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ABSTRACT: Cédl membranes contain hundreds of different proteins and lipids in an asym-
metric arrangement. Understanding the lateral organization principles of these complex mixtures
is essential for life and health. However, our current understanding of the detailed organization
of cell membranes remains rather elusive, owing to the lack of experimental methods suitable for
studying these fluctuating nanoscale assemblies of lipids and proteins with the required spatio-
temporal resolution. Here, we use molecular dynamics simulations to characterize the lipid envi-
ronment of ten membrane proteins. To provide arealistic lipid environment, the proteins are em-
bedded in a model plasma membrane, where more than 60 lipid species are represented, asym-
metrically distributed between leaflets. The simulations detail how each protein modulates its
local lipid environment through local lipid composition, thickness, curvature and lipid dynamics.
Our results provide a molecular glimpse of the complexity of lipid-protein interactions, with po-

tentially far reaching implications for the overall organization of the cell membrane.
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Introduction

Lipids and proteins are the major components of all biological membranes, which play cru-
cia roles with respect to the structure and function of the cell. The hydrophilic headgroup and
the hydrophobic acyl tails of lipids allow their assembly into lamellar structures, thus separating
the interior from the exterior of the cell, as in the case of the plasma membrane, or segregating
different intracellular compartments from the cytosol. Membrane proteins carry out alarge varie-
ty of functions. Integral membrane proteins can act as receptors, involved in signal transduction,
or as channels or transporters, thus involved in the transfer of solutes from one side of the mem-
brane to the other. Membrane proteins can also promote the interaction between cells, intracellu-
lar compartments or large macromolecular complexes, or can act as enzymes.

A complex lipid-protein interplay takes place in the membrane.* Lipids do not simply pro-
vide the matrix were proteins are embedded but can actively participate to the regulation of pro-
tein activity, trafficking and localization.? Proteins, on the other hand, do shape lipids by induc-
ing membrane deformations and lipid sorting mechanisms.>* The complexity of such interplay is
also a consequence of the large variety of lipid types and their asymmetric distribution found in
biological membranes.? Thus, lipid-protein interplay occurs via multiple mechanisms, which in-
clude interactions that can be (i) specific, where a clear binding site for a given lipid or
headgroup can be identified, or (ii) non-specific, where lipids act as a medium and physical
properties like thickness, fluidity, or curvature regulate protein function.*>

The characterization of lipid-protein interactions provides crucia details for a better under-
standing of the biological activity of a given membrane protein. In the last few decades, several
experimental and computational techniques have been used to answer questions related to the
identification of lipid binding sites on the protein surface, the type of lipids found associated with
the protein, and how such lipids influence protein function.® X-ray crystallography and eectron
crystallization have identified a number of lipids strongly bound to proteins as these lipids have
to survive the crystallization process.”*° Lipid binding to membrane proteins and the local lipid
composition in proximity of the protein can also be studied using fluorescence methods.**** Bio-
physical studies of lipid-protein interactions have aso used nanodiscs, discoidal membranes with
a diameter of 8-17 nm enclosed by helical scaffolding proteins, which alows controlling the
lipid composition.**** Recently, the application of detergent-free approaches that use specific
copolymers to extract proteins and native lipids into nanodiscs has provided a new tool to char-
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acterize the lipid environment of a given membrane protein.'® Quantitative analysis and identifi-
cation of native lipid species tightly associated with membrane proteins can be achieved via
mass-spectroscopy, where lipid-protein complexes can be solubilized in non-ionic detergents to
provide resistance to the electron spray ionization step, thus allowing for stable complexesin gas
phase.'” These techniques focus on strong interactions and although some are qualitative, they do
not give high spatial resolution.

Computer simulations have also been extensively used to study membranes and membrane
proteins systems at an atomistic or near atomistic level of detail.**?? Such simulations describe in
detail the motion of lipids, proteins and other particles, as well as their interactions, providing
information on the structure, dynamics and thermodynamics of the system. Molecular dynamics
(MD) simulations that use coarse-grained (CG) models such as the Martini force field®® are now
routinely applied not only to study physical properties of lipid bilayers, but also to investigate

18, 23-25
).

specific and non-specific lipid-protein interactions (reviewed in Membrane proteins are

now simulated not only in controlled lipid environments that match the lipid composition used in

experiments, but also in more realistic bilayers that mimic the natural lipid environment.>
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In this paper we use CG MD to study the lipid distribution and membrane properties of a
complex plasma lipid mixture® and representatives of ten diverse plasma membrane protein
families (). The proteins considered are: aguaporin 1 (AQP1), prostaglandin H2 synthase
(COX1), dopamine transporter (DAT), epidermal growth factor (EGFR), AMPA-sensitive glu-
tamate receptor (GluA2), glucose transporter (GLUT1), voltage-dependent Shaker potassium
channel 1.2 (Kv1.2), sodium, potassium pump (Na,K-ATPase), 6-opioid receptor (6-OPR), and
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92 P-glycoprotein (P-gp). These proteins include transporters, channels, enzymes, and receptors,
93  and represent different quaternary structures and sizes, as well as monotopic membrane proteins.
94  Asshown in Error! Reference source not found., the actual smulation system contains four
95  copies of the same protein, to increase statistics in a computationally efficient way and to have
96  an additional estimate of statistical errors independent of time correlations. Error! Reference
97  source not found. also shows the general set up with a complex asymmetric lipid mixture con-
98  sisting of more than 60 lipid types.®
99 Based on 30 us simulations for each system (Figure 2 - Figure Supplements 1-3), we describe
100  thedistinctive nature of the lipid environment surrounding each protein, analyzing lipid distribu-
101 tion, cholesterol dynamics, and membrane properties including thickness and curvature. The re-
102 sults show arich variety of lipid-protein interactions and protein effects on membrane physics,
103 emphasizing the importance of not just tightly-bound lipids but the overall structure of the lipid-

104 protein matrix.

Figure 2. System setup and lipid composition. (A)
For a given system, four protein molecules are placed

. in a simulation box of ca. 42 x 42 nmin x and y. Lip-
Upper leaflet Lower leaflet

115 ids, water and ions are added using insane.* For clar-

CHOL ®PC ity, the setup is shown as a two-steps process. (B)
Others ®SM
PE "PS
“pPIPs  EGM> per and lower leaflet, color-coded asin A.

Lipid composition of the main headgroup types in up-

119 Results


https://doi.org/10.1101/191486
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/191486; this version posted September 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

120 Annular lipid shells have unique lipid compositions. To analyze the lipid surroundings of
121 each protein, we calculated 2D lateral density maps (see Methods), averaged over the four copies
122 of the protein present in the simulation cell and considering the last 5 us of the trgjectory. Given
123 the complex composition of our membrane, we grouped the lipids into four major classes, i.e
124 poly-unsaturated (PU) lipids, fully-saturated (FS) lipids, cholesterol (CHOL), and all remaining
125  lipids (Others). The PU, FS, and CHOL density maps are shown in Figure 3 for all the proteins,
126 averaged over the four protein molecules of each system. The full set of data for all systemsis
127 shown in Figure 3- Figure Supplement 1 (PU, FS, CHOL groups) and 2 (Others group). We ob-
128  serve arich spectrum of possible modes of interactions. These include non-specific binding, as
129  shown, for example, by the broad distribution of PU and FS lipids found, in both |eaflets, near
130 many proteins, including AQPL, DAT, EGFR, GluA2, GLUT1, Na,K-ATPase and 5-OPR. The-
131 se features are somewhat leaflet-specific as they depend on protein structure and lipid composi-
132 tion, both of which are asymmetric. In the upper leaflet, for example, we notice regions of strong
133 FS enrichment in contact with the proteins. Such regions are usually more localized than PU en-
134 riched regions and are often coupled with smaller, yet still highly localized, FS enriched regions
135 inthelower leaflet. This behaviour can be seen for AQP1, DAT, EGFR, 6-OPR, and even for the
136 monotopic COX1, which is only partially embedded in the upper leaflet. The size and shape of
137 FS lipid regions differ from protein to protein, and in many cases create a discontinuous ring
138 around the transmembrane domains, as in the case of AQP1, GluA2, and Kv1.2, which are
139  homotetramers. In the lower leaflet, PU enrichment is often observed near the proteins, and par-
140 ticularly noticeable around, for example, DAT, GluA2, GLUT1, and Na,K-ATPase. Some pro-
141 teins clearly induce a sharp partitioning of the different lipid classes. Thisis the case for GIuA2
142 and PU lipids in the lower leaflet, or P-gp, where in the upper |leaflet we observe a clear distinc-
143 tion between the side of the transmembrane domains in contact with PU lipids and the side in
144 contact with FS lipids, while in the lower leaflet there is an obvious preference for PU lipids.
145  Kv1.2 is another striking example of how the same lipid class (PU) can be asymmetrically dis-
146 tributed between leaflets, and symmetrically distributed around the protein within the same leaf-
147 let, due to the homo-tetrameric nature of the channel and possibly linked to a more specific type
148 of binding.
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150  Figure 3 Lipid density distribution. Lipid density analysis of the poly-unsaturated (PU), fully-saturated (FS), and
151 cholesterol (CHOL) classes. The lipid density is represented by x and y 2D maps, averaged between 25 to 30 us and
152 over the four protein molecules of a given system. The maps are colored by relative enrichment (red) or depletion


https://doi.org/10.1101/191486
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/191486; this version posted September 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

153  (blue), calculated with respect to the average (white) density of a given class. The portion of the protein intersecting

154 the wupper and lower surfaces used for the caculation is shown in  yellow ribbons.

155 M onotopic proteins are also capable of inducing a clear separation in the distribution of lipid
156 classes, even in the leaflet they are not directly bound to. For COX1, for example, in the lower
157 leaflet the enrichment of PU lipids stands against the depletion of FS lipids and CHOL under-
158 neath the protein, partially embedded only in the upper leaflet. In addition to a non-specific,
159  broad distribution of lipid classes, we detect example of specific binding, especialy for the
160  CHOL class. CHOL is the most represented component of the plasma membrane mixture, thus
161 associated with a more even distribution compared to the PU and FS classes. However, the cor-
162 responding CHOL-2D density maps reveal site of specific cholesterol binding. AQP1, for exam-
163 ple, clearly shows very specific binding of cholesterol at the interface between monomers, but an
164  indication of specific cholesterol binding can be detected in DAT, GLUTL, Kv1.2, Na,K-ATPase
165  and 8-OPR aswell. Overal, many of the features described above, which are obtained from 5 ps
166 time windows averaging, can be seen at different timescales, as shown in the movie files repre-
167 senting the lipid distribution of the AQP1 system at different averaging times (200 ns and 2000
168 ns(movies S1-S2).

169 According to the analysis discussed above, each protein is associated with a unique lipid dis-
170 tribution. However, common features can be detected, as, for example, regions near the proteins
171 enriched in FSlipids in the upper leaflet, the accumulation of PU lipids around most proteins, or
172 confined regions of cholesterol binding. We further investigated the presence, across the sys-
173 tems, of patterns in lipid distribution by (i) considering the lipid composition of the first lipid
174 shell surrounding the protein (within a 0.7 nm cutoff), and (ii) by quantifying the enrichment (or
175 depletion) in a given lipid class in the immediate proximity of the proteins using the depletion-
176 enrichment (D-E) index analysis.

177 As the size of the protein transmembrane domains is different from protein to protein, the to-
178 tal number of lipids found within the first lipid shell varies from ca. 32 as in EGFR (whose
179 transmembrane domain consists of only two helices) to ca. 78 for AQP1 and ca. 95 for Kv1.2

180  (which aretetrameric proteins) (Error! Reference sour ce not found.).
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B AQP1 (Tot: 78.0+0.3)

GLUT1 (Tot: 47.4+0.3)

COX1 (Tot: 45.4+0.8) Kv1.2 (Tot: 95.3+0.3)

DAT (Tot: 52.7+0.8) Na,K-ATPase (Tot: 47.4+1.0)

EGFR (Tot: 32.8£0.3)

GIuA2 (Tot: 56.7+2.0)

CHOL ®PC  “PE  =®PS

PA  SDAG SLPC  “SM

181 "CER “PI "PIPs  =GM
182

183  Figure 4. First lipid shell composition. (A) Snapshots of the upper lesflet of the AQPL, COX1, Kv1.2 and P-gp
184 system and the side view (with lipids clipped for clarity) of two of the four protein molecules to show the lipids ar-
185  rangement around the proteins transmembrane domains. (B) Pie charts showing the lipid headgroup composition of
186  thefirst lipid shell for the ten system. The total number of lipids found within the selected 0.7 nm cutoff is reported
187  in parenthesis as average number of lipids obtained from the four protein copies of each system (the standard error is
188  reported).
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189 Common to all the lipid shells (averaged over the four protein molecules of a given system)
190  here analyzed is the prevalence of CHOL as well as the presence of GM lipids (with COX1
191 showing the highest GM fraction). The fraction of PC and PE lipids (the most abundant phospho-
192 lipid in the upper and lower leaflet, respectively) changes considerably from protein to protein,
193 with GluA2 and P-gp showing higher content of PE lipids. From the lower leaflet, PIP, Pl and PS
194 lipids contribute to the composition of the lipid shell in asimilar way for many proteins, with the
195  exception of EGFR (where the PIP lipids content is higher than the PI content), COX1 (whichis
196 only partially embedded in the upper leaflet) and GIuA2 (for which the fraction of PIP lipids is
197 dgnificantly smaller than other proteins). DAG and SM lipids can also contribute to smaller frac-
198  tionsof thelipid shell.

199 We then quantified the depletion or enrichment of a given lipid type within this first shell and
200 upto 2.1 nm from the proteins. According to our definition of the D-E index, values larger than 1
201 indicate enrichment of a given lipid group within a given distance cut-off, while values smaller
202 than 1 indicate depletion. Table 1 summarizes the results for the four lipid classes also used in
203 the lipid density analysis (i.e. PU, FS, CHOL and Others). A clear enrichment of PU lipids is
204 present within the shortest distance (with the exception of EGFR), aswell as FSlipidsin the case
205  of several systems (Table 1 and Supplementary File 2, Tables 1 - Table Supplements 1 and 2).
206 This revealed additional patterns of lipid organization. For example, the enrichment in FS lipids
207 islinked to the FS-GM lipids enrichment in the upper leaflet (Supplementary File 2, Table 1 -
208  Table Supplements 1 and 2). Together with the enrichment of GM lipids, we observe a depletion
209 of PC lipids, despite being the most abundant phospholipid type in the upper leaflet. In the lower
210 leaflet, enrichment of PIP lipids is common to all the smulation systems (with the exception of
211 COX1). Interestingly, the enrichment of PIP lipids is also accompanied by a certain degree of
212 enrichment of other negatively charged lipids, like PI lipids (Supplementary File 2, Table 1 - Ta-
213 bles Supplements 1 and 2).

214
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Table 1. Depletion-Enrichment (D-E) values for Fully-Saturated (FS), Poly-Unsaturated (PU), Cholesterol (CHOL) and Others (neither PU nor FSor CHOL)

lipid classes.
FS PU CHOL Others
Distance cut-off (nm) Distance cut-off (nm) Distance cut-off (nm) Distance cut-off (nm)
0.7 14 21 0.7 14 21 0.7 14 21 0.7 14 21

AQP1 1.26+0.16 1.26+0.10 1.18+0.08 1.76+0.60 1.53+0.49 1.37+0.41 1.18+0.04 1.07+0.04 1.03+0.04 0.82+0.02 0.89+0.01 0.93+0.01
COX1 1.70£0.29 1.76+0.24 1.74+0.21 1.33+0.76 0.96£0.41 0.74+0.25 1.04+0.02 1.06+0.03 1.06+0.01 0.84+0.07 0.84+0.05 0.86+0.04
DAT 1.2620.22 1.24+0.14 1.18+0.10 4.16+1.34 3.01+0.92 2.34+0.66 0.81+0.07 0.88+0.04 0.92+0.03 0.87+0.02 0.91+0.02 0.94+0.01
EGFR 1.11+0.41 1.20+0.09 1.15+0.05 0.89+0.14 1.20£0.07 1.17+0.09 1.22+0.02 0.94+0.01 0.95+0.01 0.87+0.07 0.98+0.01 0.99+0.01
GluA2 0.68+0.25 1.18+0.12 1.23+0.11 4.57+1.31 3.13+0.72 2.31+0.49 1.04+0.11 0.98+0.06 0.98+0.04 0.83+0.03 0.86+0.03 0.90+0.04
GluT1 1.05£0.27 1.21+0.21 1.18+0.15 3.89+1.17 2.7440.76 2.08+0.54 1.10£0.07 1.01+0.04 1.00+0.03 0.77+0.05 0.86+0.03 0.91+0.01
Kv1l.2 0.90+0.15 1.1740.14 1.13+0.09 2.96£0.30 2.51+0.32 2.06£0.26 1.21+0.04 1.03+0.02 1.00+0.01 0.79+0.04 0.87+0.04 0.92+0.03
NaK-ATPase 1.404£0.15 1.21+0.07 1.10£0.06 2.99+1.09 2.48:+0.76 2.01+0.50 1.13+0.03 0.98+0.02 0.97+0.03 0.75+0.04 0.89+0.03 0.94+0.03
8-OPR 0.99+0.24 1.27+0.16 1.23+0.14 2.10+0.76 1.51+0.44 1.25+0.32 1.29+0.01 1.12+0.02 1.08+0.01 0.79+0.02 0.86+0.04 0.90+0.04
P-gp 0.87£0.19 1.04+0.21 1.09+0.12 4.79+0.80 3.22+0.54 2.33+0.39 1.00+0.01 0.98+0.02 0.98+0.02 0.80+0.04 0.88+0.03 0.92+0.02

For each lipid class, the values obtained for three distance cut-offs (0.7, 1.4, and 2.1 nm) from the proteins are shown. The values are the average obtained from the four protein

molecules of each system.
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219 Membrane thickness deformations are highly non-uniform. Membrane proteins are
220 known to perturb the thickness of the membrane to optimize their embedding.®’ There are several
221 possible mechanisms for membrane thickness to vary. Variations in thickness have been ob-
222 served even in pure bilayers in some of the earliest membrane protein simulations,® but in com-
223 plex mixtures an obvious mechanism is a non-uniform distribution of lipids. The lipid enrich-
224 ment and depletion patterns revealed in the previous section are expected to impact the local
225  membrane thickness. Error! Reference sour ce not found. shows the 2D thickness distribution
226 of our plasma membrane model, divided in upper (outer) and lower (inner) leaflet as well as the
227  total thickness for four selected proteins, i.e. AQPL (as an example of a membrane-spanning
228 homotetramer with a cylindrical-like structure); COX1 (chosen as an example of monotopic
229 membrane protein); Kv1.2 (as an example of a homotetramer with a more complex structure than
230 AQP1); P-gp (as an example of proteins for which lipids also act as substrates).*

231

Total Upper Lower Figure 5. Membrane thickness. Membrane thick-
ness. For four selected systems (AQP1, COX1,
Kv1.2, and P-gp) membrane thickness is shown as x
and y 2D maps, averaged between 25 to 30 us and
over the four protein molecules of a given system.
Total thickness, i.e. the distance calculated between
the upper and lower surfaces used for the analyses, is
shown color-coded according to a 3.8 to 4.3 nm
range. Thickness maps for the upper leaflet and lower
leaflet are shown on a different color scale, ranging
from 1.8 to 2.4 nm. The portion of the protein inter-
secting the different surfaces is shown in yellow rib-
bons.

: - | S
3.8 43 18 2.4
Thickness, nm
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251 For these four selected proteins the 2D thickness maps of Figure 5 are shown as the average
252 among the four protein molecules in each system. Additional data on each protein copy for all
253 thesystemsisgivenin Figure5 - Figure Supplement 1.

254 Overall, the extent of spatial perturbation is quite significant, as essentially the entire system
255 is affected by the presence of the proteins. As expected, the strongest effects are near a protein
256 molecule, and depend strongly on the specific nature of the protein, as well as on its interactions
257 with local lipids. Thinning of the membrane near the proteins, linked to their hydrophobic belt,
258 can be uniformly distributed around the transmembrane region of structurally symmetric pro-
259  tens, as for the tetrameric AQPL and Kv1.2 (Error! Reference source not found.). P-gp is an
260  example of an asymmetric thickness profile, where higher thickness is detected only on one side
261 of its transmembrane domains (Error! Reference sour ce not found.). Depending on the shape
262 of the protein, the effects on the upper and lower leaflet of the membrane are different, with
263  COX1 as an extreme case as it is bound only to one side of the bilayer. Yet despite this, the op-
264 posite leaflet still couples with changes in thickness of the binding leaflet. In general, the thick-
265  ness is higher for the upper leaflet than for the lower one, a result of the asymmetric lipid com-
266 position, with the lower leaflet enriched in unsaturated lipids, and the upper leaflet enriched in
267 more saturated and longer tailed lipids (as per bilayer composition).* However, strong variations
268  In the overall geometry of the bilayer are observed as a function of distance from the proteins,
269  with deformations spanning the first few nm from the proteins, and possibly extending to reach
270 equivalent neighbouring protein molecules. The total thickness maps reveal a thinning of the
271 membrane near many proteins, together with highly confined region of increased thickness, as a
272 reminder that the shape and size of the protein hydrophobic belt might not be uniform around the
273 transmembrane domains, thus affecting the local lipid distribution.”> As shown for the AQP1
274 case (see movie S3, obtained by averaging over 200 ns time windows), these features persist at
275 different timescales.

276 Membrane curvature effects are long ranged. Proteins remodel membranes by inducing
277 changes in thickness and lipid composition, reflected in changes of the local membrane curva-
278  ture. Here, we describe the overall bending of the membrane by means of Mean and Gaussian
279 curvatures (Ky and Kg, respectively), calculated for the upper, middle and lower surfaces, and
280  shown with respect to the normal defined by the upper plane (see Methods). While Ky isan in-
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281  dication of the extent of bending, Kg provides information on the membrane topology, being de-
282 pendent on the sgn of the principal curvatures.
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284 Figure 6. Membrane curvature. 2D maps of the Mean and Gaussian curvature (Ky and Kg, respectively) of the
285  four selected systems (AQP1, COX1, Kv1.2, and P-gp), averaged between 25 to 30 us and over the four protein
286 molecules of a given system. The upper, middle and lower surfaces used to calculate thickness were employed to
287  derive the values of Ky and Kg, defined with respect to the normal of the upper surface. The portion of the protein
288  intersecting the three different surfaces used for the calculation is shown in yellow ribbons.

289 For a given surface, positive Ky values indicate a convex surface, while negative values or
200  zero indicate a concave and a flat surface, respectively. Kg negative values are associated with
201 surface saddles, while positive values or zero values correspond to a spherical and a cylindrical
292 topology, respectively. Figure 6 shows the results for the four selected systems, while Figure 6 -
293 Figures Supplements 1 and 2 provide Ky and Kg details on all the systems with the four pro-
204 teins. Each smulation system, regardless of symmetry and size of the transmembrane domains,
205  clearly reveals a complex curvature landscape, with a strong coupling between surfaces even for
296 proteins only partially embedded in the membrane, as COX1 (Error! Reference source not

297 found.).
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Figure 7. AQP1 and P-gp
Km profile. 3D representation
of the four AQP1 (A) and P-gp
(B) molecules and the 2D Ky,
maps for the upper, middle, and
lower surface. Atomistic struc-
tures of AQP1 and P-gp were
superimposed to the four corre-
sponding CG protein molecules
a 30 us. In each AQP1 struc-
ture (A), the monomers are
shown as orange, blue, light-
blue and light-yellow surfaces.
The two halves of each P-gp

molecule (B) are shown in blue

and light-blue cartoons for the
314 molecules in the foreground, and surfaces for the protein in the background. Arg206 and Lys209 are represented in yellow
315 spheres.

316 Overdl, Kg is, on average, shifted towards positive or zero values, while Ky shows wide re-
317  gions of positive and negative curvature, with the stronger changes located in close proximity of
318  the proteins (Error! Reference source not found. and Figure 6 - Figure Supplement 2), where
319  features of the local curvature are maintained for the full length of the simulation (as shown for
320  APQL in Sl, movie $4). In addition, among the four proteins in a given system, the curvature
321 profileis, qualitatively, very similar (Figure 6 - Figures Supplements 1 and 2). This is particu-
322 larly noticeable for larger and symmetric transmembrane domains, e.g. AQP1 and Kv1.2, as well
323 asfor proteins not characterized by such a high degree of structural symmetry, like P-gp (Figure
324 6 and Figure 6 - Figures Supplements 1 and 2). To connect the observed curvatures more directly
325  to the structure of the proteins, we identified sample structural features of two proteins (AQP1
326 and P-gp) that correlate with the profile of the Ky, curvature map (Error! Refer ence source not
327 found.). The different structures of the two proteins cause very different effects in the mem-
328  brane: In the case of AQP1, the characteristic pattern of positive and negative curvature of the
329  upper (and middie) surface appears linked to the interface regions between monomers and to the
330  presence of long extracellular loops, while for P-gp the shorter extracelular ends of TM3 and
331  TMA4 together with the presence of positively charged residues (Arg206 and Lys209) relate to the
332 nearby negative curvature,
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333 Rate of cholesterol flip-flop strongly depends on protein-lipid environment. Cholesterol
334 is the most abundant component of eukaryotic plasma membranes. Its ability of redistributing
335  between domains of different composition in a given leaflet, and between |eaflets of asymmetric
336 composition*™ is of crucial importance in regulating and controlling both protein function and
337 membrane properties. We looked in particular at how proteins affect the distribution of choles-
338 terol across the legflets (flip-flop) as multiple mechanisms can be involved. Cholesterol mole-
339  cules might, for example: (i) interact with a given protein site for several microseconds before
340  dlowly climbing along the protein surface, flipping to the opposite leaflet and moving further
341 away, where flip-flop events will occur more freely (Error! Reference source not found.A);
342 (ii) remain bound to a given site for longer timescales, thus refraining that cholesterol from flip-
343  flopping (Error! Reference source not found.B); or (iii) slowly reduce the number of flip-flop
344 events as it approaches a protein molecule and establishes stronger interactions within a given

345  dite(Error! Reference sour ce not found.C).
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359 To better characterize the cholesterol dynamics in the presence of proteins, we defined flip-
360 flop and flip-in events and explored how they vary at different distance from the proteins
361  transmembrane domains (Table 2, and Supplementary File 2, Table 2 - Table Supplement 1).
362  The rate of cholesterol flip-flop in simulations of the pure plasma mixture was estimated at ca.
363 6.5x 10° s*.* Similar values are here met at different distances from the proteins, depending on
364 theproteinin question. Using a5 A distance bin width, at a distance greater than 60 A (which we

365  define here as bulk), over a5 us time period, the rate of cholesterol flip-flop ranges from ca. 20
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366  (GluA2) to 33-34 (e.g. AQPL) events per molecule (Table 2), yielding rates that span from 5.2 x
367 10°st (GluA2) to 6.8 x 10° s* (AQP1), similarly to a pure plasma membrane.

368 Morein detail, many systems, e.g. AQP1 and Kv1.2, show such bulk values after ca. 10 to 20
369 A distance from the proteins. Others, as P-gp, affect the flip-flop rate at larger distances, and
370 bulk values are met after ca. 25 A, while for the membrane associated COX 1, the effects on cho-
371 lesterol dynamics across the leaflets are milder, and bulk values can be seen at much smaller dis-
372 tances (exceeding 5 A). Overall, for all the systems, the slowest flip-flop rates are found in the
373 immediate proximity of the proteins (0-5 A), with significantly slower rates observed for exam-
374 ple for AQPL (ca 4.5 flip-flop events per cholesterol molecule, yielding a 9 x 10° s* flip-flop
375  rate). The lower flip-flop rates for regions adjacent to the proteins are associated with considera-
376 bly higher flip-in (trangition from upper or lower leaflet to bilayer middle) rates (Table 2 and
377 Supplementary File 2, Table 2 - Table Supplement 1). Within the first 5 A from the proteins, for
378 example, the number of flip-in events for AQPL is ca. 206.4, yielding rates of ca. 4.1 x 10" s?,
379  respectively. When plotted as 2D map, flip-flop events are detected over the full length of a giv-
380 en simulation box, independently from the size and topology of the transmembrane domains.
381  Smaller, localized regions of higher flip-flop density can be noticed for all the systems, depend-
382 ent on the local lipid composition and often located away from the protein transmembrane do-
383 mains (with the exception of COX1) (Figure 8 - Figure Supplement 1). In contrast, flip-in events
384  are concentrated in close proximity of the proteins and are not uniformly distributed but confined

385  at digtinct locations (Figure 8 - Figure Supplement 1).
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386 Table 2. Cholesterol flip-flop and flip-in events. For all the systems, the average number of flip-flop and flip-in
387 events per cholesterol molecule over the last 5 Os of the simulation is shown as a function of distance from the pro-
388 teins.

. Distance (A)
Flip-flops
0-5 5-10 10-15 15-20 20-25 >60
AQP1 4.5+0.7 15.8+2.4 27.9+4.1 30.9£3.1 34.4+42 340
COX1 20.743.6 30.9+2.4 29.4+1.9 27.0£2.2 34.8+2.7 318
DAT 15.8+34 274434 30.1+3.0 32.0£2.6 33.3+21 313
EGFR 7.1+0.5 11.6+0.3 20.6+1.1 29.7+2.2 33.1+1.8 339
GluA2 9.5+2.7 14.7+2.6 14.2+15 16.5+1.0 175¢1.0 204
GluT1 8.4+0.7 19.4+3.6 24.7+3.2 28.3t2.4 29.3t15 329
Kv1.2 6.4+0.1 13.6+£1.0 24.2+1.3 30.8+0.9 322410 316
Na,K-ATPase  9.2+1.9 18.9+0.7 25.0£2.1 28.2+1.6 312419 26.2
5-OPR 5.3+1.1 11.1+0.7 16.7+0.5 22.3+1.7 272415 335
P-gp 9.1+0.2 21.4+1.1 27.8+2.0 27.7£1.5 28.7+1.0 310
Flip-Ins

AQP1 206.4+6.2  125.2+5.1 97.7452  114.8+109 113.6+9.2 107.9
COX1 177.6+20.0 132.7483 138.9+69 196.8t85 157.0+89 97.2
DAT 180.8+12.1 141.3+12.7 117.0+11.0 1284451 1225+2.6 98.6
EGFR 170.1+14.0 110.5£7.9 77.0+£7.9 83.3t5.2 1014489 1114
GluA2 142.0£8.2  107.1+7.4 81.6+4.3 86.415.0 86.746.7 779
GluT1 172.749.1  144.1+95  105.6+5.8 108.2+85 114.1+8.1 104.9
Kv1.2 165.5+1.9  138.9+9.7 1154+7.7 115.0+6.0 108.4+3.5 1004

NaK-ATPase 151.4+11.9 139.4+#8.0 106.4+6.4  113.3+52 1114+#19 90.2
5 -OPR 137.6£3.3  109.9+7.4 100.7+12.7 100.5+t7.2 93.4+4.0 106.7
P-gp 146.2+4.2  129.9+10.1 114.5+6.3 113.2+2.6 111.7+7.2 100.6

389 The average is calculated from the data collected for each of the four proteins of a given system. The corresponding standard
390 error is reported.

391 Discussion

392 The function and mechanism of membrane proteins are modulated by lipid-protein interac-
393 tions and dependent on membrane composition. AQPs, for example, are passive water channels
304 whose function is critical to control cell volume and water balance. Such proteins are found as-

395  sociated with cholesterol-enriched domains,*>*

where cholesterol and lipid composition affect
396 AQP-mediated water permeability. This has been shown, for example, for AQP4,>* normally ex-
397  pressed in brain astrocytes,®*>* characterized by a membrane with high cholesterol concentra-
398 tions>>® Voltage-gated potassium channels (Kv) provide another example where protein func-
309  tion srictly depends on lipid composition and where the lipid environment dictates channel lo-

400  calization in the membrane.>"®” For several members of the Kv family, PIP lipids, and in particu-
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401 lar PIP,, have been shown to modulate the kinetics of gating.®® In this complex lipid-protein in-
402 terplay, beyond specific and non-specific lipid-protein interactions, geometrical properties of the
403 membranes such as thickness and curvature are major playersin regulating protein behavior.*"
404 MD simulations have been used extensively to study how lipids, and in particular specific li-
405  pid-protein interactions, might regulate protein function, and recent advances in high-
406 performance computing have allowed for a higher degree of complexity in the systems to simu-
407 late®? 3 However, current limitations in this field till concern the tradeoff between com-
408 plexity, timescale and statistical convergence of the results. Our approach considers four mole-
409  cules of the same protein in a smulation system including a complex plasma membrane mixture,
410  to account for reproducibility of the lipid distribution around a given protein type. The system
411 size, although smaller compared to recently published studies,**  allows for longer simulations,
412 and was applied to explore the lipid organization for ten membrane protein types. We have tested
413 different ssimulation setups and length, and obtained similar profiles in lipid enrichment near the
414 proteins (Supplementary File 2, Table 1 - Table Supplements 1 and 2).

415 Since the simulations are based on a complex and realistic plasma lipid mixture, with an
416 asymmetric composition for the upper and lower leaflet, they contain a wealth of data about
417 tendencies of different lipids to interact with different proteins, and in many cases different areas
418  of aparticular protein. A striking characteristic of the lipid composition maps (Error! Reference
419 source not found. and Figure 3 - Figure Supplements 1 and 2) is that there are some general fea-
420 tures, but, overall, the distributions around each protein, and near different parts of each protein,
421 are distinct, providing a unique environment or “lipid fingerprint” for each protein. Experimen-
422 tally, many proteins are found associate with domains enriched in cholesterol and sphingolipids,
423 and with higher content of FS lipids than the nearby domains.”

424 The presence of both poly-unsaturated and saturated lipid tails in contact with membrane pro-
425  teins has been linked to membrane protein function regulation. Poly-unsaturated lipids, for ex-
426 ample, are found in high concentrations in retinal membranes, where they modulate rhodopsin
427 activity by stimulating the kinetics of the photocycle.” " Molecular dynamics simulations pro-
428 vided molecular details on the specific sites of lipid interactions, highlighting the different pat-
429 tern of contacts of poly-unsaturated and saturated lipid tails.”*" In addition, membrane protein
430  sorting in regions enriched in unsaturated lipids has been observed in CG simulations of

431 glycophorin A dimers, embedded in ared blood cell membrane model.* In our study, the distri-
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432 bution of lipids classes around the proteins appears more complex. We observe the presence of
433 regions of different size and composition, enriched in either FS or PU lipids, within few nm from
434 the proteins and often with different distributions between upper and lower leaflet. As reported
435 for the pure plasma membrane simulations,® even in the presence of proteins we do not observe
436 stable lipid domains. Experimental techniques such as electron spin resonance and differential
437 scanning calorimetry revealed how membrane proteins play a significant role in sorting annular
438 lipids and lipids at longer distances, as seen for example for the Ca?*-ATPase.”® "’ Accordingly,
439 in our smulations, lipids organized in stable regions enriched in FS or PU lipids (derived from
440 averaging over a5 uswindow, Error! Reference source not found. and Figure 3 - Figure Sup-
441 plements 1 and 2, or over shorter time windows as in the case of AQPL, movie files), but such
442 regions are strictly linked to the presence of the proteins, and anchored along the protein circum-
443 ference. In the FS-enriched regions, the simulations reveal preponderant interactions between
444 proteins and GM lipids. Glycolipid-protein interactions are involved in a number of cellular
445 functions, as glycolipids-enriched domains participate to signal transduction and contribute to
446 protein locaization in the membrane.”®™ In our plasma membrane, glycolipid aggregation
447 around the proteins is detected for al the systems (Figure 2 - Figure Supplement 1, and Supple-
448 mentary File 2, Table 1 - Table Supplements 1 and 2), and athough the magnitude of such ag-
449 gregation varies from system to system, overall the glycolipid enrichment expands at least up to
450 2 nm from the proteins (Supplementary File 2, Table 1 - Table Supplements 1 and 2). Thereiis,
451 however, limited experimental data available on specific glycolipid-protein interactions that
452 could be used to validate the results. Protein function modulation induced by glycolipids interac-
453 tion has been mainly described for receptors involved in signal transduction, including EGFR.%
454 However, previous simulation studies also highlighted the tendency of glycolipids to form small
455 aggregates, and/or to interact with membrane proteins, at an atomistic or CG level of detail *3*
456 > 88 \While some of these studies used simplified membrane mixtures to study glycolipid-
457 protein interactions, here we show the ability of CG simulations to retrieve such interactions in
458  the context of a more complex plasma membrane mixture. These lipid-sorting events appear
459 linked to the presence of membrane proteins, and may be in line with the lateral compartmentali-
460  zation of the membrane, i.e. the glycolipid-enriched lipid raft hypothesis for protein localization
461 and recruitment.®* However, we did not observe large-scale lipid sorting phenomenain our simu-

462 lations, as glycolipid segregation lasting over tens of us occurred only in close proximity of the
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463  proteins. In the lower leaflet, the membrane components that behave most similarly to the GM
464 lipids of the upper leaflet are PIP lipids. Indeed, PIP lipids form small clusters in lipid bilayers
465  and interact or bind with membrane proteins in many simulation studies.® % 3% Here, common
466 to most of the systems is a clear PIP lipids enrichment, which persists over few lipids shells
467 around the proteins (Supplementary File 2, Table 1 - Table Supplements 1 and 2). Direct interac-
468  tion between PIP lipids and membrane proteins has been shown for a number of channels and
469 receptors, including EGFR and DAT, which are among the systems we simulated.®®” However,
470  given the variety of roles of this lipid type in the plasma membrane, from peripheral proteins lo-
471 calization, signaling, membrane trafficking and membrane protein function regulation,®® it is
472 not surprising that the simulations detect interactions between PIP lipids and many other mem-
473 brane proteins, thus providing some new details on possible specific lipid-protein interactions to
474 investigate further.

475 The analysis of geometric properties of the bilayer, such as thickness and curvature, is rele-
476 vant for protein function. The activity of a number of membrane proteins, including the Na,K-

477 ATPase pump, potassium channels and others,*" %9

is tightly linked to hydrophobic mismatch
478 between proteins and lipids. Values of hydrophobic thickness for membrane proteins vary signif-
479 icantly, from ca 21 to ca 44 A.%*% As a consequence, when various lipid species are present,
480  the hydrophobic mismatch between lipids and proteins acts as one of the driving forces inducing
481 depletion or enrichment of certain lipids. We observe, for example, proteins associated with re-
482 gions of thinner membrane than others, as in the case of Kv1.2, one of the proteins with the
483 smallest hydrophobic belt among those considered in this study, with a calculated hydrophobic
484 thickness of ca. 25 A.% For Kv1.2 the thinning of the membrane is highly homogeneous around
485  the entire tetramer, and extends across several lipid shells (Error! Reference source not
486 found.). However, many other proteins are associated with both regions of increased and de-
487  creased thickness, as a consequence of a non-uniform protein hydrophobic belt, and the type of
488 lipids associated with it. These regions of increased or decreased thickness span larger distances
489 from the proteins (Error! Reference source not found. and Figure 5 - Figure Supplement 1),
490  while previous MD studies have reported very homogenous thickness profiles when simulating
491  proteins in model membranes of one or few lipid types.”** This would suggest that proteins fa-
492 cilitate the population of specific lipids in their neighborhood, which could then form sites from

493 wherelarger lipid islands of similar type may form.
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494 The protein-lipid interplay is the key factor in determining the shape of the membrane. The
495 intrinsic flexibility of the lipids, and in particular the size of their headgroup can generate differ-
496 ent spontaneous curvatures. Proteins, on the other hand, can bend membranes through a variety

497 of mechanisms ®

. Overall, the complex undulating profiles that we observe in our smulations
498  (Figures 6-7 and Figure 6 - Figure Supplements 1 and 2) are the results of structural properties of
499  the proteins, their shape, their depth of insertion, and the asymmetric distribution of lipidsin the
500  membrane, along with the clustering of certain lipid types (e.g. GM and PIP lipids). Membrane
501 curvature is also a possible mechanism for communication between membrane proteins,*®* and
502 membrane protein oligomerization and redistribution.®® %% For example, dimers of F1,Fo-ATP
503  synthase have been localized in the highly curved regions of mitochondrial membranes.'® Iso-
504 lated dimers induce local deformations (curvature) spanning ca. 20 nm, which in turn drive the

505  side-by-side organization of other dimers.'®

Although the present study does not focus on pro-
506  tein oligomerization, we observe that membrane deformation in terms of curvature spans large
507 distances, often connecting multiple protein copies, which in our systems are placed at ca. 20 nm
508  distance. Considering the length-scale of membrane modification and its directionality, this study
509  suggests the potential for collective effects/cooperative behavior in reshaping the membrane.
510  Indeed, the formation of protein clusters has been shown to occur even in the absence of direct

511 protein-protein interactions, simply driven by a certain degree of membrane curvature,'™

512 Conclusions

513 Combined, our simulations characterize the lipid fingerprint of each of the ten membrane
514 proteins taken into account in this study. The lipid raft hypothesis outlines many membrane pro-
515  tein types as embedded in microdomains enriched in glycolipids, cholesterol and sphingolipids.
516 However, the molecular picture resulting from our simulations describes a more complex and
517 fragmented lipid environment, where regions enriched in different lipid classes coexist and rear-
518  range around a given protein, and where long-lasting lipid segregation is mainly driven by direct
519  interactions with the proteins. While general patterns can be observed, the molecular detail of

520  thislipid environment is unique for each protein.

521 Material and Methods

522 Systems setup. We embedded ten different proteins in a previously characterized model

107

523 plasma membrane.®® The proteins were: aguaporin 1 (AQP1),"" prostaglandin H2 synthase
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524 (COX1),"® dopamine transporter (DAT),'™ epidermal growth factor (EGFR),"° AMPA-

111 112

525  sensitive glutamate receptor (GluA2),” glucose transporter (GLUT1),“ voltage-dependent

506  Shaker potassium channel 1.2 (Kv1.2),"*® sodium, potassium pump (Na,K-ATPase),*** 5-opioid
527 receptor (8-OPR),™ and P-glycoprotein (P-gp).**
528 Each protein structure, after removal of all the non-protein molecules, was converted in a CG

529  model using the martinize protocol as described on Martini website (http://www.cgmartini.nl/),

530  choosing the option of applying an elastic network on atom pairs within a 0.9 nm cut-off. One
531 eastic network was applied when multiple chains were present, with the exception of AQPL, for
532 which separate elastic networks were applied, one for each monomer of the tetramer. In the case
533 of P-gp, the distance cut-off for the elastic network was increased to 1.0 nm, in order to include
534 few dastic bonds between the two cytosolic domains. Theinitial simulation setup for GIuUA2 did
535 not include the elastic network, which was added after 38 us of simulation time, for additional 10
53  us. DAT and GLUT1 were ssimulated with the presence of position restraints on the PO4 beads
537 of selected phospholipids (POPC and PIPC in the upper leaflet), asin *.

538 For each protein, the transmembrane region was identified using the corresponding entry of
539  the OPM database.®™ Four copies of each CG protein were placed in a simulation box of ca
540  42x42 nmin x and y, and lipids, in a composition corresponding to the plasma membrane model
541 developed by Ingélfsson and colleagues,® were added using insane,*® for atotal of ca. 6000 lipid
542 molecules in each system. The following lipid classes were included: Cholesterol (CHOL), in
543 both leaflet; charged lipids phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol
544 (PI), and the PI-phosphate, -bisphosphate, and -trisphosphate (PIPs) were placed in the inner
545  leaflet, and ganglioside (GM) in the outer leaflet. The zwitterionic phosphatidylcholine (PC),
546 phosphatidylethanolamine (PE), and sphingomyelin (SM) lipids were placed in both leaflets,
547 with PC and SM primarily in the outer |leaflet and PE in the inner leaflet. Ceramide (CER), dia-
548  cylglycerol (DAG), and lysophosphatidylcholine (LPC) lipids were also included, with all the
549  LPCin theinner leaflet and CER, and DAG primarily in the outer leaflet. The exact lipid com-
550  position of each system is given in Supplementary File 1. Water molecules, counterions and 150
551 mM NaCl were also added.

552 Simulation setup. Simulations were performed using the GROMACS simulation package
553 version 4.6.x,"*" with the standard Martini v2.2 simulation settings.'® After initial energy mini-

554 mization with position restraints applied on the protein beads (using a force constant of 1000
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555 kJmol nm?), short equilibrium runs were performed first with the position restraints applied to
556 @l the protein beads, and then to the backbone beads. All simulations were performed with a 20

119 with a time con-

557 fstime step, atemperature of 310 K set using a velocity-rescaling thermostat,
558  stant for coupling of 1 ps (2 ps for equilibrium runs). A semi-isotropic pressure of 1 bar main-
559 tained with the Berendsen barostat,® with a compressibility of 3-10 bar™ and a relaxation time
560  constant of 5 ps. Production runs were performed in the presence of position restraints applied to
561 the backbone beads, with a force constant of 1 kd/mol nm?,

562 Following the systems and simulation setup described above and pictured in Figure 2, as an
563 indication of the equilibration time of the number of specific lipids around a particular protein,
564 the number of PC, GM and PIP lipids in contact with the proteins, as a function of time, was ap-
565  proximated by the number of PO4 (for PC), GM1 (for GM lipids) and CP (for PIP lipids) beads
566 found within a 0.7 nm cut-off from the protein, similar to refs 2. The PC lipids were chosen
567  as they are the most abundant phospholipid in the upper lipids, while GM and PIP lipids were
568  selected as both tend to aggregate near the proteins (Figure 2 - Figure Supplement 1-3). The cal-
560 culation was performed using the g_select tool implemented in GROMACS.™ The equilibration
570  timeisof the order of tens of microseconds. This information was used as a proxy for determin-
571 ing overal equilibration and is accurate for the larger groups of lipids, while rare lipids that are
572 present in only a few copies do not yield very accurate distributions. Based on this, al the sys-
573  tems have been simulated for 30 us. All the analyses, unless otherwise specified, were performed
574 onthelast 5 us of each smulation system.

575 Additional control simulations were performed in order to test the effects of smulation
576  length, lipid composition, and water model on the results of lipid composition near the proteins
577 (Table 1 - Table Supplement 1). The AQP1 and Kv1.2 systems were extended to for 50 us (Set-
578 up 1, Table1 - Table Supplement 1); the AQP1 system was also simulated up to 50 us (i) with
579  position restraints on the headgroup of selected lipids and no restraints on the backbone beads
580  (Setup 2, Table 1 - Table Supplement 1); (ii) as Setup 2 but with no glycolipids in the mixture
581 (Setup 3, Table 1 - Table Supplement 1); (iii) as Setup 2 but with polarizable water model*®
582 (Setup 4, Table 1 - Table Supplement 1). Finally, the Na,K-ATPase system was simulated for an
583  additional 20 us after the initial 30 us and after removing the glycolipids from the plasma mix-
584 ture (Setup 5, Table 1 - Table Supplement 1).

585
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586 Analyses. Lipid Composition, Thickness, and Curvature. Thickness and curvature were cal-
587  culated based on a method that uses three interpolated grid-surfaces (upper, middle, and lower).
588  Surface averages are calculated for the last 5 us on 30 us long simulations, with a total of 2500
589  frames obtained by saving configurations every 2 ns. The three surfaces are defined using differ-
500  ent lipid beads: PO4 and GM 1 beads for the upper surface (plane); the last bead of each lipid tall
501 for the middle surface; the PO4 beads for the lower surface. For the definition of these surfaces
502 lipid species that do flip-flop during the simulations (CHOL, DAG, and CER lipids *) were not
593 taken into account. The choice of the GM 1 bead for glycolipids was made with the help of small
504 reference simulations (data not shown) consisting of binary mixtures of lipids (DPSM/DPGL1)
505  with equivalent acyl-chains and only differing in the headgroups. The GM4/GM 1 beads of DPG1
506  have density peaks at positions equivaent to the DPSM-PO4 counterpart.

597 The method (to be published) has been implemented in C language, and has been derived

124 and

508  from the numerical scheme described on a previous work that used MATLAB scripts,
509  where gradients of surfaces are defined by interpolation on squared grids with a previous averag-
600  ing on molecular coordinates carried out by a Gaussian filter, used to eliminate noise and gener-
601  ate smooth surfaces. The grid spacing used was 0.3 nm, with a Gaussian filter that averages data
602  for amaximum of 6 cellsradii for every point on the grids.

603 Leaflet thickness was calculated via middle surface to upper/lower surface distance for every
604  point in the grids. The overall thickness was likewise calculated as distance between the upper
605  and lower surfaces.

606 The same surfaces defined for thickness calculation were used for the curvature analysis. The
607  estimated spontaneous curvature of a grid patch is equivalent to the average curvature of the li-
608  pidsinthe upper surface, minus the average spontaneous curvature of the lipids in the lower sur-
609  face, taking the lipid local normals to the membrane as a reference. Consequently, the curvature
610  for the lower leaflet would have to be multiplied by minus one in order to find the correlation
611  between membrane curvature and spontaneous curvature only for the lower |eaflet.

612 Thickness values are given in nm, while mean and Gaussian curvatures are expressed on in-
613  verse distance units (nm™ and nm?, respectively).

614 Lipid composition is calculated by averaging the occupancy of cells for the entire set of 2500
615  frames, with units of lipid-tails per nm?. These values are then changed into density units of mass

616  per unit of area by including lipid masses. The first tails defining the beginning of the acyl-chain
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617  onall lipids were used as criteria to decide the occupancy on every frame of the set of lipids se-
618 lected. Asin ®, four classes were analyzed, namely fully-saturated (FS), poly-unsaturated (PU),
619  cholesterol (CHOL) and Others, with the last group defining lipids not present in the first three
620  groups. The PU lipid class consists of DAPC, DUPE, DAPE, DAPS, DUPS, APC, UPC lipids
621 (lipids where both the tails have more than two “D” type beads), while the FS class includes SM
622  lipids (DPSM, DBSM, DXSM), glycolipids (DPG1, DXG1, DPG3, DXG3), ceramides (DPCE,
623  DXCE), and LPC lipids (PPC).

624 For each class, the lipid composition was first calculated in terms of lipid density, and then
625  changed into enrichment levels (Z,,.,,) with respect to the average of the set (Z,,.). The new

626  score, in percentage units, is defined by:

7.
7. = (# - 1) 100%
ave

627 where the indices [i,j] correspond to every point in the grid to be reweighted. The new score
628  hasthe particularity to be positive for Z; ; values larger than Z .., and negative for values small-
629 e than Z,,.. The100% factor simply expresses the score as percentage units, indicating en-
630  richment/depletion with respect to a homogeneous mixture with Z,,,, score.

631 First shell lipid composition and depletion-enrichment index. The first shell lipid composi-
632 tion was calculated within 0.7 nm from the proteins. The depletion-enrichment (D-E) index of a
633 given lipid type was calculated for three distance cut-offs from the protein, at 0.7, 1.4 and 2.1
634  nm. For a generic lipid type L, we first defined the ration of lipid L within a given cut-off x

635  (namely Ratio(L),), and the ratio of the lipid L with respect to bulk (namely Ratio(L)p,ix) 8S

636  follow:
. B (no.L),
Ratio(L), = (tot.no.lipids),
P _ tot.no.(L)
atio(L) pyi = tot.no.lipids
637 We used Ratio(L), to calculate the fraction of lipid headgroup types (PC, PE, PS, PA, DAG,

638 LPC, SM, CER, PI, PIPs, GM) present within 0.7 nm from the protein, during the last 5 us of
639  each simulation. For a given simulation system, which consists of four copies of the same pro-
640  tein, the lipid shell composition was calculated for each protein, and then averaged over the four
641  protein copies.

642 The enrichment of the lipid L for a given cut-off x isthen calculated from the following ratio:
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Enrich (L) = Ratio(L),
nricnmen = Ratio(L)bulk
643 Selected beads were used to calculate the number of lipids within a cut-off x from any bead

644  of the protein: the ROH bead was chosen for cholesterol, while GL1 or AM1 beads were used for
645  dl the other lipid types.

646 For all the systems, the enrichment was calculated for the last 5 us for each individual lipid
647  type for the upper and lower leaflet separately. For cholesterol, DAGs (PODG, PIDG, PADG,
648  PUDG) and CERs (DPCE, DXCE, PNCE, XNCE), the analysis was performed by combining the
649  two leaflets together, due to the possible flip-flop of these lipid species.

650 The enrichment was also calculated for groups of lipids categorized based on ther
651 headgroups (PC, PE, PS, PA, DAG, LPC, SM, CER, PI, PIPs, GM, GM1, and GM3) or tails (ful-
652 |y saturated lipids, poly unsaturated lipids and others). Here, a lipid is considered poly-
653  unsaturated if both the tails have more than two "D" type beads (DAPC, DAPE, DUPE, DAPS,
654  DUPS, APC, UPC). In this case, the enrichment was calculated by combining the two leaflets
655  together.

656 For a given simulation system, which consists of four copies of the same protein, the enrich-
657  ment was calculated for each protein copy. The final values shown in Tables 1, and S1-3 corre-
658  spond to the average values obtained from the enrichment values of the four protein copies.
659  Standard deviations are aso calculated.

660 Cholesterol dynamics. Cholesteral flip-flop and flip-in rates were calculated with a custom
661 Python script that uses the MDAnalysis™® and NumPy'?® packages. We used the PO4 beads of
662  al thelipids in the upper and lower membrane leaflets to define those leaflets, and we consid-
663  ered acholesterol molecule present in the upper/lower leaflet if its ROH bead was within 1.2 nm
664  the respective PO4 bead group. Apart from cholesterol, CER and DAG lipids, the other lipid
665  species in our simulation setup do not flip-flop at the simulation time scales *, therefore, the
666  predefined PO4 bead groups, and hence the definition of upper and lower |eaflet for this analysis,
667  do not change through the simulation.

668 To characterize cholesterol dynamics, we define flip-in and flip-flop events. A flip-in event is
669  defined when a cholesterol ROH bead that used to be in either the upper or lower leaflet transi-
670  tionsinto the bilayer middle (more than 1.2 nm away from the PO4 bead groups of either leaf-
671 lets). A flip-flop event is defined when a cholesterol ROH bead that used to bein either the upper
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672 or lower leaflet transitions to the opposing leaflet. Both flip-flop and flip-in events were calculat-
673  ed from the last 5 us of each simulation, using a trajectory with a frame rate of 2 ns. Flip-flop
674  and flip-in rates per cholesterol were calculated as a function of the distance from the protein
675  transmembrane domains, binned from O to 6 nm, with a bin widths of 0.5 nm. All events further
676  than 6 nm from each of the four protein copies were classified as bulk. Additionally, the spatia
677  disgtribution of flip-flop and flip-in in the membrane plain across a given ssimulation system is
678  shown using x,y 2D density maps of the flip events. We calculated the number of events from O
679  to 42 nm (0 to 36 nm for COX1), using a 2 nm bin width, and normalized by the number of cho-
680  lesterol moleculesin each bin.

681 SUPPLEMENTARY FILES

682 Supplementary filesinclude:

683 (8) Supplementary File 1 (Supplementary_File 1.xlIsx), with:

684 Detailed composition of upper and lower leaflet for each system;

685 (b) Supplementary File 2 (Supplementary_File 2.xIsx), with:

686 Table 1 - Table Supplements 1 and 2;

687 Table 2 - Table Supplement 1;

688 (c) Movies S1-4.

689 Movie S1: Enrichment-Depletion analysis movie for the PU, FS, CHOL, and Others lipid
690 classes domains. This movie was obtained by averaging over 200 ns.

691 Movie S2: Enrichment-Depletion analysis movie for the PU, FS, CHOL, and Others lipid
692 classes domains. This movie was obtained by averaging over 2000 ns.

693 Movie S3: Total thickness, upper and lower leaflet thickness movie obtained by averaging
694 over 200 ns.

695 Movie $4: Ky and K¢ for upper, middle and lower surfaces. This movie was obtained by av-
696 eraging over 200 ns.
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717 AQP1, aquaporin 1; COX1, prostaglandin H2 synthase; DAT, dopamine transporter; EGFR,
718 epidermal growth factor; GIuA2, AMPA-sensitive glutamate receptor; GLUT1, glucose trans-
719  porter; Kv1.2, voltage-dependent Shaker potassum channel 1.2; Na,K-ATPase, sodium, potassi-
720 um pump; 6-OPR, 6-opioid receptor; P-gp, P-glycoprotein (P-gp).

721 CHOL, cholesterol; PC, phosphatidylcholine lipids;, PE, phosphatidylethanolamine lipids;
722 SM, sphingomyelin lipids; PS, phosphatidylserine lipids, PA, phosphatidic acid lipids;, PI,
723 phosphati-dylinositol lipids, PIP, Pl-phosphate, -bisphosphate, and -trisphosphate lipids, GM,
724 ganglioside lipids, CER, ceramide; DAG, diacylglyceral lipids, LPC, lysophosphatidylcholine

725 lipids.

726 CG, coarse-grained; MD, molecular dynamics.
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