

1 **Lipid-protein interactions are unique fingerprints for mem-**

2 **brane proteins**

3 Valentina Corradi,[†] Eduardo Mendez-Villuendas,[†] Helgi I. Ingólfsson,[‡] Ruo-Xu Gu,[†] Iwona
4 Siuda,[†] Manuel N. Melo,[‡] Anastassia Moussatova,[†] Christine Degagné,[†] Besian I. Sejdiu,[†]
5 Gurpreet Singh,[†] Tsjerk A. Wassenaar,[‡] Karelia Delgado Magnero,[†] Siewert J. Marrink,[‡] D. Pe-
6 ter Tieleman^{†*}

7 [†] Centre for Molecular Simulation and Department of Biological Sciences, University of Calga-
8 ry, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4

9 [‡] Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Ad-
10 vanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands

11 * Corresponding Author: D. Peter Tieleman, Centre for Molecular Simulation and Department of
12 Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
13 T2N 1N4. Email: tieleman@ucalgary.ca

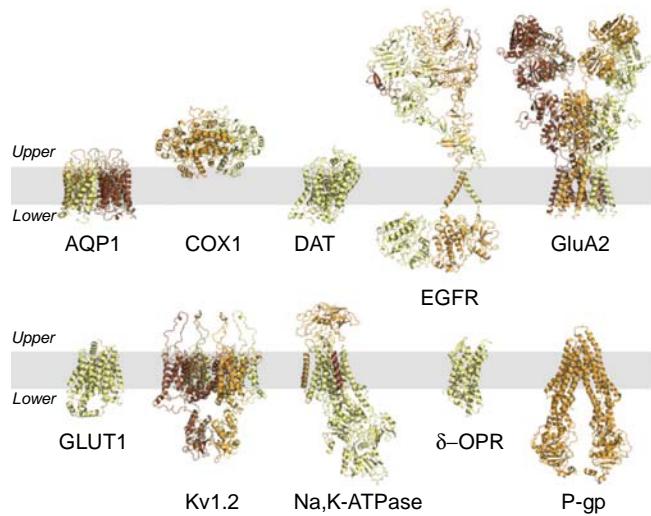
14 **KEYWORDS:** Membrane proteins; Plasma membrane; Lipid-protein interactions; Lipid dis-
15 tribution; Membrane structure; Cholesterol; Coarse-grained simulations; Martini.

16

17 **ABSTRACT:** Cell membranes contain hundreds of different proteins and lipids in an asym-
18 metric arrangement. Understanding the lateral organization principles of these complex mixtures
19 is essential for life and health. However, our current understanding of the detailed organization
20 of cell membranes remains rather elusive, owing to the lack of experimental methods suitable for
21 studying these fluctuating nanoscale assemblies of lipids and proteins with the required spatio-
22 temporal resolution. Here, we use molecular dynamics simulations to characterize the lipid envi-
23 ronment of ten membrane proteins. To provide a realistic lipid environment, the proteins are em-
24 bedded in a model plasma membrane, where more than 60 lipid species are represented, asym-
25 metrically distributed between leaflets. The simulations detail how each protein modulates its
26 local lipid environment through local lipid composition, thickness, curvature and lipid dynamics.
27 Our results provide a molecular glimpse of the complexity of lipid-protein interactions, with po-
28 tentially far reaching implications for the overall organization of the cell membrane.

29

30 **Introduction**


31 Lipids and proteins are the major components of all biological membranes, which play cru-
32 cial roles with respect to the structure and function of the cell. The hydrophilic headgroup and
33 the hydrophobic acyl tails of lipids allow their assembly into lamellar structures, thus separating
34 the interior from the exterior of the cell, as in the case of the plasma membrane, or segregating
35 different intracellular compartments from the cytosol. Membrane proteins carry out a large varie-
36 ty of functions. Integral membrane proteins can act as receptors, involved in signal transduction,
37 or as channels or transporters, thus involved in the transfer of solutes from one side of the mem-
38 brane to the other. Membrane proteins can also promote the interaction between cells, intracellu-
39 lar compartments or large macromolecular complexes, or can act as enzymes.

40 A complex lipid-protein interplay takes place in the membrane.¹⁻² Lipids do not simply pro-
41 vide the matrix where proteins are embedded but can actively participate to the regulation of pro-
42 tein activity, trafficking and localization.² Proteins, on the other hand, do shape lipids by induc-
43 ing membrane deformations and lipid sorting mechanisms.³⁻⁴ The complexity of such interplay is
44 also a consequence of the large variety of lipid types and their asymmetric distribution found in
45 biological membranes.² Thus, lipid-protein interplay occurs via multiple mechanisms, which in-
46 clude interactions that can be (i) specific, where a clear binding site for a given lipid or
47 headgroup can be identified, or (ii) non-specific, where lipids act as a medium and physical
48 properties like thickness, fluidity, or curvature regulate protein function.⁴⁻⁵

49 The characterization of lipid-protein interactions provides crucial details for a better under-
50 standing of the biological activity of a given membrane protein. In the last few decades, several
51 experimental and computational techniques have been used to answer questions related to the
52 identification of lipid binding sites on the protein surface, the type of lipids found associated with
53 the protein, and how such lipids influence protein function.⁶ X-ray crystallography and electron
54 crystallization have identified a number of lipids strongly bound to proteins as these lipids have
55 to survive the crystallization process.⁷⁻¹⁰ Lipid binding to membrane proteins and the local lipid
56 composition in proximity of the protein can also be studied using fluorescence methods.¹¹⁻¹³ Bio-
57 physical studies of lipid-protein interactions have also used nanodiscs, discoidal membranes with
58 a diameter of 8-17 nm enclosed by helical scaffolding proteins, which allows controlling the
59 lipid composition.¹⁴⁻¹⁵ Recently, the application of detergent-free approaches that use specific
60 copolymers to extract proteins and native lipids into nanodiscs has provided a new tool to char-

61 characterize the lipid environment of a given membrane protein.¹⁶ Quantitative analysis and identifi-
62 cation of native lipid species tightly associated with membrane proteins can be achieved via
63 mass-spectroscopy, where lipid-protein complexes can be solubilized in non-ionic detergents to
64 provide resistance to the electron spray ionization step, thus allowing for stable complexes in gas
65 phase.¹⁷ These techniques focus on strong interactions and although some are qualitative, they do
66 not give high spatial resolution.

67 Computer simulations have also been extensively used to study membranes and membrane
68 proteins systems at an atomistic or near atomistic level of detail.¹⁸⁻²² Such simulations describe in
69 detail the motion of lipids, proteins and other particles, as well as their interactions, providing
70 information on the structure, dynamics and thermodynamics of the system. Molecular dynamics
71 (MD) simulations that use coarse-grained (CG) models such as the Martini force field²³ are now
72 routinely applied not only to study physical properties of lipid bilayers, but also to investigate
73 specific and non-specific lipid-protein interactions (reviewed in^{18, 23-25}). Membrane proteins are
74 now simulated not only in controlled lipid environments that match the lipid composition used in
75 experiments, but also in more realistic bilayers that mimic the natural lipid environment.²⁵⁻³⁴

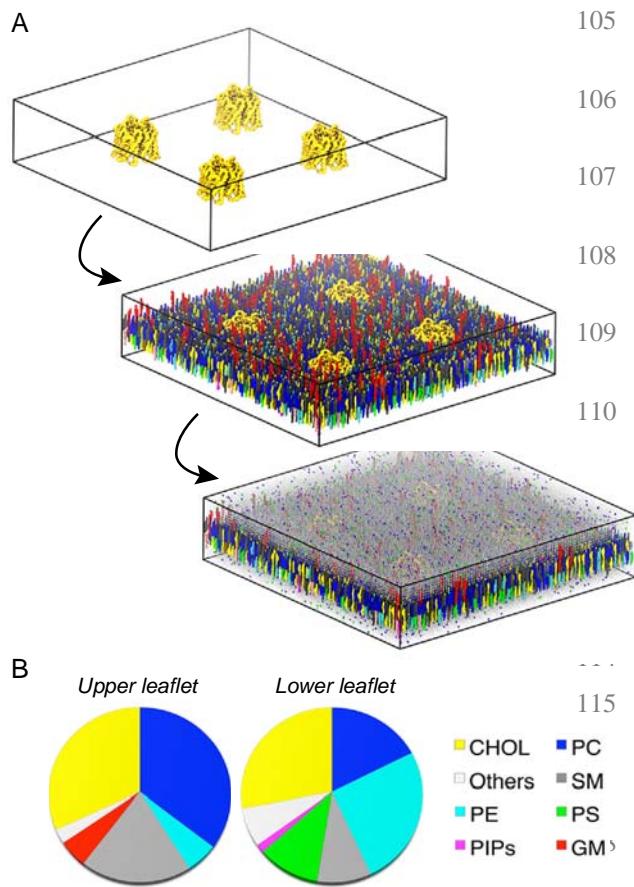
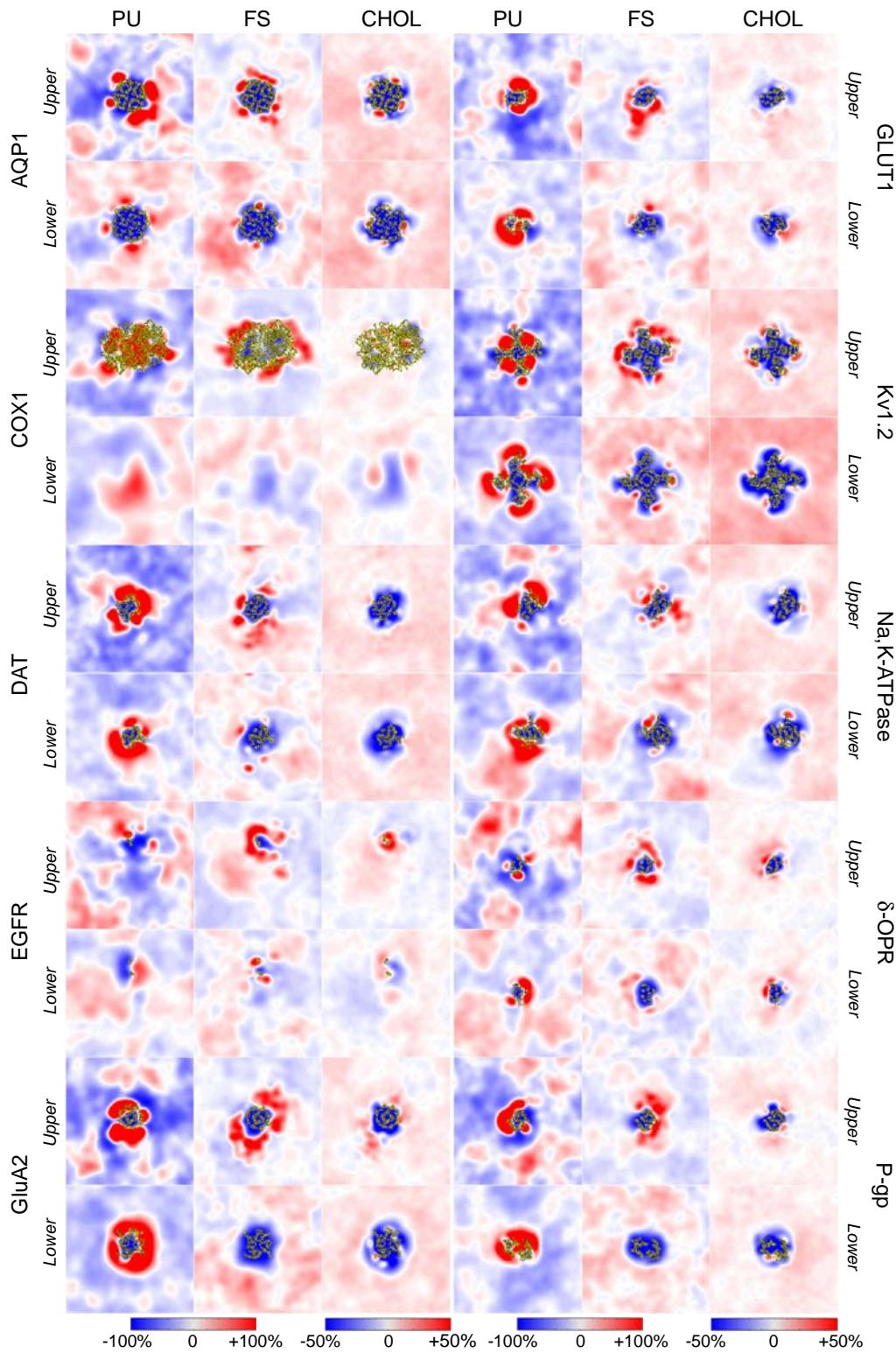


Figure 1. Membrane Proteins. Atomistic structures of the membrane proteins selected for this study. Each protein is shown as cartoons, coloured from light yellow to brown when multiple chains are present. The gray-shaded area represents the hydrophobic region of the membrane.

86 In this paper we use CG MD to study the lipid distribution and membrane properties of a
87 complex plasma lipid mixture³⁵ and representatives of ten diverse plasma membrane protein
88 families (). The proteins considered are: aquaporin 1 (AQP1), prostaglandin H2 synthase
89 (COX1), dopamine transporter (DAT), epidermal growth factor (EGFR), AMPA-sensitive glu-
90 tamate receptor (GluA2), glucose transporter (GLUT1), voltage-dependent Shaker potassium
91 channel 1.2 (Kv1.2), sodium, potassium pump (Na,K-ATPase), δ-opioid receptor (δ-OPR), and


92 P-glycoprotein (P-gp). These proteins include transporters, channels, enzymes, and receptors,
93 and represent different quaternary structures and sizes, as well as monotopic membrane proteins.
94 As shown in **Error! Reference source not found.**, the actual simulation system contains four
95 copies of the same protein, to increase statistics in a computationally efficient way and to have
96 an additional estimate of statistical errors independent of time correlations. **Error! Reference**
97 **source not found.** also shows the general set up with a complex asymmetric lipid mixture con-
98 sisting of more than 60 lipid types.³⁵

99 Based on 30 μ s simulations for each system (Figure 2 - Figure Supplements 1-3), we describe
100 the distinctive nature of the lipid environment surrounding each protein, analyzing lipid distribu-
101 tion, cholesterol dynamics, and membrane properties including thickness and curvature. The re-
102 sults show a rich variety of lipid-protein interactions and protein effects on membrane physics,
103 emphasizing the importance of not just tightly-bound lipids but the overall structure of the lipid-
104 protein matrix.

Figure 2. System setup and lipid composition. (A) For a given system, four protein molecules are placed in a simulation box of ca. 42 x 42 nm in x and y. Lipids, water and ions are added using *insane*.³⁶ For clarity, the setup is shown as a two-steps process. (B) Lipid composition of the main headgroup types in upper and lower leaflet, color-coded as in A.

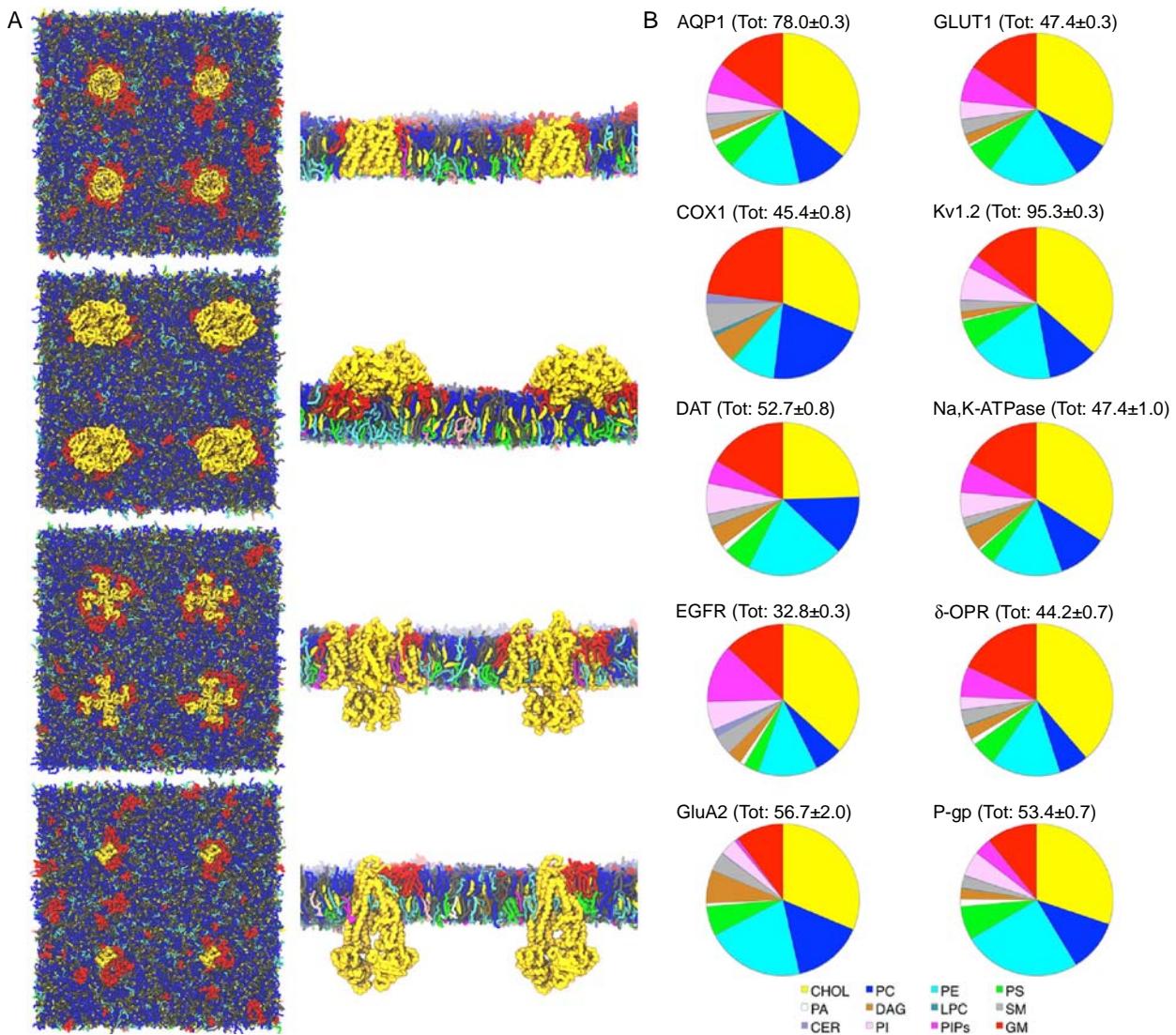
120 **Annular lipid shells have unique lipid compositions.** To analyze the lipid surroundings of
121 each protein, we calculated 2D lateral density maps (see Methods), averaged over the four copies
122 of the protein present in the simulation cell and considering the last 5 μ s of the trajectory. Given
123 the complex composition of our membrane, we grouped the lipids into four major classes, i.e
124 poly-unsaturated (PU) lipids, fully-saturated (FS) lipids, cholesterol (CHOL), and all remaining
125 lipids (Others). The PU, FS, and CHOL density maps are shown in Figure 3 for all the proteins,
126 averaged over the four protein molecules of each system. The full set of data for all systems is
127 shown in Figure 3- Figure Supplement 1 (PU, FS, CHOL groups) and 2 (Others group). We ob-
128 serve a rich spectrum of possible modes of interactions. These include non-specific binding, as
129 shown, for example, by the broad distribution of PU and FS lipids found, in both leaflets, near
130 many proteins, including AQP1, DAT, EGFR, GluA2, GLUT1, Na,K-ATPase and δ -OPR. The-
131 se features are somewhat leaflet-specific as they depend on protein structure and lipid composi-
132 tion, both of which are asymmetric. In the upper leaflet, for example, we notice regions of strong
133 FS enrichment in contact with the proteins. Such regions are usually more localized than PU en-
134 riched regions and are often coupled with smaller, yet still highly localized, FS enriched regions
135 in the lower leaflet. This behaviour can be seen for AQP1, DAT, EGFR, δ -OPR, and even for the
136 monotopic COX1, which is only partially embedded in the upper leaflet. The size and shape of
137 FS lipid regions differ from protein to protein, and in many cases create a discontinuous ring
138 around the transmembrane domains, as in the case of AQP1, GluA2, and Kv1.2, which are
139 homotetramers. In the lower leaflet, PU enrichment is often observed near the proteins, and par-
140 ticularly noticeable around, for example, DAT, GluA2, GLUT1, and Na,K-ATPase. Some pro-
141 teins clearly induce a sharp partitioning of the different lipid classes. This is the case for GluA2
142 and PU lipids in the lower leaflet, or P-gp, where in the upper leaflet we observe a clear distinc-
143 tion between the side of the transmembrane domains in contact with PU lipids and the side in
144 contact with FS lipids, while in the lower leaflet there is an obvious preference for PU lipids.
145 Kv1.2 is another striking example of how the same lipid class (PU) can be asymmetrically dis-
146 tributed between leaflets, and symmetrically distributed around the protein within the same leaf-
147 let, due to the homo-tetrameric nature of the channel and possibly linked to a more specific type
148 of binding.

149

150

151

152


Figure 3 Lipid density distribution. Lipid density analysis of the poly-unsaturated (PU), fully-saturated (FS), and cholesterol (CHOL) classes. The lipid density is represented by x and y 2D maps, averaged between 25 to 30 μ s and over the four protein molecules of a given system. The maps are colored by relative enrichment (red) or depletion

153 (blue), calculated with respect to the average (white) density of a given class. The portion of the protein intersecting
154 the upper and lower surfaces used for the calculation is shown in yellow ribbons.

155 Monotopic proteins are also capable of inducing a clear separation in the distribution of lipid
156 classes, even in the leaflet they are not directly bound to. For COX1, for example, in the lower
157 leaflet the enrichment of PU lipids stands against the depletion of FS lipids and CHOL under-
158 neath the protein, partially embedded only in the upper leaflet. In addition to a non-specific,
159 broad distribution of lipid classes, we detect example of specific binding, especially for the
160 CHOL class. CHOL is the most represented component of the plasma membrane mixture, thus
161 associated with a more even distribution compared to the PU and FS classes. However, the cor-
162 responding CHOL-2D density maps reveal site of specific cholesterol binding. AQP1, for exam-
163 ple, clearly shows very specific binding of cholesterol at the interface between monomers, but an
164 indication of specific cholesterol binding can be detected in DAT, GLUT1, Kv1.2, Na,K-ATPase
165 and δ-OPR as well. Overall, many of the features described above, which are obtained from 5 μ s
166 time windows averaging, can be seen at different timescales, as shown in the movie files repre-
167 senting the lipid distribution of the AQP1 system at different averaging times (200 ns and 2000
168 ns (movies S1-S2).

169 According to the analysis discussed above, each protein is associated with a unique lipid dis-
170 tribution. However, common features can be detected, as, for example, regions near the proteins
171 enriched in FS lipids in the upper leaflet, the accumulation of PU lipids around most proteins, or
172 confined regions of cholesterol binding. We further investigated the presence, across the sys-
173 tems, of patterns in lipid distribution by (i) considering the lipid composition of the first lipid
174 shell surrounding the protein (within a 0.7 nm cutoff), and (ii) by quantifying the enrichment (or
175 depletion) in a given lipid class in the immediate proximity of the proteins using the depletion-
176 enrichment (D-E) index analysis.

177 As the size of the protein transmembrane domains is different from protein to protein, the to-
178 tal number of lipids found within the first lipid shell varies from ca. 32 as in EGFR (whose
179 transmembrane domain consists of only two helices) to ca. 78 for AQP1 and ca. 95 for Kv1.2
180 (which are tetrameric proteins) (**Error! Reference source not found.**).

181

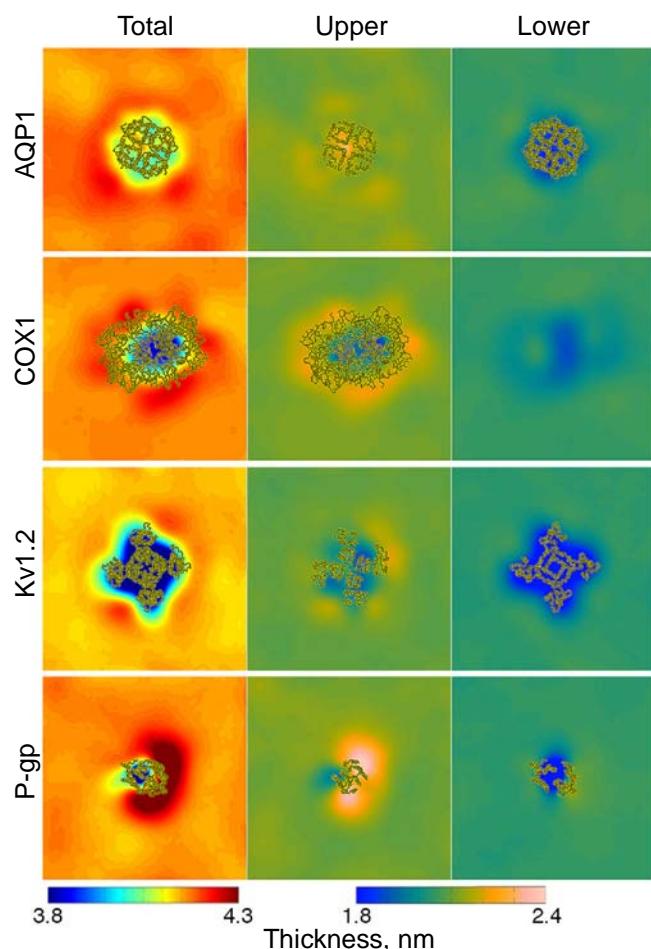
182

183 **Figure 4. First lipid shell composition.** (A) Snapshots of the upper leaflet of the AQP1, COX1, Kv1.2 and P-gp
184 system and the side view (with lipids clipped for clarity) of two of the four protein molecules to show the lipids
185 arrangement around the proteins transmembrane domains. (B) Pie charts showing the lipid headgroup composition of
186 the first lipid shell for the ten system. The total number of lipids found within the selected 0.7 nm cutoff is reported
187 in parenthesis as average number of lipids obtained from the four protein copies of each system (the standard error is
188 reported).

189 Common to all the lipid shells (averaged over the four protein molecules of a given system)
190 here analyzed is the prevalence of CHOL as well as the presence of GM lipids (with COX1
191 showing the highest GM fraction). The fraction of PC and PE lipids (the most abundant phospho-
192 lipid in the upper and lower leaflet, respectively) changes considerably from protein to protein,
193 with GluA2 and P-gp showing higher content of PE lipids. From the lower leaflet, PIP, PI and PS
194 lipids contribute to the composition of the lipid shell in a similar way for many proteins, with the
195 exception of EGFR (where the PIP lipids content is higher than the PI content), COX1 (which is
196 only partially embedded in the upper leaflet) and GluA2 (for which the fraction of PIP lipids is
197 significantly smaller than other proteins). DAG and SM lipids can also contribute to smaller frac-
198 tions of the lipid shell.

199 We then quantified the depletion or enrichment of a given lipid type within this first shell and
200 up to 2.1 nm from the proteins. According to our definition of the D-E index, values larger than 1
201 indicate enrichment of a given lipid group within a given distance cut-off, while values smaller
202 than 1 indicate depletion. Table 1 summarizes the results for the four lipid classes also used in
203 the lipid density analysis (i.e. PU, FS, CHOL and Others). A clear enrichment of PU lipids is
204 present within the shortest distance (with the exception of EGFR), as well as FS lipids in the case
205 of several systems (Table 1 and Supplementary File 2, Tables 1 - Table Supplements 1 and 2).
206 This revealed additional patterns of lipid organization. For example, the enrichment in FS lipids
207 is linked to the FS-GM lipids enrichment in the upper leaflet (Supplementary File 2, Table 1 -
208 Table Supplements 1 and 2). Together with the enrichment of GM lipids, we observe a depletion
209 of PC lipids, despite being the most abundant phospholipid type in the upper leaflet. In the lower
210 leaflet, enrichment of PIP lipids is common to all the simulation systems (with the exception of
211 COX1). Interestingly, the enrichment of PIP lipids is also accompanied by a certain degree of
212 enrichment of other negatively charged lipids, like PI lipids (Supplementary File 2, Table 1 - Ta-
213 bles Supplements 1 and 2).

214

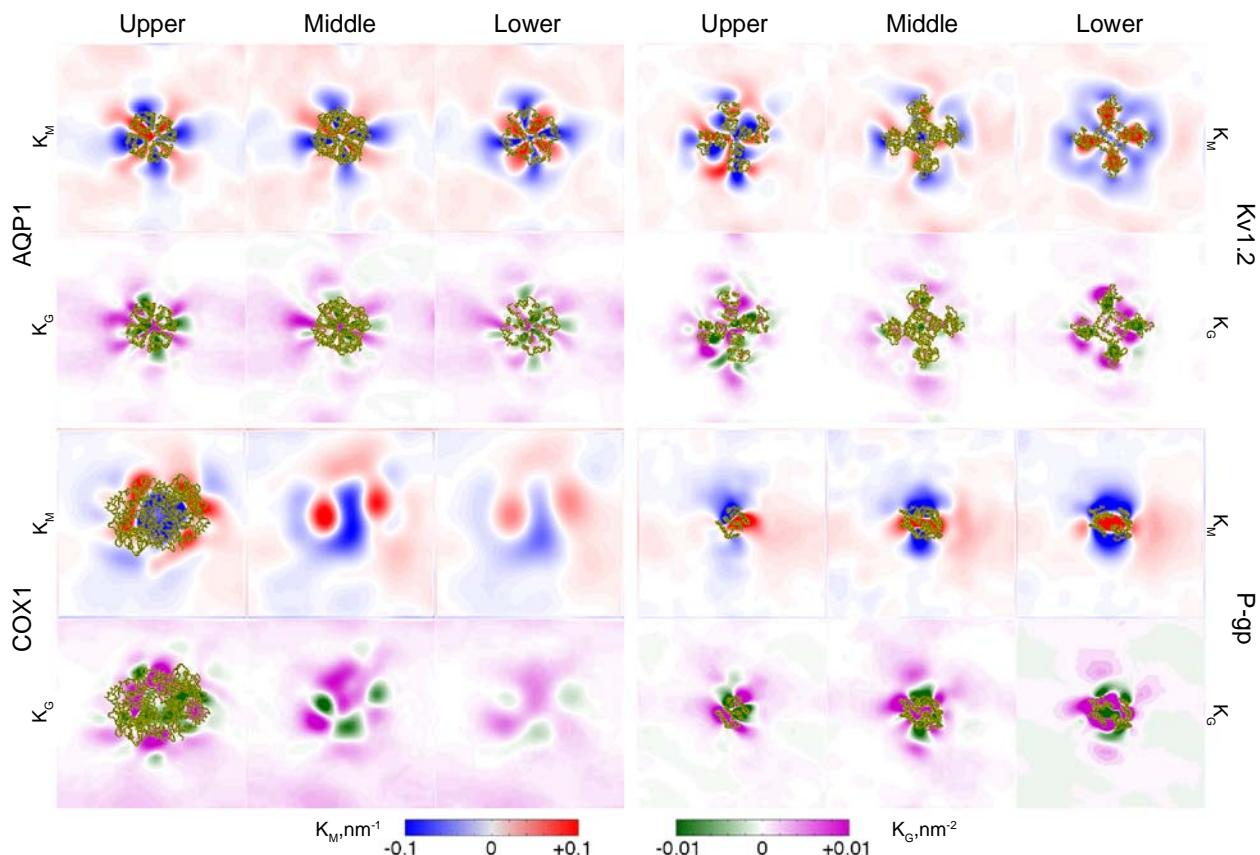

215 **Table 1. Depletion-Enrichment (D-E) values for Fully-Saturated (FS), Poly-Unsaturated (PU), Cholesterol (CHOL) and Others (neither PU nor FS or CHOL)**
 216 **lipid classes.**

	FS			PU			CHOL			Others		
	Distance cut-off (nm)			Distance cut-off (nm)			Distance cut-off (nm)			Distance cut-off (nm)		
	0.7	1.4	2.1	0.7	1.4	2.1	0.7	1.4	2.1	0.7	1.4	2.1
AQP1	1.26±0.16	1.26±0.10	1.18±0.08	1.76±0.60	1.53±0.49	1.37±0.41	1.18±0.04	1.07±0.04	1.03±0.04	0.82±0.02	0.89±0.01	0.93±0.01
COX1	1.70±0.29	1.76±0.24	1.74±0.21	1.33±0.76	0.96±0.41	0.74±0.25	1.04±0.02	1.06±0.03	1.06±0.01	0.84±0.07	0.84±0.05	0.86±0.04
DAT	1.26±0.22	1.24±0.14	1.18±0.10	4.16±1.34	3.01±0.92	2.34±0.66	0.81±0.07	0.88±0.04	0.92±0.03	0.87±0.02	0.91±0.02	0.94±0.01
EGFR	1.11±0.41	1.20±0.09	1.15±0.05	0.89±0.14	1.20±0.07	1.17±0.09	1.22±0.02	0.94±0.01	0.95±0.01	0.87±0.07	0.98±0.01	0.99±0.01
GluA2	0.68±0.25	1.18±0.12	1.23±0.11	4.57±1.31	3.13±0.72	2.31±0.49	1.04±0.11	0.98±0.06	0.98±0.04	0.83±0.03	0.86±0.03	0.90±0.04
GluT1	1.05±0.27	1.21±0.21	1.18±0.15	3.89±1.17	2.74±0.76	2.08±0.54	1.10±0.07	1.01±0.04	1.00±0.03	0.77±0.05	0.86±0.03	0.91±0.01
Kv1.2	0.90±0.15	1.17±0.14	1.13±0.09	2.96±0.30	2.51±0.32	2.06±0.26	1.21±0.04	1.03±0.02	1.00±0.01	0.79±0.04	0.87±0.04	0.92±0.03
Na,K-ATPase	1.40±0.15	1.21±0.07	1.10±0.06	2.99±1.09	2.48±0.76	2.01±0.50	1.13±0.03	0.98±0.02	0.97±0.03	0.75±0.04	0.89±0.03	0.94±0.03
δ-OPR	0.99±0.24	1.27±0.16	1.23±0.14	2.10±0.76	1.51±0.44	1.25±0.32	1.29±0.01	1.12±0.02	1.08±0.01	0.79±0.02	0.86±0.04	0.90±0.04
P-gp	0.87±0.19	1.04±0.21	1.09±0.12	4.79±0.80	3.22±0.54	2.33±0.39	1.00±0.01	0.98±0.02	0.98±0.02	0.80±0.04	0.88±0.03	0.92±0.02

217 For each lipid class, the values obtained for three distance cut-offs (0.7, 1.4, and 2.1 nm) from the proteins are shown. The values are the average obtained from the four protein
 218 molecules of each system.

219 **Membrane thickness deformations are highly non-uniform.** Membrane proteins are
220 known to perturb the thickness of the membrane to optimize their embedding.³⁷ There are several
221 possible mechanisms for membrane thickness to vary. Variations in thickness have been ob-
222 served even in pure bilayers in some of the earliest membrane protein simulations,³⁸ but in com-
223 plex mixtures an obvious mechanism is a non-uniform distribution of lipids. The lipid enrich-
224 ment and depletion patterns revealed in the previous section are expected to impact the local
225 membrane thickness. **Error! Reference source not found.** shows the 2D thickness distribution
226 of our plasma membrane model, divided in upper (outer) and lower (inner) leaflet as well as the
227 total thickness for four selected proteins, i.e. AQP1 (as an example of a membrane-spanning
228 homotetramer with a cylindrical-like structure); COX1 (chosen as an example of monotopic
229 membrane protein); Kv1.2 (as an example of a homotetramer with a more complex structure than
230 AQP1); P-gp (as an example of proteins for which lipids also act as substrates).³⁹

231

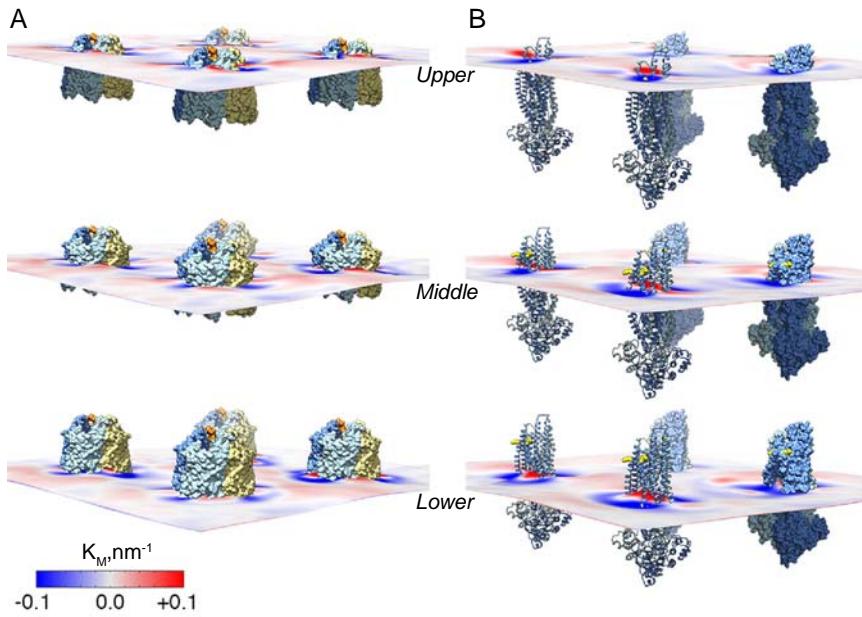

Figure 5. Membrane thickness. Membrane thickness. For four selected systems (AQP1, COX1, Kv1.2, and P-gp) membrane thickness is shown as x and y 2D maps, averaged between 25 to 30 μ s and over the four protein molecules of a given system. Total thickness, i.e. the distance calculated between the upper and lower surfaces used for the analyses, is shown color-coded according to a 3.8 to 4.3 nm range. Thickness maps for the upper leaflet and lower leaflet are shown on a different color scale, ranging from 1.8 to 2.4 nm. The portion of the protein intersecting the different surfaces is shown in yellow ribbons.

251 For these four selected proteins the 2D thickness maps of Figure 5 are shown as the average
252 among the four protein molecules in each system. Additional data on each protein copy for all
253 the systems is given in Figure 5 - Figure Supplement 1.

254 Overall, the extent of spatial perturbation is quite significant, as essentially the entire system
255 is affected by the presence of the proteins. As expected, the strongest effects are near a protein
256 molecule, and depend strongly on the specific nature of the protein, as well as on its interactions
257 with local lipids. Thinning of the membrane near the proteins, linked to their hydrophobic belt,
258 can be uniformly distributed around the transmembrane region of structurally symmetric pro-
259 teins, as for the tetrameric AQP1 and Kv1.2 (**Error! Reference source not found.**). P-gp is an
260 example of an asymmetric thickness profile, where higher thickness is detected only on one side
261 of its transmembrane domains (**Error! Reference source not found.**). Depending on the shape
262 of the protein, the effects on the upper and lower leaflet of the membrane are different, with
263 COX1 as an extreme case as it is bound only to one side of the bilayer. Yet despite this, the op-
264 posite leaflet still couples with changes in thickness of the binding leaflet. In general, the thick-
265 ness is higher for the upper leaflet than for the lower one, a result of the asymmetric lipid com-
266 position, with the lower leaflet enriched in unsaturated lipids, and the upper leaflet enriched in
267 more saturated and longer tailed lipids (as per bilayer composition).³⁵ However, strong variations
268 in the overall geometry of the bilayer are observed as a function of distance from the proteins,
269 with deformations spanning the first few nm from the proteins, and possibly extending to reach
270 equivalent neighbouring protein molecules. The total thickness maps reveal a thinning of the
271 membrane near many proteins, together with highly confined region of increased thickness, as a
272 reminder that the shape and size of the protein hydrophobic belt might not be uniform around the
273 transmembrane domains, thus affecting the local lipid distribution.⁴⁰ As shown for the AQP1
274 case (see movie S3, obtained by averaging over 200 ns time windows), these features persist at
275 different timescales.

276 **Membrane curvature effects are long ranged.** Proteins remodel membranes by inducing
277 changes in thickness and lipid composition, reflected in changes of the local membrane curva-
278 ture. Here, we describe the overall bending of the membrane by means of Mean and Gaussian
279 curvatures (K_M and K_G , respectively), calculated for the upper, middle and lower surfaces, and
280 shown with respect to the normal defined by the upper plane (see Methods). While K_M is an in-

281 dication of the extent of bending, K_G provides information on the membrane topology, being de-
282 pendent on the sign of the principal curvatures.



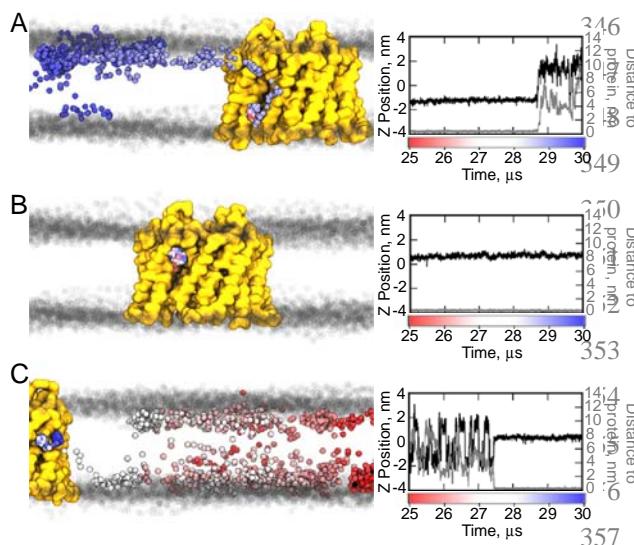
283

284 **Figure 6. Membrane curvature.** 2D maps of the Mean and Gaussian curvature (K_M and K_G , respectively) of the
285 four selected systems (AQP1, COX1, Kv1.2, and P-gp), averaged between 25 to 30 μs and over the four protein
286 molecules of a given system. The upper, middle and lower surfaces used to calculate thickness were employed to
287 derive the values of K_M and K_G , defined with respect to the normal of the upper surface. The portion of the protein
288 intersecting the three different surfaces used for the calculation is shown in yellow ribbons.

289

290 For a given surface, positive K_M values indicate a convex surface, while negative values or
291 zero indicate a concave and a flat surface, respectively. K_G negative values are associated with
292 surface saddles, while positive values or zero values correspond to a spherical and a cylindrical
293 topology, respectively. Figure 6 shows the results for the four selected systems, while Figure 6 -
294 Figures Supplements 1 and 2 provide K_M and K_G details on all the systems with the four pro-
295 teins. Each simulation system, regardless of symmetry and size of the transmembrane domains,
296 clearly reveals a complex curvature landscape, with a strong coupling between surfaces even for
297 proteins only partially embedded in the membrane, as COX1 (**Error! Reference source not**
found.).

Figure 7. AQP1 and P-gp


K_M profile. 3D representation of the four AQP1 (A) and P-gp (B) molecules and the 2D K_M maps for the upper, middle, and lower surface. Atomistic structures of AQP1 and P-gp were superimposed to the four corresponding CG protein molecules at 30 μ s. In each AQP1 structure (A), the monomers are shown as orange, blue, light-blue and light-yellow surfaces. The two halves of each P-gp molecule (B) are shown in blue and light-blue cartoons for the

313

314 molecules in the foreground, and surfaces for the protein in the background. Arg206 and Lys209 are represented in yellow
315 spheres.

316 Overall, K_G is, on average, shifted towards positive or zero values, while K_M shows wide regions of positive and negative curvature, with the stronger changes located in close proximity of
317 the proteins (**Error! Reference source not found.** and Figure 6 - Figure Supplement 2), where
318 features of the local curvature are maintained for the full length of the simulation (as shown for
319 APQ1 in SI, movie S4). In addition, among the four proteins in a given system, the curvature
320 profile is, qualitatively, very similar (Figure 6 - Figures Supplements 1 and 2). This is particu-
321 larly noticeable for larger and symmetric transmembrane domains, e.g. AQP1 and Kv1.2, as well
322 as for proteins not characterized by such a high degree of structural symmetry, like P-gp (Figure
323 6 and Figure 6 - Figures Supplements 1 and 2). To connect the observed curvatures more directly
324 to the structure of the proteins, we identified sample structural features of two proteins (AQP1
325 and P-gp) that correlate with the profile of the K_M curvature map (**Error! Reference source not**
326 **found.**). The different structures of the two proteins cause very different effects in the mem-
327 brane: In the case of AQP1, the characteristic pattern of positive and negative curvature of the
328 upper (and middle) surface appears linked to the interface regions between monomers and to the
329 presence of long extracellular loops, while for P-gp the shorter extracellular ends of TM3 and
330 TM4 together with the presence of positively charged residues (Arg206 and Lys209) relate to the
331 nearby negative curvature.
332

333 **Rate of cholesterol flip-flop strongly depends on protein-lipid environment.** Cholesterol
334 is the most abundant component of eukaryotic plasma membranes. Its ability of redistributing
335 between domains of different composition in a given leaflet, and between leaflets of asymmetric
336 composition⁴¹⁻⁴² is of crucial importance in regulating and controlling both protein function and
337 membrane properties. We looked in particular at how proteins affect the distribution of chole-
338 sterol across the leaflets (flip-flop) as multiple mechanisms can be involved. Cholesterol mole-
339 cules might, for example: (i) interact with a given protein site for several microseconds before
340 slowly climbing along the protein surface, flipping to the opposite leaflet and moving further
341 away, where flip-flop events will occur more freely (**Error! Reference source not found.A**);
342 (ii) remain bound to a given site for longer timescales, thus refraining that cholesterol from flip-
343 flopping (**Error! Reference source not found.B**); or (iii) slowly reduce the number of flip-flop
344 events as it approaches a protein molecule and establishes stronger interactions within a given
345 site (**Error! Reference source not found.C**).

Figure 8. Cholesterol dynamics in the AQP1 system. (A-C) Representative examples of how cholesterol flip-flop might be affected by the presence of AQP1. In the left panels, for a given cholesterol molecule, the position of the ROH bead is shown every 2 ns from 25 to 30 μ s, and colored from red to white to blue as a function of time. The AQP1 backbone is shown as a yellow surface, while the PO4 beads of the surrounding lipids are shown as grey spheres, taken every 1.0 μ s during the 5 μ s time. The graphs on the right show, as a function of time, the position of the corresponding ROH bead with respect to the middle of the bilayer

358 (black line), and the minimum distance to the protein (grey line). The middle of the bilayer is set at 0 nm.

359 To better characterize the cholesterol dynamics in the presence of proteins, we defined flip-
360 flop and flip-in events and explored how they vary at different distance from the proteins'
361 transmembrane domains (Table 2, and Supplementary File 2, Table 2 - Table Supplement 1).
362 The rate of cholesterol flip-flop in simulations of the pure plasma mixture was estimated at ca.
363 $6.5 \times 10^6 \text{ s}^{-1}$ ³⁵ Similar values are here met at different distances from the proteins, depending on
364 the protein in question. Using a 5 \AA distance bin width, at a distance greater than 60 \AA (which we
365 define here as bulk), over a 5 μ s time period, the rate of cholesterol flip-flop ranges from ca. 20

366 (GluA2) to 33-34 (e.g. AQP1) events per molecule (Table 2), yielding rates that span from $5.2 \times$
367 10^6 s^{-1} (GluA2) to $6.8 \times 10^6 \text{ s}^{-1}$ (AQP1), similarly to a pure plasma membrane.

368 More in detail, many systems, e.g. AQP1 and Kv1.2, show such bulk values after ca. 10 to 20
369 Å distance from the proteins. Others, as P-gp, affect the flip-flop rate at larger distances, and
370 bulk values are met after ca. 25 Å, while for the membrane associated COX1, the effects on cho-
371 lesterol dynamics across the leaflets are milder, and bulk values can be seen at much smaller dis-
372 tances (exceeding 5 Å). Overall, for all the systems, the slowest flip-flop rates are found in the
373 immediate proximity of the proteins (0-5 Å), with significantly slower rates observed for exam-
374 ple for AQP1 (ca. 4.5 flip-flop events per cholesterol molecule, yielding a $9 \times 10^5 \text{ s}^{-1}$ flip-flop
375 rate). The lower flip-flop rates for regions adjacent to the proteins are associated with considera-
376 bly higher flip-in (transition from upper or lower leaflet to bilayer middle) rates (Table 2 and
377 Supplementary File 2, Table 2 - Table Supplement 1). Within the first 5 Å from the proteins, for
378 example, the number of flip-in events for AQP1 is ca. 206.4, yielding rates of ca. $4.1 \times 10^7 \text{ s}^{-1}$,
379 respectively. When plotted as 2D map, flip-flop events are detected over the full length of a giv-
380 en simulation box, independently from the size and topology of the transmembrane domains.
381 Smaller, localized regions of higher flip-flop density can be noticed for all the systems, depend-
382 ent on the local lipid composition and often located away from the protein transmembrane do-
383 mains (with the exception of COX1) (Figure 8 - Figure Supplement 1). In contrast, flip-in events
384 are concentrated in close proximity of the proteins and are not uniformly distributed but confined
385 at distinct locations (Figure 8 - Figure Supplement 1).

386 **Table 2. Cholesterol flip-flop and flip-in events. For all the systems, the average number of flip-flop and flip-in**
387 **events per cholesterol molecule over the last 5 Δ s of the simulation is shown as a function of distance from the pro-**
388 **teins.**

<i>Flip-flops</i>	Distance (Å)					
	0-5	5-10	10-15	15-20	20-25	>60
AQP1	4.5 \pm 0.7	15.8 \pm 2.4	27.9 \pm 4.1	30.9 \pm 3.1	34.4 \pm 4.2	34.0
COX1	20.7 \pm 3.6	30.9 \pm 2.4	29.4 \pm 1.9	27.0 \pm 2.2	34.8 \pm 2.7	31.8
DAT	15.8 \pm 3.4	27.4 \pm 3.4	30.1 \pm 3.0	32.0 \pm 2.6	33.3 \pm 2.1	31.3
EGFR	7.1 \pm 0.5	11.6 \pm 0.3	20.6 \pm 1.1	29.7 \pm 2.2	33.1 \pm 1.8	33.9
GluA2	9.5 \pm 2.7	14.7 \pm 2.6	14.2 \pm 1.5	16.5 \pm 1.0	17.5 \pm 1.0	20.4
GluT1	8.4 \pm 0.7	19.4 \pm 3.6	24.7 \pm 3.2	28.3 \pm 2.4	29.3 \pm 1.5	32.9
Kv1.2	6.4 \pm 0.1	13.6 \pm 1.0	24.2 \pm 1.3	30.8 \pm 0.9	32.2 \pm 1.0	31.6
Na,K-ATPase	9.2 \pm 1.9	18.9 \pm 0.7	25.0 \pm 2.1	28.2 \pm 1.6	31.2 \pm 1.9	26.2
δ -OPR	5.3 \pm 1.1	11.1 \pm 0.7	16.7 \pm 0.5	22.3 \pm 1.7	27.2 \pm 1.5	33.5
P-gp	9.1 \pm 0.2	21.4 \pm 1.1	27.8 \pm 2.0	27.7 \pm 1.5	28.7 \pm 1.0	31.0
<i>Flip-Ins</i>						
AQP1	206.4 \pm 6.2	125.2 \pm 5.1	97.7 \pm 5.2	114.8 \pm 10.9	113.6 \pm 9.2	107.9
COX1	177.6 \pm 20.0	132.7 \pm 8.3	138.9 \pm 6.9	196.8 \pm 8.5	157.0 \pm 8.9	97.2
DAT	180.8 \pm 12.1	141.3 \pm 12.7	117.0 \pm 11.0	128.4 \pm 5.1	122.5 \pm 2.6	98.6
EGFR	170.1 \pm 14.0	110.5 \pm 7.9	77.0 \pm 7.9	83.3 \pm 5.2	101.4 \pm 8.9	111.4
GluA2	142.0 \pm 8.2	107.1 \pm 7.4	81.6 \pm 4.3	86.4 \pm 5.0	86.7 \pm 6.7	77.9
GluT1	172.7 \pm 9.1	144.1 \pm 9.5	105.6 \pm 5.8	108.2 \pm 8.5	114.1 \pm 8.1	104.9
Kv1.2	165.5 \pm 1.9	138.9 \pm 9.7	115.4 \pm 7.7	115.0 \pm 6.0	108.4 \pm 3.5	100.4
Na,K-ATPase	151.4 \pm 11.9	139.4 \pm 8.0	106.4 \pm 6.4	113.3 \pm 5.2	111.4 \pm 1.9	90.2
δ -OPR	137.6 \pm 3.3	109.9 \pm 7.4	100.7 \pm 12.7	100.5 \pm 7.2	93.4 \pm 4.0	106.7
P-gp	146.2 \pm 4.2	129.9 \pm 10.1	114.5 \pm 6.3	113.2 \pm 2.6	111.7 \pm 7.2	100.6

389 The average is calculated from the data collected for each of the four proteins of a given system. The corresponding standard
390 error is reported.

391 Discussion

392 The function and mechanism of membrane proteins are modulated by lipid-protein interactions
393 and dependent on membrane composition. AQP_s, for example, are passive water channels
394 whose function is critical to control cell volume and water balance. Such proteins are found as-
395 sociated with cholesterol-enriched domains,⁴³⁻⁵¹ where cholesterol and lipid composition affect
396 AQP-mediated water permeability. This has been shown, for example, for AQP4,⁵² normally ex-
397 pressed in brain astrocytes,⁵³⁻⁵⁴ characterized by a membrane with high cholesterol concentra-
398 tions.⁵⁵⁻⁵⁶ Voltage-gated potassium channels (K_v) provide another example where protein func-
399 tion strictly depends on lipid composition and where the lipid environment dictates channel lo-
400 calization in the membrane.⁵⁷⁻⁶⁷ For several members of the K_v family, PIP lipids, and in particu-

401 lar PIP₂, have been shown to modulate the kinetics of gating.⁶⁸ In this complex lipid-protein in-
402 terplay, beyond specific and non-specific lipid-protein interactions, geometrical properties of the
403 membranes such as thickness and curvature are major players in regulating protein behavior.^{37, 69}

404 MD simulations have been used extensively to study how lipids, and in particular specific li-
405 pid-protein interactions, might regulate protein function, and recent advances in high-
406 performance computing have allowed for a higher degree of complexity in the systems to simu-
407 late.^{22-25, 29-34} However, current limitations in this field still concern the tradeoff between com-
408 plexity, timescale and statistical convergence of the results. Our approach considers four mole-
409 cules of the same protein in a simulation system including a complex plasma membrane mixture,
410 to account for reproducibility of the lipid distribution around a given protein type. The system
411 size, although smaller compared to recently published studies,^{30, 32} allows for longer simulations,
412 and was applied to explore the lipid organization for ten membrane protein types. We have tested
413 different simulation setups and length, and obtained similar profiles in lipid enrichment near the
414 proteins (Supplementary File 2, Table 1 - Table Supplements 1 and 2).

415 Since the simulations are based on a complex and realistic plasma lipid mixture, with an
416 asymmetric composition for the upper and lower leaflet, they contain a wealth of data about
417 tendencies of different lipids to interact with different proteins, and in many cases different areas
418 of a particular protein. A striking characteristic of the lipid composition maps (**Error! Reference**
419 **source not found.** and Figure 3 - Figure Supplements 1 and 2) is that there are some general fea-
420 tures, but, overall, the distributions around each protein, and near different parts of each protein,
421 are distinct, providing a unique environment or “lipid fingerprint” for each protein. Experimen-
422 tally, many proteins are found associate with domains enriched in cholesterol and sphingolipids,
423 and with higher content of FS lipids than the nearby domains.⁷⁰

424 The presence of both poly-unsaturated and saturated lipid tails in contact with membrane pro-
425 teins has been linked to membrane protein function regulation. Poly-unsaturated lipids, for ex-
426 ample, are found in high concentrations in retinal membranes, where they modulate rhodopsin
427 activity by stimulating the kinetics of the photocycle.⁷¹⁻⁷³ Molecular dynamics simulations pro-
428 vided molecular details on the specific sites of lipid interactions, highlighting the different pat-
429 tern of contacts of poly-unsaturated and saturated lipid tails.⁷⁴⁻⁷⁵ In addition, membrane protein
430 sorting in regions enriched in unsaturated lipids has been observed in CG simulations of
431 glycophorin A dimers, embedded in a red blood cell membrane model.³¹ In our study, the distri-

432 bution of lipids classes around the proteins appears more complex. We observe the presence of
433 regions of different size and composition, enriched in either FS or PU lipids, within few nm from
434 the proteins and often with different distributions between upper and lower leaflet. As reported
435 for the pure plasma membrane simulations,³⁵ even in the presence of proteins we do not observe
436 stable lipid domains. Experimental techniques such as electron spin resonance and differential
437 scanning calorimetry revealed how membrane proteins play a significant role in sorting annular
438 lipids and lipids at longer distances, as seen for example for the Ca²⁺-ATPase.⁷⁶⁻⁷⁷ Accordingly,
439 in our simulations, lipids organized in stable regions enriched in FS or PU lipids (derived from
440 averaging over a 5 μ s window, **Error! Reference source not found.** and Figure 3 - Figure Sup-
441 plements 1 and 2, or over shorter time windows as in the case of AQP1, movie files), but such
442 regions are strictly linked to the presence of the proteins, and anchored along the protein circum-
443 ference. In the FS-enriched regions, the simulations reveal preponderant interactions between
444 proteins and GM lipids. Glycolipid-protein interactions are involved in a number of cellular
445 functions, as glycolipids-enriched domains participate to signal transduction and contribute to
446 protein localization in the membrane.⁷⁸⁻⁷⁹ In our plasma membrane, glycolipid aggregation
447 around the proteins is detected for all the systems (Figure 2 - Figure Supplement 1, and Supple-
448 mentary File 2, Table 1 - Table Supplements 1 and 2), and although the magnitude of such ag-
449 gregation varies from system to system, overall the glycolipid enrichment expands at least up to
450 2 nm from the proteins (Supplementary File 2, Table 1 - Table Supplements 1 and 2). There is,
451 however, limited experimental data available on specific glycolipid-protein interactions that
452 could be used to validate the results. Protein function modulation induced by glycolipids interac-
453 tion has been mainly described for receptors involved in signal transduction, including EGFR.⁸⁰
454 However, previous simulation studies also highlighted the tendency of glycolipids to form small
455 aggregates, and/or to interact with membrane proteins, at an atomistic or CG level of detail.^{32, 34-}
456 ^{35, 81-83} While some of these studies used simplified membrane mixtures to study glycolipid-
457 protein interactions, here we show the ability of CG simulations to retrieve such interactions in
458 the context of a more complex plasma membrane mixture. These lipid-sorting events appear
459 linked to the presence of membrane proteins, and may be in line with the lateral compartmentali-
460 zation of the membrane, i.e. the glycolipid-enriched lipid raft hypothesis for protein localization
461 and recruitment.⁸⁴ However, we did not observe large-scale lipid sorting phenomena in our simu-
462 lations, as glycolipid segregation lasting over tens of μ s occurred only in close proximity of the

463 proteins. In the lower leaflet, the membrane components that behave most similarly to the GM
464 lipids of the upper leaflet are PIP lipids. Indeed, PIP lipids form small clusters in lipid bilayers
465 and interact or bind with membrane proteins in many simulation studies.^{30, 32, 34-35} Here, common
466 to most of the systems is a clear PIP lipids enrichment, which persists over few lipids shells
467 around the proteins (Supplementary File 2, Table 1 - Table Supplements 1 and 2). Direct interaction
468 between PIP lipids and membrane proteins has been shown for a number of channels and
469 receptors, including EGFR and DAT, which are among the systems we simulated.⁸⁵⁻⁸⁷ However,
470 given the variety of roles of this lipid type in the plasma membrane, from peripheral proteins lo-
471 calization, signaling, membrane trafficking and membrane protein function regulation,⁸⁸⁻⁸⁹ it is
472 not surprising that the simulations detect interactions between PIP lipids and many other mem-
473 brane proteins, thus providing some new details on possible specific lipid-protein interactions to
474 investigate further.

475 The analysis of geometric properties of the bilayer, such as thickness and curvature, is rele-
476 vant for protein function. The activity of a number of membrane proteins, including the Na,K-
477 ATPase pump, potassium channels and others,^{37, 90-92} is tightly linked to hydrophobic mismatch
478 between proteins and lipids. Values of hydrophobic thickness for membrane proteins vary signif-
479 icantly, from ca. 21 to ca. 44 Å.⁹³⁻⁹⁴ As a consequence, when various lipid species are present,
480 the hydrophobic mismatch between lipids and proteins acts as one of the driving forces inducing
481 depletion or enrichment of certain lipids. We observe, for example, proteins associated with re-
482 gions of thinner membrane than others, as in the case of Kv1.2, one of the proteins with the
483 smallest hydrophobic belt among those considered in this study, with a calculated hydrophobic
484 thickness of ca. 25 Å.⁹⁵ For Kv1.2 the thinning of the membrane is highly homogeneous around
485 the entire tetramer, and extends across several lipid shells (**Error! Reference source not**
486 **found.**). However, many other proteins are associated with both regions of increased and de-
487 creased thickness, as a consequence of a non-uniform protein hydrophobic belt, and the type of
488 lipids associated with it. These regions of increased or decreased thickness span larger distances
489 from the proteins (**Error! Reference source not found.** and Figure 5 - Figure Supplement 1),
490 while previous MD studies have reported very homogenous thickness profiles when simulating
491 proteins in model membranes of one or few lipid types.⁹⁶⁻⁹⁹ This would suggest that proteins fa-
492 cilitate the population of specific lipids in their neighborhood, which could then form sites from
493 where larger lipid islands of similar type may form.

494 The protein-lipid interplay is the key factor in determining the shape of the membrane. The
495 intrinsic flexibility of the lipids, and in particular the size of their headgroup can generate differ-
496 ent spontaneous curvatures. Proteins, on the other hand, can bend membranes through a variety
497 of mechanisms¹⁰⁰. Overall, the complex undulating profiles that we observe in our simulations
498 (Figures 6-7 and Figure 6 - Figure Supplements 1 and 2) are the results of structural properties of
499 the proteins, their shape, their depth of insertion, and the asymmetric distribution of lipids in the
500 membrane, along with the clustering of certain lipid types (e.g. GM and PIP lipids). Membrane
501 curvature is also a possible mechanism for communication between membrane proteins,¹⁰¹ and
502 membrane protein oligomerization and redistribution.^{69, 102-104} For example, dimers of F₁,F₀-ATP
503 synthase have been localized in the highly curved regions of mitochondrial membranes.¹⁰⁵ Iso-
504 lated dimers induce local deformations (curvature) spanning ca. 20 nm, which in turn drive the
505 side-by-side organization of other dimers.¹⁰⁶ Although the present study does not focus on pro-
506 tein oligomerization, we observe that membrane deformation in terms of curvature spans large
507 distances, often connecting multiple protein copies, which in our systems are placed at ca. 20 nm
508 distance. Considering the length-scale of membrane modification and its directionality, this study
509 suggests the potential for collective effects/cooperative behavior in reshaping the membrane.
510 Indeed, the formation of protein clusters has been shown to occur even in the absence of direct
511 protein-protein interactions, simply driven by a certain degree of membrane curvature.¹⁰¹

512 **Conclusions**

513 Combined, our simulations characterize the lipid fingerprint of each of the ten membrane
514 proteins taken into account in this study. The lipid raft hypothesis outlines many membrane pro-
515 tein types as embedded in microdomains enriched in glycolipids, cholesterol and sphingolipids.
516 However, the molecular picture resulting from our simulations describes a more complex and
517 fragmented lipid environment, where regions enriched in different lipid classes coexist and rear-
518 range around a given protein, and where long-lasting lipid segregation is mainly driven by direct
519 interactions with the proteins. While general patterns can be observed, the molecular detail of
520 this lipid environment is unique for each protein.

521 **Material and Methods**

522 **Systems setup.** We embedded ten different proteins in a previously characterized model
523 plasma membrane.³⁵ The proteins were: aquaporin 1 (AQP1),¹⁰⁷ prostaglandin H2 synthase

524 (COX1),¹⁰⁸ dopamine transporter (DAT),¹⁰⁹ epidermal growth factor (EGFR),¹¹⁰ AMPA-
525 sensitive glutamate receptor (GluA2),¹¹¹ glucose transporter (GLUT1),¹¹² voltage-dependent
526 Shaker potassium channel 1.2 (Kv1.2),¹¹³ sodium, potassium pump (Na,K-ATPase),¹¹⁴ δ-opioid
527 receptor (δ-OPR),¹¹⁵ and P-glycoprotein (P-gp).¹¹⁶

528 Each protein structure, after removal of all the non-protein molecules, was converted in a CG
529 model using the martinize protocol as described on Martini website (<http://www.cgmartini.nl/>),
530 choosing the option of applying an elastic network on atom pairs within a 0.9 nm cut-off. One
531 elastic network was applied when multiple chains were present, with the exception of AQP1, for
532 which separate elastic networks were applied, one for each monomer of the tetramer. In the case
533 of P-gp, the distance cut-off for the elastic network was increased to 1.0 nm, in order to include
534 few elastic bonds between the two cytosolic domains. The initial simulation setup for GluA2 did
535 not include the elastic network, which was added after 38 μs of simulation time, for additional 10
536 μs. DAT and GLUT1 were simulated with the presence of position restraints on the PO4 beads
537 of selected phospholipids (POPC and PIPC in the upper leaflet), as in³⁵.

538 For each protein, the transmembrane region was identified using the corresponding entry of
539 the OPM database.⁹⁵ Four copies of each CG protein were placed in a simulation box of ca.
540 42x42 nm in x and y, and lipids, in a composition corresponding to the plasma membrane model
541 developed by Ingólfsson and colleagues,³⁵ were added using *insane*,³⁶ for a total of ca. 6000 lipid
542 molecules in each system. The following lipid classes were included: Cholesterol (CHOL), in
543 both leaflet; charged lipids phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol
544 (PI), and the PI-phosphate, -bisphosphate, and -trisphosphate (PIPs) were placed in the inner
545 leaflet, and ganglioside (GM) in the outer leaflet. The zwitterionic phosphatidylcholine (PC),
546 phosphatidylethanolamine (PE), and sphingomyelin (SM) lipids were placed in both leaflets,
547 with PC and SM primarily in the outer leaflet and PE in the inner leaflet. Ceramide (CER), dia-
548 cetylglycerol (DAG), and lysophosphatidylcholine (LPC) lipids were also included, with all the
549 LPC in the inner leaflet and CER, and DAG primarily in the outer leaflet.³⁵ The exact lipid com-
550 position of each system is given in Supplementary File 1. Water molecules, counterions and 150
551 mM NaCl were also added.

552 **Simulation setup.** Simulations were performed using the GROMACS simulation package
553 version 4.6.x,¹¹⁷ with the standard Martini v2.2 simulation settings.¹¹⁸ After initial energy mini-
554 mization with position restraints applied on the protein beads (using a force constant of 1000

555 kJ/mol nm²), short equilibrium runs were performed first with the position restraints applied to
556 all the protein beads, and then to the backbone beads. All simulations were performed with a 20
557 fs time step, a temperature of 310 K set using a velocity-rescaling thermostat,¹¹⁹ with a time con-
558 stant for coupling of 1 ps (2 ps for equilibrium runs). A semi-isotropic pressure of 1 bar main-
559 tained with the Berendsen barostat,¹²⁰ with a compressibility of 3·10⁻⁴ bar⁻¹, and a relaxation time
560 constant of 5 ps. Production runs were performed in the presence of position restraints applied to
561 the backbone beads, with a force constant of 1 kJ/mol nm².

562 Following the systems and simulation setup described above and pictured in Figure 2, as an
563 indication of the equilibration time of the number of specific lipids around a particular protein,
564 the number of PC, GM and PIP lipids in contact with the proteins, as a function of time, was ap-
565 proximated by the number of PO4 (for PC), GM1 (for GM lipids) and CP (for PIP lipids) beads
566 found within a 0.7 nm cut-off from the protein, similar to refs¹²¹⁻¹²². The PC lipids were chosen
567 as they are the most abundant phospholipid in the upper lipids, while GM and PIP lipids were
568 selected as both tend to aggregate near the proteins (Figure 2 - Figure Supplement 1-3). The cal-
569 culation was performed using the g_select tool implemented in GROMACS.¹¹⁷ The equilibration
570 time is of the order of tens of microseconds. This information was used as a proxy for determin-
571 ing overall equilibration and is accurate for the larger groups of lipids, while rare lipids that are
572 present in only a few copies do not yield very accurate distributions. Based on this, all the sys-
573 tems have been simulated for 30 μ s. All the analyses, unless otherwise specified, were performed
574 on the last 5 μ s of each simulation system.

575 Additional control simulations were performed in order to test the effects of simulation
576 length, lipid composition, and water model on the results of lipid composition near the proteins
577 (Table 1 - Table Supplement 1). The AQP1 and Kv1.2 systems were extended to for 50 μ s (Set-
578 up 1, Table 1 - Table Supplement 1); the AQP1 system was also simulated up to 50 μ s (i) with
579 position restraints on the headgroup of selected lipids and no restraints on the backbone beads
580 (Setup 2, Table 1 - Table Supplement 1); (ii) as Setup 2 but with no glycolipids in the mixture
581 (Setup 3, Table 1 - Table Supplement 1); (iii) as Setup 2 but with polarizable water model¹²³
582 (Setup 4, Table 1 - Table Supplement 1). Finally, the Na,K-ATPase system was simulated for an
583 additional 20 μ s after the initial 30 μ s and after removing the glycolipids from the plasma mix-
584 ture (Setup 5, Table 1 - Table Supplement 1).

585

586 **Analyses. Lipid Composition, Thickness, and Curvature.** Thickness and curvature were cal-
587 culated based on a method that uses three interpolated grid-surfaces (upper, middle, and lower).
588 Surface averages are calculated for the last 5 μ s on 30 μ s long simulations, with a total of 2500
589 frames obtained by saving configurations every 2 ns. The three surfaces are defined using differ-
590 ent lipid beads: PO4 and GM1 beads for the upper surface (plane); the last bead of each lipid tail
591 for the middle surface; the PO4 beads for the lower surface. For the definition of these surfaces
592 lipid species that do flip-flop during the simulations (CHOL, DAG, and CER lipids³⁵) were not
593 taken into account. The choice of the GM1 bead for glycolipids was made with the help of small
594 reference simulations (data not shown) consisting of binary mixtures of lipids (DPSM/DPG1)
595 with equivalent acyl-chains and only differing in the headgroups. The GM4/GM1 beads of DPG1
596 have density peaks at positions equivalent to the DPSM-PO4 counterpart.

597 The method (to be published) has been implemented in C language, and has been derived
598 from the numerical scheme described on a previous work that used MATLAB scripts,¹²⁴ and
599 where gradients of surfaces are defined by interpolation on squared grids with a previous averag-
600 ing on molecular coordinates carried out by a Gaussian filter, used to eliminate noise and gener-
601 ate smooth surfaces. The grid spacing used was 0.3 nm, with a Gaussian filter that averages data
602 for a maximum of 6 cells radii for every point on the grids.

603 Leaflet thickness was calculated via middle surface to upper/lower surface distance for every
604 point in the grids. The overall thickness was likewise calculated as distance between the upper
605 and lower surfaces.

606 The same surfaces defined for thickness calculation were used for the curvature analysis. The
607 estimated spontaneous curvature of a grid patch is equivalent to the average curvature of the li-
608 pids in the upper surface, minus the average spontaneous curvature of the lipids in the lower sur-
609 face, taking the lipid local normals to the membrane as a reference. Consequently, the curvature
610 for the lower leaflet would have to be multiplied by minus one in order to find the correlation
611 between membrane curvature and spontaneous curvature only for the lower leaflet.

612 Thickness values are given in nm, while mean and Gaussian curvatures are expressed on in-
613 verse distance units (nm^{-1} and nm^{-2} , respectively).

614 Lipid composition is calculated by averaging the occupancy of cells for the entire set of 2500
615 frames, with units of lipid-tails per nm^2 . These values are then changed into density units of mass
616 per unit of area by including lipid masses. The first tails defining the beginning of the acyl-chain

617 on all lipids were used as criteria to decide the occupancy on every frame of the set of lipids se-
618 lected. As in ³⁵, four classes were analyzed, namely fully-saturated (FS), poly-unsaturated (PU),
619 cholesterol (CHOL) and Others, with the last group defining lipids not present in the first three
620 groups. The PU lipid class consists of DAPC, DUPE, DAPE, DAPS, DUPS, APC, UPC lipids
621 (lipids where both the tails have more than two “D” type beads), while the FS class includes SM
622 lipids (DPSM, DBSM, DXSM), glycolipids (DPG1, DXG1, DPG3, DXG3), ceramides (DPCE,
623 DXCE), and LPC lipids (PPC).

624 For each class, the lipid composition was first calculated in terms of lipid density, and then
625 changed into enrichment levels (Z_{new}) with respect to the average of the set (Z_{ave}). The new
626 score, in percentage units, is defined by:

$$Z_{new} = \left(\frac{Z_{[i,j]}}{Z_{ave}} - 1 \right) 100\%$$

627 where the indices $[i,j]$ correspond to every point in the grid to be reweighted. The new score
628 has the particularity to be positive for $Z_{i,j}$ values larger than Z_{ave} , and negative for values small-
629 er than Z_{ave} . The 100% factor simply expresses the score as percentage units, indicating en-
630 richment/depletion with respect to a homogeneous mixture with Z_{ave} score.

631 *First shell lipid composition and depletion-enrichment index.* The first shell lipid composi-
632 tion was calculated within 0.7 nm from the proteins. The depletion-enrichment (D-E) index of a
633 given lipid type was calculated for three distance cut-offs from the protein, at 0.7, 1.4 and 2.1
634 nm. For a generic lipid type L , we first defined the ration of lipid L within a given cut-off x
635 (namely $Ratio(L)_x$), and the ratio of the lipid L with respect to bulk (namely $Ratio(L)_{bulk}$) as
636 follow:

$$Ratio(L)_x = \frac{(no.L)_x}{(tot.no.lipids)_x}$$
$$Ratio(L)_{bulk} = \frac{tot.no.(L)}{tot.no.lipids}$$

637 We used $Ratio(L)_x$ to calculate the fraction of lipid headgroup types (PC, PE, PS, PA, DAG,
638 LPC, SM, CER, PI, PIPs, GM) present within 0.7 nm from the protein, during the last 5 μ s of
639 each simulation. For a given simulation system, which consists of four copies of the same pro-
640 tein, the lipid shell composition was calculated for each protein, and then averaged over the four
641 protein copies.

642 The enrichment of the lipid L for a given cut-off x is then calculated from the following ratio:

$$\text{Enrichment}(L) = \frac{\text{Ratio}(L)_x}{\text{Ratio}(L)_{\text{bulk}}}$$

643 Selected beads were used to calculate the number of lipids within a cut-off x from any bead
644 of the protein: the ROH bead was chosen for cholesterol, while GL1 or AM1 beads were used for
645 all the other lipid types.

646 For all the systems, the enrichment was calculated for the last 5 μ s for each individual lipid
647 type for the upper and lower leaflet separately. For cholesterol, DAGs (PODG, PIDG, PADG,
648 PUDG) and CERs (DPCE, DXCE, PNCE, XNCE), the analysis was performed by combining the
649 two leaflets together, due to the possible flip-flop of these lipid species.

650 The enrichment was also calculated for groups of lipids categorized based on their
651 headgroups (PC, PE, PS, PA, DAG, LPC, SM, CER, PI, PIPs, GM, GM1, and GM3) or tails (ful-
652 ly saturated lipids, poly unsaturated lipids and others). Here, a lipid is considered poly-
653 unsaturated if both the tails have more than two "D" type beads (DAPC, DAPE, DUPE, DAPS,
654 DUPS, APC, UPC). In this case, the enrichment was calculated by combining the two leaflets
655 together.

656 For a given simulation system, which consists of four copies of the same protein, the enrich-
657 ment was calculated for each protein copy. The final values shown in Tables 1, and S1-3 corre-
658 spond to the average values obtained from the enrichment values of the four protein copies.
659 Standard deviations are also calculated.

660 *Cholesterol dynamics.* Cholesterol flip-flop and flip-in rates were calculated with a custom
661 Python script that uses the MDAnalysis¹²⁵ and NumPy¹²⁶ packages. We used the PO4 beads of
662 all the lipids in the upper and lower membrane leaflets to define those leaflets, and we consid-
663 ered a cholesterol molecule present in the upper/lower leaflet if its ROH bead was within 1.2 nm
664 the respective PO4 bead group. Apart from cholesterol, CER and DAG lipids, the other lipid
665 species in our simulation setup do not flip-flop at the simulation time scales³⁵, therefore, the
666 predefined PO4 bead groups, and hence the definition of upper and lower leaflet for this analysis,
667 do not change through the simulation.

668 To characterize cholesterol dynamics, we define flip-in and flip-flop events. A flip-in event is
669 defined when a cholesterol ROH bead that used to be in either the upper or lower leaflet transi-
670 tions into the bilayer middle (more than 1.2 nm away from the PO4 bead groups of either leaf-
671 lets). A flip-flop event is defined when a cholesterol ROH bead that used to be in either the upper

672 or lower leaflet transitions to the opposing leaflet. Both flip-flop and flip-in events were calculat-
673 ed from the last 5 μ s of each simulation, using a trajectory with a frame rate of 2 ns. Flip-flop
674 and flip-in rates per cholesterol were calculated as a function of the distance from the protein
675 transmembrane domains, binned from 0 to 6 nm, with a bin widths of 0.5 nm. All events further
676 than 6 nm from each of the four protein copies were classified as bulk. Additionally, the spatial
677 distribution of flip-flop and flip-in in the membrane plain across a given simulation system is
678 shown using x,y 2D density maps of the flip events. We calculated the number of events from 0
679 to 42 nm (0 to 36 nm for COX1), using a 2 nm bin width, and normalized by the number of cho-
680 lesterol molecules in each bin.

681 **SUPPLEMENTARY FILES**

682 Supplementary files include:

683 (a) Supplementary File 1 (Supplementary_File_1.xlsx), with:

684 Detailed composition of upper and lower leaflet for each system;

685 (b) Supplementary File 2 (Supplementary_File_2.xlsx), with:

686 Table 1 - Table Supplements 1 and 2;

687 Table 2 - Table Supplement 1;

688 (c) Movies S1-S4.

689 Movie S1: Enrichment-Depletion analysis movie for the PU, FS, CHOL, and Others lipid
690 classes domains. This movie was obtained by averaging over 200 ns.

691 Movie S2: Enrichment-Depletion analysis movie for the PU, FS, CHOL, and Others lipid
692 classes domains. This movie was obtained by averaging over 2000 ns.

693 Movie S3: Total thickness, upper and lower leaflet thickness movie obtained by averaging
694 over 200 ns.

695 Movie S4: K_M and K_G for upper, middle and lower surfaces. This movie was obtained by av-
696 eraging over 200 ns.

697 **AUTHOR INFORMATION**

698 **Competing Interests**

699 No competing interests declared.

700 **Author Contributions**

701 E. M.-V. wrote the tools to analyze lipid composition, thickness and curvature. H. I. I. and M.
702 N. M. wrote the tools for the depletion-enrichment and cholesterol dynamics analysis. R.-X. G.
703 carried out the depletion-enrichment analysis and simulated the Na,K-ATPase system. I. S., A.
704 M., C. D., B. S. carried out the simulations of AQP1, DAT, GLUT1, Kv1.2 (I. S.); EGFR (A.
705 M.); δ -OPR (C. D.); COX1 and GluA2 (B. S.). V. C. carried out the simulations of the P-gp sys-
706 tem and analyzed the results from all the systems. G. S., T. A. W. and K. D. M. contributed with
707 helpful discussions throughout the project. D.P.T. and S.J.M. designed the project. V. C., E. M.-
708 V, D. P. T and S. J. M. wrote the manuscript, with contributions from H. I. I.

709 **Funding Sources**

710 Work in DPT's group was supported by the Canadian Institutes of Health Research. Addi-
711 tional support came from Alberta Innovates Health Solutions (AIHS) and Alberta Innovates
712 Technology Futures (AITF). DPT is an AIHS Scientist and AITF Strategic Chair in
713 (Bio)Molecular Simulation. Simulations were run on Compute Canada machines, supported by
714 the Canada Foundation for Innovation and partners. This work was undertaken, in part, thanks to
715 funding from the Canada Research Chairs program.

716 **ABBREVIATIONS**

717 AQP1, aquaporin 1; COX1, prostaglandin H2 synthase; DAT, dopamine transporter; EGFR,
718 epidermal growth factor; GluA2, AMPA-sensitive glutamate receptor; GLUT1, glucose trans-
719 porter; Kv1.2, voltage-dependent Shaker potassium channel 1.2; Na,K-ATPase, sodium, potassi-
720 um pump; δ -OPR, δ -opioid receptor; P-gp, P-glycoprotein (P-gp).

721 CHOL, cholesterol; PC, phosphatidylcholine lipids; PE, phosphatidylethanolamine lipids;
722 SM, sphingomyelin lipids; PS, phosphatidylserine lipids; PA, phosphatidic acid lipids; PI,
723 phosphati-dylinositol lipids; PIP, PI-phosphate, -bisphosphate, and -trisphosphate lipids; GM,
724 ganglioside lipids; CER, ceramide; DAG, diacylglycerol lipids; LPC, lysophosphatidylcholine
725 lipids.

726 CG, coarse-grained; MD, molecular dynamics.

727 **REFERENCES**

- 728 1. Nyholm, T. K., Lipid-protein interplay and lateral organization in biomembranes. *Chem Phys Lipids* **2015**,
729 *189*, 48-55.
- 730 2. van Meer, G.; Voelker, D. R.; Feigenson, G. W., Membrane lipids: where they are and how they behave.
731 *Nat Rev Mol Cell Bio* **2008**, *9* (2), 112-124.

732 3. Dumas, F.; Lebrun, M. C.; Tocanne, J. F., Is the protein/lipid hydrophobic matching principle relevant to
733 membrane organization and functions? *FEBS Lett* **1999**, 458 (3), 271-7.

734 4. Phillips, R.; Ursell, T.; Wiggins, P.; Sens, P., Emerging roles for lipids in shaping membrane-protein
735 function. *Nature* **2009**, 459 (7245), 379-85.

736 5. Contreras, F. X.; Ernst, A. M.; Wieland, F.; Brugger, B., Specificity of intramembrane protein-lipid
737 interactions. *Cold Spring Harb Perspect Biol* **2011**, 3 (6).

738 6. Deleu, M.; Crowet, J. M.; Nasir, M. N.; Lins, L., Complementary biophysical tools to investigate lipid
739 specificity in the interaction between bioactive molecules and the plasma membrane: A review. *BBA-Biomembranes*
740 **2014**, 1838 (12), 3171-3190.

741 7. Loll, P. J., Membrane proteins, detergents and crystals: what is the state of the art? *Acta Crystallogr F*
742 **2014**, 70, 1576-1583.

743 8. Koshy, C.; Ziegler, C., Structural insights into functional lipid-protein interactions in secondary
744 transporters. *BBA-Gen Subj* **2015**, 1850 (3), 476-487.

745 9. Barrera, N. P.; Zhou, M.; Robinson, C. V., The role of lipids in defining membrane protein interactions:
746 insights from mass spectrometry. *Trends Cell Biol* **2013**, 23 (1), 1-8.

747 10. Raunser, S.; Walz, T., Electron Crystallography as a Technique to Study the Structure on Membrane
748 Proteins in a Lipidic Environment. *Annu Rev Biophys* **2009**, 38, 89-105.

749 11. Loura, L. M. S.; Prieto, M.; Fernandes, F., Quantification of protein-lipid selectivity using FRET. *Eur*
750 *Biophys J Biophys* **2010**, 39 (4), 565-578.

751 12. Contreras, F. X.; Ernst, A. M.; Haberkant, P.; Bjorkholm, P.; Lindahl, E.; Gonen, B.; Tischer, C.; Elofsson,
752 A.; von Heijne, G.; Thiele, C.; Pepperkok, R.; Wieland, F.; Brugger, B., Molecular recognition of a single
753 sphingolipid species by a protein's transmembrane domain. *Nature* **2012**, 481 (7382), 525-529.

754 13. Betaneli, V.; Petrov, E. P.; Schwille, P., The Role of Lipids in VDAC Oligomerization. *Biophys J* **2012**,
755 102 (3), 523-531.

756 14. Grinkova, Y. V.; Denisov, I. G.; Sligar, S. G., Engineering extended membrane scaffold proteins for self-
757 assembly of soluble nanoscale lipid bilayers. *Protein Eng Des Sel* **2010**, 23 (11), 843-848.

758 15. Schuler, M. A.; Denisov, I. G.; Sligar, S. G., Nanodiscs as a new tool to examine lipid-protein interactions.
759 *Methods Mol Biol* **2013**, 974, 415-33.

760 16. Dorr, J. M.; Koorengevel, M. C.; Schafer, M.; Prokofyev, A. V.; Scheidelaar, S.; van der Cruijsen, E. A.;
761 Dafforn, T. R.; Baldus, M.; Killian, J. A., Detergent-free isolation, characterization, and functional reconstitution of
762 a tetrameric K⁺ channel: the power of native nanodiscs. *Proc Natl Acad Sci U S A* **2014**, 111 (52), 18607-12.

763 17. Laganowsky, A.; Reading, E.; Allison, T. M.; Ulmschneider, M. B.; Degiacomi, M. T.; Baldwin, A. J.;
764 Robinson, C. V., Membrane proteins bind lipids selectively to modulate their structure and function. *Nature* **2014**,
765 510 (7503), 172-175.

766 18. Ingolfsson, H. I.; Arnarez, C.; Periole, X.; Marrink, S. J., Computational 'microscopy' of cellular
767 membranes. *J Cell Sci* **2016**, 129 (2), 257-268.

768 19. Mori, T.; Miyashita, N.; Im, W.; Feig, M.; Sugita, Y., Molecular dynamics simulations of biological
769 membranes and membrane proteins using enhanced conformational sampling algorithms. *BBA-Biomembranes* **2016**,
770 1858 (7), 1635-1651.

771 20. Pluhackova, K.; Bockmann, R. A., Biomembranes in atomistic and coarse-grained simulations. *J Phys-
772 Condens Mat* **2015**, 27 (32), 323103.

773 21. Leman, J. K.; Ulmschneider, M. B.; Gray, J. J., Computational modeling of membrane proteins. *Proteins*
774 **2015**, 83 (1), 1-24.

775 22. Stansfeld, P. J.; Sansom, M. S., Molecular simulation approaches to membrane proteins. *Structure* **2011**, 19
776 (11), 1562-72.

777 23. Marrink, S. J.; Tieleman, D. P., Perspective on the Martini model. *Chem Soc Rev* **2013**, 42 (16), 6801-22.

778 24. Chavent, M.; Duncan, A. L.; Sansom, M. S. P., Molecular dynamics simulations of membrane proteins and
779 their interactions: from nanoscale to mesoscale. *Curr Opin Struc Biol* **2016**, 40, 8-16.

780 25. Perilla, J. R.; Goh, B. C.; Cassidy, C. K.; Liu, B.; Bernardi, R. C.; Rudack, T.; Yu, H.; Wu, Z.; Schulten,
781 K., Molecular dynamics simulations of large macromolecular complexes. *Curr Opin Struc Biol* **2015**, 31, 64-74.

782 26. van Eerden, F. J.; van den Berg, T.; Frederix, P.; de Jong, D. H.; Periole, X.; Marrink, S. J., Molecular
783 dynamics of Photosystem II embedded in the thylakoid membrane. *J Phys Chem B* **2017**, 121 (15), 3237-3249.

784 27. Arnarez, C.; Marrink, S. J.; Periole, X., Molecular mechanism of cardiolipin-mediated assembly of
785 respiratory chain supercomplexes. *Chem Sci* **2016**, 7 (7), 4435-4443.

786 28. Holdbrook, D. A.; Huber, R. G.; Piggot, T. J.; Bond, P. J.; Khalid, S., Dynamics of crowded vesicles: local
787 and global responses to membrane composition. *PLoS One* **2016**, 11 (6), e0156963.

788 29. Huber, R. G.; Marzinek, J. K.; Holdbrook, D. A.; Bond, P. J., Multiscale molecular dynamics simulation
789 approaches to the structure and dynamics of viruses. *Prog Biophys Mol Biol* **2017**, *128*, 121-132.

790 30. Marino, K. A.; Prada-Gracia, D.; Provasi, D.; Filizola, M., Impact of lipid composition and receptor
791 conformation on the spatio-temporal organization of mu-opioid receptors in a multi-component plasma membrane
792 model. *PLoS Comput Biol* **2016**, *12* (12), e1005240.

793 31. Flinner, N.; Schleiff, E., Dynamics of the glycophorin A dimer in membranes of native-like composition
794 uncovered by coarse-grained molecular dynamics simulations. *PLoS One* **2015**, *10* (7), e0133999.

795 32. Koldso, H.; Sansom, M. S. P., Organization and dynamics of receptor proteins in a plasma membrane. *J Am
796 Chem Soc* **2015**, *137* (46), 14694-14704.

797 33. Reddy, T.; Shorthouse, D.; Parton, D. L.; Jefferys, E.; Fowler, P. W.; Chavent, M.; Baaden, M.; Sansom,
798 M. S. P., Nothing to sneeze at: a dynamic and integrative computational model of an influenza A virion. *Structure*
799 **2015**, *23* (3), 584-597.

800 34. Koldso, H.; Shorthouse, D.; Helie, J.; Sansom, M. S. P., Lipid clustering correlates with membrane
801 curvature as revealed by molecular simulations of complex lipid bilayers. *PLoS Comput Biol* **2014**, *10* (10),
802 e1003911.

803 35. Ingolfsson, H. I.; Melo, M. N.; van Eerden, F. J.; Arnarez, C.; Lopez, C. A.; Wassenaar, T. A.; Periole, X.;
804 de Vries, A. H.; Tielemans, D. P.; Marrink, S. J., Lipid organization of the plasma membrane. *J Am Chem Soc* **2014**,
805 *136* (41), 14554-9.

806 36. Wassenaar, T. A.; Ingolfsson, H. I.; Bockmann, R. A.; Tielemans, D. P.; Marrink, S. J., Computational
807 lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. *J Chem Theory
808 Comput* **2015**, *11* (5), 2144-55.

809 37. Andersen, O. S.; Koepp, R. E., Bilayer thickness and membrane protein function: An energetic
810 perspective. *Annu Rev Biophys Biomol* **2007**, *36*, 107-130.

811 38. Tielemans, D. P.; Forrest, L. R.; Sansom, M. S. P.; Berendsen, H. J. C., Lipid properties and the orientation
812 of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations.
813 *Biochemistry* **1998**, *37* (50), 17554-17561.

814 39. Sharom, F. J., Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its
815 role in modulating protein function. *Front Oncol* **2014**, *4*, 41.

816 40. Ellena, J. F.; Lackowicz, P.; Montgomery, H.; Cafiso, D. S., Membrane thickness varies around the
817 circumference of the transmembrane protein BtuB. *Biophys J* **2011**, *100* (5), 1280-7.

818 41. Bennett, W. F.; Tielemans, D. P., Computer simulations of lipid membrane domains. *Biochim Biophys Acta*
819 **2013**, *1828* (8), 1765-76.

820 42. Risselada, H. J.; Marrink, S. J., The molecular face of lipid rafts in model membranes. *Proc Natl Acad Sci
821 USA* **2008**, *105* (45), 17367-72.

822 43. Tong, J. H.; Canty, J. T.; Briggs, M. M.; McIntosh, T. J., The water permeability of lens aquaporin-0
823 depends on its lipid bilayer environment. *Exp Eye Res* **2013**, *113*, 32-40.

824 44. O'Connor, J. W.; Klauda, J. B., Lipid membranes with a majority of cholesterol: applications to the ocular
825 lens and aquaporin 0. *J Phys Chem B* **2011**, *115* (20), 6455-64.

826 45. Page, E.; Winterfield, J.; Goings, G.; Bastawrous, A.; Upshaw-Earley, J., Water channel proteins in rat
827 cardiac myocyte caveolae: osmolarity-dependent reversible internalization. *Am J Physiol* **1998**, *274* (6), H1988-
828 H2000.

829 46. Palestini, P.; Calvi, C.; Conforti, E.; Daffara, R.; Botto, L.; Miserocchi, G., Compositional changes in lipid
830 microdomains of air-blood barrier plasma membranes in pulmonary interstitial edema. *J Appl Physiol* **2003**, *95* (4),
831 1446-1452.

832 47. Schnitzer, J. E.; Oh, P., Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water
833 channels across lung endothelium. *Am J Physiol* **1996**, *270* (1), H416-H422.

834 48. Zheng, X. J.; Bollag, W. B., Aquaporin 3 colocalizes with phospholipase D(2) in caveolin-rich membrane
835 microdomains and is downregulated upon keratinocyte differentiation. *J Invest Dermatol* **2003**, *121* (6), 1487-1495.

836 49. Asakura, K.; Ueda, A.; Shima, S.; Ishikawa, T.; Hikichi, C.; Hirota, S.; Fukui, T.; Ito, S.; Mutoh, T.,
837 Targeting of aquaporin 4 into lipid rafts and its biological significance. *Brain Res* **2014**, *1583*, 237-244.

838 50. Ishikawa, Y.; Yuan, Z.; Inoue, N.; Skowronski, M. T.; Nakae, Y.; Shono, M.; Cho, G.; Yasui, M.; Agre, P.;
839 Nielsen, S., Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3
840 mAChRs in interlobular ducts of rat parotid gland. *Am J Physiol Cell Physiol* **2005**, *289* (5), C1303-11.

841 51. Pan, Y.; Iwata, F.; Wang, D.; Muraguchi, M.; Ooga, K.; Ohmoto, Y.; Takai, M.; Cho, G.; Kang, J.; Shono,
842 M.; Li, X.; Okamura, K.; Mori, T.; Ishikawa, Y., Identification of aquaporin-5 and lipid rafts in human resting saliva
843 and their release into cevimeline-stimulated saliva. *BBA-Gen Subjects* **2009**, *1790* (1), 49-56.

844 52. Tong, J.; Briggs, M. M.; McIntosh, T. J., Water permeability of aquaporin-4 channel depends on bilayer
845 composition, thickness, and elasticity. *Biophys J* **2012**, *103* (9), 1899-908.

846 53. Hiroaki, Y.; Tani, K.; Kamegawa, A.; Gyobu, N.; Nishikawa, K.; Suzuki, H.; Walz, T.; Sasaki, S.;
847 Mitsuoka, K.; Kimura, K.; Mizoguchi, A.; Fujiyoshi, Y., Implications of the aquaporin-4 structure on array
848 formation and cell adhesion. *J Mol Biol* **2006**, *355* (4), 628-39.

849 54. Jung, J. S.; Bhat, R. V.; Preston, G. M.; Guggino, W. B.; Baraban, J. M.; Agre, P., Molecular
850 characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. *Proc
851 Natl Acad Sci U S A* **1994**, *91* (26), 13052-6.

852 55. Cuevas, P.; Gutierrez-Diaz, J. A.; Reimers, D.; Dujovny, M.; Diaz, F. G.; Ausman, J. I., Intramembranous
853 cytochemistry: a new morphological technique for studying cholesterol in the astrocyte plasma membrane of
854 ischemic brain cells. *Neurosurgery* **1987**, *20* (2), 243-8.

855 56. Liu, J. P.; Tang, Y.; Zhou, S.; Toh, B. H.; McLean, C.; Li, H., Cholesterol involvement in the pathogenesis
856 of neurodegenerative diseases. *Mol Cell Neurosci* **2010**, *43* (1), 33-42.

857 57. Schmidt, D.; MacKinnon, R., Voltage-dependent K⁺ channel gating and voltage sensor toxin sensitivity
858 depend on the mechanical state of the lipid membrane. *Proc Natl Acad Sci U S A* **2008**, *105* (49), 19276-81.

859 58. Oliver, D.; Lien, C. C.; Soom, M.; Baukrowitz, T.; Jonas, P.; Fakler, B., Functional conversion between A-
860 type and delayed rectifier K⁺ channels by membrane lipids. *Science* **2004**, *304* (5668), 265-270.

861 59. Pongs, O., Ins and outs of cardiac voltage-gated potassium channels. *Curr Opin Pharmacol* **2009**, *9* (3),
862 311-315.

863 60. Martens, J. R.; Navarro-Polanco, R.; Coppock, E. A.; Nishiyama, A.; Parshley, L.; Grobaski, T. D.;
864 Tamkun, M. M., Differential targeting of shaker-like potassium channels to lipid rafts. *Journal of Biological
865 Chemistry* **2000**, *275* (11), 7443-7446.

866 61. Bock, J.; Szabo, I.; Gamper, N.; Adams, C.; Gulbins, E., Ceramide inhibits the potassium channel Kv1.3 by
867 the formation of membrane platforms. *Biochem Biophys Res Co* **2003**, *305* (4), 890-897.

868 62. Ramu, Y.; Xu, Y.; Lu, Z., Enzymatic activation of voltage-gated potassium channels. *Nature* **2006**, *442*
869 (7103), 696-9.

870 63. Xia, F.; Gao, X.; Kwan, E.; Lam, P. P.; Chan, L.; Sy, K.; Sheu, L.; Wheeler, M. B.; Gaisano, H. Y.;
871 Tushima, R. G., Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis.
872 *J Biol Chem* **2004**, *279* (23), 24685-91.

873 64. Balijepalli, R. C.; Delisle, B. P.; Balijepalli, S. Y.; Foell, J. D.; Slind, J. K.; Kamp, T. J.; January, C. T.,
874 Kv11.1 (ERG1) K⁺ channels localize in cholesterol and sphingolipid enriched membranes and are modulated by
875 membrane cholesterol. *Channels* **2007**, *1* (4), 263-272.

876 65. Balijepalli, R. C.; Kamp, T. J., Caveolae, ion channels and cardiac arrhythmias. *Prog Biophys Mol Bio*
877 **2008**, *98* (2-3), 149-160.

878 66. Combs, D. J.; Shin, H. G.; Xu, Y. P.; Ramu, Y.; Lu, Z., Tuning voltage-gated channel activity and cellular
879 excitability with a sphingomyelinase. *J Gen Physiol* **2013**, *142* (4), 367-380.

880 67. Xu, Y. P.; Ramu, Y.; Lu, Z., Removal of phospho-head groups of membrane lipids immobilizes voltage
881 sensors of K⁺ channels. *Nature* **2008**, *451* (7180), 826-U8.

882 68. Kruse, M.; Hammond, G. R. V.; Hille, B., Regulation of voltage-gated potassium channels by PI(4,5)P₂. *J
883 Gen Physiol* **2012**, *140* (2), 189-205.

884 69. Iversen, L.; Mathiasen, S.; Larsen, J. B.; Stamou, D., Membrane curvature bends the laws of physics and
885 chemistry. *Nat Chem Biol* **2015**, *11* (11), 822-5.

886 70. Pike, L. J., Lipid rafts: bringing order to chaos. *J Lipid Res* **2003**, *44* (4), 655-67.

887 71. Soubias, O.; Teague, W. E.; Gawrisch, K., Evidence for specificity in lipid-rhodopsin interactions. *J Biol
888 Chem* **2006**, *281* (44), 33233-41.

889 72. Soubias, O.; Gawrisch, K., The role of the lipid matrix for structure and function of the GPCR rhodopsin.
890 *Biochim Biophys Acta* **2012**, *1818* (2), 234-40.

891 73. Teague, W. E.; Soubias, O.; Petrache, H.; Fuller, N.; Hines, K. G.; Rand, R. P.; Gawrisch, K., Elastic
892 properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function. *Farad Discuss* **2013**, *161*,
893 383-395.

894 74. Grossfield, A.; Feller, S. E.; Pitman, M. C., A role for direct interactions in the modulation of rhodopsin by
895 omega-3 polyunsaturated lipids. *Proc Natl Acad Sci U S A* **2006**, *103* (13), 4888-4893.

896 75. Feller, S. E.; Gawrisch, K.; Woolf, T. B., Rhodopsin exhibits a preference for solvation by polyunsaturated
897 docosohexaenoic acid. *J Am Chem Soc* **2003**, *125* (15), 4434-4435.

898 76. Poveda, J. A.; Fernandez, A. M.; Encinar, J. A.; Gonzalez-Ros, J. M., Protein-promoted membrane
899 domains. *Biochim Biophys Acta* **2008**, *1778* (7-8), 1583-90.

900 77. Lentz, B. R.; Clubb, K. W.; Alford, D. R.; Hochli, M.; Meissner, G., Phase behavior of membranes
901 reconstituted from dipentadecanoylphosphatidylcholine and the Mg²⁺-dependent, Ca²⁺-stimulated
902 adenosinetriphosphatase of sarcoplasmic reticulum: evidence for a disrupted lipid domain surrounding protein.
903 *Biochemistry* **1985**, 24 (2), 433-42.

904 78. Masserini, M.; Pitto, M.; Ferraretto, A.; Brunne, J.; Palestini, P., Glycolipid-protein interaction in the
905 mechanism of signal transduction: studies with a photoactivable ganglioside analogue. *Acta Biochim Pol* **1998**, 45
906 (2), 393-401.

907 79. Hakomori Si, S. I., The glycosynapse. *Proc Natl Acad Sci U S A* **2002**, 99 (1), 225-32.

908 80. Miljan, E. A.; Bremer, E. G., Regulation of growth factor receptors by gangliosides. *Sci STKE* **2002**, 2002
909 (160), re15-re15.

910 81. Gu, R. X.; Ingolfsson, H. I.; de Vries, A. H.; Marrink, S. J.; Tielemans, D. P., Ganglioside-lipid and
911 ganglioside-protein interactions revealed by coarse-grained and atomistic molecular dynamics simulations. *J Phys
912 Chem B* **2016**, 121 (15), 3262-3275.

913 82. Shorthouse, D.; Hedger, G.; Koldso, H.; Sansom, M. S., Molecular simulations of glycolipids: Towards
914 mammalian cell membrane models. *Biochimie* **2016**, 120, 105-9.

915 83. Hedger, G.; Shorthouse, D.; Koldso, H.; Sansom, M. S., Free energy landscape of lipid interactions with
916 regulatory binding sites on the transmembrane domain of the EGF receptor. *J Phys Chem B* **2016**, 120 (33), 8154-
917 63.

918 84. Lingwood, D.; Simons, K., Lipid rafts as a membrane-organizing principle. *Science* **2010**, 327 (5961), 46-
919 50.

920 85. Hamilton, P. J.; Belovich, A. N.; Khelashvili, G.; Saunders, C.; Erreger, K.; Javitch, J. A.; Sitte, H. H.;
921 Weinstein, H.; Matthies, H. J. G.; Galli, A., PIP2 regulates psychostimulant behaviors through its interaction with a
922 membrane protein. *Nat Chem Biol* **2014**, 10 (7), 582-589.

923 86. Michailidis, I. E.; Rusinova, R.; Georgakopoulos, A.; Chen, Y. B.; Iyengar, R.; Robakis, N. K.; Logothetis,
924 D. E.; Baki, L., Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. *Pflug
925 Arch Eur J Phys* **2011**, 461 (3), 387-397.

926 87. Wang, Y.; Gao, J.; Guo, X. D.; Tong, T.; Shi, X. S.; Li, L. Y.; Qi, M.; Wang, Y. J.; Cai, M. J.; Jiang, J. G.;
927 Xu, C. Q.; Ji, H. B.; Wang, H. D., Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. *Cell
928 Res* **2014**, 24 (8), 959-976.

929 88. Logothetis, D. E.; Petrou, V. I.; Zhang, M.; Mahajan, R.; Meng, X. Y.; Adney, S. K.; Cui, M.; Baki, L.,
930 Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. *Annu Rev Physiol*
931 **2015**, 77, 81-104.

932 89. Raiborg, C.; Wenzel, E. M.; Pedersen, N. M.; Stenmark, H., Phosphoinositides in membrane contact sites.
933 *Biochem Soc T* **2016**, 44 (2), 425-430.

934 90. Johannsson, A.; Smith, G. A.; Metcalfe, J. C., The effect of bilayer thickness on the activity of (Na⁺ + K⁺)-
935 ATPase. *Biochim Biophys Acta* **1981**, 641 (2), 416-21.

936 91. Yuan, C.; O'Connell, R. J.; Feinberg-Zadek, P. L.; Johnston, L. J.; Treistman, S. N., Bilayer thickness
937 modulates the conductance of the BK channel in model membranes. *Biophys J* **2004**, 86 (6), 3620-33.

938 92. Williamson, I. M.; Alvis, S. J.; East, J. M.; Lee, A. G., Interactions of phospholipids with the potassium
939 channel KcsA. *Biophys J* **2002**, 83 (4), 2026-38.

940 93. Lomize, A. L.; Pogozheva, I. D.; Lomize, M. A.; Mosberg, H. I., Positioning of proteins in membranes: A
941 computational approach. *Protein Science* **2006**, 15 (6), 1318-1333.

942 94. Pogozheva, I. D.; Tristram-Nagle, S.; Mosberg, H. I.; Lomize, A. L., Structural adaptations of proteins to
943 different biological membranes. *Biochim Biophys Acta* **2013**, 1828 (11), 2592-608.

944 95. Lomize, M. A.; Lomize, A. L.; Pogozheva, I. D.; Mosberg, H. I., OPM: orientations of proteins in
945 membranes database. *Bioinformatics* **2006**, 22 (5), 623-5.

946 96. Scott, K. A.; Bond, P. J.; Ivetaç, A.; Chetwynd, A. P.; Khalid, S.; Sansom, M. S., Coarse-grained MD
947 simulations of membrane protein-bilayer self-assembly. *Structure* **2008**, 16 (4), 621-30.

948 97. Periole, X.; Huber, T.; Marrink, S. J.; Sakmar, T. P., G protein-coupled receptors self-assemble in
949 dynamics simulations of model bilayers. *J Am Chem Soc* **2007**, 129 (33), 10126-32.

950 98. Goose, J. E.; Sansom, M. S., Reduced lateral mobility of lipids and proteins in crowded membranes. *PLoS
951 Comput Biol* **2013**, 9 (4), e1003033.

952 99. Gapsys, V.; de Groot, B. L.; Briones, R., Computational analysis of local membrane properties. *J Comput
953 Aided Mol Des* **2013**, 27 (10), 845-58.

954 100. Zimmerberg, J.; Kozlov, M. M., How proteins produce cellular membrane curvature. *Nat Rev Mol Cell Bio*
955 **2006**, 7 (1), 9-19.

956 101. Reynwar, B. J.; Illya, G.; Harmandaris, V. A.; Muller, M. M.; Kremer, K.; Deserno, M., Aggregation and
957 vesiculation of membrane proteins by curvature-mediated interactions. *Nature* **2007**, *447* (7143), 461-4.

958 102. Parton, D. L.; Klingelhoefer, J. W.; Sansom, M. S., Aggregation of model membrane proteins, modulated
959 by hydrophobic mismatch, membrane curvature, and protein class. *Biophys J* **2011**, *101* (3), 691-9.

960 103. Botelho, A. V.; Huber, T.; Sakmar, T. P.; Brown, M. F., Curvature and hydrophobic forces drive
961 oligomerization and modulate activity of rhodopsin in membranes. *Biophys J* **2006**, *91* (12), 4464-77.

962 104. Aimon, S.; Callan-Jones, A.; Berthaud, A.; Pinot, M.; Toombes, G. E.; Bassereau, P., Membrane shape
963 modulates transmembrane protein distribution. *Dev Cell* **2014**, *28* (2), 212-8.

964 105. Davies, K. M.; Strauss, M.; Daum, B.; Kief, J. H.; Osiewacz, H. D.; Rycovska, A.; Zickermann, V.;
965 Kuhlbrandt, W., Macromolecular organization of ATP synthase and complex I in whole mitochondria. *Proc Natl
966 Acad Sci U S A* **2011**, *108* (34), 14121-14126.

967 106. Davies, K. M.; Anselmi, C.; Wittig, I.; Faraldo-Gomez, J. D.; Kuhlbrandt, W., Structure of the yeast F1Fo-
968 ATP synthase dimer and its role in shaping the mitochondrial cristae. *Proc Natl Acad Sci U S A* **2012**, *109* (34),
969 13602-13607.

970 107. Sui, H. X.; Han, B. G.; Lee, J. K.; Walian, P.; Jap, B. K., Structural basis of water-specific transport
971 through the AQP1 water channel. *Nature* **2001**, *414* (6866), 872-878.

972 108. Gupta, K.; Selinsky, B. S.; Kaub, C. J.; Katz, A. K.; Loll, P. J., The 2.0 Å resolution crystal structure of
973 prostaglandin H2 synthase-1: structural insights into an unusual peroxidase. *J Mol Biol* **2004**, *335* (2), 503-18.

974 109. Penmatsa, A.; Wang, K. H.; Gouaux, E., X-ray structure of dopamine transporter elucidates antidepressant
975 mechanism. *Nature* **2013**, *503* (7474), 85-90.

976 110. Arkhipov, A.; Shan, Y. B.; Das, R.; Endres, N. F.; Eastwood, M. P.; Wemmer, D. E.; Kuriyan, J.; Shaw, D.
977 E., Architecture and Membrane Interactions of the EGF Receptor. *Cell* **2013**, *152* (3), 557-569.

978 111. Sobolevsky, A. I.; Rosconi, M. P.; Gouaux, E., X-ray structure, symmetry and mechanism of an AMPA-
979 subtype glutamate receptor. *Nature* **2009**, *462* (7274), 745-56.

980 112. Deng, D.; Xu, C.; Sun, P.; Wu, J.; Yan, C.; Hu, M.; Yan, N., Crystal structure of the human glucose
981 transporter GLUT1. *Nature* **2014**, *510* (7503), 121-5.

982 113. Chen, X.; Wang, Q.; Ni, F.; Ma, J., Structure of the full-length Shaker potassium channel Kv1.2 by normal-
983 mode-based X-ray crystallographic refinement. *Proc Natl Acad Sci U S A* **2010**, *107* (25), 11352-7.

984 114. Laursen, M.; Yatime, L.; Nissen, P.; Fedosova, N. U., Crystal structure of the high-affinity Na+K+-
985 ATPase-ouabain complex with Mg²⁺ bound in the cation binding site. *Proc Natl Acad Sci U S A* **2013**, *110* (27),
986 10958-63.

987 115. Fenalti, G.; Giguere, P. M.; Katritch, V.; Huang, X. P.; Thompson, A. A.; Cherezov, V.; Roth, B. L.;
988 Stevens, R. C., Molecular control of delta-opioid receptor signalling. *Nature* **2014**, *506* (7487), 191-6.

989 116. Li, J.; Jaimes, K. F.; Aller, S. G., Refined structures of mouse P-glycoprotein. *Protein Sci* **2014**, *23* (1), 34-
990 46.

991 117. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: Algorithms for highly efficient, load-
992 balanced, and scalable molecular simulation. *J Chem Theory Comput* **2008**, *4* (3), 435-447.

993 118. de Jong, D. H.; Singh, G.; Bennett, W. F.; Arnarez, C.; Wassenaar, T. A.; Schafer, L. V.; Periole, X.;
994 Tielemans, D. P.; Marrink, S. J., Improved parameters for the Martini coarse-grained protein force field. *J Chem
995 Theory Comput* **2013**, *9* (1), 687-97.

996 119. Bussi, G.; Donadio, D.; Parrinello, M., Canonical sampling through velocity rescaling. *J Chem Phys* **2007**,
997 *126* (1).

998 120. Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R., Molecular-Dynamics
999 with Coupling to an External Bath. *J Chem Phys* **1984**, *81* (8), 3684-3690.

1000 121. Kalli, A. C.; Sansom, M. S.; Reithmeier, R. A., Molecular dynamics simulations of the bacterial UraA H+-
1001 uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin. *PLoS Comput Biol*
1002 **2015**, *11* (3), e1004123.

1003 122. Mehmood, S.; Corradi, V.; Choudhury, H. G.; Hussain, R.; Becker, P.; Axford, D.; Zirah, S.; Rebuffat, S.;
1004 Tielemans, D. P.; Robinson, C. V.; Beis, K., Structural and functional basis for lipid synergy on the activity of the
1005 antibacterial peptide ABC transporter McjD. *J Biol Chem* **2016**, *291* (41), 21656-21668.

1006 123. Yesylevskyy, S. O.; Schafer, L. V.; Sengupta, D.; Marrink, S. J., Polarizable water model for the coarse-
1007 grained MARTINI force field. *PLoS Comput Biol* **2010**, *6* (6), e1000810.

1008 124. Mendez-Villuendas, E.; Baoukina, S.; Tielemans, D. P., Challenges in analysing and visualizing large-scale
1009 molecular dynamics simulations: domain and defect formation in lung surfactant monolayers. *J Phys Conf Ser* **2012**,
1010 385.

1011 125. Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O., MDAnalysis: a toolkit for the analysis
1012 of molecular dynamics simulations. *J Comput Chem* **2011**, *32* (10), 2319-27.
1013 126. van der Walt, S.; Colbert, S. C.; Varoquaux, G., The NumPy Array: A Structure for Efficient Numerical
1014 Computation. *Comput Sci Eng* **2011**, *13* (2), 22-30.
1015
1016
1017