells were labeled 

with antibody-coated-microbeads, and bead-bound cells were counted for molecular profiling.  

A major hurdle to translating LDIH into POC tests is the need for extensive computational 

power. In principle, diffraction patterns can be back-propagated to reconstruct human-friendly 

object images. The bottleneck lies in the recovery of phase information, lost during the imaging 

process. It has been shown that this information can be numerically recovered through iterative 

optimization1,8-13, but the process is costly in computation time and requires high-end resources. 

To overcome this issue, it was demonstrated that a deep neural network could be trained to 

recover phase information and reconstruct object images, substantially reducing the total 

computational time14. However, this method still required an input of back-propagation images 

obtained from the holograms.  In this paper, we explored an alternative approach in which 

diagnostic information could be extracted from the raw hologram images without the need for 

hologram reconstruction. In the microbead-based assay, we reasoned that cell-bead objects could 

generate distinct hologram patterns, albeit imperceptible to human eyes, recognizable by 
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machine vision classifiers. Developing such a capacity would eliminate the need for image 

reconstruction, further advancing LDIH utility for POC operations.  

We here report on new machine-learning (ML) based approaches for LDIH image analysis. ML 

has been making significant progress in extracting information from complex biomedical images 

and started to outperform human experts for many data sets15-18. In this paper, we took deep 

transfer learning (DTL)19-25 approach to classify raw holograms and compared them with other 

ML schemes including convolutional neural networks (CNN)26-28. DTL extracts feature 

information from input data using the convolution part of pre-trained networks and subsequently 

feeds the information to classifiers. It has been known that pretrained networks can be exploited 

as a general-purpose feature extractor20. In this DTL approach, we used a VGG1929 model that 

was pretrained with a large number of ordinary images (i.e., not holograms) available in the 

ImageNet30, and fine-tuned the classifier to obtain high-performance classification. We applied 

these approaches to classifying holograms generated from cells and microbeads without a 

reconstruction process. Specifically, algorithms were developed to i) automatically detect the 

holograms of cells labeled with microbeads, ii) classify detected cells according to the number of 

the cell-bound beads, and iii) construct the histogram of the cell-bound beads from the entire 

hologram. We found that a DTL approach offered more reliable, robust, and efficient 

performance in hologram classification than the conventional CNN. 

RESULTS  

System and assay setup 

Figure 1A shows the schematic of LDIH system3. As a light source, we used a light-emitting 

diode (LED; λ = 420 nm). The light passes through a circular aperture (diameter, 100 µm), 
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generating a coherent spherical wave on the sample plane. The incidence light and the scattered 

light from the sample interfere with each other to generate holograms which are then recorded by 

a CMOS imager10,31. The system has a unit (×1) optical magnification, resulting in a field-of-

view equal to the imager size.  

To enable molecular-specific cell detection, we used antibody-coated microbeads (diameter, 

6 µm) for cell labeling. The number of attached beads is proportional to the expression level of a 

target marker, allowing for quantitative molecular profiling3. Diffraction patterns from unlabeled 

and bead-bound cells have subtle differences that are hard to detect with human eyes (Fig. 1B). 

Only after image reconstruction can beads and cells be differentiated and counted; cells have 

high amplitude and phase values, whereas microbeads have negligible phase values.  

Reconstruction-free ML approaches 

Conventional LDIH reconstruction (Fig. 2A) requires multiple repetitions of back-propagation, 

constraint application, and transformation8. This iterative algorithm is computationally intensive, 

either incurring long processing time or requiring high-end resources (e.g., a high-performance 

graphical processing unit server) for faster results3. Furthermore, human curation is occasionally 

needed to correct for stray reconstruction (e.g., debris, twin images). In contrast, our ML-based 

approach is a reconstruction-free classification method (Fig. 2B). As an off-line task, we first 

build a training dataset by automatically detecting cell candidates and cropping them from the 

entire holograms. Then, we labeled each cropped hologram with the number of the cell-bound 

beads using reconstructed image as ground truth. Next, we trained a network using annotated 

holograms of bead-bound cells. After the training was complete, the network was used for on-

line classification tasks; cell candidate holograms were detected and their holograms, without 

any image preprocessing, were entered as input for classification based on the number of cell-
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bound beads. Finally, the histograms of the cell-bound beads from the entire holograms were 

created for molecular diagnosis. 

Both off-line and on-line tasks in the ML approach (Fig. 2B) required the automatic detection of 

holographic patterns of cells. To achieve this task, we implemented a computational method 

which identifies the center of individual diffraction patterns32. First, the images of the gradient 

magnitude of holograms were generated and thresholded based on their intensity. The 

converging directions of gradients were used to estimate the positions of cell candidates in 

holograms (Fig. 3A; see Methods). Using this method, we detected 2729 potential cell 

candidates from 31 holograms. The samples for these holograms were prepared by labeling 

SkBr3 breast carcinoma cells with polystyrene beads conjugated with control, EpCAM, and 

HER2 antibodies. Then, we reconstructed object images and cropped the holograms and the 

object images (270 ×  270 pixels). We labeled the cropped holograms (Fig. 3C) and their 

reconstructed object images (Fig. 3D) with the number of the bead attached to a cell (NB : 0, 1, 2, 

3, ≥ 4). There were also images of floating beads, multiple cells, and artifacts, which were 

collectively labeled as ‘background’ (BG). The distribution of the class in the final training set is 

shown in Fig. 3B. 

Visualization of hologram features 

We first tested the feasibility of the reconstruction-free classification by visualizing the features 

extracted from the holograms. Using VGG19 pretrained model, we extracted features from the 

training set of holograms (Fig. 4A). Since VGG19 was trained using color images (RGB 

channels) and our data were in a gray scale, we copied the same image in each channel in the 

VGG-19 pretrained model. Then, using PCA (Principal Component Analysis), we reduced the 

feature dimension from 32,768 to 500 and visualized their distribution using t-SNE plots33. In 
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both holograms (Fig. 4B) and object images (Fig. 4C), each class of bead-bound cells was 

visually more segregated than the cases where only the same PCA was applied without using 

VGG19 (Fig. 4D-E), suggesting that VGG19-based features of the holograms could discriminate 

the numbers of cell-bound beads. 

Classification results by deep transfer learning 

Using the features from VGG19-PCA or PCA, we trained the multilayer perceptron (MLP, Fig. 

5A) separately for holograms or object images. Since the training data were unbalanced (Fig. 

3B), we took the following approaches: To balance the training set of cell-bound beads, we 

applied the data augmentation (rotation and zoom-in) to increase the data size in the case of NB ≥ 1 (see Methods). Then, to address the unbalance between bead-bound cells (NB : 0 to ≥ 4) and 

background (BG) data we used the weighted cost function using the proportion of bead-bound 

cells to BG data. From the whole dataset consisting of 2729 cropped images from 31 holograms, 

we randomly split the data into training, validation, and testing dataset with a 64:16:20 ratio. The 

model was selected based on the validation loss, and the model performance was evaluated based 

on the testing data. For statistical analysis, we repeated the training 20 times with different data 

splitting (see Methods for detail).  

Since cells with more than two bead attachments are considered positive for a given target 

biomarker3, we first performed the binary classification (N/P) based on the bead number (NB): 

negative (NB≤ 1) vs. positive (NB≥ 2). The accuracies of VGG19-PCA-MLP in N/P were 90.2% 

for holograms and 93.4% for object images, whereas the accuracies of PCA-MLP were only 

79.5% for holograms and 76.8% for object images (Fig. 5B and Supplementary Table 1). Since 

the background (BG) data are included in real situations, we also trained the classifiers after 

adding the BG class (N/P+BG). In comparison to the N/P classification, the accuracies were still 
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similar (VGG19-PCA-MLP: 90.4% for holograms and 92.3% for object images, PCA-MLP: 

79.1% for holograms and 76.4% for object images) (Fig. 5B and Supplementary Table 1). The 

sensitivity and specificity also showed that VGG19-PCA-MLP outperformed PCA-MLP in all 

cases (Fig. 5C, Supplementary Table 2 and 3).  

While this binary classification for the negative and positive cells can be applied to molecular 

diagnostics, the actual number of the beads and their distribution from a given patient sample can 

provide more detailed information including cancer stages and patient sub-types. Therefore, we 

trained the classifiers based on the numbers of the cell-bound beads. When we performed the 

classification using the number of beads (0, 1, 2, 3, ≥ 4), VGG19-PCA-MLP achieved 

significantly higher accuracies, 75.5% for holograms and 82.0% for object images than PCA-

MLP (52.8% for holograms and 53.4% for object images) (Fig. 5B and Supplementary Table 

1). When BG class was considered together for the real application (NB+BG), VGG19-PCA-

MLP achieved 83.2% for holograms, and 86.2% for object images, whereas PCA-MLP achieved 

65.8% for holograms and 64.3% for object images (Fig. 5B and Supplementary Table 1). The 

distinctiveness of the BG class from the other classes (Fig. 4B-C) increased the overall 

classification accuracies.  

To quantitatively compare the classification performance among all classification cases, we 

employed the Cohen’s kappa coefficient34 and the relative classifier information (RCI) 35,36 (Fig. 

5D-E, Supplementary Table 4 and 5). Cohen’s kappa compensates for classifications by 

random chance, and RCI quantifies how much uncertainty had been reduced by the classification 

relative to the prior probabilities of each class. Both measures are between 0 and 1 (0: worst, 1: 

perfect classification). The NB classification using VGG19-PCA-MLP and the holograms 

produced the significantly larger values of Cohen’s kappa (0.687) and RCI (0.487) than the 
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PCA-MLP (Cohen’s kappa: 0.392, RCI, 0. 0.204, Supplementary Table 4 and 5).  The results 

showed the followings; i) N/P classifiers has better performance than NB classifiers since multi-

category classification is more prone to error than binary classification. ii) The VGG19-PCA-

MLP outperforms PCA-MLP in all cases, iii) While the classification using holograms showed 

good performance, the classification using object images performs marginally better than 

holograms.  

To see the performance of the multi-category classification more closely, we computed the 

average confusion matrices of the bead classification (NB, NB+BG). The prediction accuracy was 

high when the number of beads is 0 or  ≥4, or the BG class, and the accuracies decreased when 

the bead number was between 1 and 3 (Fig. 5F-I). Since the high occurrence values of the 

confusion matrices were near the diagonals, the misclassification mainly happened among 

neighboring numbers for both holograms and object images. This property makes the molecular 

profiling from the entire holograms less susceptible to mis-classification error. 

To compare the performances of different classifiers in our DTL approach, we also trained SVM 

(Support Vector Machine) and RF (Random Forest) using the same VGG19-PCA features. In 

both N/P and NB classifications, MLP outperformed SVM and RF significantly (see p-values in 

Supplementary Table 6 and 7).  

Molecular profiling using the deep transfer learning 

When it comes to the molecular diagnosis using LDIH, the clinical decision is often made at the 

cell population level. Therefore, we assessed how our hologram multi-category classification 

(NB) matched with the distribution of the cell-bound beads from an entire hologram. We overlaid 

the actual and predicted distributions of cell-bound beads from 18 different samples, whose 
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number of detected cell candidates are more than 15 excluding BG (Fig. 6A). We also plotted 

that the histograms of the actual and predicted numbers of the cell-bound beads in each sample 

(Fig. 6B). These show that the predicted bead proportions matched well with the actual 

distribution. Also, the mean difference between the proportions of the actual and the prediction 

was within 5% (Fig. 6E). This suggests that our multi-category classification based on the 

number of the cell-bound beads can be used to characterize the molecular profiles of the cancer 

cell population from a patient sample. 

Roles of VGG19 pretrained model 

To evaluate the role of the pretrained model in our classification, we also trained a conventional 

convolutional neural network (CNN) de novo for NB classification (Fig. 7A). Whereas there were 

no statistical differences in accuracy, RCI, and kappa between the CNN and the VGG19-PCA-

MLP (Fig. 7B, Supplementary Table 8), we observed that the validation loss and accuracy of 

the training curves of this CNN were far more fluctuating than VGG19-PCA-MLP (Fig. 7C-D). 

Therefore, the standard deviation of the accuracy and the loss in the steady state of the CNN 

training was significantly larger than those of VGG19-PCA-MLP (p-values: 2.30 × 10-107 for the 

loss, and 1.03 × 10-255 for the accuracy by two sample F-test) (Fig. 7E-F). Since the CNN has 

much more parameters to learn than VGG19-PCA-MLP, the cost function of the validation set 

may have much more local minima than that of the training set, which makes the validation loss 

and accuracy fluctuating during the training process. This suggests that DTL is more robust to 

the data variability and can produce a more generalizable classifier.  

The DTL also used significantly less computational resources than the CNN. For one-time 

training, the VGG19-PCA-MLP took 30% less time than the CNN (Fig. 7G; NVIDIA GTX 

1080Ti was used). In the VGG19-PCA-MLP training, the majority of time was spent in the 
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feature extraction (VGG-PCA) rather than MLP training (Fig. 7G). Once the features of the 

training set were extracted, the repeated training was highly efficient whereas the CNN training 

required the feature extraction in every step of the training. Optimizing VGG19-PCA-MLP was 

much more efficient compared to the CNN, which could allow for training VGG19-PCA-MLP in 

a computation limited POC devices. Moreover, combining the automatic cell candidate 

identification and our DTL based prediction, it took 7.7 seconds to process the whole FOV 

image (3000 ×  3500 pixels, the number of cell candidate: 100). In summary, these results 

demonstrate the feasibility of hologram classification without reconstruction, simplifying the 

workflow and decreasing the computational cost for a POC application. 

DISCUSSION 

We have demonstrated that DTL approaches can effectively classify holograms of bead-bound 

cells without reconstructing original object images. The conventional reconstruction involves 

heavy computation, executing iterative phase recovery processes. Our DTL approach requires 

much less computational power, which could allow for POC devices to train and predict raw 

holograms. 

Intriguingly, our neural networks reliably handled overlapping interference patterns among cells 

or between cells and unbound beads. In our training set, the target cells were positioned at the 

centers of the images and other cells or unbound beads were away from the image centers. More 

than 70% of intensity is concentrated in the first inner circle of a hologram, whereas 

interferences between two holograms usually happen in the fringes and have much weaker signal 

strength. Conceivably, the trained networks placed more weight on the hologram center, 

effectively ignoring fringe patterns.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/192559doi: bioRxiv preprint 

https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Our DTL approach could offer appealing new directions to further advance LDIH: i) deep 

learning-based training/classification can be executed at the local device level without complex 

computation; ii) not relying on high-resolution reconstructed images, the classification network 

is robust to experimental noises such as reconstruction errors or artifacts; and iii) the network is 

elastic and can be continuously updated for higher accuracy in POC devices. With these merits, 

we envision that the developed ML networks will significantly empower LDIH, realizing a truly 

POC diagnostic platform. 

 

METHODS 

Data Collection 

Samples were prepared by labeling cancer cells (SkBr3, A431) with polystyrene beads (diameter, 

6 µm). We prepared four different sets of beads. Three sets were conjugated with antibodies 

against different molecular targets: EGFR, EpCAM, and HER2; the fourth set was conjugated 

with control IgG antibodies. Aliquots of cells were labeled with each set of the bead. Labeled 

cells, suspended in buffer, were loaded on a microscope slide, and their holograms were imaged 

using LDIH system3. To prepare the dataset set for classification, we reconstructed object images 

from holograms using a previously developed algorithm3. We cropped holograms (270 ×	270 

pixels) around the position of the automatically detected cell candidates (see Cell Candidate 

Detection below). Three researchers manually annotated the holograms of the cropped cell 

candidates with the following labels: the numbers (0, 1, 2, 3, ≥4) of the beads attached to cells, 

the beads unattached to cells, multiple cells, and artifacts. Later, we collectively labeled the 

beads unattached to cells, multiple cells, and artifacts as ‘background.’  
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Cell Candidates Detection 

We implemented computational methods which automatically localized the single-cell 

candidates in the hologram image based on the diffracted patterns of concentric circles in 

holograms32. The algorithm uses the fact that the gradient directions of holograms on concentric 

circles converge to the centers of the diffraction patterns. The detailed detection procedure is the 

following: 

1) We normalized the holograms by dividing the pixel values by background and then rescaled 

them into a range [0, 255]. 

2) We denoised the normalized hologram using Gaussian blurring with 6-pixel size (MATLAB 

function imgaussfilt()). Then we calculated the gradient direction and magnitude of the denoised 

holograms using the MATLAB build-in function imgradient () with ‘prewitt’ method. 

3) We thresholded the gradient magnitude images using the threshold value 8.0, which removed 

the small gradient magnitude pixels and generated the binary mask. Then, the gradient direction 

images were masked by the gradient magnitude binary mask. 

4) Along each direction in the masked gradient direction images, the frequencies of the gradient 

directions were accumulated within a specified range (50-pixel length, which generated the 

frequency maps of the gradient direction. 

5) We denoised the frequency accumulation map using Gaussian blurring with 3-pixel size 

(MATLAB function imgaussfilt()). Then, we thresholded the denoised frequency accumulation 

map using the top 1% of the pixel values, and locate the center candidates. Then, we cropped 270 × 270 hologram and object image patches around the detected candidate center positions.  
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Labelling Training Set 

Three annotators independently labeled cropped holograms and their corresponding object 

images. In order to balance the class distribution, we augmented the image data labeled with NB 

= 1, 2, 3, and ≥ 4.  The augmentation was performed by two strategies: rotation with a range of 

[0, 40] and zooming-in with the maximum value, 0.2 using Keras library. 

Machine Learning Classification 

Using VGG19 pretrained model, we extracted image features from cropped holograms and 

object images. Since VGG19 was originally used for color images (RGB channels), and our data 

in a gray scale were duplicated to each channel. For data preprocessing, we perform the standard 

normalization, where each image patch was subtracted by its mean value and divided by its 

standard deviation. After the features extracted from VGG19, PCA (Principal Component 

Analysis) was performed to reduce the dimensionality of the data from 32768 to 500.  

After the feature extraction step, we used an MLP (Multilayer Perceptron) consisting of three 

fully-connected neural network blocks for the classification. The first two blocks have a fully-

connected (FC) layer, Batch Normalization layer, ReLU activation and Dropout layer 

(parameter: 0.5). The FC layers in the first two blocks have the sizes of 128 and 64, and the L2 

norm regularizer (parameter: 0.05). The third block has an FC layer with ‘softmax’ activation. 

Also, Support Vector Machine (SVM) and Random Forest (RF) were applied to compare the 

performance with the MLP. The parameters of SVM and RF were optimized by the grid-search 

method in sklearn package shown below. 

The parameters of the grid search for RF  
 n_estimators max_features max_depth 

RF in binary 20, 50, 100 ‘Auto’, ‘sqrt’ [none, 2, 20, 50] 
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classification 
RF in 5 categories 

classification 
20, 50, 100, 500 ‘Auto’, ‘sqrt’ [none, 2, 20, 50, 100] 

 
The parameters of the grid search for SVM 

 Kernel C gamma 
SVC  RBF, Linear 0.1, 1, 10, 100 1e-1, 1e-2, 1e-3 

 

To show the roles of the pretrained VGG19, we trained a CNN convolution neural using the 

same dataset (Fig. 7A).  The CNN has three feature extraction blocks consisting of two 

convolutions layers and one max-pool layer (4 × 4.) After this feature extraction, the same MLP 

structure was used for the classification. 

Performance evaluation of the classifiers 

We split the augmented dataset into three groups in a stratified fashion using the class labels: 

training, validation and test sets (64:16:20). The training set (64%) was used for training the 

network. The validation set (16%) was used for the model selections. After the training, the 

classification performance was evaluated using the testing set (20%). For the robust statistical 

analysis, we repeated the training 20 times. The performance measures were the accuracy, 

Cohen’s Kappa coefficient (Kappa)34, relative classifier information (RCI)36. Kappa is a standard 

metric for a multi-categorical classification and RCI, as an entropy-based measure, is also 

suitable to evaluate the performance by measure the reduced uncertainty by the classifier in 

comparison to the prior class distribution. For the classification involved with negative and 

positive bead attachment, we also measure sensitivity and specificity using sklearn.metrics 

python package. The samples of the positive bead attachment were treated as ‘positive,’ and the 

other cases were treated as ‘negative’. For the statistical testing, we used unpaired two-tailed 
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Wilcoxon rank sum test method which does not rely on the assumption of the Gaussian 

distribution. 

Molecular Profiling 

To quantify the distribution of the proportion or the frequency of the number of the attached 

beads (NB), we chose 18 images, whose cell candidates were larger than 15. For each image, we 

calculated the proportion and the frequency of the predicted and the actual numbers of the 

attached beads in each hologram. 

Comparison between VGG19-PCA-MLP and CNN. To evaluate the performance between 

VGG19-PCA-MLP and CNN, the performance measures including accuracy, Kappa and RCI 

were used as described above. Then, the fluctuations of the validation accuracy and loss were 

measured as follows: we selected the last 20 epochs for each training process, and then calculate 

the residuals by subtracting the sample mean value. We repeated the training twenty times with 

random data splitting. The statistical test for the difference of variance was performed by two 

sample F-test.  

 

Code availability statement 

The code used in the current study is available from the corresponding author upon reasonable 

request. 
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Figure Legends 

Figure 1. In-line holographic imaging. (A) A holography system includes LED, a sample glass 

and a sensor where light is passed to a sample through a pinhole disk. (B) A hologram image and 

its associated reconstructed images consisting of magnitude and phase images.  

 

Figure 2. Flow charts of holographic diagnostic approaches. (A) A conventional approach 

includes iterative reconstruction processes by phase retrieval. (B) A machine learning based 

workflow for hologram classification. 

 

Figure 3. Training set preparation for hologram classification. (A) Cell candidates detection 

workflow. (B) Class distribution in the training dataset. (C-D) Sample examples of holograms 

(C) and corresponding object images (D).  
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Figure 4. Feature extraction from holograms. (A) Features extraction by the pretrained 

VGG19 model and PCA.  (B-D) t-SNE plots of the extracted features. VGG19-PCA feature 

extraction from the holograms (B) and object images (C). PCA feature extraction from the 

holograms (D) and object images (E) 

 

Figure 5. Classification performance of the deep transfer learning for holograms. (A) MLP 

(Multi-Layer Perceptron) neural network classifier used in this study (FC: fully connected layer, 

BN: batch normalization layer). (B-E) Performance Comparison between VGG19-PCA-MLP 

and PCA-MLP. N/P: negative (NB≤ 1) and positive (NB≥ 2) bead attachment. N/P+BG: NB≤ 1, 

N
B
≥ 2, BG (background class), NB: the numbers of beads (0, 1, 2, 3, ≥ 4 beads), NB+BG: the 

numbers of beads( 0, 1, 2, 3, ≥ 	4), BG. The performance measures are accuracy (B), 

sensitivity/specificity (C), Cohen’s Kappa (D), and RCI (E). (F-K) Average confusion matrices 

using VGG19-PCA-MLP using NB (five classes) classification (F) and N
B
+BG (6 classes) 

classification (G) for holograms, and NB classification (H), NB+BG classification (I) for object 

images. (J-K) The performance comparisons of VGG19-PCA-MLP (MLP), Support Vector 

Machine (SVM), Random Forest (RF) in N/P (two classes) classification (J) and NB 
(five classes) 

classification (K) using holograms. 

 

Figure 6. Molecular profiling using deep transfer learning. (A-B) Comparison of the 

proportions (A) and numbers (B) of the cell-bound beads in each entire hologram between the 

actual labels (left) and predicted results (right). The classifier was built without BG class (NB). 

The color represents each hologram. (C) The residuals between actual and predicted proportions 

in each class 
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Figure 7. Classification performance of convolution neural networks (CNN). (A) The 

structure of the CNN used in this study. (B) Performance comparison between VGG19-PCA-

MLP and CNN in the case of NB 
and holograms. (C-D) Training curves of VGG19-PCA-MLP 

(C) and CNN (D). (E-F) Fluctuations and standard deviations of the validation accuracy (E) and 

the validation loss (F) during the training. * and ** indicate the statistical significance with p-

value, 2.30 x 10
-107 

and 1.03 x 10
-255

 respectively by two sample F-tests. (G) Comparison of 

computing times of the feature extraction (VGG19), MLP training, and CNN training (64 

epochs). 
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