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Abstract 

Quantitative live cell imaging has been widely used to study various dynamical processes 

in cell biology. Phase contrast microscopy is a popular imaging modality for live cell 

imaging since it does not require labeling and cause any phototoxicity to live cells. 

However, phase contrast images have posed significant challenges for accurate image 

segmentation due to complex image features. Fluorescence live cell imaging has also 

been used to monitor the dynamics of specific molecules in live cells. But unlike 

immunofluorescence imaging, fluorescence live cell images are highly prone to noise, low 

contrast, and uneven illumination.  These often lead to erroneous cell segmentation, 

hindering quantitative analyses of dynamical cellular processes. Although deep learning 

has been successfully applied in image segmentation by automatically learning 

hierarchical features directly from raw data, it typically requires large datasets and high 

computational cost to train deep neural networks. These make it challenging to apply 

deep learning in routine laboratory settings. In this paper, we evaluate a deep learning-

based segmentation pipeline for time-lapse live cell movies, which uses small efforts to 
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prepare the training set by leveraging the temporal coherence of time-lapse image 

sequences. We train deep neural networks using a small portion of images in the movies, 

and then predict cell edges for the entire image frames of the same movies. To further 

increase segmentation accuracy using small numbers of training frames, we integrate 

VGG16 pretrained model with the U-Net structure (VGG16-U-Net) for neural network 

training. Using live cell movies from phase contrast, Total Internal Reflection 

Fluorescence (TIRF), and spinning disk confocal microscopes, we demonstrate that the 

labeling of cell edges in small portions (5~10%) can provide enough training data for the 

deep learning segmentation. Particularly, VGG16-U-Net produces significantly more 

accurate segmentation than U-Net by increasing the recall performance. We expect that 

our deep learning segmentation pipeline will facilitate quantitative analyses of challenging 

high-resolution live cell movies. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 27, 2019. ; https://doi.org/10.1101/191858doi: bioRxiv preprint 

https://doi.org/10.1101/191858
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 

Time-lapse microscopy for live cell imaging allows us to access spatiotemporal 

information of complex cellular processes. Together with computational image analysis, 

it enables quantitative understanding of cellular dynamics1-3. Phase contrast microscopy 

is widely used for live cell imaging, since it does not require any labeling and rarely causes 

phototoxicity to live cells. Fluorescence microscopy also allows monitoring of the 

dynamics of fluorescently tagged molecules in live cells4,5. However, live cell images from 

these imaging modalities pose numerous challenges regarding image analysis, and 

conventional segmentation algorithms such as intensity thresholding6 and Canny edge 

detection7 do not produce adequate results in many cases. The challenges for cell 

segmentation in live cell images are as follows: i) phase contrast images contain complex 

image features and halo effects, which significantly reduce the reliability of conventional 

image analysis algorithms8-10. ii) fluorescence live cell images are usually noisy and low 

contrast since the light illumination is minimized for cell viability, and researchers need to 

select the cells of low level expression of fluorescent proteins, and photobleaching further 

degrades the image qualities, iii) strong local accumulation of fluorescence signals to 

subcellular structures such as focal adhesions and membrane-bound organelles, iv) 

uneven illumination particularly in TIRF (Total Internal Reflectance Fluorescence) 

microscopy make it difficult to threshold images. To resolve these issues, it is necessary 

to develop segmentation methods case-by-case, but they are often limited in the accurate 

detection of cell boundaries. Therefore, as an initial image analysis step, there is an unmet 

need for general, robust, and accurate cell segmentation for reliable and scalable 

quantitative analyses on high spatiotemporal resolution microscopy data.  

The conventional methods including Otsu method6, Canny Detector7, active contour or 

snake-based method11 and PMI method based on mutual Information12 segment images 

based on the predefined local or global features. Even if these methods are routinely used 

for cell images, they often rely on a set of a priori assumptions about image characteristics, 

which tends to be broken in the images of complex features for segmentation. On the 

other hand, supervised learning methods based on deep learning achieve a higher 

accuracy in image segmentation since features related to edges can be learned from the 
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training set. Recently, deep learning (DL) has achieved great success in image 

classification13-15 and segmentation16-20, and demonstrated promising results for cell 

image segmentation17,21-25. Particularly, U-Net17,21 can directly learn nonlinear mappings 

from raw images to the labeled segmented images by integrating low-level and high-level 

image features. However, since these methods were based on deep neural networks, it 

is usually necessary to prepare large training datasets. Moreover, the acquisition of high-

resolution live cell movies is particularly labor-intensive since high numerical aperture 

objective lenses have narrow field of views, limiting data throughput. Training a deep 

neural network with large datasets also requires substantial computational resources and 

time. These make it challenging for cell biologists to take advantage of deep learning for 

cell segmentation in their routine laboratory settings.  

In this paper, we evaluated a deep learning-based segmentation pipeline for time-lapse 

live cell movies, which leverages the temporal coherence of time-lapse image sequences. 

We trained deep neural networks using a small portion of images in the movies, and then 

predict cell edges for the entirety of image frames of the same movies. To test this pipeline, 

we employed the conventional U-Net and the transfer learning-based VGG16-U-Net, 

which integrates VGG1614 pretrained model with the U-Net decoder structure. We found 

that live cell movies from various imaging modalities could be accurately segmented by 

VGG16-U-Net by labeling only 5~10% of the whole image frames, which increases the 

usability of deep learning in cell segmentation. This allows us to use deep learning for 

routine segmentation of high resolution live cell movies using low-end computational 

resources with a smaller training set size. 

Results 

Deep leaning pipelines for the segmentation of live cell movies 

DL approaches to image segmentation have been focused on static cell images21,22,26, 

which requires manually labeling large training sets for effective training. Building large 

training dataset for live cell imaging is difficult since live cell experiments usually have low 

data throughput. Particularly, the throughput of live cell imaging of high spatiotemporal 

resolution is even more limited due to the small field of view of objective lenses with high 

numerical aperture. Also, for accurate segmentation, high fidelity training sets are 
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required, substantially increasing the cost of data labeling. To overcome these challenges, 

we hypothesized that we can significantly reduce the burden of the training set 

preparation if we prepare training dataset per each movie, considering the coherence of 

image frames within the same time lapse movies. Therefore, we tested generating 

training dataset only within the frames of the total frames from a single movie provided 

enough data to train a deep neural network (DNN) to predict cell edges from movies with 

high spatiotemporal resolutions. 

In this paper, we established a DL pipeline for cell segmentation of live cell movies (Fig. 

1). For the training (Fig. 1a, see Methods for details), we first randomly selected a small 

number of training frames from time-lapse movies, and label cell edges. Then, we 

preprocessed the raw training images. To prepare the training set, we cropped large 

numbers of images patches (128X128 pixels) from the preprocessed training images. 60% 

of the cropped images contained cell edges (red boxes Fig. 1a) and 40% were randomly 

chosen from inside and outside of the cell (blue boxes in Image Cropping in in Fig. 1a). 

Then, we randomly split the data into training and validation sets with an 80:20 ratio, 

followed by the standard data augmentation. For neural network training, we employed 

the standard VGG16-U-Net or U-Net17 in our DL pipeline. In VGG16-U-Net, we replaced 

the encoder of U-Net with VGG16 pretrained model14. This transfer learning approach 

where feature information from input data is extracted using the pre-trained networks and 

subsequently transfer the information to down-stream neural networks has been applied 

in other DL-based segmentation (FCN16, DeepEdge18, TernausNetV227) and 

classification28-35. After the training was complete, the neural network was used for 

segmentation tasks (Fig. 1b); the entire images of movies were pre-processed and 

entered as input for segmentation. Finally, the edges were extracted from the predicted 

regions. 

DL-based cell edge detection in phase contrast live cell movies. 

To quantitatively assess the effectiveness of our DL pipeline, we used five phase contrast 

movies of migrating PtK1 cells acquired by a spinning disk confocal microscope for 200 

frames at 5 sec/frame. To test our DL pipeline for these movies, we prepared the training 

set by manually segmenting cell edges every five frames in these movies. We trained our 
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pipeline using U-Net and VGG16-U-Net using the augmented datasets. To assess their 

performance, we trained each neural network using single movies with varying numbers 

of randomly selected training frames. We increased the number of training frames from 2 

to 26. First, the training curve of binary cross-entropy loss function with eight training 

frames (Fig. 2a) showed that both U-Net and VGG16-U-Net had minimal overfitting. 

VGG16-U-Net converged faster in the training process and the final loss values are 

smaller than U-Net. Also, we measured the Dice coefficients, Precision, Recall, and F1-

Score for each training session and calculated their mean values. The Dice coefficients 

demonstrated that the segmentation accuracy of VGG16-U-Net was high regardless of 

the number of frames used for the training in this dataset and the Dice coefficients from 

VGG16-U-Net were consistently higher than those of U-Net (Fig. 2b). We also quantify 

precision, recall, and F1-Score to specifically assess the accuracy of edge localization 

(see the method). As demonstrated in Fig. 2c-e, the performances of both U-Net and 

VGG16-U-Net increased as more training frames were added and started to saturate 

around 10 training frames. Although the precision values of U-Net and VGG16-U-Net are 

quite similar when the numbers of the training frames were more than 6 (Fig. 2c), VGG16-

U-Net produced consistently better recall, and F1-Score than U-Net regardless of the 

numbers of training frames (Fig. 2d-e). When the number of training frames was small 

(2~14) (Fig. 2f) and high (18 ~ 26) (Fig. 2g), the recall and F1-Score of VGG16-U-Net 

were significantly higher than those of U-Net by Wilcoxon signed rank test (see the p-

values in the figure legends).  

We also visually confirmed that both VGG16-U-Net and U-Net produced reasonably good 

edge localization (Fig. 3a-b). Although VGG16-U-Net was better for segmenting 

retraction fibers than U-Net, both of them are limited in localizing the edges of thin 

retraction fibers accurately (Insets in Fig. 3a-b), consistent with the fact that the recall 

values were smaller than the precision (Fig. 2c-d). We also visualized the time evolution 

of edges of the entire movie frames. Both U-Net and VGG16-U-Net showed a smooth 

progression of edge localization. But, in comparison to U-Net, VGG16-U-Net detected 

much fewer floating debris. Even if one can readily remove these small objects by post-

processing, it further demonstrates that VGG16-U-Net has better generalizability than U-
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Net. Taken together, we demonstrated that we can use a small portion of training frames 

to segment all time-lapse movies if the trained model is applied within the same movies. 

DL-based cell edge detection in noisy fluorescence live cell movies. 

To test our DL pipeline for fluorescence microscopy, we used 13 dual-color fluorescence 

movies of GFP-mDia1 and SNAP-tag-TMR-actin in migrating PtK1 cells acquired by a 

spinning disk confocal microscope for 200 frames at 5 sec/frame. These cells expressed 

low levels of GFP-mDia1, which made the images highly noisy, while the high contrast 

images of SNAP-tag-TMR-actin were adequate for the conventional image thresholding 

for the segmentation for the labeling purpose (see Methods for the segmentation 

procedure). By thresholding actin images, we automatically labeled the edges for entire 

200 image frames. The inputs of the training sets were the GFP-mDia1 image patches 

and the outputs were the segmented image patches from SNAP-tag-TMR-actin. The 

training curve of binary cross-entropy loss function demonstrated that both U-Net and 

VGG16-U-Net converged rapidly with minimal overfitting in the training process (Fig. 4a). 

The Dice coefficients demonstrated that the segmentation accuracy was high regardless 

of the number of frames used for the training in this dataset and the Dice coefficients from 

VGG16-U-Net were consistently higher than those of U-Net (Fig. 4b). In terms of specific 

edge localization, both U-Net and VGG16-U-Net produced high precision, recall, and F1-

score when the number of training frame were more than six (3% of the entire frames) 

(Fig. 4c-e). As more training image frames were added, the recall and F1-Score slowly 

increased and saturated around 20 frames. Interestingly, U-Net produced slightly but 

significantly better precision of edge localization than VGG16-U-Net (Fig. 4c and f-g). 

However, the greater recall performance of VGG16-U-Net made VGG16-U-Net 

outperform U-Net in terms of F1-Score (Fig. 4d-g; Wilcoxon signed rank test, see the p-

values in the figure legends). 

Using this dataset, we further analyzed the roles of the VGG16 features (Fig. 4h-j). We 

used the VGG16 features only on the first-to-third (VGG16-3g) or the first-to-forth 

(VGG16-4g) convolution layers. We found that this partial usage of of the pretrained 

VGG16 features produced the results similar to VGG16-U-Net, suggesting that the low-

level features of VGG16 play more important roles than the high-level features.  To further 
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investigate the effects of training data size, we systematically increased the numbers of 

augmented images (Fig. 4k-m). We found that the size of the augmented data 

systematically increased the recall performance of U-Net when the number of training 

frames were small (2 ~ 14frames) (Fig. 4l). This suggests that U-Net has a limited recall 

ability of edge localization when the size of training set is small. 

The visual inspection of predicted edges suggested that overall performance of U-Net 

and VGG16-U-Net was good in this noisy live cell movies (Fig. 5a-b). There existed some 

edges where the ground truth from the intensity thresholding and the prediction from U-

Net and VGG16-U-Net did not match well. Consistently with the results of the phase 

contrast images, the retraction fibers were usually not identified by both U-Net and 

VGG16-U-Net (Inset 1 in Fig. 5a). When we overlaid the time evolution of predicted cell 

edges, the edges from U-Net and VGG16-U-Net produced smooth temporal edge 

changes (Fig. 5c-d). 

DL-based cell edge detection in TIRF live cell movies. 

Next, we tested our DL pipelines using more complex fluorescence live cell movies of 

paxillin-HaloTag-TMR, a marker of cell-matrix adhesions from a TIRF  microscope. While 

these movies have higher contrast and less noise than the previous GFP-mDia1 movies, 

they have several technical challenges as follows: i) high intensity signals of paxillin 

accumulated in focal adhesions make the segmentation difficult particularly for intensity 

threshold-based methods, ii) the nonuniform light illumination of a TIRF microscope incurs 

additional issues for the segmentation, iii) the leading edge of cells could leave the thin 

TIRF illumination, resulting in less visible cell edges. To test our DL pipeline for these 

movies, we prepared the training set by manually segmenting the cell edges as we did in 

the phase contrast images. As shown in the loss curves in training and validation sets 

(Fig. 6a), VGG16-U-Net was able to achieve the better performance in both training and 

validation with much less training epochs than U-Net. Also, VGG16-U-Net showed greater 

dice coefficient, precision, recall and F1-Score regardless of the number of labeled image 

frames (Fig. 6a-e), and their behaviors were highly consistent with the results from the 

phase contrast images. When the number of training frames was small (2~14) (Fig. 6f) 

and high (18 ~ 26) (Fig. 6g), the recall and F1-Score of VGG16-U-Net were significantly 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 27, 2019. ; https://doi.org/10.1101/191858doi: bioRxiv preprint 

https://doi.org/10.1101/191858
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

higher than those of U-Net by Wilcoxon signed rank test (see the p-values in the figure 

legends), whereas the difference of the precision were marginal or not significant. 

 

 

We also visually confirmed that VGG16-U-Net produced the better results than U-Net as 

there are more magenta edges than cyan ones (see the inset 1 and 2 in Fig. 7a and inset 

1 in Fig. 7b). In the case where the predicted edges did not match with the manually 

prepared ground truth (inset 2 in Fig. 7b), the predicted edges were usually located at the 

region where the intensity changes most significantly, whereas the ground truth edge can 

be on more faint boundaries.  When we plotted time evolution of cell edges in VGG16-U-

Net and U-Net, both neural networks produced smooth spatiotemporal edge changes (Fig. 

7c-d).  

Discussion 

Live cell imaging became a fundamental tool to study dynamic biological processes such 

as cell migration, cell division, endocytosis, and organelle dynamics. Since segmentation 

is the initial step of image analysis, accurate and effective segmentation of live cell images 

is crucial particularly for edge velocity measurement36-39. In this paper, based on the 

temporal coherence of time-lapse image sequences, we established a DL pipeline for the 

segmentation of live cell time-lapse movies. We also demonstrated that the pretrain 

model-based VGG16-U-Net is more effective than U-Net, particularly for the recall 

performance. The pretrained models such VGG16 or VGG19 trained on natural images 

in ImageNet database have been widely used for transfer learning28-35. In this framework, 

we evaluated the performance of VGG16 feature extractor to various live cell microscopy 

images. We confirmed that the image descriptors from VGG16 were highly effective in 

predicting accurate cell edges, and required less epochs for training.  

Building up the training set across various movies with different cell types, molecules, and 

experimental/imaging conditions will require tremendous human labors, which is difficult 

for small individual laboratories. In this paper, we demonstrated that building the neural 

network models for specific time-lapse movies produces accurate edge localization with 
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much less training sets and computational resources than expected, particularly when we 

use a transfer learning approach. We expect that this approach may not be limited to time 

lapse movies. For example, the cell images from the same batch with the same imaging 

conditions may forgo the requirement of large training sets. Therefore, we expect that our 

DL pipeline may accelerate the adoption of deep learning techniques by the cell biology 

community. 

Methods 

Data Collection. Cell culture and live cell imaging procedures were followed according 

to previous studies36. PtK1 cells were cultured in Ham’s F12 medium (Invitrogen) 

supplemented with 10% FBS, 0.1 mg ml−1 streptomycin, and 100 U ml−1 penicillin. Cells 

were then imaged at 5 s intervals for 1000 s using 0.45 NA Super Plan Fluor ELWD 20XC 

ADM objective for phase contrast imaging and 60X, 1.4 NA Plan Apochromat objective 

for fluorescence spinning disk confocal imaging, 1.49NA Apochromat TIRF 100XC for 

fluorescence TIRF imaging. 

PtK1 cells were transfected with the DNA constructs of GFP-mDia1 and SNAP-tag-actin 

or paxilin-HaloTag using Neon transfection system (Invitrogen) according to the 

manufacturer’s instructions (1 pulse, 1400 V, 20 ms) and were grown on acid-washed 

glass #1.5 coverslips for 2 days before imaging. Prior to imaging, expressed SNAP-tag-

actin or paxilin-HaloTag proteins were labeled with SNAP-tag-TMR (New England 

BioLabs) or HaloTag-TMR (Promega) ligands respectively according to the 

manufacturers’ instructions. All imaging was performed in imaging medium (Leibovitz’s L-

15 without phenol red, Invitrogen) supplemented with 10% fetal bovine serum (FBS), 

0.1 mg ml−1 streptomycin, 100 U ml−1 penicillin, 0.45% glucose, 1.0 U ml−1 Oxyrase 

(Oxyrase Inc.) and 10 mM Lactate. Cells were then imaged at 5 s intervals for 1000 s. 

PtK1 cells were acquired from Gaudenz Danuser lab. They were routinely tested for 

mycoplasma contamination. 

All microscopy except for TIRF microscopy (described elsewhere38) was performed using 

the set up as follows: Nikon Ti-E inverted motorized microscope (including motorized 

focus, objective nosepiece, fluorescence filter turret, and condenser turret) with integrated 

Perfect Focus System, Yokogawa CSU-X1 spinning disk confocal head with manual 
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emission filter wheel with Spectral Applied Research Borealis modification, Spectral 

Applied Research custom laser merge module (LMM-7) with AOTF and solid state 445 nm 

(200 mW), 488 nm (200 mW), 514 nm (150 mW), 561 nm (200 mW), and 637 nm (140 mW) 

lasers, Semrock 405/488/561/647 and 442/514/647 dichroic mirrors, Ludl encoded XY 

stage, Ludl piezo Z sample holder for high speed optical sectioning, Prior fast transmitted 

and epi-fluorescence light path shutters, Hamamatsu Flash 4.0 LT sCMOS camera, 37 °C 

microscope incubator enclosure with 5% CO2 delivery (In Vivo), Molecular Devices 

MetaMorph v7.7, TMC vibration-isolation table. 

Data Labeling. We collected five videos of PtK1 cells from a phase contrast microsope 

and seven videos of PtK1 cells expressing paxilin-HaloTag from a TIRF microscope. Each 

video contained 200 frames. We manually labeled the cell boundary  every five frames 

based on the experiences of phase contrast and TIRF miscroscopy, which provided us 

with 40 labeled frames for each video for training and testing. We also collected 13 dual-

color videos of PtK1 cells expressing GFP-mDia1 and SNAP-tag-actin. Since actin 

images had good contrast along the cell boundary, we applied intensity thresholding to 

prepare the ground truth segmentation for GFP-mDia1 video. For each actin image, we 

applied Non-local Means method implemented in ImageJ for denoising (sigma = 15 and 

smoothing_factor =1). Then, we manually selected the optimal threshold to segment all 

the frames. After that, we visually checked all masks  and re-adjusted the threshold for 

better segmentation. The resulting binary masks were manually used as the ground-truth 

for GFP-mDia1 fluorescence videos. 

Pre-processing. Fluorescence live images usually have poor constrast in comparison to 

phase contrast images. Therefore, in order to provide images with better contrast with 

neural network training, raw fluorescence images were pre-processed as follows (no 

preprocessing was applied to phase contrast images): 

1) For each video, all the pixel values were collected from the labelled frames. Then, we 

calculated the mean µ and the standard deviation δ of pixel values. 

2) We replaced the pixel values 𝑥𝑖,𝑗   with the follows values when they are less than µ −

2δ  or greater than µ + 3δ.  
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𝑥𝑖,𝑗 = {
µ − 2δ, 𝑥𝑖,𝑗 < µ − 2δ

µ + 3δ, 𝑥𝑖,𝑗 ≥  µ + 3δ
 

3) We  applied the min-max normalization to rescale the pixel ranges to [0, 255]. 

𝑦𝑖,𝑗 = 255 
𝑥𝑖,𝑗 − min (𝑥𝑖,𝑗)

max(𝑥𝑖,𝑗) − min (𝑥𝑖,𝑗)
 

Training Dataset Preparation. We randomly selected the specified number of training 

frames from a live cell movie and the corresponding labeled segmented images. Then, 

we randomly cropped 200 patches (128X128 pixels) from each frame. The 60% of the 

cropped patches contains the edge boundary and 40% constains only foreground or 

background. The mean and standard deviation of collected image patches are  calculated 

for further normalization. 

After preprocessing, the standard data augmentation process was applied using the 

ImageDataGenerator implemented in Keras package. The parameters in the 

ImageDataGenerator for the data augmentation is as follows: rotation_range=50., 

width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1, 

horizontal_flip=True, vertical_flip=True, fill_mode='reflect'. 

The default number of augmented images was 6400 (50×128). When we evaluated the 

model performance by the number of augmented data, we varied the numbers from 1280 

(10×128) to 8960 (70×128). After the augmentation, we pooled the cropped samples and 

augmented samples and randomly splitted them into the training (80%) and (20%) 

validation sets. 

VGG16-U-Net Architecture. The VGG16-U-Net consists of an encoder and a decoder. 

In the encoder, the same structure of VGG-16 is applied, which contains five convolutional 

layers, each of which contains a different number of convolution and max-pooling 

operations with the depth of 64-128-256-512-512. The weights of the encoder are 

transferred and fixed from the VGG16 trained with ImageNet database. In the decoder, 

four deconvolution layers by up-sampling operations with the depth of 512-256-128-64-1 

integrate the edge information directly extracted from the image as a lower level and 

reconstruction from region information as a higher level, as suggested in the original U-
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Net. Our framework takes advantage of the VGG16 pretrained model to extract useful 

features. In the convolution operation, the zero-padding strategy is applied to make the 

same size after convolution for convenience. The size of input patch is 128x128. The size 

of the convolutional filter is 3x3, and the size of max-pooling is 2x2 while that of up-pooling 

is 2x2 to fit the size of convolution. In order to eliminate the boundary effects of zero-

padding, we cropped the central parts of output segmented images with the size of 68x68.  

In the prediction step, since U-Net and VGG16-U-Net are fully convolutional, we used the 

entire image without cropping as inputs to obtain predicted segmentation images. This 

prediction using entire images eliminates the boundary effects due to image cropping. 

The entire images were padded with 30-pixel width and height for inputs using the 

copyMakeBorder function in OpenCV package and then the padded regions were 

removed from the predicted output images. 

Neural Network Training. The binary cross-entropy was used as a loss function for 

training. Adam was used as an optimizer, and the initial learning rate was 10-5, and other 

parameters were default values in the Keras. To avoid overfitting, we used the early 

stopping. We stopped the training when the validation loss did not decrease 0.0001 in 

consecutive three epochs. The maximum epoch was 30, and the batch size was 64. When 

the training process was finished, the model weights were saved for further analysis. The 

neural network training was performed using Keras with TensorFlow backend on NVIDIA 

GTX 1080Ti or Titan X.  

Performance evaluation of edge localization. We used the labelled data which are not 

included in the training process (training/validation sets) for the performance evaluation. 

We generated the binarized mask images by threshoding the softmax output images 

using the im2bw (MATLAB) function with the  threshold value of 0.5. After we filled the 

small holes in the binarized mask using the imfill (MATLAB) function, we extracted the 

regions with the maximum area. Then, we generated edge images using the 

bwboundaries (MATLAB) function. The edge images were predicted for all the image 

frames including the labeled and unlabeled images. We used the predictions of labeled 

images not used for training to evaluate the performance of edge localization and those 

of whole image frames for visualization of edge progression.  
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We calculated Dice coefficients to evaluate the segmentation performance along the edge 

boundary as follows. First, we dilated the labeled edge masks with the kernel size 64 to 

generate the dilated edge masks using dilate function in OpenCV. Then, we applied 

binary AND operation between the dilated edge masks and the masks of the ground truth 

and the predicted masks from U-Net and VGG16-U-Net using the bitwise_and function in 

OpenCV package. After that, we calculate the Dice coefficient between the ground truth 

and the predictions for each image frame using the following formula (|𝐴 ∩ 𝐵|  : the 

common elements between sets 𝐴 and 𝐵, |𝐴| and |𝐵| : the number of elements in set 𝐴 

and 𝐵). 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =  
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

To specifically assess the accuracy of edge localization, we matched DL-generated 

edges and labeled edges by bipartite matching using the customed package implemented 

in Berkeley Segmentation Benchmark40,41, with the search radii (Phase Contrast: 13 

pixels; Confocal 10 pixels, TIRF: 5 pixels). The DL generated edge pixels that do not 

match with labelled edges are considered as false positives. Using this information, we 

calculate precision, 𝑡𝑝 (𝑡𝑝 + 𝑓𝑝)⁄  and recall, 𝑡𝑝 (𝑡𝑝 + 𝑓𝑛)⁄  to specifically assess the 

accuracy of edge localization (𝑡𝑝: # of true positives, 𝑓𝑝: # of false positives, 𝑓𝑛: # of false 

negatives), and estimate an F1-Score in each frame. The statistical testing of ther 

performance measures was performed by Wilcoxon signed rank test. 
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Figure 1. Deep learning pipeline of edge segmentation of live cell movies 
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Figure 2. Segmentation performance of U-Net and VGG16-U-Net for high-

resolution fluorescence movies from a phase contrast microscope. (a-e) 

Comparison between U-Net and VGG16-U-Net for training curves (a),  dice 

coefficients (b), precision (c), recall (d), and F1-Score (e). (f-g) Violin plots of 

the difference between VGG16-U-Net and U-Net in precision, recall, and F1-

Score when the numbers of training frames were 2 ~14 (f) and 18 ~ 26 (g). * 

indicates the statistical significance between the differences of U-Net and 

VGG16-U-Net with p-values, 0.80 (precision in f), 4.1 × 10-83 (recall in f), 1.86 

× 10-65 (F1-Score in f), 0.085 (precision in g), 6.81 × 10-27(recall in g), and 2.6 

× 10-25 (F1-Score in g) respectively by Wilcoxon signed rank test. Error bars: 

95% confidence intervals of mean
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Figure 3. Visualization of segmentation results of U-Net and VGG16-U-Net 

for phase contrast movies of PtK1. (a-b) Examples of overlaid edges of 

ground truth, U-Net, and VGG16-U-Net. The number of training frames: 10. 

(c-d) Overlay of edges (blue, 0s; red, 1000s time points) from U-Net (c) and 
VGG16-U-Net (d). The number of training frames: 26. Bars: 20 mm.
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Figure 4 Segmentation performance of U-Net and VGG16-U-Net for noisy 

high-resolution fluorescence movies. (a-e) Comparison between U-Net and 

VGG16-U-Net for training curves (a),  dice coefficients (b), precision (c), 

recall (d), and F1-Score (e). (f-g) Violin plots of the difference between 

VGG16-U-Net and U-Net in precision, recall, and F1-Score when the 

numbers of training frames were 1 ~14 (f) and 18 ~ 26 (g). * indicates the 

statistical significance between the differences of U-Net and VGG16-U-Net 

with p-values, 3.02 × 10-21 (precision in f), 3.81 × 10-188 (recall in f), 1.87 × 10-

95 (F1-Score in f), and 2.4 × 10-18 (precision in g), 1.59 × 10-193 (recall in g), 

1.7 × 10-121 (F1-Score in g) respectively by Wilcoxon signed rank test. (h-j) 

Effects of the convolutional layers of fixed weight in VGG16 pretrained model 

with varying numbers of training frame on precision (h), recall (i), and F1-

Score (j). The weights of the first three layers of VGG16-3g-U-Net and the 

first four layers of VGG16-4g-U-Net were fixed during the training. (k-m) 

Effects of the numbers of augmented images on precision (h), recall (i), and 

F1-Score (j) when the numbers of training frames were small (2 ~14; left) and 

large (18 ~ 26; right). Error bars: 95% confidence intervals of mean
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Figure 5. Visualization of segmentation results of U-Net and VGG16-U-Net 

for noisy high-resolution fluorescence movies of the leading edge of a PtK1 

cell expressing GFP-mDia1 (the number of training frames: 26). (a-b) 

Examples of overlaid edges of ground truth, U-Net, and VGG16-U-Net. (c-

d) Overlay of edges (blue, 0s; red, 1000s time points) from U-Net (c) and 
VGG16-U-Net (d). Bars: 10 mm.
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Figure 6. Segmentation performance of U-Net and VGG16-U-Net for high-

resolution fluorescence movies of paxillin from a TIRF microscope. (a-e) 

Comparison between U-Net and VGG16-U-Net for training curves (a),  dice 

coefficients (b), precision (c), recall (d), and F1-Score (e). (f-g) Violin plots of 

the difference between VGG16-U-Net and U-Net in precision, recall, and F1-

Score when the numbers of training frames were 2 ~14 (f) and 18 ~ 26 (g). * 

indicates the statistical significance between the differences of U-Net and 

VGG16-U-Net with p-values, 0.0098 (precision in f), 5.98 × 10-27 (recall in f), 

3.90 × 10-12 (F1-Score in f), 0.34 (precision in g), 2.21 × 10-5 (recall in g), and 

0.0063 (F1-Score in g) respectively by Wilcoxon signed rank test. Error bars: 

95% confidence intervals of mean
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Figure 7. Visualization of segmentation results of U-Net and VGG16-U-Net 

for high-resolution fluorescence movies of the leading edge of a PtK1 cell 

expressing paxillin-HaloTag from a TIRF microscope (the number of training 

frames: 26). (a-b) Examples of overlaid edges of ground truth, U-Net, and 

VGG16-U-Net. (c-d) Overlay of edges (blue, 0s; red, 1000s time points) 
from U-Net (c) and VGG16-U-Net (d). Bars: 10 mm.
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