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Abstract

Participants in epidemiological and genetic studies are rarely true
random samples of the populations they are intended to represent,
and both known and unknown factors can influence participation in
a study (known as selection into a study). The circumstances in
which selection causes bias in an instrumental variable (IV) analy-
sis are not widely understood by practitioners of IV analyses. We
use directed acyclic graphs (DAGs) to depict assumptions about the
selection mechanism (factors affecting selection) and show how DAGs
can be used to determine when a two-stage least squares (2SLS) IV
analysis is biased by different selection mechanisms. Via simulations,
we show that selection can result in a biased IV estimate with sub-
stantial confidence interval undercoverage, and the level of bias can
differ between instrument strengths, a linear and nonlinear exposure-
instrument association, and a causal and noncausal exposure effect.
We present an application from the UK Biobank study, which is known
to be a selected sample of the general population. Of interest was the
causal effect of education on the decision to smoke. The 2SLS exposure
estimates were very different between the IV analysis ignoring selec-
tion and the IV analysis which adjusted for selection (e.g., 1.8 [95%
confidence interval —1.5,5.0] and —4.5 [—6.6, —2.4], respectively). We
conclude that selection bias can have a major effect on an IV analysis
and that statistical methods for estimating causal effects using data
from nonrandom samples are needed.
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Introduction

The main aim of many epidemiological studies is to estimate the causal ef-
fect of an exposure on an outcome. Instrumental variable (IV) analyses are
increasingly used to overcome bias due to unmeasured confounding. An IV
analysis requires a variable, known as the instrument, to satisfy three as-
sumptions: the instrument is associated with the exposure, the instrument
only causes the outcome to change via its impact on the exposure, and there
is no confounding between the instrument and the outcome [1, 2, 3]. Based
on the observed data, the first IV assumption can be tested, but the latter
two are untestable [4].

As with any statistical analysis, inference about the causal exposure effect
(here onwards shortened to exposure effect) may be invalid when the sample
included in the analysis is not a representative (i.e., random) sample of the
target population. This could be due to: selection into the study, participant
dropout, loss to follow-up, subgroup analysis, or missing data (i.e., restricting
the analysis to those participants with complete data). In all of these cases
there may be both known and unknown factors that influence the “selection”
of participants for analysis.

Following Herndn and Robins [5], we consider selection bias to be distinct
from confounding. Confounding is due to the presence of common causes of
the outcome and exposure. In contrast, selection bias is due to conditioning
on common effects of the outcome and exposure, and is a type of collider-
stratification bias [6, 7]. The IV estimate of the causal exposure effect in the
study sample is biased by selection when it systematically differs to the value
of the exposure effect in the target population [8]. Selection bias is concerned
with the internal validity of a study, as opposed to external validity (using
a study’s results to make inferences about populations that differ from the
target population) [9, 10, 11]. Internal validity is essential before external
validity can be considered.

Although selection bias is understood in the methodological literature
(e.g., [6, 12, 5]), it is seldom acknowledged in IV analyses or discussed in
guidelines for IV analysis (e.g., [13, 14, 15, 16, 17]). However, recent ex-
ceptions include examples where selection depends on the: exposure plus
confounder, or outcome [18], exposure [19, 18], instrument plus measured
and unmeasured confounders (of the outcome-exposure association) [20], ex-
posure and measured variable (which causes the outcome) [21], missing values
of measured covariates [22, 23], and unmeasured confounder plus measured
covariates [24].

In the IV literature a small number of papers have used directed acyclic
graphs (DAGs) [25, 26, 27] to illustrate when selection violates the assump-
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tions of an IV analysis [19, 20, 21, 18]. However, these papers cover a limited
range of selection scenarios, with Gkatzionis and Burgess [18] confining their
discussion to Mendelian randomisation, and Ertefaie et al, and Canan et al
[20, 21] provide an incomplete explanation of the consequence of selection.
Only one paper [18] considered if the effects of selection differed according
to a null and non-null causal exposure effect, and none of these papers in-
vestigated if the consequences of selection differed according to a linear and
nonlinear exposure-instrument association.

We use DAGS to illustrate the circumstances in which an IV analysis is
biased by selection for a wide range of selection scenarios which can occur
in practice. Via simulations, we show how the consequences of selection
can depend on the factors determining selection, strength of the instrument,
whether the causal effect is null or not null, and linearity of the exposure-
instrument association. Finally, using a real application we show how an IV
analysis ignoring nonrandom selection can reach different to an IV analysis
which adjusts for nonrandom selection.

When does selection lead to bias?

Description of our IV analysis

We want to estimate the effect of a continuous exposure X on a continuous
outcome Y, and we denote this causal exposure effect by Gx. The ¥ — X
association is confounded by unmeasured variables U and measured vari-
ables C. In the full sample (i.e., the selected and unselected participants),
the instrument Z satisfies the three assumptions of an IV analysis (without
conditioning on C).

To identify Sx we assume homogeneous exposure effects (i.e., fx is the
same for all individuals [15]. We estimate Sx using the two stage least squares
(2SLS) method [28] and denote its 2SLS estimate by 32555, In the first stage
of 2SLS, X is regressed on Z to give fitted values X. In the second stage,
the regression coefficient of Y on fitted values X is the 2SLS estimate, AE(SLS .
When Z is a single instrument, B}SLS is equivalently estimated using the
ratio of coefficients method [29, 30].

52SLS _ E(Y|Z> (1)

T BE(x|2)
where the numerator, E(Y|Z), is the estimated coefficient from the re-
gression of Y on Z, and the denominator, E(X|Z), is the estimated coeffi-
cient from the regression of X on Z. We also estimate the exposure effect
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conditional on measured confounders C', and denote this conditional 2SLS

estimate by Bg(%s .

Selection mechanisms

Whether B%SLS is biased by selection depends on the reasons for selection, i.e.
the “selection mechanism”. Figures la to 1i depict DAGs showing the causal
relationships among the variables of our IV analysis under nine selection
mechanisms, where S is a binary variable indicating whether a participant is
selected or unselected. Restricting the analysis to the selected sample implies
conditioning on S which is represented by a box around S. Because a DAG
is non-parametric, the discussion below is not specific to continuous variables
only; for example, they also apply when X, Z and Y are binary variables
and examined on the risk difference scale (as in our applied example below).
Unless otherwise stated, whether BE(SLS is biased by selection equally applies
when the true causal effect is null and not null. Also, in our example all
variables are measured without error - however, whether BE(SLS is biased by
selection equally applies when selection depends on variables measured with
error [5].

Table 1 summarises when 52555 and B}%S are biased by selection. When
selection is completely at random (Figure 1a), or depends on Z (Figure 1b),
or U (Figure 1c), 33555 and Bg(%s are not biased by selection. Here, selection
does not imply conditioning on a collider (nor a descendant of a collider),
and so the IV assumptions remain true in the selected sample.

When selection depends on Z + C, X, X + C, X +Y or Y (Figures
le, 1f, 1g or 1h, respectively), 52555 is biased by selection because the Y —
Z association becomes confounded in the selected sample. Here, selection
implies conditioning on a collider which opens a noncausal pathway between
Z and Y via a confounder (e.g., selection on X + C opens pathway Z —

X —|S|+ C —=Y). For selection mechanism Z + C, the Y — Z association

25L5 is biased by selection on

is confounded by C' only. Therefore, whilst B
Z+C, ﬁ?ﬁég is not biased because the only noncausal pathway is via C' which
is re-blocked by conditioning on C. For the other selection mechanisms, the

Y — Z association is confounded by C' and U. Therefore, whilst estimating

BA?(‘%S reduces the level of selection bias (by eliminating confounding by ('),
BA?(‘%S remains biased because the Y — Z association is still confounded by U

in the selected sample.

Selection depending on Y has the special property that 32°L and ﬂg(%s
are only biased by selection when X causes Y (the true exposure effect is
not null). When X does not cause Y, the pathways between Z and Y via
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C' and U are blocked by the absence of an edge between X and Y (e.g.,
Z =X Y «U).

When selection depends on Y + Z (Figure 1i), 5255 and /@g{s\gs are biased
by selection because the instrument is directly associated with the outcome
(i.e., there exists a Y — Z association which is not via X) in the selected
sample. Here, selection implies conditioning on collider S which unblocks
pathway Z — < Y. When X causes Y, selection depending on Y + Z
also results in violating a second IV assumption because the Y —Z association
is confounded by C' and U in the selected sample (as discussed for selection
on Y only).

A more detailed discussion is given in the appendix.

Table 1:  Potential bias of the two stage least squares (2SLS) estimate of the casual exposure

effect, A255  and the corresponding 2SLS estimate conditional on C, Bg{slés , according to different

selection mechanisms.

Selection is/ Y-Z

depends on association? p3sLs B?g%s
Completely at random Unconfounded Unbiased Unbiased
Z Unconfounded Unbiased Unbiased
U Unconfounded Unbiased Unbiased
Z+C Confounded by C' Biased  Unbiased
X Confounded by C' and U Biased Biased
X+C Confounded by C' and U Biased Biased
X+Y Confounded by C' and U Biased” Biased®
Y Confounded by C' and U Biased Biased
Y+Z Confounded by C and U; Z directly changes Y* Biased? Biased?

'Y — Z association in the selected sample.

b Not biased by selection when X does not cause Y.

§ Biased by selection even when the X — Y association is not confounded by C nor U.
£ Z changes outcome Y via a pathway that does not include X.

Simulation study

For our IV analysis example, we investigated the effects of different selection
mechanisms on 42545, We excluded selection on U because it is similar to
selection on Z, and excluded selection on Y + Z because we considered it
less likely to occur in practice.

Methods

We simulated data on X, Y, Z, C' and U under a multivariate normal distribu-
tion, ensuring the three IV assumptions held true in the full sample. Selection
was imposed using a logistic regression model, where the covariates of the
model included one or more of XY, Z and C (depending on the selection
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mechanism). For all selection mechanisms, close to 60% of the participants
were selected. We used Stata (StataCorp; Texas, USA) command ivregress
to perform 2SLS estimation.

We repeated the simulation study for: a causal exposure effect of 1, and
a noncausal exposure effect (i.e., 0). A strong instrument (partial R%q  close
to 0.39 in the full sample), and a moderate instrument (partial Rgﬂ , close
to 0.045 in the full sample). A linear X — Z association (X as a function
of Z) and a nonlinear X — Z association (X as a function of Z and Z3).
For all combinations of the simulation settings we generated 3,000 simulated
datasets, each with 20, 000 participants for the full sample.

Of interest was the bias of 52555 the relative error of its standard error
compared to the empirical standard deviation of 2555 and the coverage of
the 95% confidence interval (CI) for 425L5. Similarly, for the conditional
estimate, Bg(s‘és . Evidence of systematic bias (i.e., estimates systematically
differ from the true value) occurs when the Monte Carlo 95% CI for the
bias (bias £ 1.96 x Monte Carlo standard error) excludes zero. Also, based
on 3000 simulations the Monte Carlo standard error for the true coverage
percentage of 95 is 1/(95(1 — 95)/3000) = 0.398 [31], implying that the esti-
mated coverage percentage should lie within the range of 94.2 and 95.8 (with
95% probability). We analysed the simulation results using the simsum com-
mand [32].

Results

When there was no selection (the full sample), AE(SLS was unbiased and CI

coverage was nominal (close to 95%) in all cases, as expected (see Appendix
tables 3 to 6). Figure 2 show the bias of the 2SLS estimates (shown by
scatter points; right y-axis) and CI coverage (shown by bars; left y-axis)
according to the 8 selection mechanisms and instrument strengths moderate
and strong, when the true exposure effect was 1: Figure 2a corresponds to
linear X — Z, and Figure 2b to nonlinear X — Z. Full results are reported
in the corresponding Appendix tables 3 and 4, respectively.

When selection was completely at random (represented as “none”) or
depended on Z only, A_?(SLS was unbiased and CI coverage was nominal. Be-
cause this finding applied to all simulation settings we shall not discuss these
two selection mechanisms further. For the remaining selection mechanisms,
335LS was negatively biased with poor (88%) to severe (0%) CI undercover-
age (shown by the absence of a bar) for linear X — Z (figure 2a).

As expected, selection depending on Y did not bias B&SLS when the ex-

posure effect was null, both for linear and nonlinear X — Z (Appendix tables
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5 and 6). For the remaining selection mechanisms, the results for a causal
and noncausal exposure effect were very similar.

The impact of instrument strength

When selection partly depended on Z (selection mechanisms Z + C' and
X +7) the level of bias increased with decreasing instrument strength. When
selection did not depend on Z there were only small differences in the level
of bias between the instrument strengths. However, for all selection mecha-
nisms, decreasing the instrument strength resulted in higher CI coverage due
to larger standard errors.

Nonlinear versus linear X — Z association

In general, the results for nonlinear X — Z (Figure 2b) follow the same
patterns noted for linear X — Z. Differences in the level of bias between
linear and nonlinear X — Z were far larger for the moderate instrument than
the strong instrument because (due to the design of the simulation study)
the strength of the nonlinearity was the same for the moderate and strong
instruments.

For selection mechanism Z + C, the effect of the nonlinearity was to
decrease the instrument strength, thus increasing the level of bias: when the
instrument was moderate the level of bias was 15% higher and the instrument
strength (i.e., partial R§(| ) was 17% lower for nonlinear X — Z compared
to linear X — Z (Appendix table 4). Conversely, for selection mechanism X,
when the instrument was moderate, the level of bias was 36 times smaller
for nonlinear X — Z compared to linear X — Z. Nonlinearity caused a large
change in the distribution of X among the selected participants, and this
change in the distribution of X resulted in weakening the induced Z —C' and
Z — U associations (i.e., magnitudes close to zero); hence, the large reduction
in bias. A similar pattern was noted for the other selection mechanisms where
bias resulted from conditioning on collider X (or a descendant of X).

For the moderate and strong instruments, the standard errors of B%SLS
were smaller for nonlinear X —Z than linear X — 7, with larger differences for
the strong instrument. Consequently, when the level of bias was comparable
between linear and nonlinear X — Z, CI coverages were poorer for nonlinear
X —Z due to the smaller standard errors. However, in situations where a non-
linear X — Z lowered the level of bias (e.g., selection on X') then CI coverages
were substantially higher for nonlinear X — Z despite smaller standard errors.
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The exposure effect conditional on C'

As expected, for selection mechanism Z + C' Bg{slgs was unbiased and CI

coverage was nominal for all simulation settings (Appendix Tables 8 to 11).

For the remaining mechanisms, the level of bias for 5’3(%5 was between 1.2

to 4.5 times lower than that of 3255 and CI coverage for Bg(%s was up to

3 times higher. Otherwise, the results for Biﬁég follow the same patterns

noted LS.

Applied example

We conducted an IV analysis to ascertain whether leaving school before age
16 had a causal effect on the decision to smoke [? | using data from the UK
Biobank study [33], where there is evidence of non-random selection [34]. See
the appendix for a detailed description of the analysis.

The binary outcome Y was equal to one for ever smokers (included ex-
smokers and current smokers), and equal to zero for never smokers. We
also considered a second binary outcome, equal to one for current smokers,
and equal to zero for ex-smokers and never smokers. Separate analyses were
performed on each outcome using the same exposure and instrument. The
binary exposure X was equal to one if the participant had left school age
16 or older, and equal to zero otherwise. We used a policy reform (often
referred to as ROSLA, Raising of School Leaving Age) as an instrument
for time spent in education. The binary instrument Z was equal to one
if the participant turned 15 after the policy reform was introduced, and
equal to zero otherwise. There were some measured confounders, C', of the
exposure-outcome association (e.g., sex, month of birth) but we suspected
many unmeasured confounders, U.

The UK Biobank study is a sample of 502,644 UK residents enrolled be-
tween 2006 and 2010 [33]. At enrolment, the invited participants were aged
between 40 and 69 years old and so would have turned age 15 between 1952
and 1985. The study response rate was 5.5% and higher levels of educational
achievement predicted participation [34]. This suggests that the study par-
ticipants were selected depending on X, educational attainment, which can
bias an IV analysis (see earlier discussion and simulation study).

We performed 2SLS estimation using the linear probability model, where
the exposure effect is on the risk difference scale [35]. Robust standard errors
were calculated to account for assumptions about homogeneous exposure
effects and the outcome distributions. For comparison, we also considered
the equivalent standard analysis; that is, the linear regression of Y on X also
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with robust standard errors. Although a linear regression may be biased by
unmeasured confounding of the X —Y association, we know from the missing
data literature (e.g., [36]) that its exposure effect estimate is not biased by
selection on X.

We used inverse probability weighting [37] to account for selection on edu-
cational achievement; thus the weighted IV analysis accounts for unmeasured
confounding and nonrandom selection [20]. The weights were generated un-
der the assumption that selection only depended on X. Those participants
suspected to be under-represented in the selected sample (i.e., left school age
15) had larger weights, and hence contributed more to the weighted analysis,
than those suspected to be over-represented in the selected sample (i.e. left
school age 16 or older). For comparison, we carried out a weighted linear
regression analysis using the same weights.

Table 2: Risk difference %, of ever smoker or current
smoker, for leaving school at age 16 or older compared to
leaving school at age 15 using unweighted and weighted
versions of linear regression (LR) and instrumental vari-
able (IV) analysis. 95% confidence intervals displayed
within brackets.

Outcomes
Analysis Ever smoker Current smoker
LR —20.5 (—22.8,—18.3) —14.1 (—15.5,—12.7)
Weighted LR —20.5 (—22.8,—18.3) —14.1 (—15.5,—12.7)
v —4.8 (~11.6,1.9) 1.8 (—1.5,5.0)
Weighted IV —10.6 (—14.8,—6.4) —4.5 (—6.6,—2.4)

Table 2 presents the results for the exposure effect estimated using un-
weighted and weighted versions of linear regression and IV analysis. For the
IV analysis there were noticeable differences between the unweighted and
weighted analyses. For outcome “ever smoker”, the weighted IV estimate
was more than double that of the unweighted IV estimate, although there
was some overlap between the corresponding 95% Cls. Both analyses sug-
gested staying in school at least one extra year decreased the likelihood of
being an ever smoker compared to those who left school at age 15, although
the CI for the unweighted analysis was inconclusive since it included all 3
possible conclusions: risk decrease, no effect, and risk increase. For outcome
“current smoker”, the results of the unweighted IV analysis suggested staying
in school at least one extra year increased the likelihood of being a current
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smoker compared to those who left school at age 15, whilst the results of
the weighted IV suggested the opposite effect. The CI for the unweighted
analysis was inconclusive, including all 3 possible conclusions. As expected
the unweighted and weighted linear regression results were identical.

Comparing the analyses which should not be biased by selection on X,
the linear regression exposure effect estimates were about 2 to 3 times larger
than those of the weighted IV, and there was no overlap in the 95% Cls.
These differences may be due to the presence of unmeasured confounding
which would only bias the linear regression analyses. However, other possible
causes of the differences include an instrument that does not satisfy the IV
analysis assumptions or heterogeneous treatment effects.

Discussion

For nine different selection mechanisms, we have explained the structure of
the selection bias and showed how DAGs can be used to determine if se-
lection violates any of the IV assumptions. The IV estimate of the causal
exposure effect is not biased by selection when selection is completely at
random, depends only on the instrument, or depends only on unmeasured
confounders. For the remaining selection mechanisms we have illustrated,
using simulations, that nonrandom selection can result in a biased IV esti-
mate and CI undercoverage. For a causal and null exposure effect, the IV
estimate was biased, with often poor to severe CI undercoverage, when selec-
tion depended on the instrument plus measured confounder, or depended (in
part or entirely) on the exposure, or depended on the outcome plus exposure.
A special case was selection depending on the outcome only, where the IV
estimate was only biased when X truly caused Y. Decreasing the instrument
strength resulted in an increase in the level of bias for selection mechanisms
partly depending on the instrument, but had little effect on the other selec-
tion mechanisms. For all selection mechanisms, CI coverages were noticeably
higher for the moderate instrument compared to the strong instrument be-
cause standard errors increase with decreasing instrument strength. Whilst
the larger standard errors improved CI coverage, there was still substantial
CI undercoverage. Estimating the conditional IV estimate eliminated selec-
tion bias when caused by measured confounding, but only reduced the level
of bias when selection resulted in measured and unmeasured confounding.
Changing the exposure-instrument association from linear to nonlinear (i.e.,
cubic) reduced the size of the standard errors, but its effect on bias depended
on the structure of the selection bias.

In keeping with the results of our simulation study, non-trivial levels of
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selection bias were demonstrated via simulations [24, 23, 22, 19, 21, 18]. [18§]
investigated two selection mechanisms in the context of Mendelian randomi-
sation, and the remaining papers only considered a specific selection scenario.

Nonrandom selection can occur in practice, with large differences in the
characteristics of the selected and unselected participants, as in our simu-
lations. For example, the percentage of subjects who owned their property
outright was 56.7% in the UK Biobank study (i.e., the selected sample) and
40.6% in the 2001 UK census (i.e., the study population) [34], so the odds
of selection among outright property owners was almost double that of those
who were not outright property owners. Similarly, using similar calculations
for the Avon Longitudinal Study of Parents and Children (ALSPAC) study
[38], the odds of selection among households with a car was almost double
the odds of selection among households without a car.

Our simulation study has several limitations. First, whilst we considered
eight plausible selection mechanisms, it was not possible to investigate all
possible selection mechanisms even for a single IV analysis example. Second,
in practice an IV analysis may use weaker instruments than we considered.
We chose a sample size that was typical of an IV analysis so that even
for an partial R%Q , of 0.045 the instrument would not be considered weak.
However, for the purposes of our study, we wanted to ensure that any bias was
attributable only to selection and not to weak instrument bias [30]. Third,
our simulation study was designed to show the effects of different selection
mechanisms on an IV analysis and not an exhaustive investigation of the
levels of selection bias that could occur in practice. Fourth, our use of non-
parametric DAGs, to determine if selection would violate one of the core
IV assumptions, are not suitable for all types of selection mechanisms (e.g.,
when the occurrence of selection bias depends on the parametrisation of the
IV analysis [8]).

Some selection mechanisms bias the IV estimate but not the usual regres-
sion estimate; for example, when selection depends on the exposure. Unlike
the IV estimate, the usual regression estimate may be biased by confounding-
but the selection bias (for the IV estimate) may exceed the bias due to con-
founding of the usual regression estimate. Inverse probability weighting [21]
and multiple imputation [23] have been used to appropriately account for
selection in an IV analysis. Commercially available implementations of these
methods usually assume the chance of selection depends on measured vari-
ables that are fully observed for all participants of the full sample. When
selection depends on unmeasured variables or partially observed variables,
MI and IPW may not fully account for selection and so give a biased IV
estimate [23, 20]. There are some approaches to account for selection de-
pending on unmeasured or partially observed data [23, 20, 22], but they tend
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to be less straightforward, make untestable assumptions or are specific to a
particular type of IV analysis.

With individual-level data on the selected and unselected participants,
an IV analyst can investigate possible factors that influence selection. How-
ever, this is impossible when the IV analyst only has summary-level data.
Providers of summary-level data should discuss whether the study sample is
a nonrandom sample of the target population, and posit possible selection
mechanisms. Where possible, these providers could generate summary-level
data accounting for nonrandom selection (e.g., summary-level data from a
weighted analysis, or summary-level data adjusted for known factors asso-
ciated with selection). Two-sample IV analyses tend to be conducted us-
ing summary-level data, and these analyses are further complicated because
there are two opportunities for nonrandom selection to occur, and possibly
two different selection mechanisms to take into account.

In summary, ignoring how participants are selected for analysis can result
in a biased IV estimate, substantial CI undercoverage, and lead to an incor-
rect conclusion that an exposure is/is not causal. This limitation should be
more widely noted in guidelines for IV analyses. DAGs can be used to assess
if the IV analysis may be biased by the assumed selection mechanism. Future
work could provide researchers guidance on statistical methods, diagnostic
tools and sensitivity analyses for estimating causal effects from nonrandom
samples.
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Figure 1: Directed acyclic graphs of an instrumental variable analysis under
nine different selection mechanisms.
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Figure 2: Bias of the two stage least squares estimates (scatter points; right y-axis), and coverage of their 95%
confidence intervals (bars; left y-axis) according to different selection mechanisms, and instrument strengths moderate
and strong. Panels (a) and (b) correspond to linear and nonlinear exposure-instrument association, respectively. The
true value of the causal exposure effect was 1.
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