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ABSTRACT

Lens-free digital in-line holography (LDIH) is a promising microscopic tool that overcomes
several drawbacks (e.g., limited field of view) of traditional lens-based microcopy. However,
extensive computation is required to reconstruct object images from the complex diffraction
patterns produced by LDIH, which limits LDIH utility for point-of-care applications, particularly
in resource limited settings. Here, we describe a deep transfer learning (DTL) based approach to
process LDIH images in the context of cellular analyses. Specifically, we captured holograms of
cells labeled with molecular-specific microbeads and trained neural networks to classify these
holograms without reconstruction. Using raw holograms as input, the trained networks were able
to classify individual cells according to the number of cell-bound microbeads. The DTL-based
approach including a VGG19 pretrained network showed robust performance with experimental
data. Combined with the developed DTL approach, LDIH could be realized as a low-cost,

portable tool for point-of-care diagnostics.
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INTRODUCTION

Lens-free digital in-line holography (LDIH) is a powerful imaging platform that overcomes
many of the limitations of traditional microscopy'®. LDIH records diffraction patterns produced
by samples, which can later be used to computationally reconstruct original object images. This
strategy enables LDIH to image a large area (~mm®) while achieving a high spatial resolution
(~um). Furthermore, the simplistic optical design allows for compact setups, consisting of a
semiconductor imager chip and a coherent light source. LDIH has been previously tested for
potential point-of-care (POC) diagnoses’. Recently, we have advanced LDIH for the purpose of
molecular diagnostics (D3, digital diffraction diagnostics)® wherein cancer cells were labeled

with antibody-coated-microbeads, and bead-bound cells were counted for molecular profiling.

A major hurdle to translating LDIH into POC tests is the need for extensive computational
power. In principle, diffraction patterns can be back-propagated to reconstruct human-friendly
object images. The bottleneck lies in the recovery of phase information, lost during the imaging
process. It has been shown that this information can be numerically recovered through iterative
optimization'*'*, but the process is costly in computation time and requires high-end resources.
To overcome this issue, it was demonstrated that a deep neural network could be trained to
recover phase information and reconstruct object images, substantially reducing the total
computational time'*. However, this method still required an input of back-propagation images
obtained from the holograms. In this paper, we explored an alternative approach in which
diagnostic information could be extracted from the raw hologram images without the need for
hologram reconstruction. In the microbead-based assay, we reasoned that cell-bead objects could

generate distinct hologram patterns, albeit imperceptible to human eyes, recognizable by
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machine vision classifiers. Developing such a capacity would eliminate the need for image

reconstruction, further advancing LDIH utility for POC operations.

We here report on new machine-learning (ML) based approaches for LDIH image analysis. ML
has been making significant progress in extracting information from complex biomedical images

15-18

and started to outperform human experts for many data sets ° . In this paper, we took deep

transfer learning (DTL)lg'25

approach to classify raw holograms and compared them with other
ML schemes including convolutional neural networks (CNN)26'28. DTL extracts feature
information from input data using the convolution part of pre-trained networks and subsequently
feeds the information to classifiers. It has been known that pretrained networks can be exploited
as a general-purpose feature extractor’’. In this DTL approach, we used a VGG19* model that
was pretrained with a large number of ordinary images (i.e., not holograms) available in the
ImageNet™, and fine-tuned the classifier to obtain high-performance classification. We applied
these approaches to classifying holograms generated from cells and microbeads without a
reconstruction process. Specifically, algorithms were developed to i) automatically detect the
holograms of cells labeled with microbeads, ii) classify detected cells according to the number of
the cell-bound beads, and iii) construct the histogram of the cell-bound beads from the entire

hologram. We found that a DTL approach offered more reliable, robust, and efficient

performance in hologram classification than the conventional CNN.

RESULTS

System and assay setup
Figure 1A shows the schematic of LDIH system’. As a light source, we used a light-emitting

diode (LED; A = 420 nm). The light passes through a circular aperture (diameter, 100 pum),
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generating a coherent spherical wave on the sample plane. The incidence light and the scattered
light from the sample interfere with each other to generate holograms which are then recorded by
a CMOS imager'**'. The system has a unit (x1) optical magnification, resulting in a field-of-

view equal to the imager size.

To enable molecular-specific cell detection, we used antibody-coated microbeads (diameter,
6 um) for cell labeling. The number of attached beads is proportional to the expression level of a
target marker, allowing for quantitative molecular profiling’. Diffraction patterns from unlabeled
and bead-bound cells have subtle differences that are hard to detect with human eyes (Fig. 1B).
Only after image reconstruction can beads and cells be differentiated and counted; cells have

high amplitude and phase values, whereas microbeads have negligible phase values.

Reconstruction-free ML approaches

Conventional LDIH reconstruction (Fig. 2A) requires multiple repetitions of back-propagation,
constraint application, and transformation®. This iterative algorithm is computationally intensive,
either incurring long processing time or requiring high-end resources (e.g., a high-performance
graphical processing unit server) for faster results’. Furthermore, human curation is occasionally
needed to correct for stray reconstruction (e.g., debris, twin images). In contrast, our ML-based
approach is a reconstruction-free classification method (Fig. 2B). As an off-line task, we first
build a training dataset by automatically detecting cell candidates and cropping them from the
entire holograms. Then, we labeled each cropped hologram with the number of the cell-bound
beads using reconstructed image as ground truth. Next, we trained a network using annotated
holograms of bead-bound cells. After the training was complete, the network was used for on-
line classification tasks; cell candidate holograms were detected and their holograms, without

any image preprocessing, were entered as input for classification based on the number of cell-
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bound beads. Finally, the histograms of the cell-bound beads from the entire holograms were

created for molecular diagnosis.

Both off-line and on-line tasks in the ML approach (Fig. 2B) required the automatic detection of
holographic patterns of cells. To achieve this task, we implemented a computational method
which identifies the center of individual diffraction patterns®”. First, the images of the gradient
magnitude of holograms were generated and thresholded based on their intensity. The
converging directions of gradients were used to estimate the positions of cell candidates in
holograms (Fig. 3A; see Methods). Using this method, we detected 2729 potential cell
candidates from 31 holograms. The samples for these holograms were prepared by labeling
SkBr3 breast carcinoma cells with polystyrene beads conjugated with control, EpCAM, and
HER2 antibodies. Then, we reconstructed object images and cropped the holograms and the
object images (270 X 270 pixels). We labeled the cropped holograms (Fig. 3C) and their
reconstructed object images (Fig. 3D) with the number of the bead attached to a cell (Ng: 0, 1, 2,
3, > 4). There were also images of floating beads, multiple cells, and artifacts, which were
collectively labeled as ‘background’ (BG). The distribution of the class in the final training set is

shown in Fig. 3B.
Visualization of hologram features

We first tested the feasibility of the reconstruction-free classification by visualizing the features
extracted from the holograms. Using VGG19 pretrained model, we extracted features from the
training set of holograms (Fig. 4A). Since VGG19 was trained using color images (RGB
channels) and our data were in a gray scale, we copied the same image in each channel in the
VGG-19 pretrained model. Then, using PCA (Principal Component Analysis), we reduced the

feature dimension from 32,768 to 500 and visualized their distribution using t-SNE plots®. In
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both holograms (Fig. 4B) and object images (Fig. 4C), each class of bead-bound cells was
visually more segregated than the cases where only the same PCA was applied without using
VGG19 (Fig. 4D-E), suggesting that VGG19-based features of the holograms could discriminate

the numbers of cell-bound beads.

Classification results by deep transfer learning

Using the features from VGG19-PCA or PCA, we trained the multilayer perceptron (MLP, Fig.
5A) separately for holograms or object images. Since the training data were unbalanced (Fig.
3B), we took the following approaches: To balance the training set of cell-bound beads, we
applied the data augmentation (rotation and zoom-in) to increase the data size in the case of Ng
> 1 (see Methods). Then, to address the unbalance between bead-bound cells (Ng : 0 to > 4) and
background (BG) data we used the weighted cost function using the proportion of bead-bound
cells to BG data. From the whole dataset consisting of 2729 cropped images from 31 holograms,
we randomly split the data into training, validation, and testing dataset with a 64:16:20 ratio. The
model was selected based on the validation loss, and the model performance was evaluated based
on the testing data. For statistical analysis, we repeated the training 20 times with different data

splitting (see Methods for detail).

Since cells with more than two bead attachments are considered positive for a given target
biomarker’, we first performed the binary classification (N/P) based on the bead number (Ng):
negative (Ng< 1) vs. positive (Ng= 2). The accuracies of VGG19-PCA-MLP in N/P were 90.2%
for holograms and 93.4% for object images, whereas the accuracies of PCA-MLP were only
79.5% for holograms and 76.8% for object images (Fig. 5B and Supplementary Table 1). Since
the background (BG) data are included in real situations, we also trained the classifiers after

adding the BG class (N/P+BG). In comparison to the N/P classification, the accuracies were still
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similar (VGG19-PCA-MLP: 90.4% for holograms and 92.3% for object images, PCA-MLP:
79.1% for holograms and 76.4% for object images) (Fig. 5B and Supplementary Table 1). The
sensitivity and specificity also showed that VGG19-PCA-MLP outperformed PCA-MLP in all

cases (Fig. 5C, Supplementary Table 2 and 3).

While this binary classification for the negative and positive cells can be applied to molecular
diagnostics, the actual number of the beads and their distribution from a given patient sample can
provide more detailed information including cancer stages and patient sub-types. Therefore, we
trained the classifiers based on the numbers of the cell-bound beads. When we performed the
classification using the number of beads (0, 1, 2, 3, =4), VGGI19-PCA-MLP achieved
significantly higher accuracies, 75.5% for holograms and 82.0% for object images than PCA-
MLP (52.8% for holograms and 53.4% for object images) (Fig. 5B and Supplementary Table
1). When BG class was considered together for the real application (Ng+BG), VGG19-PCA-
MLP achieved 83.2% for holograms, and 86.2% for object images, whereas PCA-MLP achieved
65.8% for holograms and 64.3% for object images (Fig. 5B and Supplementary Table 1). The
distinctiveness of the BG class from the other classes (Fig. 4B-C) increased the overall

classification accuracies.

To quantitatively compare the classification performance among all classification cases, we
employed the Cohen’s kappa coefficient®® and the relative classifier information (RCI) ***° (Fig.
5D-E, Supplementary Table 4 and 5). Cohen’s kappa compensates for classifications by
random chance, and RCI quantifies how much uncertainty had been reduced by the classification
relative to the prior probabilities of each class. Both measures are between 0 and 1 (0: worst, 1:
perfect classification). The Ng classification using VGG19-PCA-MLP and the holograms

produced the significantly larger values of Cohen’s kappa (0.687) and RCI (0.487) than the
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PCA-MLP (Cohen’s kappa: 0.392, RCI, 0. 0.204, Supplementary Table 4 and 5). The results
showed the followings; 1) N/P classifiers has better performance than Ng classifiers since multi-
category classification is more prone to error than binary classification. ii) The VGG19-PCA-
MLP outperforms PCA-MLP in all cases, iii) While the classification using holograms showed
good performance, the classification using object images performs marginally better than

holograms.

To see the performance of the multi-category classification more closely, we computed the
average confusion matrices of the bead classification (Ng, Ng+BG). The prediction accuracy was
high when the number of beads is 0 or >4, or the BG class, and the accuracies decreased when
the bead number was between 1 and 3 (Fig. 5F-l). Since the high occurrence values of the
confusion matrices were near the diagonals, the misclassification mainly happened among
neighboring numbers for both holograms and object images. This property makes the molecular

profiling from the entire holograms less susceptible to mis-classification error.

To compare the performances of different classifiers in our DTL approach, we also trained SVM
(Support Vector Machine) and RF (Random Forest) using the same VGG19-PCA features. In
both N/P and Ng classifications, MLP outperformed SVM and RF significantly (see p-values in

Supplementary Table 6 and 7).

Molecular profiling using the deep transfer learning

When it comes to the molecular diagnosis using LDIH, the clinical decision is often made at the
cell population level. Therefore, we assessed how our hologram multi-category classification
(Ng) matched with the distribution of the cell-bound beads from an entire hologram. We overlaid

the actual and predicted distributions of cell-bound beads from 18 different samples, whose
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number of detected cell candidates are more than 15 excluding BG (Fig. 6A). We also plotted
that the histograms of the actual and predicted numbers of the cell-bound beads in each sample
(Fig. 6B). These show that the predicted bead proportions matched well with the actual
distribution. Also, the mean difference between the proportions of the actual and the prediction
was within 5% (Fig. 6E). This suggests that our multi-category classification based on the
number of the cell-bound beads can be used to characterize the molecular profiles of the cancer

cell population from a patient sample.
Roles of VGG19 pretrained model

To evaluate the role of the pretrained model in our classification, we also trained a conventional
convolutional neural network (CNN) de novo for Ng classification (Fig. 7A). Whereas there were
no statistical differences in accuracy, RCI, and kappa between the CNN and the VGG19-PCA-
MLP (Fig. 7B, Supplementary Table 8), we observed that the validation loss and accuracy of
the training curves of this CNN were far more fluctuating than VGG19-PCA-MLP (Fig. 7C-D).
Therefore, the standard deviation of the accuracy and the loss in the steady state of the CNN
training was significantly larger than those of VGG19-PCA-MLP (p-values: 2.30 x 10"’ for the
loss, and 1.03 x 10> for the accuracy by two sample F-test) (Fig. 7E-F). Since the CNN has
much more parameters to learn than VGG19-PCA-MLP, the cost function of the validation set
may have much more local minima than that of the training set, which makes the validation loss
and accuracy fluctuating during the training process. This suggests that DTL is more robust to

the data variability and can produce a more generalizable classifier.

The DTL also used significantly less computational resources than the CNN. For one-time
training, the VGG19-PCA-MLP took 30% less time than the CNN (Fig. 7G; NVIDIA GTX

1080Ti was used). In the VGG19-PCA-MLP training, the majority of time was spent in the
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feature extraction (VGG-PCA) rather than MLP training (Fig. 7G). Once the features of the
training set were extracted, the repeated training was highly efficient whereas the CNN training
required the feature extraction in every step of the training. Optimizing VGG19-PCA-MLP was
much more efficient compared to the CNN, which could allow for training VGG19-PCA-MLP in
a computation limited POC devices. Moreover, combining the automatic cell candidate
identification and our DTL based prediction, it took 7.7 seconds to process the whole FOV
image (3000 x 3500 pixels, the number of cell candidate: 100). In summary, these results
demonstrate the feasibility of hologram classification without reconstruction, simplifying the

workflow and decreasing the computational cost for a POC application.

DISCUSSION

We have demonstrated that DTL approaches can effectively classify holograms of bead-bound
cells without reconstructing original object images. The conventional reconstruction involves
heavy computation, executing iterative phase recovery processes. Our DTL approach requires
much less computational power, which could allow for POC devices to train and predict raw

holograms.

Intriguingly, our neural networks reliably handled overlapping interference patterns among cells
or between cells and unbound beads. In our training set, the target cells were positioned at the
centers of the images and other cells or unbound beads were away from the image centers. More
than 70% of intensity is concentrated in the first inner circle of a hologram, whereas
interferences between two holograms usually happen in the fringes and have much weaker signal
strength. Conceivably, the trained networks placed more weight on the hologram center,

effectively ignoring fringe patterns.
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Our DTL approach could offer appealing new directions to further advance LDIH: i) deep
learning-based training/classification can be executed at the local device level without complex
computation; ii) not relying on high-resolution reconstructed images, the classification network
is robust to experimental noises such as reconstruction errors or artifacts; and iii) the network is
elastic and can be continuously updated for higher accuracy in POC devices. With these merits,
we envision that the developed ML networks will significantly empower LDIH, realizing a truly

POC diagnostic platform.

METHODS

Data Collection

Samples were prepared by labeling cancer cells (SkBr3, A431) with polystyrene beads (diameter,
6 um). We prepared four different sets of beads. Three sets were conjugated with antibodies
against different molecular targets: EGFR, EpCAM, and HER2; the fourth set was conjugated
with control IgG antibodies. Aliquots of cells were labeled with each set of the bead. Labeled
cells, suspended in buffer, were loaded on a microscope slide, and their holograms were imaged
using LDIH system®. To prepare the dataset set for classification, we reconstructed object images
from holograms using a previously developed algorithm®. We cropped holograms (270 X 270
pixels) around the position of the automatically detected cell candidates (see Cell Candidate
Detection below). Three researchers manually annotated the holograms of the cropped cell
candidates with the following labels: the numbers (0, 1, 2, 3, >4) of the beads attached to cells,
the beads unattached to cells, multiple cells, and artifacts. Later, we collectively labeled the

beads unattached to cells, multiple cells, and artifacts as ‘background.’
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Cell Candidates Detection

We implemented computational methods which automatically localized the single-cell
candidates in the hologram image based on the diffracted patterns of concentric circles in
holograms®?. The algorithm uses the fact that the gradient directions of holograms on concentric
circles converge to the centers of the diffraction patterns. The detailed detection procedure is the

following:

1) We normalized the holograms by dividing the pixel values by background and then rescaled

them into a range [0, 255].

2) We denoised the normalized hologram using Gaussian blurring with 6-pixel size (MATLAB
function imgaussfilt()). Then we calculated the gradient direction and magnitude of the denoised

holograms using the MATLAB build-in function imgradient () with ‘prewitt’ method.

3) We thresholded the gradient magnitude images using the threshold value 8.0, which removed
the small gradient magnitude pixels and generated the binary mask. Then, the gradient direction

images were masked by the gradient magnitude binary mask.

4) Along each direction in the masked gradient direction images, the frequencies of the gradient
directions were accumulated within a specified range (50-pixel length, which generated the

frequency maps of the gradient direction.

5) We denoised the frequency accumulation map using Gaussian blurring with 3-pixel size
(MATLAB function imgaussfilt()). Then, we thresholded the denoised frequency accumulation
map using the top 1% of the pixel values, and locate the center candidates. Then, we cropped 270

X 270 hologram and object image patches around the detected candidate center positions.
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Labelling Training Set

Three annotators independently labeled cropped holograms and their corresponding object
images. In order to balance the class distribution, we augmented the image data labeled with Ng
=1, 2,3, and > 4. The augmentation was performed by two strategies: rotation with a range of

[0, 40] and zooming-in with the maximum value, 0.2 using Keras library.

Machine L earning Classification

Using VGG19 pretrained model, we extracted image features from cropped holograms and
object images. Since VGG19 was originally used for color images (RGB channels), and our data
in a gray scale were duplicated to each channel. For data preprocessing, we perform the standard
normalization, where each image patch was subtracted by its mean value and divided by its
standard deviation. After the features extracted from VGG19, PCA (Principal Component

Analysis) was performed to reduce the dimensionality of the data from 32768 to 500.

After the feature extraction step, we used an MLP (Multilayer Perceptron) consisting of three
fully-connected neural network blocks for the classification. The first two blocks have a fully-
connected (FC) layer, Batch Normalization layer, ReLU activation and Dropout layer
(parameter: 0.5). The FC layers in the first two blocks have the sizes of 128 and 64, and the L2
norm regularizer (parameter: 0.05). The third block has an FC layer with ‘softmax’ activation.
Also, Support Vector Machine (SVM) and Random Forest (RF) were applied to compare the
performance with the MLP. The parameters of SVM and RF were optimized by the grid-search

method in sklearn package shown below.

The parameters of the grid search for RF
n_estimators max_features max_depth
RF in binary 20, 50, 100 ‘Auto’, ‘sqrt’ [none, 2, 20, 50]

14
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classification
RF in 5 categories 20, 50, 100, 500 ‘Auto’, ‘sqrt’ [none, 2, 20, 50, 100]
classification
The parameters of the grid search for SVM
Kernel C gamma
SVC RBF, Linear 0.1, 1, 10, 100 le-1, le-2, le-3

To show the roles of the pretrained VGG19, we trained a CNN convolution neural using the
same dataset (Fig. 7A). The CNN has three feature extraction blocks consisting of two
convolutions layers and one max-pool layer (4 X 4.) After this feature extraction, the same MLP

structure was used for the classification.
Performance evaluation of the classifiers

We split the augmented dataset into three groups in a stratified fashion using the class labels:
training, validation and test sets (64:16:20). The training set (64%) was used for training the
network. The validation set (16%) was used for the model selections. After the training, the
classification performance was evaluated using the testing set (20%). For the robust statistical
analysis, we repeated the training 20 times. The performance measures were the accuracy,
Cohen’s Kappa coefficient (Kappa)*, relative classifier information (RCI)*°. Kappa is a standard
metric for a multi-categorical classification and RCI, as an entropy-based measure, is also
suitable to evaluate the performance by measure the reduced uncertainty by the classifier in
comparison to the prior class distribution. For the classification involved with negative and
positive bead attachment, we also measure sensitivity and specificity using Sklearn.metrics
python package. The samples of the positive bead attachment were treated as ‘positive,” and the

other cases were treated as ‘negative’. For the statistical testing, we used unpaired two-tailed
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Wilcoxon rank sum test method which does not rely on the assumption of the Gaussian

distribution.

Molecular Profiling

To quantify the distribution of the proportion or the frequency of the number of the attached
beads (Ng), we chose 18 images, whose cell candidates were larger than 15. For each image, we
calculated the proportion and the frequency of the predicted and the actual numbers of the

attached beads in each hologram.

Comparison between VGG19-PCA-MLP and CNN. To evaluate the performance between
VGG19-PCA-MLP and CNN, the performance measures including accuracy, Kappa and RCI
were used as described above. Then, the fluctuations of the validation accuracy and loss were
measured as follows: we selected the last 20 epochs for each training process, and then calculate
the residuals by subtracting the sample mean value. We repeated the training twenty times with
random data splitting. The statistical test for the difference of variance was performed by two

sample F-test.
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Figure Legends

Figure 1. In-line holographic imaging. (A) A holography system includes LED, a sample glass

and a sensor where light is passed to a sample through a pinhole disk. (B) A hologram image and

its associated reconstructed images consisting of magnitude and phase images.

Figure 2. Flow charts of holographic diagnostic approaches. (A) A conventional approach

includes iterative reconstruction processes by phase retrieval. (B) A machine learning based

workflow for hologram classification.

Figure 3. Training set preparation for hologram classification. (A) Cell candidates detection

workflow. (B) Class distribution in the training dataset. (C-D) Sample examples of holograms

(C) and corresponding object images (D).
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Figure 4. Feature extraction from holograms. (A) Features extraction by the pretrained
VGG19 model and PCA. (B-D) t-SNE plots of the extracted features. VGG19-PCA feature
extraction from the holograms (B) and object images (C). PCA feature extraction from the

holograms (D) and object images (E)

Figure 5. Classification performance of the deep transfer learning for holograms. (A) MLP
(Multi-Layer Perceptron) neural network classifier used in this study (FC: fully connected layer,
BN: batch normalization layer). (B-E) Performance Comparison between VGG19-PCA-MLP

and PCA-MLP. N/P: negative (N < 1) and positive (N;= 2) bead attachment. N/P+BG: N,< 1,
Ny;= 2,BG (background class), Ng: the numbers of beads (0, 1, 2, 3, = 4 beads), N,+BG: the
numbers of beads( 0, 1, 2, 3, = 4), BG. The performance measures are accuracy (B),
sensitivity/specificity (C), Cohen’s Kappa (D), and RCI (E). (F-K) Average confusion matrices
using VGG19-PCA-MLP using N, (five classes) classification (F) and N,+BG (6 classes)
classification (G) for holograms, and N classification (H), N;+BG classification (I) for object
images. (J-K) The performance comparisons of VGG19-PCA-MLP (MLP), Support Vector
Machine (SVM), Random Forest (RF) in N/P (two classes) classification (J) and N; (five classes)

classification (K) using holograms.

Figure 6. Molecular profiling using deep transfer learning. (A-B) Comparison of the
proportions (A) and numbers (B) of the cell-bound beads in each entire hologram between the

actual labels (left) and predicted results (right). The classifier was built without BG class (N;).

The color represents each hologram. (C) The residuals between actual and predicted proportions

in each class
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Figure 7. Classification performance of convolution neural networks (CNN). (A) The
structure of the CNN used in this study. (B) Performance comparison between VGG19-PCA -

MLP and CNN in the case of N;and holograms. (C-D) Training curves of VGG19-PCA-MLP

(C) and CNN (D). (E-F) Fluctuations and standard deviations of the validation accuracy (E) and

the validation loss (F) during the training. * and ** indicate the statistical significance with p-

-107 -255
value, 2.30x 10 and 1.03 x 10 respectively by two sample F-tests. (G) Comparison of
computing times of the feature extraction (VGG19), MLP training, and CNN training (64

epochs).

22


https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

Phase

A ' LED B

Aperture

-
Cell
Beads ~
Sample e ~
T —
Measured hologram Reconstructed object image

Imager

Figure 1


https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Phase Retrieval Approach

On-line task

New Hologram Image

v

o Complex Domain
Hologram Decorrelation

No
| Applying Constraints |

Complex Domain
Hologram Transformation

—

| Beads Quantification |

v

| Profiling |

v

B Machine Learning Approach

Off-line task

Hologram Images

I

Cell .
Candidate |Objed
Detection mages

|

Manual Labeling

v

Features Extraction

v

On-line task

| New Hologram Images |

.

| Cell Candidate Detection |

| Features Extraction |

v

—>| Prediction |
v

| Profiling |
odel ¢

Model Training

l_

Figure 2


https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

BG

Hologram Image

Center Identification

0 bead

1 bead

2 beads

3 beads

2 4 beads

multiple cells

unbound
beads

Gradient Magnitude

( 2
© ® o

Accumulation

Hologram

Gradient Directions

Significant Directions

1400
» 1200 ]
Q
5-1000
]
2 800
o
2]
= 600
Qo
£ 400
2
0 l_|l_|--
O D 0 0 o P o
LD Q;bé{é{bc’ &>
Q° NV Q9,07 (07 SO Y @
’0000 6‘\)
00
Object Images
° e ©
o, 0 Q
v- % o 9.
9 o ]
«® o a
) & €
4 =F : .

Figure 3



https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

VGG19-PCA

PCA

Pretrained VGG19 feature extraction

A _
256%(33, 33)
—— 512x (16,16)
.—’j_\.‘\. D
\\0 \ ' . . 500
3x(270, 270 °12x(8.8)
(270, 270) | 32,768
128x(67, 67) [ conv, 3x3, ReLU [ PCA features
64x(135,135) [ Flatten = Max pool, 2x2
B Hologram Image C Object Image
0.7
0.7t +
0.6 i +"' .
or +
oo JREE
. [ L +}. b '
05 i % ﬂ."'{;
’hﬁ"' + it Tﬁ *
m 04l + ] ~ 04 r L + L *_
= % e jﬂf "—'t o
2 9 ¥ ESe R
03} “03F « 4. % +
+ * % +'¢t+
02l 0.2} +
+ * X,
0.1} + 0.1 2_'._ *
0 : : : : 0 ; : :
0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
D t-SNE1 E t-SNE1
07 0.8
0.65 | K
0.7}
0.6 +
0.55 0.6 -
05} o +
i P +y .
7 2?05 +:
£ 0.45 1 e I "
multiple cells i
04+ + artifacts i + *
* unbound beads 04+
L + 4beads i
0.35 3 beads ¥
2 beads
0.3} 1 bead | 0.3 +
=+ 0bead ) ) , ) .
0.25 ; : ; '
03 04 06 0.7 0.8 0.2 03 04 05 06 07 08

0.5
t-SNE1 t-SNE1

Figure 4


https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hologram

Object Image

VGG19-PCA

Predicted Class

Predicted Class

Sensitivit Specificit
Features (500) B C ” peerly
¥ 0.8}
[ FC (128) | 0.8
v . g
[BN/ReLU/Dropout | 806} c 06
i 2 £
| FC (64) i &04 g 0.4
v g
[ BN/ReLU/Dropout | 0.2 0.2
¥
[__FC (# of classes) | 0 0
7 N/P N/P+BG Nz Ng+BG N/P N/P+BG N/P N/P+BG
[ Softmax |
D E 08
0.8
0.6
0.6
g —
§ 0.4 Qo4
0.2 0.2 I Hologram: VGG19-PCA
[C_"]Object: VGG19-PCA
[_—_IHologram: PCA
0 0 [ Object: PCA
N/P N/P+BG Nz Ng+BG N/P N/P+BG Ny Ngt+BG
G J 1 N/P Classification
0 o [¥KJ0.02 0.01 0.02 0.02 0.09
0.8
1 |0.13 [(X¥40.13 0.04 0.04 0.02| §
) 1 c
%) < 0.6
‘6“ 2 10.07 0.14 [:kH0.05 0.10 0.04| €
= 2 €04
S 3 [0.02 0.09 0.10 Q
< 3 0.2
=4 10.00 0.01 0.03 0.06 [sK:yd 0.02
0
>4 B NS
G 10.02 0.00 0.00 0.00 0.01 [\ Q&Q,o §\\ éﬁ\‘\c’\\
?‘O %Q‘Q %QQ)
I I VILP
H K —
0 0.02 0.01 0.02 0 [K#]0.04 0.02 0.01 0.01 0.07 s N Classification
1 [0.07 [(%£]0.08 0.02 0.01 0.03 '
» 1 |0.08 0.01 0.02
3 2 {0.02 0.12 [(X]0.07 0.07 0.03| g °©
© 5 1003 0.11 0.06 &
< 3 ]0.01 0.05 0.08 [:5F0.34 0.02 % 0.4
3 =
01 0. ;
< 3 |001 003 0.06 >4 |0.00 0.00 0.03 0.05 [i§e1]0.02| & 0.2
>4 |0.01 0.01 0.03 0.05 BG [0.02 0.00 0.01 0.00 0.02 [ifeB
0
) o >
0 1 2 3 =4 0 1 2 3 =4 BG \\}QOQQQ &
00

Figure 5


https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

Proportion

Frequency

T T T T T T T T T
% | | | L
§7 | | | A Actual Labels
0.8 - . | | | V  Predicted Results | 15
| | | Residuals
| | | Py
0.6 I I I I - gl
| | | | 10 &
| | | | -
0.4 ! ! ! ! Iﬁ— E
X! | : X ’
02k | | X | X | 5
LA .
|
ol Sl PG T f'w=
0 bead 1 bead 2 beads 3 beads >4 beads
120 - [ 0
.
100 12
I
80 - I =4
60 Left: Actual

Right: Predicted
40

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sample Index

+
0.1} N
o 0050 T T F
I N I
S 0 E] L L @ ]
@ i
I -0.05 1 + "
0.1
+ ‘ +

Figure


https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

Performance

o
(o)

o
)

e

~

o
N

- -y

",

3%(270, 270)

feature extraction classification
A
5
64x%(2, 2) 64

15)

i 128
256

[ conv, 3x3, ReLU [ Max pooling (4x4) [ Flattening

B Batch Normalization [ Dropout (0.25) [] FC, Softmax

64x(15,
64%(66, 66)
B FC, ReLU

C

)

©

3

8

<

Accuracy Kappa RCI

I Hologram: VGG19-PCA-MLP

[ Hologram: CNN

0.1
P 0.05 l
0
c 0.1 _ﬂ_ * /]
3 o0 E oL
3 . +
> |
0 -0.1
©
g LS
8
< -0.2 %
o™ Pﬁ“F
<G
N
NI©

o
o

o
o

o
~

D
15 1 8
. I v aTe ety e 0.8 ; 6
10
S 3.l 4
5 204 ]
0.2 2
0 0 0
20 40 60 0 50 100
Epoch Epoch
‘ Accuracy: Training—, Validation ----, Loss: Training —, Validation----:
F G
500
e 0.5 :
wn 400
0
—~ 300
ﬁ— *% o
S 2 + ! £
= += 200
©
=]
S 1 §
= 100
o |
(]
§ 0 % 0
|
i &S
_1 .&{o
O\@\ ,\\“\’? @((/
QP &
Y «®
Ni&

Figure 7

Loss


https://doi.org/10.1101/192559
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

