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ABSTRACT 1 

Background: CNV analysis is an integral component to the study of human genomes in 2 

both research and clinical settings.  Array-based CNV analysis is the current first-tier 3 

approach in clinical cytogenetics.  Decreasing costs in high-throughput sequencing and 4 

cloud computing have opened doors for the development of sequencing-based CNV 5 

analysis pipelines with fast turnaround times.  We carry out a systematic and 6 

quantitative comparative analysis for several low-coverage whole-genome sequencing 7 

(WGS) strategies to detect CNV in the human genome. 8 

Methods:  We compared the CNV detection capabilities of WGS strategies (short-insert, 9 

3kb-, and 5kb-insert mate-pair) each at 1x, 3x, and 5x coverages relative to each other 10 

and to 17 currently used high-density oligonucleotide arrays.  For benchmarking, we 11 

used a set of Gold Standard (GS) CNVs generated for the 1000-Genomes-Project CEU 12 

subject NA12878.   13 

Results:  Overall, low-coverage WGS strategies detect drastically more GS CNVs 14 

compared to arrays and are accompanied with smaller percentages of CNV calls 15 

without validation.  Furthermore, we show that WGS (at ≥1x coverage) is able to detect 16 

all seven GS deletion-CNVs >100 kb in NA12878 whereas only one is detected by most 17 

arrays.  Lastly, we show that the much larger 15 Mbp Cri-du-chat deletion can be readily 18 

detected with short-insert paired-end WGS at even just 1x coverage. 19 

Conclusions:  CNV analysis using low-coverage WGS is efficient and outperforms the 20 

array-based analysis that is currently used for clinical cytogenetics.  21 

Keywords: copy number variation (CNV), array CGH (aCGH), read-depth analysis, 22 
discordant read-pair analysis, mate-pair sequencing   23 
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INTRODUCTION 1 

A large portion of human genetic diversity is contributed by CNVs [1–5].  Many 2 

CNVs, typically small deletions or duplications, are common, i.e. present at an overall 3 

frequency of >1% in the human population [3–6].  Large CNVs are relatively rare and 4 

are often associated with human disease [7–14].  Having technologies available for the 5 

reliable and accurate detection and characterization of CNVs in a given human genome 6 

is highly relevant for both clinical diagnostics and basic research.  Microarray-based 7 

CNV analysis has become a first-tier clinical cytogenetics procedure in patients with 8 

unexplained developmental delay/intellectual disability [15], autism spectrum disorder 9 

[16], multiple congenital anomalies [17], and cancer [13, 14].  10 

The highest sensitivity and resolution in CNV detection is achieved through deep-11 

coverage, paired-end whole-genome sequencing (WGS) [5].  However, the cost for 12 

what is currently the standard for deep-coverage WGS (>30x coverage using short-13 

insert paired-end reads) is still considerably higher than for that of arrays; turnaround 14 

time is much longer since the samples have to go through an offsite core, and the 15 

computational requirements are also very substantial regarding hardware and time.  16 

Analysis by deep-coverage WGS methods can not only detect CNVs but also SNPs, 17 

short insertions and deletions as well as, with some limitations, sequence variants that 18 

are quite challenging to parse out such as inversions and retrotransposition events.  19 

However, for clinical cytogenetic applications such types of variants are for the most 20 

part not yet interpretable as to their effects. 21 

With the advent of bench-top high-throughput DNA sequencers it is now possible 22 

to perform low-coverage WGS on-site instead of through a sequencing core facility.  To 23 
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make the most beneficial use of this option, i.e. to control per-sample-costs as well as 1 

turnaround times, it seems beneficial to use a strategy of lower sequencing coverage 2 

(i.e. 1x-5x genomic coverage) with sample multiplexing to be cost-effective while 3 

carefully weighing the options of short-insert versus long-insert paired-end (i.e. mate-4 

pair) library preparation.   5 

While other recent studies have demonstrated that WGS, including low-coverage 6 

WGS, is effective for CNV detection in clinical samples [18–20], systematic, quantitative, 7 

and direct performance comparisons for CNV analysis between various low-coverage 8 

WGS strategies, against deep-coverage WGS, and against arrays, are needed to fully 9 

assess the feasibility of replacing arrays with low-coverage WGS and to guide 10 

researchers in their choices for specific settings.  Here, we compared the CNV-11 

detection performances of several low-coverage WGS strategies against each other 12 

and also against commercially available arrays.  We performed CNV analysis in the 13 

genome of the 1000-Genome-Project CEU subject NA12878 (probably the best studied 14 

genome to date [3, 21, 22]) using standard 350 bp short-insert WGS, 3kb-insert mate-15 

pair WGS, and 5kb-insert mate-pair WGS, each at 1x, 3x, and 5x coverages.  For 16 

benchmarking, we used a Gold Standard (GS) set of validated CNVs for NA12878 and 17 

determined the number of GS CNVs detected by each low-coverage WGS strategy.  18 

The GS set contains only high confidence CNVs derived from the 1000 Genomes 19 

Project and supported by multiple orthogonal methods [23, 24].  This approach was also 20 

used in Haraksingh et al [24] for the benchmarking of CNV detection in NA12878 from 21 

17 commercially available arrays and thus allows for the performance comparison 22 
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between low-coverage WGS and the arrays from Haraksingh et al [24] to be conducted 1 

in a direct and unbiased manner.   2 

METHODS 3 

Sample library construction, sequencing, alignment, CNV analysis, array processing, 4 

and NCBI accession numbers are described in Supplementary Materials and Methods.   5 

RESULTS 6 

CNV detection in WGS 7 

From short-insert and mate-pair WGS of NA12878, we performed CNV detection 8 

using both read-depth and discordant read-pair analysis (Figure 1a).  For read-depth 9 

analysis, we used CNVnator [25] with 5kb bin size.  Discordant read-pair analysis was 10 

performed using LUMPY [26] with segmental duplications excluded from the analysis.  11 

CNVs that overlap problematic regions such as reference gaps, the MHC cluster, and 12 

ENCODE blacklist regions [27] were filtered out (see Methods).  Afterwards, the union 13 

of CNV calls from both analyses was used as the final call set for benchmarking using 14 

the GS CNVs as well as comparison with the array calls [24].  At 1x, 3x, and 5x 15 

coverages, short-insert WGS detects 182, 405, and 535 autosomal CNVs respectively; 16 

3kb mate-pair WGS detects 452, 689, and 747 respectively; 5kb mate-pair WGS 17 

detects 496, 571, and 725 respectively (Supplementary Table S1, Figure 1b).  18 

Table 1 Detection of Gold Standard deletions > 100 kb 

Gold Standard 
Deletion 

Size (bp) WGS 
Detection 

Array Detection (Haraksingh et al 2017) 

chr3:162,514,471-
162,625,647 

111,176 
 

All WGS 
 

All Agilent arraysa 
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chr4:69,375,591-
69,491,543 

115,952 
 

All WGS 
 

Affymetrix Cytoscan HD 
Affymetrix SNP 6.0 

Agilent 2x400K CNVa 
Illumina HumanOmni1Quad-v1 
Illumina HumanOmni2.5-8v1 

Illumina HumanOmni25Exome-8v1 
Illumina HumanOmni5-4v1 

Illumina HumanOmni5Exome-v1 
 

chr4:70,122,981-
70,231,746b 

108,765 
 

All WGS 
 

Affymetrix SNP 6.0 
Agilent 2x400K CNVa 

Illumina HumanOmni1Quad-v1 
Illumina HumanOmni2.5-8v1 

Illumina HumanOmni25Exome-8v1 
 

chr6:78,892,808-
79,053,430 

160,622 
 

All WGS 
 

Affymetrix Cytoscan HD 
Affymetrix SNP 6.0 

Agilent 2x400K CNVa 
Illumina HumanOmni1Quad-v1 
Illumina HumanOmni2.5-8v1 

Illumina HumanOmni25Exome-8v1 
Illumina HumanOmni5-4v1 

Illumina HumanOmni5Exome-v1 
Illumina HumanOmniExpressExome 1.2 

 

chr8:39,195,825-
39,389,230 

193,405 
 

All WGS 
 

Affymetrix Cytoscan HD 
Affymetrix SNP 6.0 

Agilent 2x400K CNVa 
Illumina HumanOmni1Quad-v1 
Illumina HumanOmni2.5-8v1 

 

chr11:4,248,265-
4,353,229 

104,964 
 

All WGS 
 

Affymetric SNP 6.0 
Agilent 2X400K CNV 

Agilent 1X1M HR 
 

chr19:20,595,835-
20,717,950 

122,115 
 

All WGS 
 

All arrays except Illumina Psych Array 
 

acalled as high copy duplication 
 1 
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CNV-detection performance comparison 1 

We obtained the NA12878 CNV calls by each of 17 currently commercially 2 

available high-density oligonucleotide arrays from Haraksingh et al [24].  These arrays 3 

represent three different technologies:  array CGH (aCGH) from Agilent (n=5), SNP 4 

genotyping arrays from Illumina (n=10), and aCGH/SNP combination arrays from 5 

Affymetrix (n=2).  Two technical replicates had been performed for each array 6 

hybridization, and CNVs were called using both array platform-specific software as well 7 

as platform-agnostic software Nexus from Biodiscovery except for Affymetrix SNP 6.0 8 

where the platform-specific calls (one replicate available) were obtained from an earlier 9 

study [28].   10 

We benchmarked the CNV calls from short-insert and mate-pair WGS using the 11 

same approach as described in Haraksingh et al [24], where the capabilities of various 12 

array platforms were assessed by the numbers of detected CNVs in the NA12878 13 

genome that reciprocally overlap a GS set of NA12878 CNVs.  GS CNVs were compiled 14 

from 8x-coverage population-scale sequencing (data available on 1000genomes.org) 15 

and analysis of 2,504 individual genomes [23].  They are of high-confidence and 16 

supported by multiple lines of evidence that include PCR confirmation, aCGH, and 17 

discovery from multiple CNV analysis tools.  The false-positive rate is estimated to be 18 

very low (3.1%) [24].  The CNVs in this GS set range from 50 bp to 453,312 bp with 19 

1,941 and 135 autosomal deletions and duplications respectively [24].  While most GS 20 

duplications are >10 kb, all CNVs <1kb are deletions. Seven deletions are >100 kb 21 

(Table 1).  A NA12878 Silver Standard set of CNVs was also used for benchmarking 22 

(also obtained from Haraksingh et al [24]) which consists of CNVs called using only 23 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2018. ; https://doi.org/10.1101/192310doi: bioRxiv preprint 

https://doi.org/10.1101/192310
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

CNVnator [25] from 60x-coverage 2×250 bp short-insert sequencing data from the 1000 1 

Genomes Project.  For our analysis, we filtered out Silver Standard CNVs that 2 

overlapped reference gaps [29, 30] by >50% (Supplementary Figure S1).    3 

As was done for array CNV calls [24], the CNV calls from each WGS library at 4 

each sequencing coverage were benchmarked by first determining the number of CNVs 5 

with boundaries overlapping those of a GS CNV by ≥50% reciprocally and the number 6 

of CNVs that overlap of a GS CNV ≥10% reciprocally but <50%.  From the CNVs that 7 

do not overlap a GS CNV by ≥10% reciprocally, we next determined the number that 8 

overlap a Silver Standard CNV by ≥50% reciprocally (Supplementary Table S1, Figure 9 

1b).  For array data [24], because more CNV calls and GS-CNV overlaps resulted from 10 

the platform-specific CNV analysis overall, we chose to use the array platform-specific 11 

calls for comparison.  Moreover, because the results in the two technical replicates for 12 

each array platform did not show significant differences and only one replicate was 13 

available for the Affymetrix SNP 6.0 platform-specific analysis [24], we chose to use 14 

CNV calls from the first replicate of each platform.  We emphasize that we 15 

benchmarked all WGS and array CNV calls by taking the type of CNV (deletion or 16 

duplication) into account which was not done in Haraksingh et al [24]. 17 

With the exception of short-insert WGS at 1x coverage, WGS detects drastically 18 

more CNVs and GS CNVs than any of the arrays (Figure 1b).  CNV calls from WGS are 19 

also accompanied by a smaller percentages of calls without validation (i.e. CNV calls 20 

that are not of high confidence).  Validation is hereinafter defined as overlap by a 21 

minimum of 10% reciprocally with a GS CNV or >50% reciprocally with a Silver 22 

Standard CNV.  At coverages 1x, 3x, and 5x and by >50% reciprocal overlap, short-23 
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insert WGS detected 48, 164, and 244 GS autosomal CNVs respectively; 3kb mate-pair 1 

WGS detected 250, 378, and 405 GS autosomal CNVs respectively; and 5kb mate-pair 2 

WGS detected 270, 274, and 335 GS autosomal CNVs respectively (Supplementary 3 

Table S1).   4 

As expected, read-depth analysis resulted in higher rates of CNV detection with 5 

increasing coverage but showed similar numbers of CNV calls across different WGS 6 

libraries (Supplementary Figure S2a, Supplementary Table S2).  Discordant read-pair 7 

analysis resulted in consistently more CNV calls than read-depth analysis for mate-pair 8 

libraries at all coverages and for short-insert library at 5x coverage (Supplementary 9 

Figure S2b, Supplementary Table S3).  Generally, in read-depth analysis, the greater 10 

the fraction of uniquely-mapped supporting reads, the higher the confidence in the CNV 11 

call.  Filtering based on this parameter can be done through the q0 value reported by 12 

CNVnator [25] (Supplementary Table S2).  In Abyzov et al [25], the q0 threshold was 13 

set as 0.50 indicating that CNVs supported by >50% of reads with a mapping quality of 14 

zero were filtered out.  To understand how such filtering affects our read-depth analysis, 15 

we benchmarked filtered (q0 threshold = 0.50) and unfiltered CNV calls (Supplementary 16 

Figure S2a,c).  We find that the overall number of GS CNVs detected did not noticeably 17 

change with the q0 filter.  However, number of Silver Standards detected dramatically 18 

decreases (Supplementary Figure S2c).  In addition, the number of non-validated calls 19 

decrease less dramatically but very substantially nonetheless (~12%-30%), consistent 20 

with the average decrease in false discovery-rate for samples studied in Abyzov et al 21 

[25]. 22 
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Of the arrays, Illumina HumanOmni1 Quad (now discontinued) detects the most 1 

GS CNVs (165) [24]; however, even at 1x coverage, 3kb- and 5kb-mate-pair WGS 2 

detects almost twice as many GS CNVs (275 and 290 respectively) (Supplementary 3 

Table S1, Figure 1b).  While Agilent 2x400K CNV and Illumina HumanOmni5Exome-4 

4v1 detect comparable numbers of CNV to that of short-insert WGS at 3x coverage and 5 

to that of mate-pair WGS at 1x coverage, the vast majority of CNVs detected in these 6 

two arrays are not validated (Figure 1b, Supplementary Figures S3).  This is in contrast 7 

to low-coverage WGS results where the majority of CNVs detected for all libraries and 8 

at all sequencing coverages have validation (Figure 1b, Supplementary Figure S3, 9 

Supplementary Table S1).   10 

WGS (3kb-mate-pair) at 5x coverage results in the most number of GS CNVs 11 

detected (429) and also the lowest percentage without validation (28.5%) (Figure 1b, 12 

Supplementary Figure S3, Supplementary Table S1).  The percentages of CNV calls 13 

without validation range from 28.5%-37.1% for mate-pair WGS and 33.6%-48.4% for 14 

short-insert WGS (Supplementary Figure S4, Supplementary Table S1).  These 15 

percentages for WGS are smaller than those for most arrays except Illumina 16 

HumanOmniExpress and HumanOmni25 arrays (Supplementary Figure S3).  These two 17 

arrays, however, made a very low number calls (15 and 31 respectively) compared to 18 

WGS (Figure 1b, Supplementary Table S1). Affymetrix SNP 6.0 also has a higher 19 

overall validation rate than that of WGS, but information for whether a CNV call is a 20 

deletion or duplication is not available for this array dataset [24, 28].  It is uncertain how 21 

its validation rate will change if this information can be taken into account (as for the 22 

WGS and other array datasets).    23 
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When deletions and duplications are analyzed separately, the validation rates for 1 

deletions are higher than for duplications (56.1%-75.6% vs 34.8%-49.4%) in WGS 2 

whereas arrays show a much wider variability (Supplementary Figure S4, 3 

Supplementary Table S1).  For deletions, the Agilent CGH arrays, Affymetrix 4 

CytoScanHD and the Illumina CytoSNP, HumanCoreExome, 5 

HumanOmniExpressExome-8v1, and Psych arrays have validation rates between 15% 6 

to 50%.  The Illumina HumanOmni arrays (except HumanOmniExpressExome-8v1) 7 

have validation rates between 54.9%-83.3%, but none of these arrays detected more 8 

than 70 deletions. For duplications, the Agilent CGH, HumanOmni5Exome, and 9 

Affymetrix CytoScanHD have validation rates between <1% to 20%.  All other arrays 10 

detected no more than 7 duplications.  The Illumina CytoSNP, HumanCoreExome, 11 

HumanOmni25-8v1, and Psych arrays detected 4, 1, 5, and 2 duplications respectively, 12 

and all were validated (Supplementary Table S1).  The HumanOmni arrays (except 13 

HumanOmni5Exome) have validation rates between 50.0%-85.7% detecting 14 

duplications ranging from 2 to 7.  For both deletions and duplications, the numbers of 15 

Gold and Silver Standard CNVs detected and the overall validation rates are much 16 

higher for WGS compared to the arrays (Supplementary Figure S4). 17 

Sensitivity of GS CNV detection 18 

Overall, low-coverage WGS is able to detect on average ~5-fold more GS CNVs 19 

(>1 kb) compared to arrays by ≥50% reciprocal overlap (Figure 2a).  For example, the 20 

most sensitive array (as measured by the number of GS CNVs detected), Illumina 21 

HumanOmni1 Quad (now discontinued), detects less than one third as many GS CNVs 22 

than the most sensitive WGS method (3kb-mate-pair at 5x coverage). The second least 23 
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sensitive WGS method (short-insert at 3x coverage) is still more sensitive than Illumina 1 

HumanOmni1 Quad.  Even the least sensitive WGS method (short-insert at 1x coverage) 2 

is more sensitive than 14 out of the 17 arrays.  Moreover, mate-pair WGS is able to 3 

detect >50% of GS CNVs in the 5kb-10kb size range (Figure 2b-d). 4 

While CNV detection increases with additional coverage for all WGS libraries, the 5 

increase is non-linear.  The highest increases are from 1x to 3x coverage for short-6 

insert and 3kb-mate-pair WGS (Figure 1b).  While more CNVs are consistently detected 7 

from mate-pair WGS compared to short-insert WGS, interestingly, more total CNVs and 8 

GS CNVs are detected from 3kb-mate-pair WGS than from 5kb-mate-pair WGS at 3x 9 

and 5x coverages, respectively (Figure 1b, Figure 2a).   In addition, while additional 10 

coverage is associated with overall increases in the detection of GS CNVs, this increase 11 

is less obvious as CNV sizes increase to >50kb (Figure 2b-d).  In short-insert WGS, with 12 

additional coverage, the most drastic gains in the GS CNVs detected are between 5kb 13 

to 50kb (Figure 2b). This is similar for mate-pair WGS though less pronounced (Figure 14 

2c, d).  15 

Size distribution of CNV calls 16 

 The sizes of NA12878 CNVs detected from short-insert and mate-pair WGS 17 

range from 100bp to 500kb and 1kb to 500kb respectively (Figure 3a-c, Supplementary 18 

Tables S2-S4).  Read-depth and discordant read-pair analysis detect CNVs in different 19 

size ranges (Figure 3d-i, Supplementary Figure S5).  Overall, WGS detects CNVs in a 20 

wider size distribution compared to arrays (Supplementary Figure S5).  Since bin size 21 

was set to 5kb (see Methods), all resulting CNVs detected are ≥5 kb from read-depth 22 

analysis (Figure 3d,e,f).  As expected, the size distributions of CNVs called by read-23 
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depth analysis are very similar (Figure 3d-f) for the various WGS libraries, whereas 1 

discordant read-pair analysis shows more variability (Figure 3g-i) reflecting the different 2 

insert sizes.  A greater proportion of CNVs <5kb are detected in 3kb-mate-pair 3 

compared to 5kb-mate-pair WGS (Figure 3b,c).  This is likely because for longer insert 4 

sizes the experimental variability in size selection during library preparation makes for 5 

increased uncertainty in calling smaller CNVs. At the same time, a longer insert size has 6 

a greater ability to span CNV boundaries, yielding higher physical coverage, thus 7 

increasing overall detection power, especially for CNVs in the medium to large size 8 

range.  Furthermore, the increases in total CNV detection as a result of increasing 9 

coverage are mainly for CNVs <50kb in both read-depth and discordant read-pair 10 

analyses (Figure 3d-i).   11 

All seven GS deletions >100kb are detected by WGS ≥ 1x coverage 12 

All seven GS deletions >100kb are detected with all WGS libraries ≥ 1x coverage.  13 

Six deletions are detected with >50% reciprocal overlap, and one deletion 14 

(chr6:78,892,808-79,053,430) is detected with a mean overlap = 44% (Supplementary 15 

Table S5).  Previously, it had been shown that only one of these deletions 16 

(chr19:20,595,835-20,717,950) is detected by most arrays [24] (Table 1).  Affymetrix 17 

SNP 6.0 and Affymetrix CytoScanHD perform the best out of the 17 arrays detecting six 18 

and five of these deletions respectively (Table 1).  Four out of these seven deletions are 19 

detected in Agilent 2x400 CGH but as high copy duplications.  The GS deletion on 20 

chromosome 3 (chr3: 162,514,471-162,625,647) is only detected in the Agilent CGH 21 

arrays but consistently mis-called as a duplication (Supplementary Discussion).  22 

Detection of the 15 Mbp Cri-du-chat deletion by read-depth analysis  23 
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As a vignette with immediate clinical relevance, we also demonstrate that a much 1 

larger CNV, the 15 Mbp Cri-du-chat deletion spanning from 5p15.31 to 5p14.2 in 2 

NA16595 (sample from Coriell Institute), can be readily detected in a short-insert WGS 3 

library at coverages of 1x, 3x, and 5x using read-depth analysis only (Supplementary 4 

Table S6). It can also be easily visualized at all coverages by the substantial drop in 5 

read-depth coverage in Integrative Genomics Viewer [31] (Figure 4).   This NA16595 6 

Cri-du-chat deletion is also confirmed using the Illumina Multi-Ethnic Genotyping Array 7 

with two technical replicates (Supplementary Table S6).   8 

DISCUSSION 9 

Using the CNVs in NA12878 as a benchmark, we systematically compared the 10 

CNV detection performances of low-coverage WGS strategies relative to each other 11 

and relative to various arrays currently in routine-use for cytogenetics.  CNVs were 12 

called using standard methods for both low-coverage WGS and arrays and then 13 

compared to a list of NA12878 GS CNVs that had been distilled from the 1000 14 

Genomes Project [23] as well as to a set of Silver Standard CNVs generated from 1000-15 

Genomes-Project 60x-coverage WGS data (2×250 bp, short-insert) [24].  The Silver 16 

Standard CNVs were called using CNVnator [25] which is also used in this study for 17 

read-depth analysis of low-coverage WGS data. This further increases the direct 18 

comparability of CNV-calling efficiency across the range of coverages though a certain 19 

bias in favor of WGS is therefore present in the Silver Standard-based parts of the 20 

performance comparison. In almost all scenarios, the WGS approaches show 21 

considerably higher sensitivities at detecting GS CNVs than even the best performing 22 

arrays (Figure 2a) and are furthermore accompanied by lower percentages of total CNV 23 
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calls without validation (Supplementary Figure S3, Figure 1b).  While all methods of 1 

CNV detection left >80% of total GS CNVs undetected, this can be largely explained by 2 

that 63% of GS CNVs are <1 kb and 54% are <500 bp which are outside the sensitive 3 

detection ranges for all methods (Figure 2b-d, Supplementary Figure S5). 4 

Twenty autosomal GS CNVs are detected collectively in the 17 arrays but not by 5 

low-coverage WGS, whereas 426 are detected by low-coverage WGS but not by any of 6 

the arrays (Supplementary Table S7).  Of these 20 GS CNVs, 4 are approximately 1 kb 7 

or shorter, where the sensitivity of detection is low (Figure 2b-d); 13 (65%) are in 8 

regions excluded from WGS analysis.  These regions include segmental duplications, 9 

the MHC cluster, regions that are different between hg19 and hg38 (likely 10 

misassembled regions in hg19), and regions in the ENCODE blacklist (regions that 11 

often produce artificially high coverage due to excessive unstructured anomalous 12 

mapping) [27].  The remaining 3 CNVs do not fall into any of these categories. It is 13 

unclear why these 3 CNVs were not detected with WGS, but by visual inspection, their 14 

boundaries lie within repetitive elements i.e. LINE1, SINE, segmental duplications.  One 15 

of these 3 CNVs (chr1: 248756741-248797597) was called as a larger deletion (chr1: 16 

248692001-248820000) in WGS.  It is likely that the size this deletion call was extended 17 

due to noisy coverage signal from its flanking segmental duplication regions. 18 

Although one may be tempted to conclude that in certain cases arrays-based 19 

techniques are superior for CNV detection since there are indeed 20 GS CNVs that are 20 

not detected in WGS.  However, it is also important to note that these 20 CNVs are 21 

detected by combining 17 arrays and that these CNVs are elusive to detection from low-22 

coverage WGS largely due to small size and to occurring in problematic regions 23 
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excluded from analysis.  However, these genomic features are also problematic for 1 

arrays in most cases.  Our analysis shows that no single array platform or design is 2 

specifically sensitive for detecting CNVs that are associated with these features. 3 

Therefore, while there are a few specific cases in which CNVs are detected in arrays 4 

and not in WGS, we do not see a scenario for which one can make a general statement 5 

that array-based techniques are superior for detecting CNVs associated with particular 6 

genomic characteristics.  In any case, our results show that it is >20 times more likely 7 

that a CNV is detected in low-coverage WGS and not in any arrays (Supplementary 8 

Table S7) 9 

 Although CNV detection methods from WGS data have been available for up to a 10 

decade [1, 25, 32, 33], cost, long turnaround times, and heavy computational 11 

requirements for deep-coverage WGS analysis have been major obstacles that 12 

prevented the adoption of WGS-based methods for cytogenetic applications. Our 13 

comparative analysis here shows that these obstacles can be overcome by adopting 14 

low-coverage WGS strategies. This means that a cytogenetics laboratory can now avail 15 

itself of a technology with a CNV-detection and resolving power that compares very 16 

favorably with existing standard methodologies such as arrays or karyotyping while not 17 

having to accept an increased burden in terms of cost per sample or turnaround time. 18 

Our WGS libraries were sequenced on the Illumina NextSeq 500, in multiplexed fashion, 19 

at a cost in sequencing consumables of approximately $150 per 1x coverage.  The 20 

short-insert libraries were prepared using the Kapa Hyper Prep kit (Kapa Biosystems) 21 

where the cost per library is approximately $40-$50 with >50 ng of genomic DNA 22 

needed as input for a high-complexity library.  The mate-pair library construction 23 
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reagents cost ~$300 per library using the Illumina Mate Pair Library Prep kit requiring 2 1 

to 4 μg of high molecular weight genomic DNA (mean size >20 kb).  The mate-pair 2 

library construction costs can decrease further to ~$50-$80 per library if mechanical 3 

DNA shearing is employed instead of enzymatic shearing [34].  The costs for arrays are 4 

more variable (<$100 for the Illumina PsychArray to several hundred dollars for higher 5 

density arrays). Preparation time for arrays (labeling, hybridization, washing, and 6 

scanning) and low-coverage short-insert sequencing (library construction, quantification, 7 

and loading onto sequencer) both take approximately two days; mate-pair libraries 8 

require an additional day.  The analysis can all be performed on a standard desktop 9 

computer.  10 

The amount of input genomic DNA required for mate-pair WGS is approximately 11 

2-fold more than for most arrays. However, as long as this amount of DNA is available it 12 

could be reasoned that it is preferable to use mate-pair WGS for CNV analysis instead 13 

of arrays, considering for example that mate-pair WGS even at just 1x coverage is 14 

much more sensitive at detecting CNVs than all currently used arrays.  For samples 15 

with limited DNA, short-insert WGS at just 3x coverage (at a cost of circa $350 per 16 

sample using bench-top instruments such as the Illumina NextSeq 500) is still as 17 

effective (if not more so in terms of cost and effort) as arrays while easily outperforming 18 

arrays in the ability to detect and resolve CNVs.  It should also be taken into 19 

consideration that sequencing costs will only continue to decrease thus rendering the 20 

use of WGS for CNV detection even more cost effective in the foreseeable future.  21 

 The choice of algorithm used for CNV analysis is likely to greatly impact the 22 

number and accuracy of CNV calls [33, 35].  A comprehensive comparative analysis of 23 
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these algorithms is beyond the scope of this present study, though work on this matter 1 

has been discussed extensively in recent publications [32, 36–38].  For in-depth 2 

discussions of CNV analysis tools, approaches, parameters, and challenges as well as 3 

performance comparisons with 30x-coverage WGS (Supplementary Figure S6, 4 

Supplementary Table S1), see Supplementary Discussion.   5 

Overall, low-coverage WGS approaches are drastically more sensitive at 6 

detecting CNVs compared to the best performing arrays (currently commercially 7 

available) and are accompanied with smaller percentages of calls without validation.  8 

The prospect of replacing arrays with low-coverage WGS in a cytogenetic context 9 

seems promising and essentially at hand.  Our results will contribute to the discussion 10 

on when and via which route this transition from using arrays to WGS will be plausible in 11 

cytogenetics practice.  12 
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FIGURE AND TABLE LEGENDS 1 
 2 
Figure 1.  Comparisons of CNV Calls by WGS and Arrays.  (a) Schematic diagram 3 
of detection of CNVs (deletions and duplications) using discordant read-pair and read-4 
depth analysis [1, 25, 39].  Using discordant read-pair analysis, deletions are detected 5 
when the distance of alignment to the reference genome between read pairs are closer 6 
than the expected insert size of the library, and duplications are detected when the 7 
orientation of the aligned read pairs are inversed.  Using read-depth analysis, deletions 8 
and duplications are detected when there is a pronounced decrease and increase, 9 
respectively, in alignments of reads spanning a genomic region relative to the average 10 
number of alignments over the genome.  (b)  Numbers of autosomal CNVs in the 11 
genome of subject NA12878 called from short-insert, 3kb mate-pair, and 5kb mate-pair 12 
libraries sequenced at 1X, 3X, and 5X coverage compared against previous array calls 13 
[24, 28].  Array-based CNV calls were made according to platform-specific algorithms 14 
[24], and WGS-CNV calls were made by combining discordant read-pair and read-depth 15 
analysis.  Gold: autosomal CNVs (overlap ≥50% reciprocally with NA12878 GS CNVs).  16 
Green: 10%-50% reciprocal overlap with NA12878 GS CNVs.  Blue:  <10% reciprocal 17 
overlap with GS CNVs, ≥50% reciprocal overlap with NA12878 Silver Standard CNVs.  18 
Red:  no overlap (<10% overlap with GS CNVs and <50% overlap with Silver Standard 19 
CNVs).  Benchmarking was performed taking CNV type into account with the exception 20 
of Affymetrix SNP 6.0* [28] and Illumina HumanOmni1Quad* [24] where CNV type 21 
information was not available.   22 
Figure 2.  Sensitivity of WGS Detection of NA12878 GS CNVs (>1 kb).  (a) 23 
Sensitivity of (>1 kb) GS CNV detection across WGS libraries and array platforms as 24 
determined by the ratio of detected autosomal GS CNVs to total number of autosomal 25 
GS CNVS.  Array-based CNV calls were made according to platform-specific algorithms, 26 
and WGS CNV calls were made by combining discordant read-pair and read-depth 27 
analysis.  Green:  autosomal CNVs that overlap >50% reciprocally with NA12878 GS 28 
CNVs.  Blue: total number of NA12878 GS autosomal CNVs.  Sensitivity of GS CNV 29 
detection in different size ranges from (b) short-insert, (c) 3kb mate-pair, and (d) 5kb 30 
mate-pair libraries at sequencing coverages 1X, 3X, and 5X. CNVs were called by 31 
combining discordant read-pair and read-depth analysis.  32 
Figure 3.  Size Distributions of NA12878 Detected by WGS.  Size distribution of 33 
NA12878 CNVs detected from (a) short-insert, (b) 3kb mate-pair, and (c) 5kb mate-pair 34 
libraries called by combining discordant read-pair and read-depth analysis.  CNVs 35 
called from (d) short-insert, (e) 3kb mate-pair, and (f) 5kb mate-pair libraries by read-36 
depth analysis only.  CNVs called from (g) short-insert, (h) 3kb mate-pair, and (i) 5kb 37 
mate-pair libraries by discordant read-pair analyses only. 38 
Figure 4.  NA16595 Cri-du-Chat Deletion.  IGV [31] screenshot of the 15 Mbp Cri-du-39 
Chat deletion on chromosome 5 in NA16595 by short-insert WGS at 1X, 3X, and 5X 40 
coverages.  Vertical axis: coverage value, blue dots:  respective coverage at genomic 41 
positions.  Two areas within the deletion show unusually high coverage due to overlap 42 
with segmental duplications resulting in cross-mapping of sequencing reads. 43 
Table 1.  Detection of Gold Standard Deletions >100 kb.    44 
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Figure 3 - Size Distributions of NA12878 Detected by WGS
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Figure 4 - Cri du Chat 

Figure 4 - NA16595 Cri-du-Chat Deletion 
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