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Abstract

Quantitative live cell imaging has been widely used to study various dynamical processes
in cell biology. Phase contrast microscopy is a popular imaging modality for live cell
imaging since it does not require labeling and cause any phototoxicity to live cells.
However, phase contrast images have posed significant challenges for accurate image
segmentation due to complex image features. Fluorescence live cell imaging has also
been used to monitor the dynamics of specific molecules in live cells. But unlike
immunofluorescence imaging, fluorescence live cell images are highly prone to noise, low
contrast, and uneven illumination. These often lead to erroneous cell segmentation,
hindering quantitative analyses of dynamical cellular processes. Although deep learning
has been successfully applied in image segmentation by automatically learning
hierarchical features directly from raw data, it typically requires large datasets and high
computational cost to train deep neural networks. These make it challenging to apply
deep learning in routine laboratory settings. In this paper, we evaluate a deep learning-

based segmentation pipeline for time-lapse live cell movies, which uses small efforts to


https://doi.org/10.1101/191858
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/191858; this version posted August 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

prepare the training set by leveraging the temporal coherence of time-lapse image
sequences. We train deep neural networks using a small portion of images in the movies,
and then predict cell edges for the entire image frames of the same movies. To further
increase segmentation accuracy using small numbers of training frames, we integrate
VGG16 pretrained model with the U-Net structure (VGG16-U-Net) for neural network
training. Using live cell movies from phase contrast, Total Internal Reflection
Fluorescence (TIRF), and spinning disk confocal microscopes, we demonstrate that the
labeling of cell edges in small portions (5~10%) can provide enough training data for the
deep learning segmentation. Particularly, VGG16-U-Net produces significantly more
accurate segmentation than U-Net by increasing the recall performance. We expect that
our deep learning segmentation pipeline will facilitate quantitative analyses of challenging

high-resolution live cell movies.
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Introduction

Time-lapse microscopy for live cell imaging allows us to access spatiotemporal
information of complex cellular processes. Together with computational image analysis,
it enables quantitative understanding of cellular dynamics'-3. Phase contrast microscopy
is widely used for live cell imaging, since it does not require any labeling and rarely causes
phototoxicity to live cells. Fluorescence microscopy also allows monitoring of the
dynamics of fluorescently tagged molecules in live cells*°. However, live cell images from
these imaging modalities pose numerous challenges regarding image analysis, and
conventional segmentation algorithms such as intensity thresholding® and Canny edge
detection’ do not produce adequate results in many cases. The challenges for cell
segmentation in live cell images are as follows: i) phase contrast images contain complex
image features and halo effects, which significantly reduce the reliability of conventional
image analysis algorithms®19, ii) fluorescence live cell images are usually noisy and low
contrast since the light illumination is minimized for cell viability, and researchers need to
select the cells of low level expression of fluorescent proteins, and photobleaching further
degrades the image qualities, iii) strong local accumulation of fluorescence signals to
subcellular structures such as focal adhesions and membrane-bound organelles, iv)
uneven illumination particularly in TIRF (Total Internal Reflectance Fluorescence)
microscopy make it difficult to threshold images. To resolve these issues, it is necessary
to develop segmentation methods case-by-case, but they are often limited in the accurate
detection of cell boundaries. Therefore, as an initial image analysis step, there is an unmet
need for general, robust, and accurate cell segmentation for reliable and scalable

guantitative analyses on high spatiotemporal resolution microscopy data.

The conventional methods including Otsu method®, Canny Detector’, active contour or
snake-based method!! and PMI method based on mutual Information!? segment images
based on the predefined local or global features. Even if these methods are routinely used
for cell images, they often rely on a set of a priori assumptions about image characteristics,
which tends to be broken in the images of complex features for segmentation. On the
other hand, supervised learning methods based on deep learning achieve a higher

accuracy in image segmentation since features related to edges can be learned from the
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training set. Recently, deep learning (DL) has achieved great success in image
classification'*1> and segmentation?®?°, and demonstrated promising results for cell
image segmentationt’2-25_ Particularly, U-Net'”?! can directly learn nonlinear mappings
from raw images to the labeled segmented images by integrating low-level and high-level
image features. However, since these methods were based on deep neural networks, it
is usually necessary to prepare large training datasets. Moreover, the acquisition of high-
resolution live cell movies is particularly labor-intensive since high numerical aperture
objective lenses have narrow field of views, limiting data throughput. Training a deep
neural network with large datasets also requires substantial computational resources and
time. These make it challenging for cell biologists to take advantage of deep learning for

cell segmentation in their routine laboratory settings.

In this paper, we evaluated a deep learning-based segmentation pipeline for time-lapse
live cell movies, which leverages the temporal coherence of time-lapse image sequences.
We trained deep neural networks using a small portion of images in the movies, and then
predict cell edges for the entirety of image frames of the same movies. To test this pipeline,
we employed the conventional U-Net and the transfer learning-based VGG16-U-Net,
which integrates VGG16% pretrained model with the U-Net decoder structure. We found
that live cell movies from various imaging modalities could be accurately segmented by
VGG16-U-Net by labeling only 5~10% of the whole image frames, which increases the
usability of deep learning in cell segmentation. This allows us to use deep learning for
routine segmentation of high resolution live cell movies using low-end computational

resources with a smaller training set size.
Results
Deep leaning pipelines for the segmentation of live cell movies

DL approaches to image segmentation have been focused on static cell images?%2226,
which requires manually labeling large training sets for effective training. Building large
training dataset for live cell imaging is difficult since live cell experiments usually have low
data throughput. Particularly, the throughput of live cell imaging of high spatiotemporal
resolution is even more limited due to the small field of view of objective lenses with high

numerical aperture. Also, for accurate segmentation, high fidelity training sets are
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required, substantially increasing the cost of data labeling. To overcome these challenges,
we hypothesized that we can significantly reduce the burden of the training set
preparation if we prepare training dataset per each movie, considering the coherence of
image frames within the same time lapse movies. Therefore, we tested generating
training dataset only within the frames of the total frames from a single movie provided
enough data to train a deep neural network (DNN) to predict cell edges from movies with

high spatiotemporal resolutions.

In this paper, we established a DL pipeline for cell segmentation of live cell movies (Fig.
1). For the training (Fig. 1a, see Methods for details), we first randomly selected a small
number of training frames from time-lapse movies, and label cell edges. Then, we
preprocessed the raw training images. To prepare the training set, we cropped large
numbers of images patches (128X128 pixels) from the preprocessed training images. 60%
of the cropped images contained cell edges (red boxes Fig. 1a) and 40% were randomly
chosen from inside and outside of the cell (blue boxes in Image Cropping in in Fig. 1a).
Then, we randomly split the data into training and validation sets with an 80:20 ratio,
followed by the standard data augmentation. For neural network training, we employed
the standard VGG16-U-Net or U-Net!’ in our DL pipeline. In VGG16-U-Net, we replaced
the encoder of U-Net with VGG16 pretrained model*4. This transfer learning approach
where feature information from input data is extracted using the pre-trained networks and
subsequently transfer the information to down-stream neural networks has been applied
in other DL-based segmentation (FCN'6, DeepEdge'®, TernausNetV2??) and
classification?®-3>, After the training was complete, the neural network was used for
segmentation tasks (Fig. 1b); the entire images of movies were pre-processed and
entered as input for segmentation. Finally, the edges were extracted from the predicted

regions.
DL-based cell edge detection in phase contrast live cell movies.

To quantitatively assess the effectiveness of our DL pipeline, we used five phase contrast
movies of migrating PtK1 cells acquired by a spinning disk confocal microscope for 200
frames at 5 sec/frame. To test our DL pipeline for these movies, we prepared the training

set by manually segmenting cell edges every five frames in these movies. We trained our
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pipeline using U-Net and VGG16-U-Net using the augmented datasets. To assess their
performance, we trained each neural network using single movies with varying numbers
of randomly selected training frames. We increased the number of training frames from 2
to 26. First, the training curve of binary cross-entropy loss function with eight training
frames (Fig. 2a) showed that both U-Net and VGG16-U-Net had minimal overfitting.
VGG16-U-Net converged faster in the training process and the final loss values are
smaller than U-Net. Also, we measured the Dice coefficients, Precision, Recall, and F1-
Score for each training session and calculated their mean values. The Dice coefficients
demonstrated that the segmentation accuracy of VGG16-U-Net was high regardless of
the number of frames used for the training in this dataset and the Dice coefficients from
VGG16-U-Net were consistently higher than those of U-Net (Fig. 2b). We also quantify
precision, recall, and F1-Score to specifically assess the accuracy of edge localization
(see the method). As demonstrated in Fig. 2c-e, the performances of both U-Net and
VGG16-U-Net increased as more training frames were added and started to saturate
around 10 training frames. Although the precision values of U-Net and VGG16-U-Net are
guite similar when the numbers of the training frames were more than 6 (Fig. 2c), VGG16-
U-Net produced consistently better recall, and F1-Score than U-Net regardless of the
numbers of training frames (Fig. 2d-e). When the number of training frames was small
(2~14) (Fig. 2f) and high (18 ~ 26) (Fig. 29), the recall and F1-Score of VGG16-U-Net
were significantly higher than those of U-Net by Wilcoxon signed rank test (see the p-

values in the figure legends).

We also visually confirmed that both VGG16-U-Net and U-Net produced reasonably good
edge localization (Fig. 3a-b). Although VGG16-U-Net was better for segmenting
retraction fibers than U-Net, both of them are limited in localizing the edges of thin
retraction fibers accurately (Insets in Fig. 3a-b), consistent with the fact that the recall
values were smaller than the precision (Fig. 2c-d). We also visualized the time evolution
of edges of the entire movie frames. Both U-Net and VGG16-U-Net showed a smooth
progression of edge localization. But, in comparison to U-Net, VGG16-U-Net detected
much fewer floating debris. Even if one can readily remove these small objects by post-
processing, it further demonstrates that VGG16-U-Net has better generalizability than U-
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Net. Taken together, we demonstrated that we can use a small portion of training frames
to segment all time-lapse movies if the trained model is applied within the same movies.

DL-based cell edge detection in noisy fluorescence live cell movies.

To test our DL pipeline for fluorescence microscopy, we used 13 dual-color fluorescence
movies of GFP-mDial and SNAP-tag-TMR-actin in migrating PtK1 cells acquired by a
spinning disk confocal microscope for 200 frames at 5 sec/frame. These cells expressed
low levels of GFP-mDial, which made the images highly noisy, while the high contrast
images of SNAP-tag-TMR-actin were adequate for the conventional image thresholding
for the segmentation for the labeling purpose (see Methods for the segmentation
procedure). By thresholding actin images, we automatically labeled the edges for entire
200 image frames. The inputs of the training sets were the GFP-mDial image patches
and the outputs were the segmented image patches from SNAP-tag-TMR-actin. The
training curve of binary cross-entropy loss function demonstrated that both U-Net and
VGG16-U-Net converged rapidly with minimal overfitting in the training process (Fig. 4a).
The Dice coefficients demonstrated that the segmentation accuracy was high regardless
of the number of frames used for the training in this dataset and the Dice coefficients from
VGG16-U-Net were consistently higher than those of U-Net (Fig. 4b). In terms of specific
edge localization, both U-Net and VGG16-U-Net produced high precision, recall, and F1-
score when the number of training frame were more than six (3% of the entire frames)
(Fig. 4c-e). As more training image frames were added, the recall and F1-Score slowly
increased and saturated around 20 frames. Interestingly, U-Net produced slightly but
significantly better precision of edge localization than VGG16-U-Net (Fig. 4c and f-g).
However, the greater recall performance of VGG16-U-Net made VGG16-U-Net
outperform U-Net in terms of F1-Score (Fig. 4d-g; Wilcoxon signed rank test, see the p-

values in the figure legends).

Using this dataset, we further analyzed the roles of the VGG16 features (Fig. 4h-j). We
used the VGG16 features only on the first-to-third (VGG16-3g) or the first-to-forth
(VGG16-49g) convolution layers. We found that this partial usage of of the pretrained
VGG16 features produced the results similar to VGG16-U-Net, suggesting that the low-
level features of VGG16 play more important roles than the high-level features. To further
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investigate the effects of training data size, we systematically increased the numbers of
augmented images (Fig. 4k-m). We found that the size of the augmented data
systematically increased the recall performance of U-Net when the number of training
frames were small (2 ~ 14frames) (Fig. 4l). This suggests that U-Net has a limited recall

ability of edge localization when the size of training set is small.

The visual inspection of predicted edges suggested that overall performance of U-Net
and VGG16-U-Net was good in this noisy live cell movies (Fig. 5a-b). There existed some
edges where the ground truth from the intensity thresholding and the prediction from U-
Net and VGG16-U-Net did not match well. Consistently with the results of the phase
contrast images, the retraction fibers were usually not identified by both U-Net and
VGG16-U-Net (Inset 1 in Fig. 5a). When we overlaid the time evolution of predicted cell
edges, the edges from U-Net and VGG16-U-Net produced smooth temporal edge
changes (Fig. 5c-d).

DL-based cell edge detection in TIRF live cell movies.

Next, we tested our DL pipelines using more complex fluorescence live cell movies of
paxillin-HaloTag-TMR, a marker of cell-matrix adhesions from a TIRF microscope. While
these movies have higher contrast and less noise than the previous GFP-mDial movies,
they have several technical challenges as follows: i) high intensity signals of paxillin
accumulated in focal adhesions make the segmentation difficult particularly for intensity
threshold-based methods, ii) the nonuniform light illumination of a TIRF microscope incurs
additional issues for the segmentation, iii) the leading edge of cells could leave the thin
TIRF illumination, resulting in less visible cell edges. To test our DL pipeline for these
movies, we prepared the training set by manually segmenting the cell edges as we did in
the phase contrast images. As shown in the loss curves in training and validation sets
(Fig. 6a), VGG16-U-Net was able to achieve the better performance in both training and
validation with much less training epochs than U-Net. Also, VGG16-U-Net showed greater
dice coefficient, precision, recall and F1-Score regardless of the number of labeled image
frames (Fig. 6a-e), and their behaviors were highly consistent with the results from the
phase contrast images. When the number of training frames was small (2~14) (Fig. 6f)
and high (18 ~ 26) (Fig. 69), the recall and F1-Score of VGG16-U-Net were significantly
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higher than those of U-Net by Wilcoxon signed rank test (see the p-values in the figure
legends), whereas the difference of the precision were marginal or not significant.

We also visually confirmed that VGG16-U-Net produced the better results than U-Net as
there are more magenta edges than cyan ones (see the inset 1 and 2 in Fig. 7a and inset
1 in Fig. 7b). In the case where the predicted edges did not match with the manually
prepared ground truth (inset 2 in Fig. 7b), the predicted edges were usually located at the
region where the intensity changes most significantly, whereas the ground truth edge can
be on more faint boundaries. When we plotted time evolution of cell edges in VGG16-U-
Net and U-Net, both neural networks produced smooth spatiotemporal edge changes (Fig.
7c-d).

Discussion

Live cell imaging became a fundamental tool to study dynamic biological processes such
as cell migration, cell division, endocytosis, and organelle dynamics. Since segmentation
is the initial step of image analysis, accurate and effective segmentation of live cell images
is crucial particularly for edge velocity measurement36-3°, In this paper, based on the
temporal coherence of time-lapse image sequences, we established a DL pipeline for the
segmentation of live cell time-lapse movies. We also demonstrated that the pretrain
model-based VGG16-U-Net is more effective than U-Net, particularly for the recall
performance. The pretrained models such VGG16 or VGG19 trained on natural images
in ImageNet database have been widely used for transfer learning?®-3. In this framework,
we evaluated the performance of VGG16 feature extractor to various live cell microscopy
images. We confirmed that the image descriptors from VGG16 were highly effective in

predicting accurate cell edges, and required less epochs for training.

Building up the training set across various movies with different cell types, molecules, and
experimental/imaging conditions will require tremendous human labors, which is difficult
for small individual laboratories. In this paper, we demonstrated that building the neural

network models for specific time-lapse movies produces accurate edge localization with
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much less training sets and computational resources than expected, particularly when we
use a transfer learning approach. We expect that this approach may not be limited to time
lapse movies. For example, the cell images from the same batch with the same imaging
conditions may forgo the requirement of large training sets. Therefore, we expect that our
DL pipeline may accelerate the adoption of deep learning techniques by the cell biology

community.
Methods

Data Collection. Cell culture and live cell imaging procedures were followed according
to previous studies®®. PtK1 cells were cultured in Ham’'s F12 medium (Invitrogen)
supplemented with 10% FBS, 0.1 mg ml~! streptomycin, and 100 U mI~* penicillin. Cells
were then imaged at 5 s intervals for 1000 s using 0.45 NA Super Plan Fluor ELWD 20XC
ADM objective for phase contrast imaging and 60X, 1.4 NA Plan Apochromat objective
for fluorescence spinning disk confocal imaging, 1.49NA Apochromat TIRF 100XC for

fluorescence TIRF imaging.

PtK1 cells were transfected with the DNA constructs of GFP-mDial and SNAP-tag-actin
or paxilin-HaloTag using Neon transfection system (Invitrogen) according to the
manufacturer’s instructions (1 pulse, 1400V, 20 ms) and were grown on acid-washed
glass #1.5 coverslips for 2 days before imaging. Prior to imaging, expressed SNAP-tag-
actin or paxilin-HaloTag proteins were labeled with SNAP-tag-TMR (New England
BioLabs) or HaloTag-TMR (Promega) ligands respectively according to the
manufacturers’ instructions. All imaging was performed in imaging medium (Leibovitz’s L-
15 without phenol red, Invitrogen) supplemented with 10% fetal bovine serum (FBS),
0.1 mgml™ streptomycin, 100 Uml™* penicillin, 0.45% glucose, 1.0Uml' Oxyrase
(Oxyrase Inc.) and 10 mM Lactate. Cells were then imaged at 5s intervals for 1000 s.
PtK1 cells were acquired from Gaudenz Danuser lab. They were routinely tested for

mycoplasma contamination.

All microscopy except for TIRF microscopy (described elsewhere38) was performed using
the set up as follows: Nikon Ti-E inverted motorized microscope (including motorized
focus, objective nosepiece, fluorescence filter turret, and condenser turret) with integrated

Perfect Focus System, Yokogawa CSU-X1 spinning disk confocal head with manual

10
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emission filter wheel with Spectral Applied Research Borealis modification, Spectral
Applied Research custom laser merge module (LMM-7) with AOTF and solid state 445 nm
(200 mW), 488 nm (200 mW), 514 nm (150 mW), 561 nm (200 mW), and 637 nm (140 mW)
lasers, Semrock 405/488/561/647 and 442/514/647 dichroic mirrors, Ludl encoded XY
stage, Ludl piezo Z sample holder for high speed optical sectioning, Prior fast transmitted
and epi-fluorescence light path shutters, Hamamatsu Flash 4.0 LT sCMOS camera, 37 °C
microscope incubator enclosure with 5% CO2 delivery (In Vivo), Molecular Devices

MetaMorph v7.7, TMC vibration-isolation table.

Data Labeling. We collected five videos of PtK1 cells from a phase contrast microsope
and seven videos of PtK1 cells expressing paxilin-HaloTag from a TIRF microscope. Each
video contained 200 frames. We manually labeled the cell boundary every five frames
based on the experiences of phase contrast and TIRF miscroscopy, which provided us
with 40 labeled frames for each video for training and testing. We also collected 13 dual-
color videos of PtK1l cells expressing GFP-mDial and SNAP-tag-actin. Since actin
images had good contrast along the cell boundary, we applied intensity thresholding to
prepare the ground truth segmentation for GFP-mDial video. For each actin image, we
applied Non-local Means method implemented in ImageJ for denoising (sigma = 15 and
smoothing_factor =1). Then, we manually selected the optimal threshold to segment all
the frames. After that, we visually checked all masks and re-adjusted the threshold for
better segmentation. The resulting binary masks were manually used as the ground-truth
for GFP-mDial fluorescence videos.

Pre-processing. Fluorescence live images usually have poor constrast in comparison to
phase contrast images. Therefore, in order to provide images with better contrast with
neural network training, raw fluorescence images were pre-processed as follows (no

preprocessing was applied to phase contrast images):

1) For each video, all the pixel values were collected from the labelled frames. Then, we

calculated the mean p and the standard deviation & of pixel values.

2) We replaced the pixel values x; ; with the follows values when they are less than p —

28 or greater than p + 36.

11
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_{H—ZS, xi’j<u—25
Xij = n+ 39, Xij = H+38

3) We applied the min-max normalization to rescale the pixel ranges to [0, 255].

Jui = 255 Xij— min(xi_j)
ij =

max(xi’ j) — min(x; j)

Training Dataset Preparation. We randomly selected the specified number of training
frames from a live cell movie and the corresponding labeled segmented images. Then,
we randomly cropped 200 patches (128X128 pixels) from each frame. The 60% of the
cropped patches contains the edge boundary and 40% constains only foreground or
background. The mean and standard deviation of collected image patches are calculated

for further normalization.

After preprocessing, the standard data augmentation process was applied using the
ImageDataGenerator implemented in Keras package. The parameters in the
ImageDataGenerator for the data augmentation is as follows: rotation_range=50.,
width_shift_range=0.1, height_shift range=0.1, shear_range=0.1, zoom_range=0.1,

horizontal_flip=True, vertical_flip=True, fill_mode="reflect'.

The default number of augmented images was 6400 (50x128). When we evaluated the
model performance by the number of augmented data, we varied the numbers from 1280
(10x128) to 8960 (70x128). After the augmentation, we pooled the cropped samples and
augmented samples and randomly splitted them into the training (80%) and (20%)

validation sets.

VGG16-U-Net Architecture. The VGG16-U-Net consists of an encoder and a decoder.
In the encoder, the same structure of VGG-16 is applied, which contains five convolutional
layers, each of which contains a different number of convolution and max-pooling
operations with the depth of 64-128-256-512-512. The weights of the encoder are
transferred and fixed from the VGG16 trained with ImageNet database. In the decoder,
four deconvolution layers by up-sampling operations with the depth of 512-256-128-64-1
integrate the edge information directly extracted from the image as a lower level and

reconstruction from region information as a higher level, as suggested in the original U-
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Net. Our framework takes advantage of the VGG16 pretrained model to extract useful
features. In the convolution operation, the zero-padding strategy is applied to make the
same size after convolution for convenience. The size of input patch is 128x128. The size
of the convolutional filter is 3x3, and the size of max-pooling is 2x2 while that of up-pooling
is 2x2 to fit the size of convolution. In order to eliminate the boundary effects of zero-

padding, we cropped the central parts of output segmented images with the size of 68x68.

In the prediction step, since U-Net and VGG16-U-Net are fully convolutional, we used the
entire image without cropping as inputs to obtain predicted segmentation images. This
prediction using entire images eliminates the boundary effects due to image cropping.
The entire images were padded with 30-pixel width and height for inputs using the
copyMakeBorder function in OpenCV package and then the padded regions were

removed from the predicted output images.

Neural Network Training. The binary cross-entropy was used as a loss function for
training. Adam was used as an optimizer, and the initial learning rate was 10-°, and other
parameters were default values in the Keras. To avoid overfitting, we used the early
stopping. We stopped the training when the validation loss did not decrease 0.0001 in
consecutive three epochs. The maximum epoch was 30, and the batch size was 64. When
the training process was finished, the model weights were saved for further analysis. The
neural network training was performed using Keras with TensorFlow backend on NVIDIA
GTX 1080Ti or Titan X.

Performance evaluation of edge localization. We used the labelled data which are not
included in the training process (training/validation sets) for the performance evaluation.
We generated the binarized mask images by threshoding the softmax output images
using the im2bw (MATLAB) function with the threshold value of 0.5. After we filled the
small holes in the binarized mask using the imfill (MATLAB) function, we extracted the
regions with the maximum area. Then, we generated edge images using the
bwboundaries (MATLAB) function. The edge images were predicted for all the image
frames including the labeled and unlabeled images. We used the predictions of labeled
images not used for training to evaluate the performance of edge localization and those

of whole image frames for visualization of edge progression.
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We calculated Dice coefficients to evaluate the segmentation performance along the edge
boundary as follows. First, we dilated the labeled edge masks with the kernel size 64 to
generate the dilated edge masks using dilate function in OpenCV. Then, we applied
binary AND operation between the dilated edge masks and the masks of the ground truth
and the predicted masks from U-Net and VGG16-U-Net using the bitwise_and function in
OpenCV package. After that, we calculate the Dice coefficient between the ground truth
and the predictions for each image frame using the following formula (|A N B| : the
common elements between sets A and B, |A| and |B| : the number of elements in set A
and B).

2|ANB|

DiCQ(A,B) = m

To specifically assess the accuracy of edge localization, we matched DL-generated
edges and labeled edges by bipartite matching using the customed package implemented
in Berkeley Segmentation Benchmark?®4!, with the search radii (Phase Contrast: 13
pixels; Confocal 10 pixels, TIRF: 5 pixels). The DL generated edge pixels that do not
match with labelled edges are considered as false positives. Using this information, we
calculate precision, tp/(tp + fp) and recall, tp/(tp + fn) to specifically assess the
accuracy of edge localization (tp: # of true positives, fp: # of false positives, fn: # of false
negatives), and estimate an F1-Score in each frame. The statistical testing of ther

performance measures was performed by Wilcoxon signed rank test.
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Figure 1. Deep learning pipeline of edge segmentation of live cell movies
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Figure 2. Segmentation performance of U-Net and VGG16-U-Net for high-
resolution fluorescence movies from a phase contrast microscope. (a-e)
Comparison between U-Net and VGG16-U-Net for training curves (a), dice
coefficients (b), precision (c), recall (d), and F1-Score (e). (f-g) Violin plots of
the difference between VGG16-U-Net and U-Net in precision, recall, and F1-
Score when the numbers of training frames were 2 ~14 (f) and 18 ~ 26 (g). *
indicates the statistical significance between the differences of U-Net and
VGG16-U-Net with p-values, 0.80 (precision in f), 4.1 x 10-83 (recall in f), 1.86
x 1095 (F1-Score in f), 0.085 (precision in g), 6.81 x 10?’(recall in g), and 2.6
x 10-25 (F1-Score in g) respectively by Wilcoxon signed rank test. Error bars:
95% confidence intervals of mean
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Figure 3. Visualization of segmentation results of U-Net and VGG16-U-Net
for phase contrast movies of PtK1. (a-b) Examples of overlaid edges of
ground truth, U-Net, and VGG16-U-Net. The number of training frames: 10.
(c-d) Overlay of edges (blue, Os; red, 1000s time points) from U-Net (c) and
VGG16-U-Net (d). The number of training frames: 26. Bars: 20 um.
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Figure 4 Segmentation performance of U-Net and VGG16-U-Net for noisy
high-resolution fluorescence movies. (a-e) Comparison between U-Net and
VGG16-U-Net for training curves (a), dice coefficients (b), precision (c),
recall (d), and F1-Score (e). (f-g) Violin plots of the difference between
VGG16-U-Net and U-Net in precision, recall, and F1-Score when the
numbers of training frames were 1 ~14 (f) and 18 ~ 26 (g). * indicates the
statistical significance between the differences of U-Net and VGG16-U-Net
with p-values, 3.02 x 102! (precision in f), 3.81 x 10188 (recall in f), 1.87 x 10
9% (F1-Score in f), and 2.4 x 10-18 (precision in g), 1.59 x 10-193 (recall in g),
1.7 x 10-121 (F1-Score in g) respectively by Wilcoxon signed rank test. (h-j)
Effects of the convolutional layers of fixed weight in VGG16 pretrained model
with varying numbers of training frame on precision (h), recall (i), and F1-
Score (j). The weights of the first three layers of VGG16-3g-U-Net and the
first four layers of VGG16-4g-U-Net were fixed during the training. (k-m)
Effects of the numbers of augmented images on precision (h), recall (i), and
F1-Score (j) when the numbers of training frames were small (2 ~14; left) and
large (18 ~ 26; right). Error bars: 95% confidence intervals of mean
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Figure 5. Visualization of segmentation results of U-Net and VGG16-U-Net
for noisy high-resolution fluorescence movies of the leading edge of a PtK1
cell expressing GFP-mDial (the number of training frames: 26). (a-b)
Examples of overlaid edges of ground truth, U-Net, and VGG16-U-Net. (c-
d) Overlay of edges (blue, Os; red, 1000s time points) from U-Net (c) and
VGG16-U-Net (d). Bars: 10 um.
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Figure 6. Segmentation performance of U-Net and VGG16-U-Net for high-
resolution fluorescence movies of paxillin from a TIRF microscope. (a-e)
Comparison between U-Net and VGG16-U-Net for training curves (a), dice
coefficients (b), precision (c), recall (d), and F1-Score (e). (f-g) Violin plots of
the difference between VGG16-U-Net and U-Net in precision, recall, and F1-
Score when the numbers of training frames were 2 ~14 (f) and 18 ~ 26 (Q). *
indicates the statistical significance between the differences of U-Net and
VGG16-U-Net with p-values, 0.0098 (precision in f), 5.98 x 10-27 (recall in f),
3.90 x 10'*? (F1-Score in f), 0.34 (precision in g), 2.21 x 10 (recall in g), and
0.0063 (F1-Score in g) respectively by Wilcoxon signed rank test. Error bars:
95% confidence intervals of mean
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Figure 7. Visualization of segmentation results of U-Net and VGG16-U-Net
for high-resolution fluorescence movies of the leading edge of a PtK1 cell
expressing paxillin-HaloTag from a TIRF microscope (the number of training
frames: 26). (a-b) Examples of overlaid edges of ground truth, U-Net, and
VGG16-U-Net. (c-d) Overlay of edges (blue, Os; red, 1000s time points)
from U-Net (c) and VGG16-U-Net (d). Bars: 10 um.
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