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ABSTRACT

Background: CNV analysis is an integral component to the study of human genomes in
both research and clinical settings. Array-based CNV analysis is the current first-tier
approach in clinical cytogenetics. Decreasing costs in high-throughput sequencing and
cloud computing have opened doors for the development of sequencing-based CNV
analysis pipelines with fast turnaround times. We carry out a systematic and
guantitative comparative analysis for several low-coverage whole-genome sequencing
(WGS) strategies to detect CNV in the human genome.

Methods: We compared the CNV detection capabilities of WGS strategies (short-insert,
3kb-, and 5kb-insert mate-pair) each at 1x, 3%, and 5x coverages relative to each other
and to 17 currently used high-density oligonucleotide arrays. For benchmarking, we
used a set of Gold Standard (GS) CNVs generated for the 1000-Genomes-Project CEU
subject NA12878.

Results: Overall, low-coverage WGS strategies detect drastically more GS CNVs
compared to arrays and are accompanied with smaller percentages of CNV calls
without validation. Furthermore, we show that WGS (at 21x coverage) is able to detect
all seven GS deletion-CNVs >100 kb in NA12878 whereas only one is detected by most
arrays. Lastly, we show that the much larger 15 Mbp Cri-du-chat deletion can be readily
detected with short-insert paired-end WGS at even just 1x coverage.

Conclusions: CNV analysis using low-coverage WGS is efficient and outperforms the
array-based analysis that is currently used for clinical cytogenetics.

Keywords: copy number variation (CNV), array CGH (aCGH), read-depth analysis,
discordant read-pair analysis, mate-pair sequencing
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INTRODUCTION

A large portion of human genetic diversity is contributed by CNVs [1-5]. Many
CNVs, typically small deletions or duplications, are common, i.e. present at an overall
frequency of >1% in the human population [3—6]. Large CNVs are relatively rare and
are often associated with human disease [7—14]. Having technologies available for the
reliable and accurate detection and characterization of CNVs in a given human genome
is highly relevant for both clinical diagnostics and basic research. Microarray-based
CNV analysis has become a first-tier clinical cytogenetics procedure in patients with
unexplained developmental delay/intellectual disability [15], autism spectrum disorder
[16], multiple congenital anomalies [17], and cancer [13, 14].

The highest sensitivity and resolution in CNV detection is achieved through deep-
coverage, paired-end whole-genome sequencing (WGS) [5]. However, the cost for
what is currently the standard for deep-coverage WGS (>30x coverage using short-
insert paired-end reads) is still considerably higher than for that of arrays; turnaround
time is much longer since the samples have to go through an offsite core, and the
computational requirements are also very substantial regarding hardware and time.
Analysis by deep-coverage WGS methods can not only detect CNVs but also SNPs,
short insertions and deletions as well as, with some limitations, sequence variants that
are quite challenging to parse out such as inversions and retrotransposition events.
However, for clinical cytogenetic applications such types of variants are for the most
part not yet interpretable as to their effects.

With the advent of bench-top high-throughput DNA sequencers it is now possible

to perform low-coverage WGS on-site instead of through a sequencing core facility. To
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make the most beneficial use of this option, i.e. to control per-sample-costs as well as
turnaround times, it seems beneficial to use a strategy of lower sequencing coverage
(i.e. 1x-5x genomic coverage) with sample multiplexing to be cost-effective while
carefully weighing the options of short-insert versus long-insert paired-end (i.e. mate-
pair) library preparation.

While other recent studies have demonstrated that WGS, including low-coverage
WGS, is effective for CNV detection in clinical samples [18-20], systematic, quantitative,
and direct performance comparisons for CNV analysis between various low-coverage
WGS strategies, against deep-coverage WGS, and against arrays, are needed to fully
assess the feasibility of replacing arrays with low-coverage WGS and to guide
researchers in their choices for specific settings. Here, we compared the CNV-
detection performances of several low-coverage WGS strategies against each other
and also against commercially available arrays. We performed CNV analysis in the
genome of the 1000-Genome-Project CEU subject NA12878 (probably the best studied
genome to date [3, 21, 22]) using standard 350 bp short-insert WGS, 3kb-insert mate-
pair WGS, and 5kb-insert mate-pair WGS, each at 1x, 3x, and 5x coverages. For
benchmarking, we used a Gold Standard (GS) set of validated CNVs for NA12878 and
determined the number of GS CNVs detected by each low-coverage WGS strategy.
The GS set contains only high confidence CNVs derived from the 1000 Genomes
Project and supported by multiple orthogonal methods [23, 24]. This approach was also
used in Haraksingh et al [24] for the benchmarking of CNV detection in NA12878 from

17 commercially available arrays and thus allows for the performance comparison
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between low-coverage WGS and the arrays from Haraksingh et al [24] to be conducted
in a direct and unbiased manner.
METHODS
Sample library construction, sequencing, alignment, CNV analysis, array processing,
and NCBI accession numbers are described in Supplementary Materials and Methods.
RESULTS
CNV detection in WGS

From short-insert and mate-pair WGS of NA12878, we performed CNV detection
using both read-depth and discordant read-pair analysis (Figure 1a). For read-depth
analysis, we used CNVnator [25] with 5kb bin size. Discordant read-pair analysis was
performed using LUMPY [26] with segmental duplications excluded from the analysis.
CNVs that overlap problematic regions such as reference gaps, the MHC cluster, and
ENCODE blacklist regions [27] were filtered out (see Methods). Afterwards, the union
of CNV calls from both analyses was used as the final call set for benchmarking using
the GS CNVs as well as comparison with the array calls [24]. At 1x, 3x, and 5x
coverages, short-insert WGS detects 182, 405, and 535 autosomal CNVs respectively;
3kb mate-pair WGS detects 452, 689, and 747 respectively; 5kb mate-pair WGS

detects 496, 571, and 725 respectively (Supplementary Table S1, Figure 1b).

Table 1 Detection of Gold Standard deletions > 100 kb

Gold Standard : WGS . .
Deletion Size (0P)  potection ATy Detection (Haraksingh et al 2017)
chr3:162,514,471- 111,176  AlWGS All Agilent arrays®
162,625,647
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Affymetrix Cytoscan HD
Affymetrix SNP 6.0
Agilent 2x400K CNV?
[llumina HumanOmnilQuad-v1
llumina HumanOmni2.5-8v1
[lumina HumanOmni25Exome-8v1l
[llumina HumanOmni5-4v1
[llumina HumanOmni5Exome-v1

chr4:69,375,591- 115,952  AllWGS
69,491,543

Affymetrix SNP 6.0
Agilent 2x400K CNV?
chr4:70,122,981- 108,765 All WGS [llumina HumanOmnilQuad-v1
70,231,746° [llumina HumanOmni2.5-8v1
[lumina HumanOmni25Exome-8v1l

Affymetrix Cytoscan HD
Affymetrix SNP 6.0
Agilent 2x400K CNV?
[llumina HumanOmnilQuad-v1
chr6:78,892,808- 160,622 AllWGS [llumina HumanOmni2.5-8v1
79,053,430 [llumina HumanOmni25Exome-8v1l
[llumina HumanOmni5-4v1l
[llumina HumanOmni5Exome-v1
[llumina HumanOmniExpressExome 1.2

Affymetrix Cytoscan HD
Affymetrix SNP 6.0
chr8:39,195,825- 193,405 AIlWGS Agilent 2x400K CNV*
39,389,230 [llumina HumanOmnilQuad-v1l
[llumina HumanOmni2.5-8v1

Affymetric SNP 6.0
chrl1:4,248,265- 104,964  AlWGS Agilent 2X400K CNV
4,353,229 Agilent 1X1M HR

chr19:20,595,835- 122,115 All WGS All arrays except lllumina Psych Array
20,717,950

écalled as high copy duplication
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CNV-detection performance comparison

We obtained the NA12878 CNV calls by each of 17 currently commercially
available high-density oligonucleotide arrays from Haraksingh et al [24]. These arrays
represent three different technologies: array CGH (aCGH) from Agilent (n=5), SNP
genotyping arrays from Illumina (n=10), and aCGH/SNP combination arrays from
Affymetrix (n=2). Two technical replicates had been performed for each array
hybridization, and CNVs were called using both array platform-specific software as well
as platform-agnostic software Nexus from Biodiscovery except for Affymetrix SNP 6.0
where the platform-specific calls (one replicate available) were obtained from an earlier
study [28].

We benchmarked the CNV calls from short-insert and mate-pair WGS using the
same approach as described in Haraksingh et al [24], where the capabilities of various
array platforms were assessed by the numbers of detected CNVs in the NA12878
genome that reciprocally overlap a GS set of NA12878 CNVs. GS CNVs were compiled
from 8x-coverage population-scale sequencing (data available on 1000genomes.org)
and analysis of 2,504 individual genomes [23]. They are of high-confidence and
supported by multiple lines of evidence that include PCR confirmation, aCGH, and
discovery from multiple CNV analysis tools. The false-positive rate is estimated to be
very low (3.1%) [24]. The CNVs in this GS set range from 50 bp to 453,312 bp with
1,941 and 135 autosomal deletions and duplications respectively [24]. While most GS
duplications are >10 kb, all CNVs <1kb are deletions. Seven deletions are >100 kb
(Table 1). A NA12878 Silver Standard set of CNVs was also used for benchmarking

(also obtained from Haraksingh et al [24]) which consists of CNVs called using only
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CNVnator [25] from 60x-coverage 2x250 bp short-insert sequencing data from the 1000
Genomes Project. For our analysis, we filtered out Silver Standard CNVs that
overlapped reference gaps [29, 30] by >50% (Supplementary Figure S1).

As was done for array CNV calls [24], the CNV calls from each WGS library at
each sequencing coverage were benchmarked by first determining the number of CNVs
with boundaries overlapping those of a GS CNV by 250% reciprocally and the number
of CNVs that overlap of a GS CNV 210% reciprocally but <50%. From the CNVs that
do not overlap a GS CNV by 210% reciprocally, we next determined the number that
overlap a Silver Standard CNV by =250% reciprocally (Supplementary Table S1, Figure
1b). For array data [24], because more CNV calls and GS-CNV overlaps resulted from
the platform-specific CNV analysis overall, we chose to use the array platform-specific
calls for comparison. Moreover, because the results in the two technical replicates for
each array platform did not show significant differences and only one replicate was
available for the Affymetrix SNP 6.0 platform-specific analysis [24], we chose to use
CNV calls from the first replicate of each platform. We emphasize that we
benchmarked all WGS and array CNV calls by taking the type of CNV (deletion or
duplication) into account which was not done in Haraksingh et al [24].

With the exception of short-insert WGS at 1x coverage, WGS detects drastically
more CNVs and GS CNVs than any of the arrays (Figure 1b). CNV calls from WGS are
also accompanied by a smaller percentages of calls without validation (i.e. CNV calls
that are not of high confidence). Validation is hereinafter defined as overlap by a
minimum of 10% reciprocally with a GS CNV or >50% reciprocally with a Silver

Standard CNV. At coverages 1x, 3%, and 5x and by >50% reciprocal overlap, short-
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insert WGS detected 48, 164, and 244 GS autosomal CNVs respectively; 3kb mate-pair
WGS detected 250, 378, and 405 GS autosomal CNVs respectively; and 5kb mate-pair
WGS detected 270, 274, and 335 GS autosomal CNVs respectively (Supplementary
Table S1).

As expected, read-depth analysis resulted in higher rates of CNV detection with
increasing coverage but showed similar numbers of CNV calls across different WGS
libraries (Supplementary Figure S2a, Supplementary Table S2). Discordant read-pair
analysis resulted in consistently more CNV calls than read-depth analysis for mate-pair
libraries at all coverages and for short-insert library at 5x coverage (Supplementary
Figure S2b, Supplementary Table S3). Generally, in read-depth analysis, the greater
the fraction of uniquely-mapped supporting reads, the higher the confidence in the CNV
call. Filtering based on this parameter can be done through the qO value reported by
CNVnator [25] (Supplementary Table S2). In Abyzov et al [25], the O threshold was
set as 0.50 indicating that CNVs supported by >50% of reads with a mapping quality of
zero were filtered out. To understand how such filtering affects our read-depth analysis,
we benchmarked filtered (g0 threshold = 0.50) and unfiltered CNV calls (Supplementary
Figure S2a,c). We find that the overall number of GS CNVs detected did not noticeably
change with the qO filter. However, number of Silver Standards detected dramatically
decreases (Supplementary Figure S2c). In addition, the number of non-validated calls
decrease less dramatically but very substantially nonetheless (~12%-30%), consistent
with the average decrease in false discovery-rate for samples studied in Abyzov et al

[25].
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Of the arrays, lllumina HumanOmnil Quad (now discontinued) detects the most
GS CNVs (165) [24]; however, even at 1x coverage, 3kb- and 5kb-mate-pair WGS
detects almost twice as many GS CNVs (275 and 290 respectively) (Supplementary
Table S1, Figure 1b). While Agilent 2x400K CNV and Illlumina HumanOmni5Exome-
4v1 detect comparable numbers of CNV to that of short-insert WGS at 3x coverage and
to that of mate-pair WGS at 1x coverage, the vast majority of CNVs detected in these
two arrays are not validated (Figure 1b, Supplementary Figures S3). This is in contrast
to low-coverage WGS results where the majority of CNVs detected for all libraries and
at all sequencing coverages have validation (Figure 1b, Supplementary Figure S3,
Supplementary Table S1).

WGS (3kb-mate-pair) at 5x coverage results in the most number of GS CNVs
detected (429) and also the lowest percentage without validation (28.5%) (Figure 1b,
Supplementary Figure S3, Supplementary Table S1). The percentages of CNV calls
without validation range from 28.5%-37.1% for mate-pair WGS and 33.6%-48.4% for
short-insert WGS (Supplementary Figure S4, Supplementary Table S1). These
percentages for WGS are smaller than those for most arrays except Illumina
HumanOmniExpress and HumanOmni25 arrays (Supplementary Figure S3). These two
arrays, however, made a very low number calls (15 and 31 respectively) compared to
WGS (Figure 1b, Supplementary Table S1). Affymetrix SNP 6.0 also has a higher
overall validation rate than that of WGS, but information for whether a CNV call is a
deletion or duplication is not available for this array dataset [24, 28]. It is uncertain how
its validation rate will change if this information can be taken into account (as for the

WGS and other array datasets).

10
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When deletions and duplications are analyzed separately, the validation rates for
deletions are higher than for duplications (56.1%-75.6% vs 34.8%-49.4%) in WGS
whereas arrays show a much wider variability (Supplementary Figure S4,
Supplementary Table S1). For deletions, the Agilent CGH arrays, Affymetrix
CytoScanHD and the lllumina CytoSNP, HumanCoreExome,
HumanOmniExpressExome-8v1, and Psych arrays have validation rates between 15%
to 50%. The lllumina HumanOmni arrays (except HumanOmniExpressExome-8v1)
have validation rates between 54.9%-83.3%, but none of these arrays detected more
than 70 deletions. For duplications, the Agilent CGH, HumanOmni5Exome, and
Affymetrix CytoScanHD have validation rates between <1% to 20%. All other arrays
detected no more than 7 duplications. The Illumina CytoSNP, HumanCoreExome,
HumanOmni25-8vl, and Psych arrays detected 4, 1, 5, and 2 duplications respectively,
and all were validated (Supplementary Table S1). The HumanOmni arrays (except
HumanOmni5Exome) have validation rates between 50.0%-85.7% detecting
duplications ranging from 2 to 7. For both deletions and duplications, the numbers of
Gold and Silver Standard CNVs detected and the overall validation rates are much
higher for WGS compared to the arrays (Supplementary Figure S4).

Sensitivity of GS CNV detection

Overall, low-coverage WGS is able to detect on average ~5-fold more GS CNVs
(>1 kb) compared to arrays by 250% reciprocal overlap (Figure 2a). For example, the
most sensitive array (as measured by the number of GS CNVs detected), lllumina
HumanOmnil Quad (now discontinued), detects less than one third as many GS CNVs

than the most sensitive WGS method (3kb-mate-pair at 5x coverage). The second least

11
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sensitive WGS method (short-insert at 3x coverage) is still more sensitive than Illumina
HumanOmnil Quad. Even the least sensitive WGS method (short-insert at 1x coverage)
is more sensitive than 14 out of the 17 arrays. Moreover, mate-pair WGS is able to
detect >50% of GS CNVs in the 5kb-10kb size range (Figure 2b-d).

While CNV detection increases with additional coverage for all WGS libraries, the
increase is non-linear. The highest increases are from 1x to 3x coverage for short-
insert and 3kb-mate-pair WGS (Figure 1b). While more CNVs are consistently detected
from mate-pair WGS compared to short-insert WGS, interestingly, more total CNVs and
GS CNVs are detected from 3kb-mate-pair WGS than from 5kb-mate-pair WGS at 3x
and 5x coverages, respectively (Figure 1b, Figure 2a). In addition, while additional
coverage is associated with overall increases in the detection of GS CNVs, this increase
is less obvious as CNV sizes increase to >50kb (Figure 2b-d). In short-insert WGS, with
additional coverage, the most drastic gains in the GS CNVs detected are between 5kb
to 50kb (Figure 2b). This is similar for mate-pair WGS though less pronounced (Figure
2c, d).

Size distribution of CNV calls

The sizes of NA12878 CNVs detected from short-insert and mate-pair WGS
range from 100bp to 500kb and 1kb to 500kb respectively (Figure 3a-c, Supplementary
Tables S2-S4). Read-depth and discordant read-pair analysis detect CNVs in different
size ranges (Figure 3d-i, Supplementary Figure S5). Overall, WGS detects CNVs in a
wider size distribution compared to arrays (Supplementary Figure S5). Since bin size
was set to 5kb (see Methods), all resulting CNVs detected are =5 kb from read-depth

analysis (Figure 3d,e,f). As expected, the size distributions of CNVs called by read-
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depth analysis are very similar (Figure 3d-f) for the various WGS libraries, whereas
discordant read-pair analysis shows more variability (Figure 3g-i) reflecting the different
insert sizes. A greater proportion of CNVs <5kb are detected in 3kb-mate-pair
compared to 5kb-mate-pair WGS (Figure 3b,c). This is likely because for longer insert
sizes the experimental variability in size selection during library preparation makes for
increased uncertainty in calling smaller CNVs. At the same time, a longer insert size has
a greater ability to span CNV boundaries, yielding higher physical coverage, thus
increasing overall detection power, especially for CNVs in the medium to large size
range. Furthermore, the increases in total CNV detection as a result of increasing
coverage are mainly for CNVs <50kb in both read-depth and discordant read-pair
analyses (Figure 3d-i).

All seven GS deletions >100kb are detected by WGS 2 1x coverage

All seven GS deletions >100kb are detected with all WGS libraries = 1x coverage.

Six deletions are detected with >50% reciprocal overlap, and one deletion
(chr6:78,892,808-79,053,430) is detected with a mean overlap = 44% (Supplementary
Table S5). Previously, it had been shown that only one of these deletions
(chr19:20,595,835-20,717,950) is detected by most arrays [24] (Table 1). Affymetrix
SNP 6.0 and Affymetrix CytoScanHD perform the best out of the 17 arrays detecting six
and five of these deletions respectively (Table 1). Four out of these seven deletions are
detected in Agilent 2x400 CGH but as high copy duplications. The GS deletion on
chromosome 3 (chr3: 162,514,471-162,625,647) is only detected in the Agilent CGH
arrays but consistently mis-called as a duplication (Supplementary Discussion).

Detection of the 15 Mbp Cri-du-chat deletion by read-depth analysis

13
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As a vignette with immediate clinical relevance, we also demonstrate that a much
larger CNV, the 15 Mbp Cri-du-chat deletion spanning from 5p15.31 to 5p14.2 in
NA16595 (sample from Coriell Institute), can be readily detected in a short-insert WGS
library at coverages of 1x, 3%, and 5x using read-depth analysis only (Supplementary
Table S6). It can also be easily visualized at all coverages by the substantial drop in
read-depth coverage in Integrative Genomics Viewer [31] (Figure 4). This NA16595
Cri-du-chat deletion is also confirmed using the lllumina Multi-Ethnic Genotyping Array
with two technical replicates (Supplementary Table S6).

DISCUSSION

Using the CNVs in NA12878 as a benchmark, we systematically compared the
CNV detection performances of low-coverage WGS strategies relative to each other
and relative to various arrays currently in routine-use for cytogenetics. CNVs were
called using standard methods for both low-coverage WGS and arrays and then
compared to a list of NA12878 GS CNVs that had been distilled from the 1000
Genomes Project [23] as well as to a set of Silver Standard CNVs generated from 1000-
Genomes-Project 60x-coverage WGS data (2x250 bp, short-insert) [24]. The Silver
Standard CNVs were called using CNVnator [25] which is also used in this study for
read-depth analysis of low-coverage WGS data. This further increases the direct
comparability of CNV-calling efficiency across the range of coverages though a certain
bias in favor of WGS is therefore present in the Silver Standard-based parts of the
performance comparison. In almost all scenarios, the WGS approaches show
considerably higher sensitivities at detecting GS CNVs than even the best performing

arrays (Figure 2a) and are furthermore accompanied by lower percentages of total CNV
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calls without validation (Supplementary Figure S3, Figure 1b). While all methods of
CNV detection left >80% of total GS CNVs undetected, this can be largely explained by
that 63% of GS CNVs are <1 kb and 54% are <500 bp which are outside the sensitive
detection ranges for all methods (Figure 2b-d, Supplementary Figure S5).

Twenty autosomal GS CNVs are detected collectively in the 17 arrays but not by
low-coverage WGS, whereas 426 are detected by low-coverage WGS but not by any of
the arrays (Supplementary Table S7). Of these 20 GS CNVs, 4 are approximately 1 kb
or shorter, where the sensitivity of detection is low (Figure 2b-d); 13 (65%) are in
regions excluded from WGS analysis. These regions include segmental duplications,
the MHC cluster, regions that are different between hgl9 and hg38 (likely
misassembled regions in hgl9), and regions in the ENCODE blacklist (regions that
often produce atrtificially high coverage due to excessive unstructured anomalous
mapping) [27]. The remaining 3 CNVs do not fall into any of these categories. It is
unclear why these 3 CNVs were not detected with WGS, but by visual inspection, their
boundaries lie within repetitive elements i.e. LINE1, SINE, segmental duplications. One
of these 3 CNVs (chrl: 248756741-248797597) was called as a larger deletion (chrl:
248692001-248820000) in WGS. lt is likely that the size this deletion call was extended
due to noisy coverage signal from its flanking segmental duplication regions.

Although one may be tempted to conclude that in certain cases arrays-based
techniques are superior for CNV detection since there are indeed 20 GS CNVs that are
not detected in WGS. However, it is also important to note that these 20 CNVs are
detected by combining 17 arrays and that these CNVs are elusive to detection from low-

coverage WGS largely due to small size and to occurring in problematic regions
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excluded from analysis. However, these genomic features are also problematic for
arrays in most cases. Our analysis shows that no single array platform or design is
specifically sensitive for detecting CNVs that are associated with these features.
Therefore, while there are a few specific cases in which CNVs are detected in arrays
and not in WGS, we do not see a scenario for which one can make a general statement
that array-based techniques are superior for detecting CNVs associated with particular
genomic characteristics. In any case, our results show that it is >20 times more likely
that a CNV is detected in low-coverage WGS and not in any arrays (Supplementary
Table S7)

Although CNV detection methods from WGS data have been available for up to a
decade [1, 25, 32, 33], cost, long turnaround times, and heavy computational
requirements for deep-coverage WGS analysis have been major obstacles that
prevented the adoption of WGS-based methods for cytogenetic applications. Our
comparative analysis here shows that these obstacles can be overcome by adopting
low-coverage WGS strategies. This means that a cytogenetics laboratory can now avalil
itself of a technology with a CNV-detection and resolving power that compares very
favorably with existing standard methodologies such as arrays or karyotyping while not
having to accept an increased burden in terms of cost per sample or turnaround time.
Our WGS libraries were sequenced on the Illumina NextSeq 500, in multiplexed fashion,
at a cost in sequencing consumables of approximately $150 per 1x coverage. The
short-insert libraries were prepared using the Kapa Hyper Prep kit (Kapa Biosystems)
where the cost per library is approximately $40-$50 with >50 ng of genomic DNA

needed as input for a high-complexity library. The mate-pair library construction
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reagents cost ~$300 per library using the Illumina Mate Pair Library Prep kit requiring 2
to 4 ug of high molecular weight genomic DNA (mean size >20 kb). The mate-pair
library construction costs can decrease further to ~$50-$80 per library if mechanical
DNA shearing is employed instead of enzymatic shearing [34]. The costs for arrays are
more variable (<$100 for the Illumina PsychArray to several hundred dollars for higher
density arrays). Preparation time for arrays (labeling, hybridization, washing, and
scanning) and low-coverage short-insert sequencing (library construction, quantification,
and loading onto sequencer) both take approximately two days; mate-pair libraries
require an additional day. The analysis can all be performed on a standard desktop
computer.

The amount of input genomic DNA required for mate-pair WGS is approximately
2-fold more than for most arrays. However, as long as this amount of DNA is available it
could be reasoned that it is preferable to use mate-pair WGS for CNV analysis instead
of arrays, considering for example that mate-pair WGS even at just 1x coverage is
much more sensitive at detecting CNVs than all currently used arrays. For samples
with limited DNA, short-insert WGS at just 3x coverage (at a cost of circa $350 per
sample using bench-top instruments such as the Illumina NextSeq 500) is still as
effective (if not more so in terms of cost and effort) as arrays while easily outperforming
arrays in the ability to detect and resolve CNVs. It should also be taken into
consideration that sequencing costs will only continue to decrease thus rendering the
use of WGS for CNV detection even more cost effective in the foreseeable future.

The choice of algorithm used for CNV analysis is likely to greatly impact the

number and accuracy of CNV calls [33, 35]. A comprehensive comparative analysis of
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these algorithms is beyond the scope of this present study, though work on this matter
has been discussed extensively in recent publications [32, 36—38]. For in-depth
discussions of CNV analysis tools, approaches, parameters, and challenges as well as
performance comparisons with 30x-coverage WGS (Supplementary Figure S6,
Supplementary Table S1), see Supplementary Discussion.

Overall, low-coverage WGS approaches are drastically more sensitive at
detecting CNVs compared to the best performing arrays (currently commercially
available) and are accompanied with smaller percentages of calls without validation.
The prospect of replacing arrays with low-coverage WGS in a cytogenetic context
seems promising and essentially at hand. Our results will contribute to the discussion
on when and via which route this transition from using arrays to WGS will be plausible in
cytogenetics practice.
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FIGURE AND TABLE LEGENDS

Figure 1. Comparisons of CNV Calls by WGS and Arrays. (a) Schematic diagram
of detection of CNVs (deletions and duplications) using discordant read-pair and read-
depth analysis [1, 25, 39]. Using discordant read-pair analysis, deletions are detected
when the distance of alignment to the reference genome between read pairs are closer
than the expected insert size of the library, and duplications are detected when the
orientation of the aligned read pairs are inversed. Using read-depth analysis, deletions
and duplications are detected when there is a pronounced decrease and increase,
respectively, in alignments of reads spanning a genomic region relative to the average
number of alignments over the genome. (b) Numbers of autosomal CNVs in the
genome of subject NA12878 called from short-insert, 3kb mate-pair, and 5kb mate-pair
libraries sequenced at 1X, 3X, and 5X coverage compared against previous array calls
[24, 28]. Array-based CNV calls were made according to platform-specific algorithms
[24], and WGS-CNYV calls were made by combining discordant read-pair and read-depth
analysis. Gold: autosomal CNVs (overlap 250% reciprocally with NA12878 GS CNVSs).
Green: 10%-50% reciprocal overlap with NA12878 GS CNVs. Blue: <10% reciprocal
overlap with GS CNVs, 250% reciprocal overlap with NA12878 Silver Standard CNVs.
Red: no overlap (<10% overlap with GS CNVs and <50% overlap with Silver Standard
CNVs). Benchmarking was performed taking CNV type into account with the exception
of Affymetrix SNP 6.0* [28] and Illlumina HumanOmnilQuad* [24] where CNV type
information was not available.

Figure 2. Sensitivity of WGS Detection of NA12878 GS CNVs (>1 kb). (a)
Sensitivity of (>1 kb) GS CNV detection across WGS libraries and array platforms as
determined by the ratio of detected autosomal GS CNVs to total number of autosomal
GS CNVS. Array-based CNV calls were made according to platform-specific algorithms,
and WGS CNV calls were made by combining discordant read-pair and read-depth
analysis. Green: autosomal CNVs that overlap >50% reciprocally with NA12878 GS
CNVs. Blue: total number of NA12878 GS autosomal CNVs. Sensitivity of GS CNV
detection in different size ranges from (b) short-insert, (c) 3kb mate-pair, and (d) 5kb
mate-pair libraries at sequencing coverages 1X, 3X, and 5X. CNVs were called by
combining discordant read-pair and read-depth analysis.

Figure 3. Size Distributions of NA12878 Detected by WGS. Size distribution of
NA12878 CNVs detected from (a) short-insert, (b) 3kb mate-pair, and (c) 5kb mate-pair
libraries called by combining discordant read-pair and read-depth analysis. CNVs
called from (d) short-insert, (e) 3kb mate-pair, and (f) 5kb mate-pair libraries by read-
depth analysis only. CNVs called from (g) short-insert, (h) 3kb mate-pair, and (i) 5kb
mate-pair libraries by discordant read-pair analyses only.

Figure 4. NA16595 Cri-du-Chat Deletion. IGV [31] screenshot of the 15 Mbp Cri-du-
Chat deletion on chromosome 5 in NA16595 by short-insert WGS at 1X, 3X, and 5X
coverages. Vertical axis: coverage value, blue dots: respective coverage at genomic
positions. Two areas within the deletion show unusually high coverage due to overlap
with segmental duplications resulting in cross-mapping of sequencing reads.

Table 1. Detection of Gold Standard Deletions >100 kb.

23


https://doi.org/10.1101/192310
http://creativecommons.org/licenses/by-nc-nd/4.0/

*,
Discordant read-pair

s %,
S,
R
4 %,
s s
< %,
s %,
S ‘

Read Sequencing

— “—
Studied Genome
' 4
. .
. RN .~ L
P s‘ R S
Deletion 'l ~ Duplication
~
. ~
Reference Genome #
Read Mapping -,.... ““‘—
o, o
..."0 ""“
o, o

Studied Genome %
' 4

-~
. MRS . A »?
. ‘ AN -
Deletion . ’ ~ Duplication

.
.
Reference Genome *

Mapped Read Count

-
- -
e erars s Emmm==="

Read-depth
— ] o e
) — e, T — — —
Read Sequencing C— C—
- - - - -

8001
>50% reciprocal overlap with NA12878
Silver Standard CNVs

10% - 50% reciprocal overlap with No overlap with Gold and Silver Standard
NA12878 Gold Standard CNVs CNVs
600 1
400 4
*
2001
I *
Q ~
$ $

[ vaiidated by Gold Standard CNVs

# of CNV calls

0+ =
Q ~N D> 0N NN NN N
T See S8d P FESSTS T ITT ST FE
> .
short-insert 3kb mate-pair 5kb mate-pair éé’ § N ’:{? Qé' °§ § él ,§°/ S (‘5/) éso é\‘é’ oé“b w&/ OGQ) §
XN 2
SEFTFTFTTFEFS S F g Ffy &
. N ) K S ¢ F £
F ST IFTF TS gFeesges
TP TSI ST FFES
o TS s eds ED
< VN SFTEFLFEFFES
OO R
S § 5 ¥ & s 8
3 & & £ $
N £ S § I
S s &4


https://doi.org/10.1101/192310
http://creativecommons.org/licenses/by-nc-nd/4.0/

Non-overlapping Gold Overlapping Gold
Standard CNVs > 1kb Standard CNVs > 1kb

1X

short-insert  3X

5X

1X

3kb mate-pair  3X

5X

1X

5kb mate-pair  3X

5X

Affymetrix CytoScanHD

Affymetrix SNP6.0

Agilent 1x1M CGH

Agilent 1x1M HR

Agilent 2x400K CGH

Agilent 2x400K CNV

Agilent 4x180K CGH

lllumina CytoSNP-850K

lllumina HumanCoreExome-12v1-1
lllumina HumanOmni1Quad

lllumina HumanOmni25-8v1-1
llumina HumanOmni25Exome—-8v1
lllumina HumanOmni5-4v1

lllumina HumanOmni5Exome-4v1
lllumina HumanOmniExpress—24v1-0
lllumina HumanOmniExpressExome-8v1-2
lllumina PsychArray

Detection Platform

0 25 50 75 100
Percentage

A X - 1X 7| A 1X
—— 3X —m— 3X —i— 3X

—6— 5X —6— 5X —6—5X
0.8 5 0.8 5 0.8

0.6 0.6 0.6

Sensitivity
Sensitivity
Sensitivity

0.4 0.4 0.4

0.2 0.2 0.2

0.0 0.0 0.0

CNV Size (bp) CNV Size (bp) CNV Size (bp)


https://doi.org/10.1101/192310
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3 - Size Distributions of NA12878 Detected by WGS
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Figure 4 - NA16595 Cri-du-Chat Deletion
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