

1 **Genetic diversity and mother-child overlap of the gut associated**
2 **microbiota determined by reduced genome sequencing**

3 Anuradha Ravi¹ (Anuradha.Ravi@nmbu.no), Ekaterina Avershina¹
4 (Ekaterina.Avershina@nmbu.no), Inga Leena Angell¹ (Inga.Angell@nmbu.no), Jane Ludvigsen¹
5 (Jane.Ludvigsen@nmbu.no), Prashanth Manohar² (prasanth.emsa1@gmail.com), Sumathi
6 Padmanaban³ (mpnsumathi@gmail.com), Ramesh Nachimuthu² (drpnramesh@gmail.com) and
7 Knut Rudi^{1*} (Knut.Rudi@nmbu.no)

8

9 ¹Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences,
10 Ås, Norway

11 ²Antibiotic resistance and phage therapy laboratory, Department of Biomedical sciences, School
12 of Bio-sciences and technology, VIT University, Tamil Nadu, India

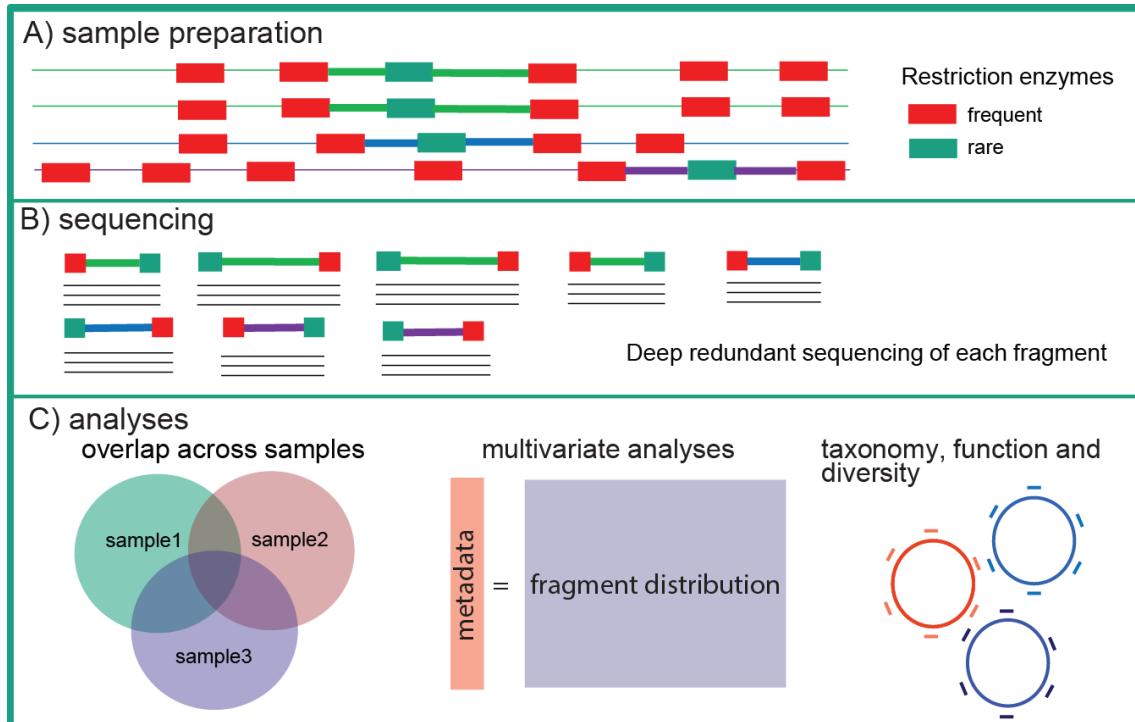
13 ³Nishanth Hospital, Tamil Nadu, India

14

15 * corresponding author

16 **ABSTRACT**

17 The genetic diversity and sharing of the mother-child associated microbiota remain largely
18 unexplored. This severely limits our functional understanding of gut microbiota transmission
19 patterns. The aim of our work was therefore to use a novel reduced metagenome sequencing in
20 combination with shotgun and 16S rRNA gene sequencing to determine both the metagenome
21 genetic diversity and the mother-to-child sharing of the microbiota. For a cohort of 17 mother-
22 child pairs we found an increase of the collective metagenome size from about 100 Mbp for 4-
23 day-old children to about 500 Mbp for mothers. The 4-day-old children shared 7% of the
24 metagenome sequences with the mothers, while the metagenome sequence sharing was more than
25 30% among the mothers. We found 15 genomes shared across more than 50% of the mothers, of
26 which 10 belonged to *Clostridia*. Only *Bacteroides* showed a direct mother-child association, with
27 *B. vulgatus* being abundant in both 4-day-old children and mothers. In conclusion, our results
28 support a common pool of gut bacteria that are transmitted from adults to infants, with most of the
29 bacteria being transmitted at a stage after delivery.


30

31 **INTRODUCTION**

32 The colonization by gut bacteria at infancy is crucial for proper immune development and gut
33 maturation (1). At birth, we are nearly sterile, while just after a few days of life we become densely
34 colonized by bacteria (2). How and when we acquire the adult associated bacteria, are not yet
35 completely established (2). Recent 16S rRNA gene sequence data suggest that most of the adult
36 associated bacteria are recruited at a stage after delivery (3), while shotgun analyses suggest a high
37 frequency of direct transmission during delivery (4). The limitations of these studies, however, are
38 that 16S rRNA gene analyses do not have sufficient resolution to resolve mother to child

39 transmission at the strain level, while shotgun sequencing requires extensive and complex
40 analyses (4,5). Taken together, this restricts the possibility of gaining broad-scale knowledge about
41 the microbiota genetic diversity and distribution with the current analytical approaches. There is
42 thus a need for analytical approaches that combine efficiency and resolution.

43 The aim of the current work was therefore to use a novel concept of reduced metagenome
44 sequencing (RMS; schematically outlined in Fig. 1) in combination with 16S rRNA gene and
45 shotgun sequencing to estimate genetic diversity and mother-child overlap for gut associated
46 bacteria for a medium size cohort of 17 mother-child pairs.

48 **Figure 1. Schematic outline of the reduced metagenome sequencing approach.** (A) In the first
49 stage we amplify the fragments flanked by a frequent and a rare restriction enzyme cutting sites
50 by the RMS principle (indicated by thick lines). (B) The amplified fragments are then sequenced
51 by deep redundant sequencing with high coverage for each fragment. (C) The fragment frequency
52 information can be used for different analytical applications. The overlap in fragments across
53 samples can be used as a proxy for high resolution analyses of the overlap in microbiota. Fragment
54 frequencies can be directly related to metadata. Finally, fragment distribution can be used to
55 estimate taxonomy, function and genetic diversity of the microbiota.

56 RMS requires a relatively shallow sequencing depth in order to gain insight into genetic diversity
57 and microbiota overlap across individuals. With this approach only a defined fraction of the
58 metagenome is sequenced. Principles related to reduced metagenome sequencing have been
59 widely used for strain resolution analyses since the 1990s by DNA fragment size separation (6,7).
60 RMS, however, gives additional information about fragment sequence, therefore thus enabling the
61 estimation of total genetic diversity and overlap of metagenome sequences. Thus, RMS has the
62 potential to solve some of the most urgent needs in current metagenome sequence analyses.
63 Our study presents evidence that less than 10% of the microbiota is directly transmitted from
64 mother to child, while the sharing of more than 30% of the microbiota across random mothers
65 suggests that the majority of the gut microbiota is transmitted at a stage after delivery.

66 **MATERIALS AND METHODS**

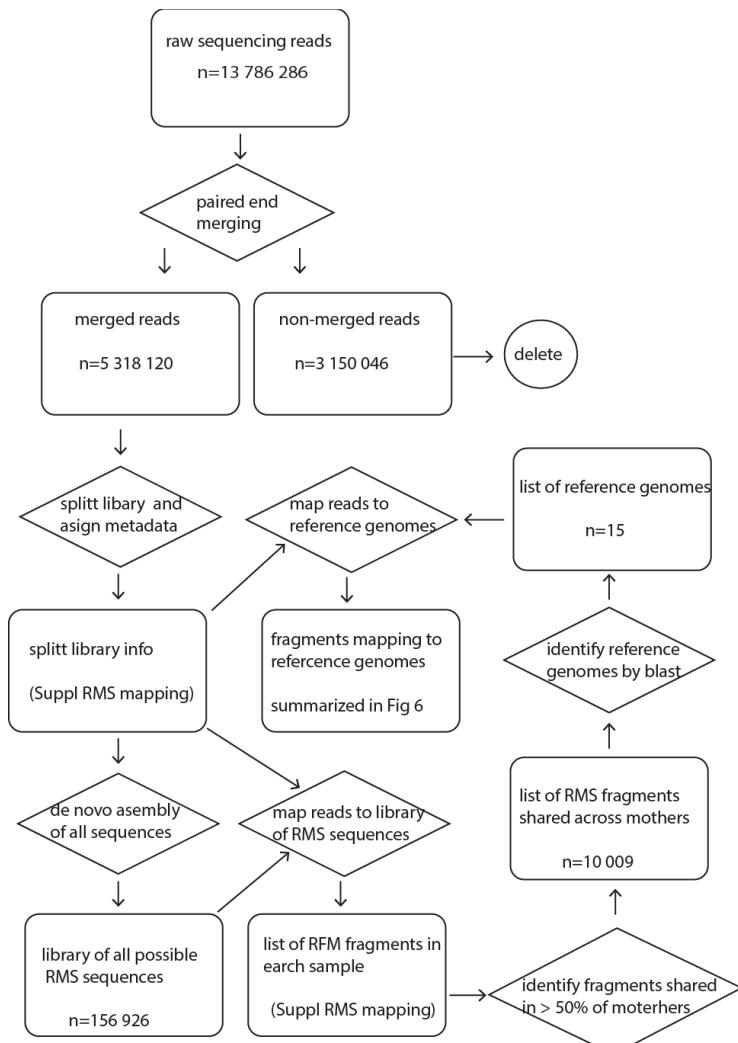
67 **Cohort description.** The study consists of an unselected longitudinal cohort of 17 mother-infant
68 pairs. The infants were born full term at Nishanth Hospital, India. Twelve of the 17 infants were
69 born through cesarean section. All the mothers that gave birth through vaginal or cesarean section
70 were given antibiotics either during pregnancy, during labor and/or after pregnancy (Suppl. Table
71 1). Fecal samples were collected from late pregnant women (gestational age 32-36 weeks) and in
72 infants 0-4 days after birth for all the mother child-pairs, while the numbers of samples at 15 days
73 were 4, 60 days 3 and 120 days 3. Fecal samples were collected and stored at -20°C up to a week
74 with STAR buffer (Roche, Basel, Switzerland). Then, the samples were transferred to -80°C for
75 longer storage. One of the parents of each child signed a written informed consent form before the
76 fecal sample collection, which is in accordance with legislation in India.

77 **Mock community.** Mock communities of *E.coli* ATCC25922; *E. faecalis* V583; *B. longum*
78 DSM20219 and *B. infantis* DSM20088 mixed in varying proportions ranging from 0% to 100%
79 were used to assess sensitivity of the AFLP sequencing in prediction and identification of bacterial
80 strains.

81 **DNA isolation.** The fecal samples were diluted 3-fold with STAR-buffer and pre-centrifuged at
82 1200 rpm for 8 sec to remove large particles. An overnight culture of each of the four bacteria
83 species used for mock community analyses was used for DNA isolation. Bacterial cultures were
84 pre-centrifuged at 13000 rpm for 5 min, and then pellets were washed twice in 1x PBS buffer. The
85 supernatant from the pre-centrifuged stool samples, as well as bacterial pellets in PBS, were mixed
86 with acid-washed glass beads (Sigma-Aldrich, <106µm; 0.25g) and bead-beated at 1800rpm in 40
87 seconds twice, with 5 minutes' rest between the runs. The samples were then centrifuged at
88 13000rpm for 5 minutes. An automated protocol based on paramagnetic particles (LGC Genomics,

89 UK) was used for the DNA isolation using a KingFisher Flex (ThermoFisher Scientific, USA),
90 following the manufacturers recommendations. After extraction, samples were quantified and
91 normalized using Qubit fluorometer (ThermoFisher Scientific, USA). The DNA concentrations
92 were normalized to 0.2 ng/μl prior to further processing. Mock communities were prepared to
93 contain a total of 10 ng DNA in each sample.

94 **Library preparation and sequencing.** For RMS, DNA fragments were obtained by cutting
95 genomic DNA using an enzyme combination of EcoRI and MseI, followed by an adapter ligation
96 and PCR amplification. Restriction cutting was performed in 20 μl volumes containing 8U EcoRI
97 (New England Biolabs, USA), 4U MseI (New England Biolabs, USA), 1x Cut smart buffer (New
98 England Biolabs, USA), and 1 ng genomic DNA. The samples were incubated at 37°C for one
99 hour to make sure that the restriction enzymes would cut appropriate amounts of DNA into
100 fragments. For PCR amplification of the fragments, adapters were ligated onto the fragments. This
101 was done by adding the sample a 5 μl volume of 0.5 μM EcoRI adapter mix, 5μM MseI adapter
102 mix, 1 μl T4 DNA ligase (New England Biolabs, USA) and 1x T4 reaction buffer (New England
103 Biolabs, USA). The adapter mixes were made of equal volumes of forward (EcoRI; 5'-
104 CTCGTAGACTGCGTACC-3', MseI; 5'-GACGATGAGTCCTGAG-3') and reverse adapters
105 (EcoRI; 5'-AATTGGTACGCAGTCTAC-3', MseI; 5'-TACTCAGGACTCAT-3'). The adapters
106 will ligate to the fragments that have been cut by both restriction enzymes. The samples were
107 incubated for 3 hours at 37°C.
108 PCR amplification was performed using primer pairs EcoRI (5'-GAUTGCGTACCAATTG-
109 3')/MseI (5'-GATGAGTCCTGAGTAA-3'), targeting the RMS fragments, and PRK341F (5'-
110 CCTACGGGRBGCASCAG-3')/ PRK806R(5'- GGACTACYVGGGTATCTAAT-3') (8),
111 targeting the V3-V4 region of the 16 S rRNA gene. Each reaction contained 1x HotFirePol DNA

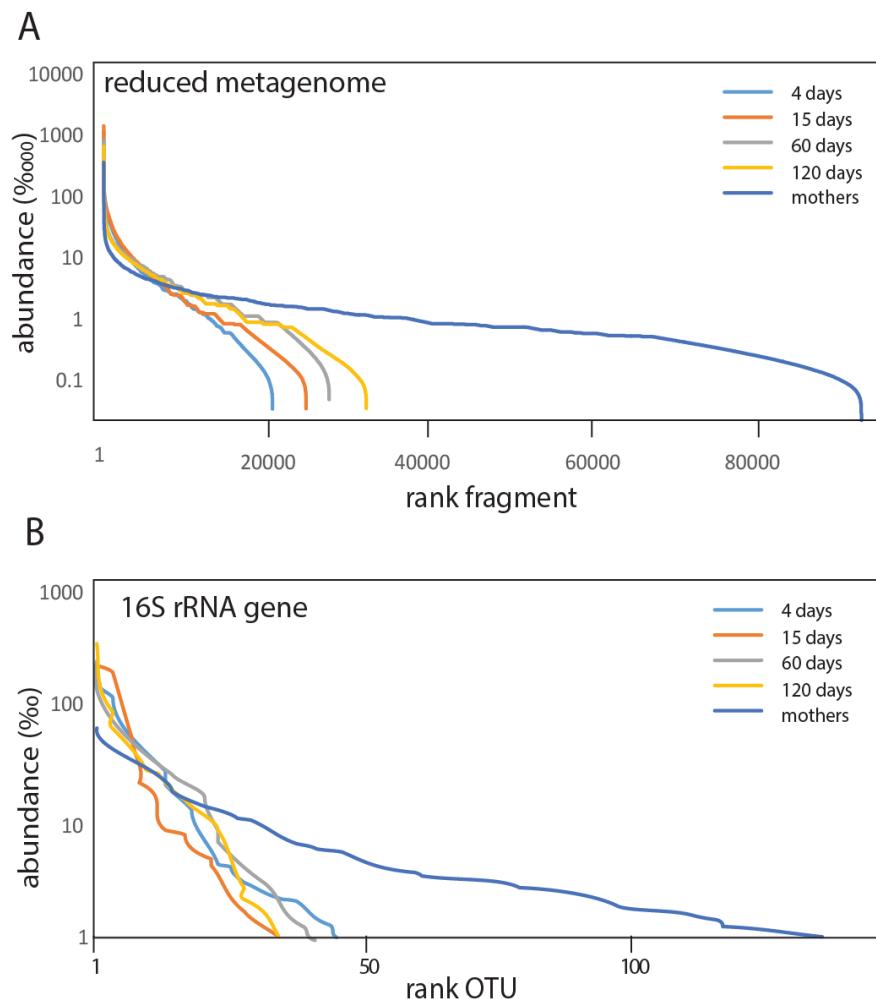

112 polymerase Ready to load (Solis BioDyne, Estonia), 0.2 μ M forward and reverse primer
113 (Invitrogen, USA) and 2 μ l template DNA. The cycling conditions for the 16S rRNA gene were
114 25 cycles of 95°C for 30 seconds, 55°C for 30 seconds and 72°C for 45 seconds, while the cycling
115 conditions for the RMS were 25 cycles of 95°C for 30 sec, 56°C for 1 min and 72°C for 1 min.
116 The PCR products were purified by AMPure XP beads (Beckman Coulter, USA) prior to further
117 processing.

118 To index the fragments 1x FirePol DNA polymerase Ready to load (Solis BioDyne, Estonia),
119 0.2 μ M forward index primer and reverse index primer and 2 μ l purified PCR products were used.
120 The fragments were amplified by PCR using the following thermal cycle: 95° C for 5 minutes,
121 followed by 10 cycles of 95° C for 30 seconds, 55° C for 60 seconds and 72° C for 45 seconds. A
122 final step at 72° C for 7 minutes was included. All samples were pooled using 100ng DNA from
123 each sample. The pooled sample were then purified using AMPure XP beads prior to sequencing.
124 The pooled sequencing library comprised 15% PhiX and 85% pooled sample.

125 The shotgun metagenome sequencing was done as previously described using Illumina Nextera
126 XT, following the recommendations by the producer (9).

127 **Data analysis.** Raw data of 16S were analyzed using a standard workflow of QIIME pipeline (3).
128 Sequences were paired-end joined (join_paired_ends.py with *fastq_join* method), demultiplexed
129 using split_library.py script with no error in the barcode allowed (max_barcode_errors 0) and
130 barcodes removed. Sequences were then filtered using *fastq_filter* command of *usearch* (maxee =
131 0.22; minlen = 350). Finally, sequences were clustered at 97 % similarity threshold using
132 *cluster_otus* command of *usearch*. Singletons were removed and an additional reference-based
133 chimera removal step against GOLD database was performed. Resulting dataset was then rarefied
134 to 6000 sequences per sample (Schematically outlined in Suppl. Fig 1A). The reduced metagenome

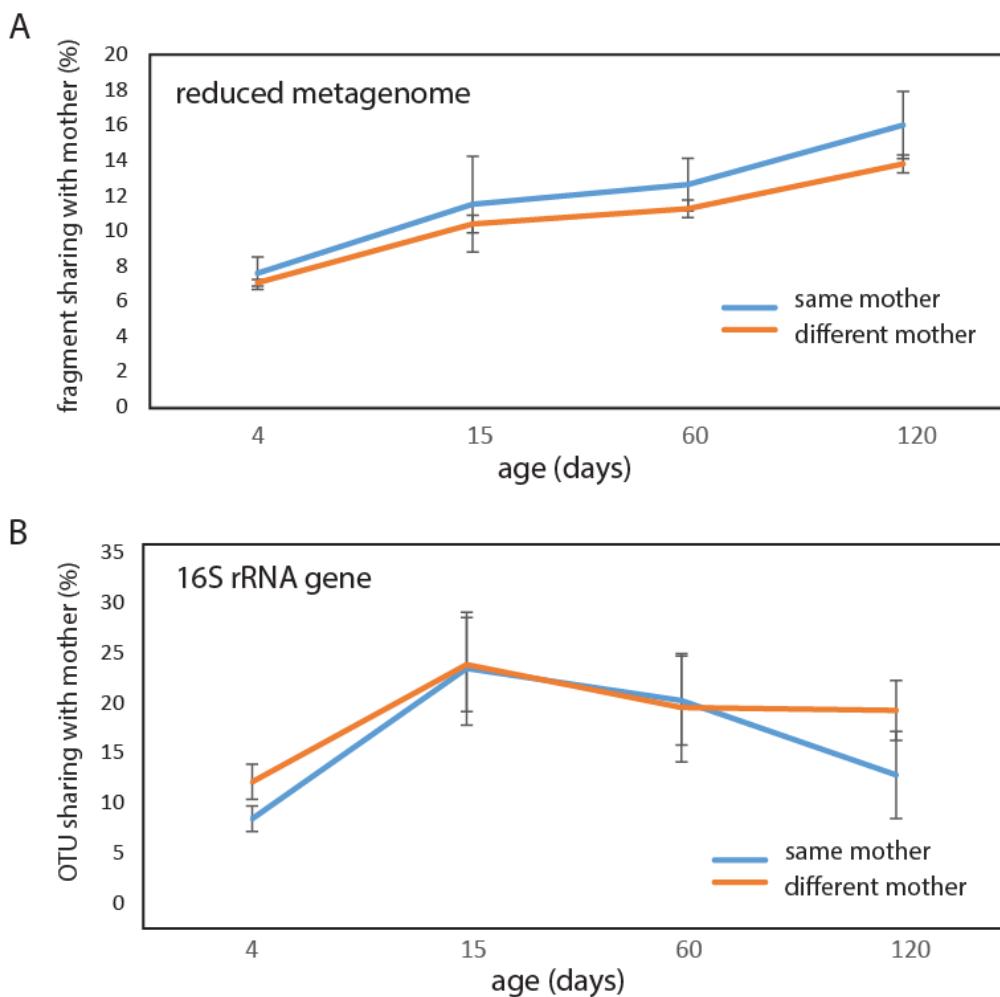
135 and shotgun data were analyzed using a CLC Genomic Workbench (Qiagen, Hilden, Germany),
136 using the paired-end sequence-merging tool, *de novo* and reference based assembly tools, and Blast
137 searches (Schematically outlined in Suppl. Fig. 1B). The shotgun data were not processed further
138 after *de novo* assembly, while for the RMS analyses we followed the bioinformatics workflow, as
139 outlined in Fig. 2. Sample comparisons and statistical analyses were done using Matlab 2016a
140 (Mathworks Inc, USA) with the PLS toolbox module (Eigenvector Research Inc., USA).



141

142 **Figure 2. Bioinformatics workflow for the RMS analyses.** The workflow is summarized by
143 outputs in rounded squares, while the processes are illustrated with polygons. Directions of
144 processes are illustrated by arrows.

145 **RESULTS**


146 **Metagenome sequence size.** We identified 156 926 unique RMS fragments for the samples
147 analyzed (Fig. 2). This corresponds to complete metagenome sequence size of approximately 750
148 Mbp given RMS fragment sizes of each 5000 bp. We found an approximately 5-fold increase in
149 the collective metagenome sequence size when comparing 4-day-old children with the mothers
150 (Fig. 3A). The collective metagenome sequence for the 4-day-old children was estimated to
151 approximately 100 Mbp with 40 ± 6.5 Mbp per individual, while the estimated collective
152 metagenome sequence size for mothers was 500 Mbp – with individual sizes of 100 ± 7 Mbp.

153 The total number of 16S rRNA gene derived OTUs was 458. For the 4-day-old children we
154 detected a total of 40 OTUs with mean relative abundance $> 1\%$ (13.1 ± 4 per individual), while
155 the number increased to 140 OTUs for the mothers (70.2 ± 7.5 per individual) (Fig. 3B).

156 For the shotgun analyses we generated 8.6 million paired end reads with a total size 2 070 Mbp
157 shotgun metagenome sequence data for the 4-day-old children , and 6.7 million reads with a total
158 of 1 3964 Mbp sequence for the mothers. However, the shotgun sequences only generated 15.8
159 Mbp assembly for the 4-day-old children, and 4.3 Mbp for the mothers (Suppl. Table 2).

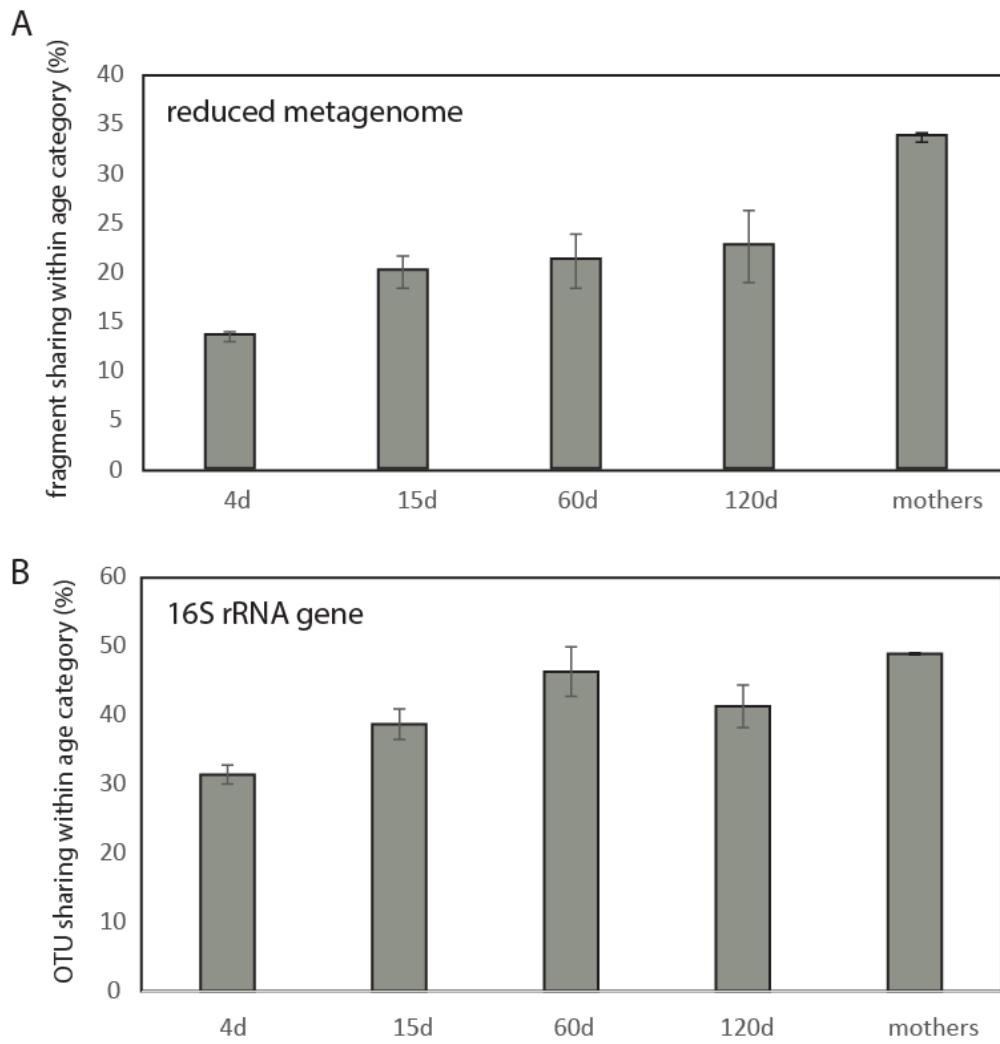
161 **Figure 3. Rank relative abundance distribution across age for (A) RMS fragments and (B)**
162 **16S rRNA gene OTUs.**

163
164 **Associations of microbiome with mode of delivery and antibiotic usage.** For the 4-day-old
165 children we found 27 reduced metagenome sequencing fragments unique to children delivered by
166 c-section, while 20 fragments were unique to the children delivered vaginally (Suppl. Table 3).
167 The most pronounced differences were an overrepresentation of fragments related to the genus
168 *Bacteroides* for vaginal delivery ($p=0.0038$, Binomial test).
169 Based on ResFinder assignments (10) of the RNS fragments, we identified 13 fragments associated
170 with known antibiotic resistance genes (Suppl. Table 4). There was a clear association between

171 antibiotic usage during labor and antibiotic resistance genes ($p=0.001$, ASCA-ANOVA), with
172 Fosfomycin, Beta-lactam and Phenicol resistance showing positive associations (Suppl. Fig 4).
173 Antibiotic usage during pregnancy or after delivery, however, did not seem to affect resistance
174 gene composition (results not shown).

175 For the 16S rRNA gene sequence data we did not identify any significant association of OTUs
176 with mode of delivery by ASCA-ANOVA. Furthermore, no significant association between 16S
177 rRNA gene sequence data and antibiotic usage was determined.

178

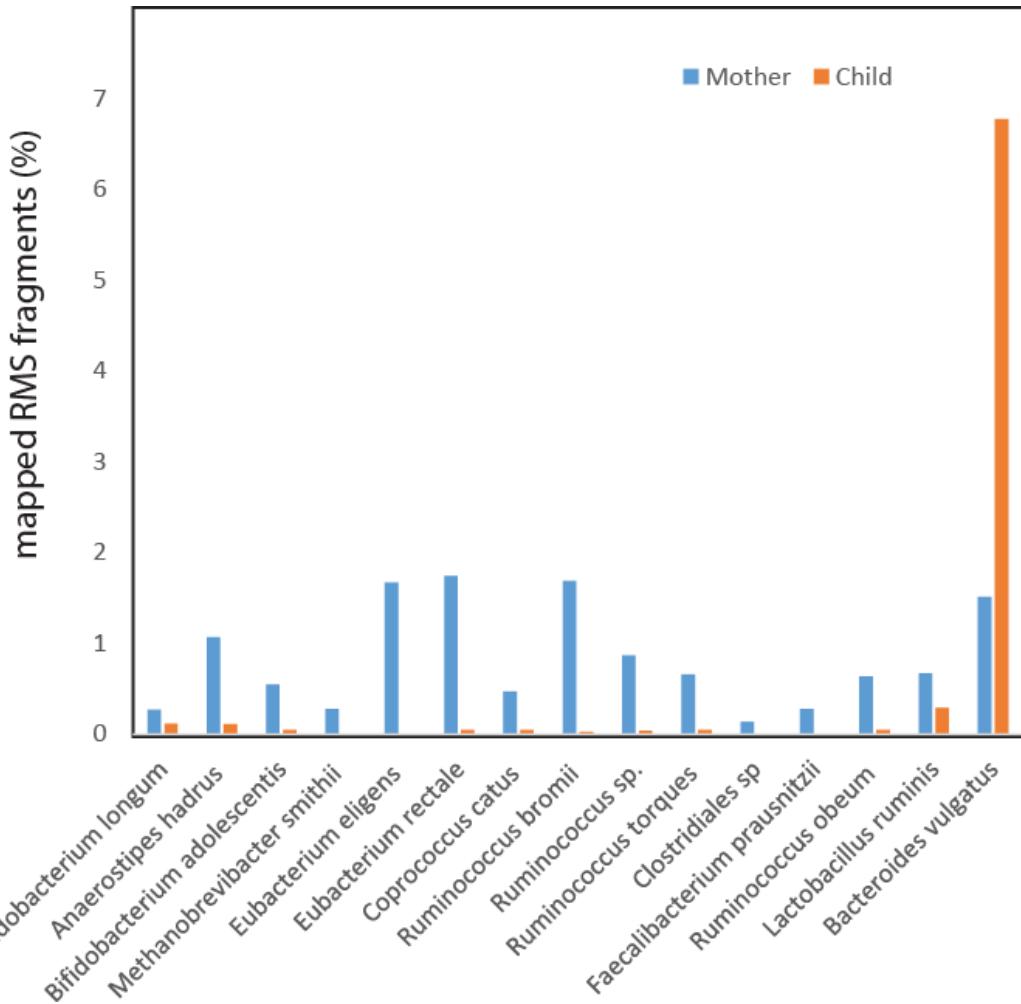

179 **Figure 4. Sharing of microbiota with mothers for (A) RMS fragments and (B) 16S rRNA**
180 **gene OTUs.**

181 **Vertical transmission.** About 7% of the fragments detected by RMS for the 4-day-old children
182 were shared with the mothers, with no difference between vaginally or c-section delivered children
183 (p=0.67, Kruskal-Wallis test). Furthermore, there were no significant differences if the sharing
184 was with the same or different mother for any of the age categories, although there was a tendency
185 towards increased association with the same mother with age (Fig. 4A).

186 Similarly, as for RMS we did not identify any significant differences between the same or different
187 mothers with respect to OTU sharing. However, the 16S rRNA gene OTUs displayed a pattern
188 different from the reduced metagenome sequencing fragment sharing, with a peak in sharing at 15
189 days (Fig. 4B).

190 **Sharing within age categories.** For the reduced metagenome sequencing, we found that the
191 average sharing of fragments between individuals increased from below 15% for 4-day-old
192 children to more than 30% for the mothers, with the 15-day to 4-month samples showing
193 intermediate levels (Fig. 5A).

194 The age-related differences were less pronounced for the 16S rRNA gene sequence data, with an
195 increase from 30% at 4 days to about 50% for the mothers. The 15-day to 4-month samples showed
196 relatively large fluctuations for the shared 16S rRNA gene OTUs (Fig. 5B).



198 **Figure 5. Sharing of microbiota with age categories for (A) RMS fragments and (B) 16S**
199 **rRNA gene OTUs** Abbreviations d; days of life.

200

201 **Identification of core genomes.** By RMS we identified the mothers' core genomes, and the
202 relative abundance of these genomes in infants. We first identified the RMS fragments shared
203 across more than half of the mothers. In total, 10 009 RMS fragments satisfied this criterion (Fig.
204 2). From these, we identified 15 genome-sequenced species with more than 97% identity to the
205 core fragments by Blast search (Fig. 2). The prevalence of these genomes in both mothers and 4-
206 day-old children were determined by mapping all the RMS fragments, using the core genomes as

207 reference. In mothers we identified 5 core genomes with a relative abundance above 1%, while for
208 children only *Bacteroides vulgatus* showed high relative abundance (Fig. 6).

209

210 **Figure 6. Sharing of core RMS fragments with genome sequenced prokaryotes.**

211

212 **Validation of RMS.** We validated RMS on experimental communities with known composition.
213 This validation showed that there were clear signatures separating the bacteria in mixed
214 populations, even between closely related *Bifidobacteria* (Suppl. Fig. 2A). Next we determined
215 the quantitative potential of the RMS approach. This was done through regression analyses
216 between the expected and observed DNA quantity of the four bacteria in the experimental

217 community. All four evaluated bacteria showed high correlations ($R^2 > 0.8$) between estimated
218 concentrations based on RMS fragment frequency, and the expected concentrations (Suppl. Fig.
219 2B).

220 Finally, we determined the frequency of the reduced metagenome sequencing fragments from
221 assembled shotgun data. This comparison showed a high correlation between the contig size and
222 number of RMS fragments mapping to the respective contigs (Suppl. Fig. 3), with the mean
223 distance between the RMS fragments being 5513 ± 187 bp.

224 **DISCUSSION**

225 There was a consistent increase in bacterial species shared between mothers and children with age
226 based on the RMS data, while 16S rRNA gene analyses suggested a less consistent age-related
227 pattern. This could be due to the fact that 16S rRNA gene analyses may merge several strains into
228 the same OTUs (11), obscuring the analyses. For the mothers, the shotgun sequencing was far too
229 shallow to yield any reasonable estimate of metagenome sequence size or strain composition,
230 illustrating the shotgun sequencing challenges. The current approaches to extract strain level
231 information from shotgun would require very deep sequencing (12). Therefore, we believe that the
232 RMS approach can be a valuable and cost efficient contribution in deducing patterns associated
233 with the gut microbiota.

234 Our RMS results support direct mother to child transmission of less than 10 % of stool-associated
235 bacteria. Although the sharing was slightly higher with the child's own mother rather than a
236 random mother, most of the bacteria seem to be recruited from a common pool of gut associated
237 bacteria. This contrasts with recent findings that suggest high strain sharing between infants and
238 their mothers (4). However, given that more than one-third of the strains are shared across mothers,

239 it would be difficult to determine if a strain is transmitted to a child from his or her mother or from
240 some other adult. From the taxonomic identity, however, fragments belonging to the genus
241 *Bacteroides* seemed underrepresented for children delivered by cesarean section. This is consistent
242 with previous observations with long-term underrepresentation of *Bacteroides* in c-section
243 delivered babies (13). The very high relative abundance of *B. vulgatus* in children could indicate
244 that this bacterium plays an important role in the early development of the gut microbiota. *B.*
245 *vulgatus* is mucin degrading bacterium (14) interacting with *Escherichia coli* in inflammation
246 induction (15), and is suppressed by *Bifidobacteria* (16). To our knowledge, however, no studies
247 have yet addressed the role of *B. vulgatus* in infants.

248 In our study we found very low levels of clostridia for the 4-day-old children, in addition to a lack
249 of direct mother-child associations. Therefore, we found it unlikely that most of the adult
250 associated clostridia are transmitted at delivery. Recently, it has been found that a large portion of
251 gut bacteria are spore-formers (17), with endospores as a potential vector for transmission at a later
252 stage than delivery (18).

253 Previous 16S rRNA gene sequencing have shown high degree of sharing at the genus/species level
254 across mothers (3,19). Thus, the increased resolution of the reduced metagenome sequencing
255 further supports the sharing of a relatively limited number of bacterial species/lineages within
256 human populations. Our results suggest that one-third of the fragments are shared across random
257 mothers. The mapping of the core fragments identified among the Indian mothers to human-
258 derived genome sequenced isolates (mostly from Europe and America) further support the fact
259 that there are limited number of human gut associated bacteria, and that these have wide
260 geographic distribution. Interestingly, *Ruminococcus bromii*, which was among the most prevalent
261 and dominant species for the Indian mothers, has previously been identified as a keystone species

262 in resistant starch degradation, supporting the growth of both *Eubacterium rectale* and
263 *Bifidobacterium adolescentis* (20), which were all identified among the 15 bacterial species shared
264 across more than half of the Indian mothers in our work. This suggests that the core bacteria could
265 have biologically important interactions.

266 Antibiotic usage during labor seemed to have a major impact on the resistance genes in the children
267 without impacting the overall microbiota composition. This is consistent with previous
268 observations suggesting that the mobilome can evolve independently of the overall composition
269 of the gut microbiota (3). Furthermore, we detected resistance associations for antibiotics other
270 than those used, indicating potential antibiotic resistance linkage (21). Thus, antibiotic usage
271 during labor could be a major contributing factor to antibiotic resistance spread within the infants'
272 commensal gut microbiota.

273 CONCLUSION

274 In conclusion, our results support a model with late recruitment of adult gut associated bacteria in
275 infants, with a more than five-fold increase in genetic richness from child to adult.

276 DECLARATIONS

277 **Availability of data and material:** The raw sequencing reads are deposited in the European
278 Nucleotide Archive with the accession number PRJEB85416, while the data used for figure
279 generation are provided in a Supplementary Excel file.

280 **Ethics approval and consent to participate:** A written consent was obtained from all the
281 participants

282 **Consent for publication:** Not applicable.

283 **Funding:** The project was funded by the Norwegian University of Life Sciences and the
284 Norwegian Government.

285 **Competing interests:** There are no competing interests.

286 **Author's contributions:** AR designed the study. EA did the methods validation. IA performed
287 the analyses. JL did the shotgun analyses. PM, SP and RN did the sample collection and recording
288 of metadata. KR analyzed the data, wrote the paper and invented the RMS methods. All authors
289 commented on the manuscript.

290 **Acknowledgements:** We would like to thank the Norwegian government for the scholarship
291 provided to Anuradha Ravi. We would also like to thank the doctors and nurses at Nishanth
292 Hospital, India for doing the sampling and collecting the information.

293 **REFERENCES**

- 294 1. Lupp, C., Skipper, M. and Weiss, U. (2012) Gut microbes and health. *Nature*, **489**, 219-
295 219.
- 296 2. Rodriguez, J.M., Murphy, K., Stanton, C., Ross, R.P., Kober, O.I., Juge, N., Avershina,
297 E., Rudi, K., Narbad, A., Jenmalm, M.C. *et al.* (2015) The composition of the gut
298 microbiota throughout life, with an emphasis on early life. *Microbial ecology in health
299 and disease*, **26**, 26050.
- 300 3. Avershina, E., Lundgard, K., Sekelja, M., Dotterud, C., Storro, O., Oien, T., Johnsen, R.
301 and Rudi, K. (2016) Transition from infant- to adult-like gut microbiota. *Environmental
302 microbiology*, **18**, 2226-2236.
- 303 4. Asnicar, F., Manara, S., Zolfo, M., Truong, D.T., Scholz, M., Armanini, F., Ferretti, P.,
304 Gorfer, V., Pedrotti, A., Tett, A. *et al.* (2017) Studying Vertical Microbiome

305 Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. *mSystems*,
306 2.

307 5. Scholz, M., Ward, D.V., Pasolli, E., Tolio, T., Zolfo, M., Asnicar, F., Truong, D.T., Tett,
308 A., Morrow, A.L. and Segata, N. (2016) Strain-level microbial epidemiology and
309 population genomics from shotgun metagenomics. *Nature methods*, **13**, 435-438.

310 6. Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. and
311 Kersters, K. (1996) Evaluation of the DNA fingerprinting method AFLP as an new tool
312 in bacterial taxonomy. *Microbiology (Reading, England)*, **142**, 1881-1893.

313 7. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A.,
314 Pot, J., Peleman, J., Kuiper, M. *et al.* (1995) AFLP: a new technique for DNA
315 fingerprinting. *Nucleic acids research*, **23**, 4407-4414.

316 8. Yu, Y., Lee, C., Kim, J. and Hwang, S. (2005) Group-specific primer and probe sets to
317 detect methanogenic communities using quantitative real-time polymerase chain reaction.
318 *Biotechnology and bioengineering*, **89**, 670-679.

319 9. Ravi, A., Avershina, E., Foley, S.L., Ludvigsen, J., Storro, O., Oien, T., Johnsen, R.,
320 McCartney, A.L., L'Abee-Lund, T.M. and Rudi, K. (2015) The commensal infant gut
321 meta-mobilome as a potential reservoir for persistent multidrug resistance integrons. *Sci
322 Rep*, **5**, 15317.

323 10. Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O.,
324 Aarestrup, F.M. and Larsen, M.V. (2012) Identification of acquired antimicrobial
325 resistance genes. *J Antimicrob Chemother*, **67**, 2640-2644.

326 11. Tikhonov, M., Leach, R.W. and Wingreen, N.S. (2015) Interpreting 16S metagenomic
327 data without clustering to achieve sub-OTU resolution. *ISME J*, **9**, 68-80.

328 12. Marx, V. (2016) Microbiology: the road to strain-level identification. *Nat Meth*, **13**, 401-
329 404.

330 13. Jakobsson, H.E., Abrahamsson, T.R., Jenmalm, M.C., Harris, K., Quince, C., Jernberg,
331 C., Bjorksten, B., Engstrand, L. and Andersson, A.F. (2014) Decreased gut microbiota
332 diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants
333 delivered by caesarean section. *Gut*, **63**, 559-566.

334 14. Cuiv, P.O., Klaassens, E.S., Durkin, A.S., Harkins, D.M., Foster, L., McCorrison, J.,
335 Torralba, M., Nelson, K.E. and Morrison, M. (2011) Draft genome sequence of
336 Bacteroides vulgatus PC510, a strain isolated from human feces. *Journal of bacteriology*,
337 **193**, 4025-4026.

338 15. Waidmann, M., Bechtold, O., Frick, J.S., Lehr, H.A., Schubert, S., Dobrindt, U., Loeffler,
339 J., Bohn, E. and Autenrieth, I.B. (2003) Bacteroides vulgatus protects against Escherichia
340 coli-induced colitis in gnotobiotic interleukin-2-deficient mice. *Gastroenterology*, **125**,
341 162-177.

342 16. Shiba, T., Aiba, Y., Ishikawa, H., Ushiyama, A., Takagi, A., Mine, T. and Koga, Y.
343 (2003) The suppressive effect of bifidobacteria on Bacteroides vulgatus, a putative
344 pathogenic microbe in inflammatory bowel disease. *Microbiol Immunol*, **47**, 371-378.

345 17. Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D.,
346 Goulding, D. and Lawley, T.D. (2016) Culturing of 'unculturable' human microbiota
347 reveals novel taxa and extensive sporulation. *Nature*, **533**, 543-546.

348 18. Al-Hinai, M.A., Jones, S.W. and Papoutsakis, E.T. (2015) The Clostridium sporulation
349 programs: diversity and preservation of endospore differentiation. *Microbiol Mol Biol
350 Rev*, **79**, 19-37.

351 19. Avershina, E., Storro, O., Oien, T., Johnsen, R., Pope, P. and Rudi, K. (2014) Major
352 faecal microbiota shifts in composition and diversity with age in a geographically
353 restricted cohort of mothers and their children. *FEMS microbiology ecology*, **87**, 280-290.

354 20. Ze, X., Duncan, S.H., Louis, P. and Flint, H.J. (2012) Ruminococcus bromii is a keystone
355 species for the degradation of resistant starch in the human colon. *ISME J*, **6**, 1535-1543.

356 21. Ravi, A., Avershina, E., Ludvigsen, J., L'Abee-Lund, T.M. and Rudi, K. (2014) Integrons
357 in the intestinal microbiota as reservoirs for transmission of antibiotic resistance genes.
358 *Pathogens*, **3**, 238-248.

359

360 **SUPPLEMENTARY INFORMATION**

361 **Supplementary Table 1. Metadata of the mother-child pairs**

Mother-child pair	Mode of delivery	Antibiotics used		
		During pregnancy	Labor	After pregnancy
11	Cesarean	Cephalosporin		Cephalosporin Amoxicillin
3	Vaginal	Roxithromycin	Cefadroxil	
17	Vaginal	amoxicillin		Cephalosporin
16	Cesarean			Cephalosporin
14	Cesarean		Ampicillin Cephalosporin Ampicillin	Amoxicillin
15 ¹	Cesarean		Cephalosporin	Amoxicillin Cephalosporin
10 ¹	Cesarean		Roxithromycin	Amoxicillin Cephalosporin
4 ¹	Cesarean			Cephalosporin
1 ¹	Vaginal	Cephalosporin	Cephalosporin	
12 ¹	Cesarean	Roxithromycin		Cephalosporin Amoxicillin Cephalosporin
6	Cesarean			Amoxicillin
9	Vaginal			Cephalosporin
21	Cesarean	Cephalosporin Roxithromycin		Ampicillin
2	Vaginal		Cephalosporin	
7	Cesarean	Cephalosporin		Cephalosporin β-lactamase inhibitor
8	Cesarean	Ampicillin		
20	Cesarean		Cephalosporin	Cephalosporin β-lactamase inhibitor

362 ¹Mother-child pair included for shotgun analyses

363

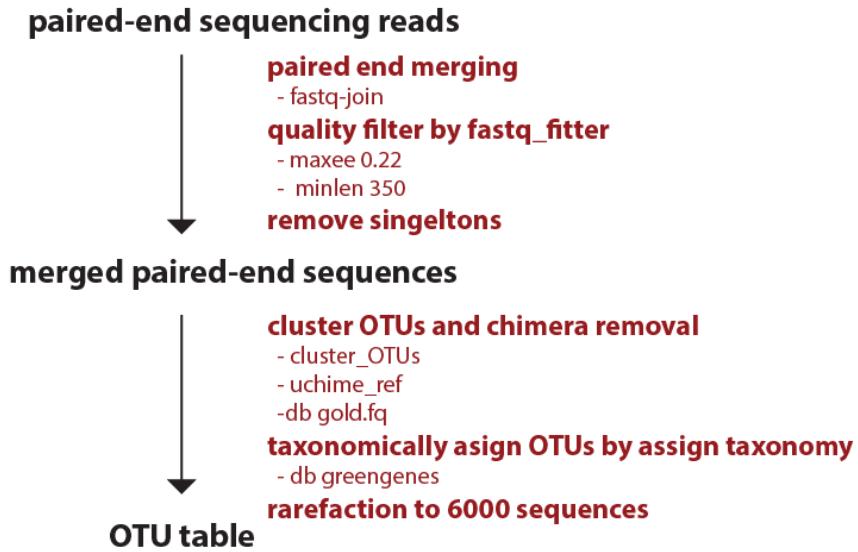
364 **Supplementary Table 2. Metagenome assembly parameters**

Parameter	Mother	Infant 4 days old
N75	12 539 bp	13 995 bp
N50	16 092 bp	20 984 bp
N25	24 983 bp	47 227 bp
Minimum	10 020 bp	10 019 bp
Maximum	66 770 bp	296 115 bp
Average	16,808 bp	21 070 pb
Count	258	961
Total	4,336,530 bp	20,248,713 bp

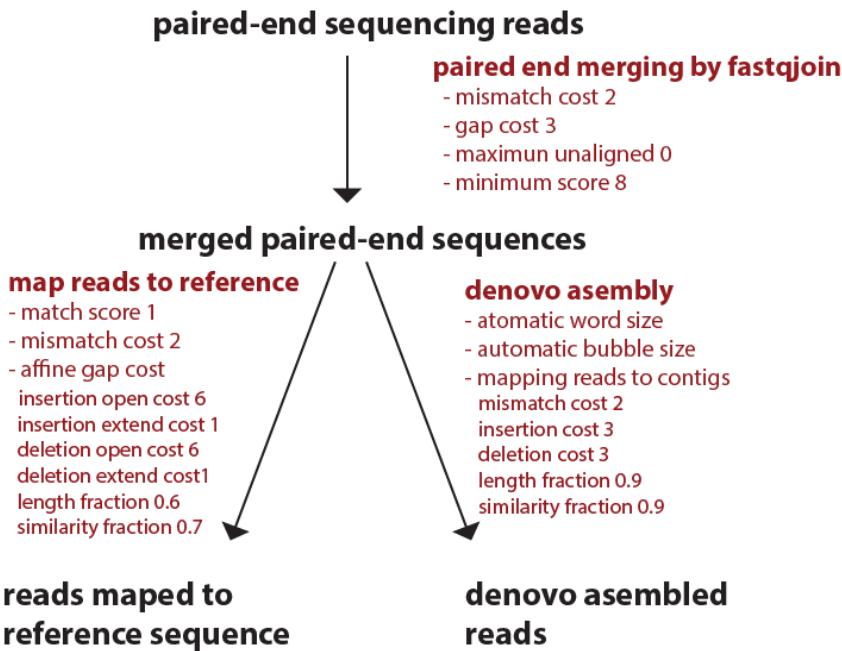
365

Supplementary Table 3. Fragments associated with vaginal delivery and c-section

Fragment#	Origin	E-value	Accession	Identity %	Taxonomy
168593	c-section	5.40E-07	CP011531	100	Bacteroides dorei CL03T12C01, complete genome
176737	c-section	3.63E-28	CP012937	75.83	Bacteroides thetaiotaomicron strain 7330, complete genome
151444	c-section	2.44E-68	CP002873	98.09	Brachyspira pilosicoli P43/6/78, complete genome
17018	c-section	2.00E-70	CP013239	78.59	Clostridium butyricum strain CDC_51208, complete genome
158	c-section	0	CP018102	94.92	Enterococcus faecalis strain L12, complete genome
158	c-section	0	CP018102	94.92	Enterococcus faecalis strain L12, complete genome
114243	c-section	2.27E-135	CP012430	100	Enterococcus faecium strain ISMMS_VRE_1, complete genome
136943	c-section	7.01E-50	LT599825	100	Escherichia coli isolate E. coli NRZ14408 genome assembly, plasmid: NRZ14408_C
144076	c-section	6.98E-145	CP010229	93.91	Escherichia coli strain S10, complete genome
132301	c-section	1.55E-26	CP001107	87.76	Eubacterium rectale ATCC 33656, complete genome
95285	c-section	1.75E-73	FP929043	96.53	Eubacterium rectale M104/1 draft genome
96190	c-section	5.37E-04	FP929043	100	Eubacterium rectale M104/1 draft genome
28215	c-section	1.35E-15	FP929046	94.12	Faecalibacterium prausnitzii SL3/3 draft genome
31001	c-section	6.53E-45	CP000964	94.44	Klebsiella pneumoniae 342, complete genome
94833	c-section	3.59E-158	CP016159	99.68	Klebsiella pneumoniae strain TH1, complete genome
167871	c-section	8.53E-68	HQ022863	99.33	Lactobacillus ruminis strain SL1090 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence
56187	c-section	6.54E-03	HQ884359	100	Linum usitatissimum clone Contig131 microsatellite sequence
35097	c-section	6.54E-03	CP009471	100	Marinitoga sp. 1137, complete genome
130843	c-section	1.88E-06	CP014167	73.64	Paenibacillus sp. DCY84, complete genome
15771	c-section	3.86E-16	CP003369	78.76	Prevotella dentalis DSM 3688 chromosome 2, complete sequence
69907	c-section	5.37E-04	KF999945	84.62	Rhopilema esculentum clone REG-27 microsatellite sequence
180061	c-section	1.88E-25	FP929050	98.63	Roseburia intestinalis XB6B4 draft genome

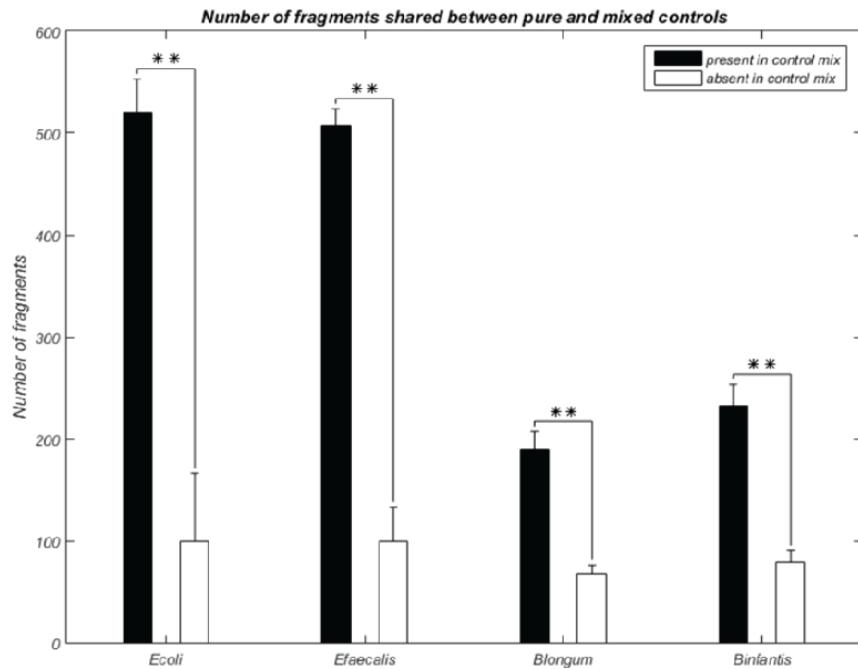

16971	c-section	2.43E-69	FP929051	95.86	Ruminococcus bromii L2-63 draft genome
70147	c-section	2.00E-28	FP929051	100	Ruminococcus bromii L2-63 draft genome
86213	c-section	5.03E-17	FP929054	98.25	Ruminococcus obeum A2-162 draft genome
15493	c-section	4.70E-34	FP929053	97.8	Ruminococcus sp. SR1/5 draft genome
75144	c-section	2.43E-65	FP929055	94.12	Ruminococcus torques L2-14 draft genome
150257	c-section	9.76E-04	JN650471	82.46	Scophthalmus maximus clone Bf14 AFLP marker mRNA sequence
4525	c-section	4.10E-174	CP013911	93.51	Staphylococcus haemolyticus strain S167, complete genome
24415	c-section	7.93E-101	CP002888	99.53	Streptococcus salivarius 57.I, complete genome
91381	c-section	1.64E-48	CP014144	100	Streptococcus salivarius strain JF, complete genome
25125	c-section	2.13E-38	KU547459	100	Uncultured bacterium clone CH_08F_000_Contig_1 genomic sequence
145802	vaginal	2.56E-20	KJ816753	79.2	Bacteroides fragilis strain HMW 615 transposon CTnHyb, complete sequence
127917	vaginal	3.55E-12	CP012706	76.36	Bacteroides fragilis strain S14, complete genome
1591	vaginal	4.10E-174	CP013020	99.15	Bacteroides vulgatus strain mpk genome
143921	vaginal	2.73E-07	CP013020	100	Bacteroides vulgatus strain mpk genome
23880	vaginal	1.18E-03	CP013020	96.97	Bacteroides vulgatus strain mpk genome
15862	vaginal	2.77E-100	FP929033	97.76	Bacteroides xyloisolvans XB1A draft genome
86516	vaginal	1.08E-94	KT334806	100	Citrobacter sp. veravelsponge02 16S ribosomal RNA gene, partial sequence
60731	vaginal	2.23E-122	FP929039	95.16	Coprococcus sp. ART55/1 draft genome
66802	vaginal	2.55E-58	FP929039	90.17	Coprococcus sp. ART55/1 draft genome
35478	vaginal	1.44E-40	CP001726	78.22	Eggerthella lenta DSM 2243, complete genome
115599	vaginal	2.91E-32	CP012430	100	Enterococcus faecium strain ISMMS_VRE_1, complete genome
52919	vaginal	1.18E-60	LT599825	100	Escherichia coli isolate E. coli NRZ14408 genome assembly, plasmid: NRZ14408_C
175550	vaginal	8.33E-71	CP001107	98.15	Eubacterium rectale ATCC 33656, complete genome
58673	vaginal	4.93E-61	FP929045	98.57	Faecalibacterium prausnitzii L2/6 draft genome

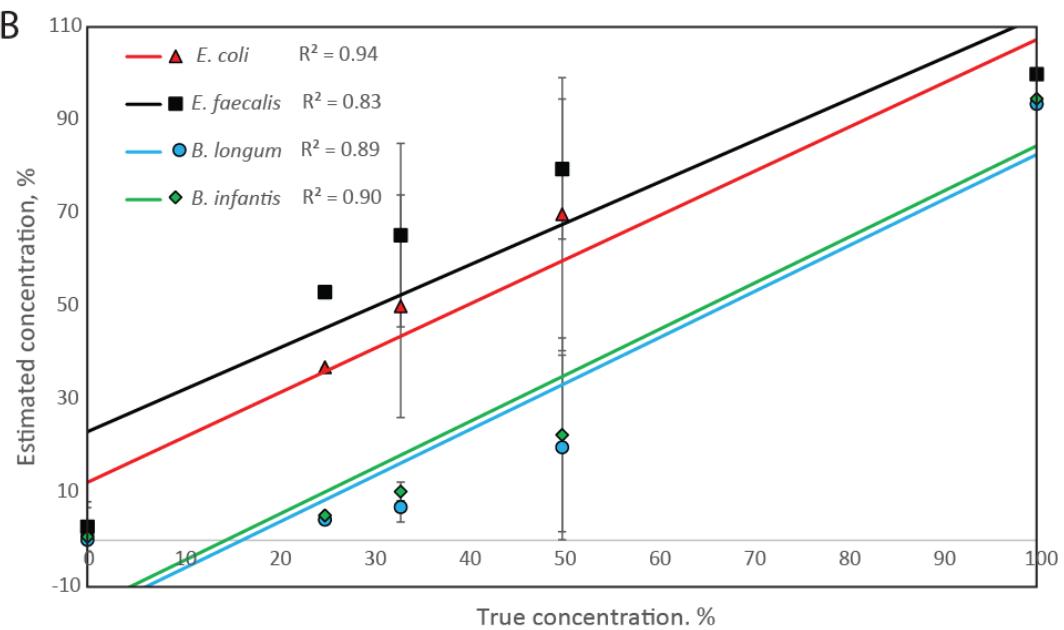
130843	vaginal	9.54E-07	CP014167	73.64	Paenibacillus sp. DCY84, complete genome
53205	vaginal	5.71E-109	CP003939	93.41	Peptoclostridium difficile BJ08, complete genome
15771	vaginal	3.86E-16	CP003369	78.76	Prevotella dentalis DSM 3688 chromosome 2, complete sequence
46573	vaginal	1.18E-03	CP002589	74.12	Prevotella denticola F0289, complete genome
66544	vaginal	8.34E-52	FP929049	91.89	Roseburia intestinalis M50/1 draft genome
74921	vaginal	2.24E-08	FP929050	80.26	Roseburia intestinalis XB6B4 draft genome
16971	vaginal	2.43E-69	FP929051	95.86	Ruminococcus bromii L2-63 draft genome
70147	vaginal	1.84E-28	FP929051	100	Ruminococcus bromii L2-63 draft genome
58032	vaginal	9.69E-43	FP929053	99.05	Ruminococcus sp. SR1/5 draft genome
91127	vaginal	4.04E-81	AP012054	98.87	Streptococcus pasteurianus ATCC 43144 DNA, complete genome
89782	vaginal	8.89E-96	JF233101	100	Uncultured bacterium clone ncd2685g03c1 16S ribosomal RNA gene, partial sequence


1 **Supplementary Table 4. Antibiotic resistance genes detected by reduced metagenome sequencing**

Fragment #	Resistance gene	Identity	Phenotype	Accession no.
100336	dfrG	100	Trimethoprim resistance	AB205645
98410	dfrG	94.83	Trimethoprim resistance	AB205645
69409	catA2	95.91	Phenicol resistance	X53796
96361	fosA	99.52	Fosfomycin resistance	NZ_ACWO01000079
98538	tet(U)	94.37	Tetracycline resistance	U01917
102006	dfrA18	99.55	Trimethoprim resistance	AJ310778
125404	erm(X)	98.65	Macrolide resistance	M36726
20592	dfrG	100	Trimethoprim resistance	AB205645
17897	cepA	100	Beta-lactam resistance	L13472
69558	aadA2	100	Aminoglycoside resistance	X68227
71761	msr(D)	100	Macrolide, Lincosamide Streptogramin B resistance	and AF274302
101283	catA1	100	Phenicol resistance	V00622
136473	msr(E)	100	Macrolide, Lincosamide Streptogramin B resistance	and EU294228

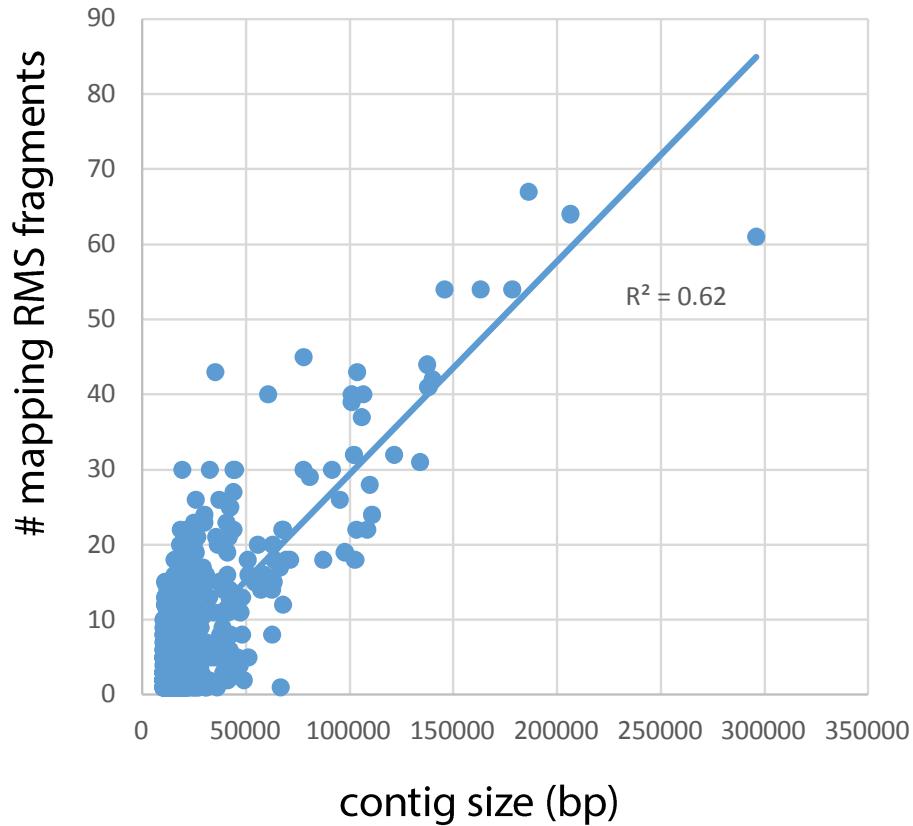
A Workflow QIIME analyses


B Workflow CLC Genomic Workbench


3

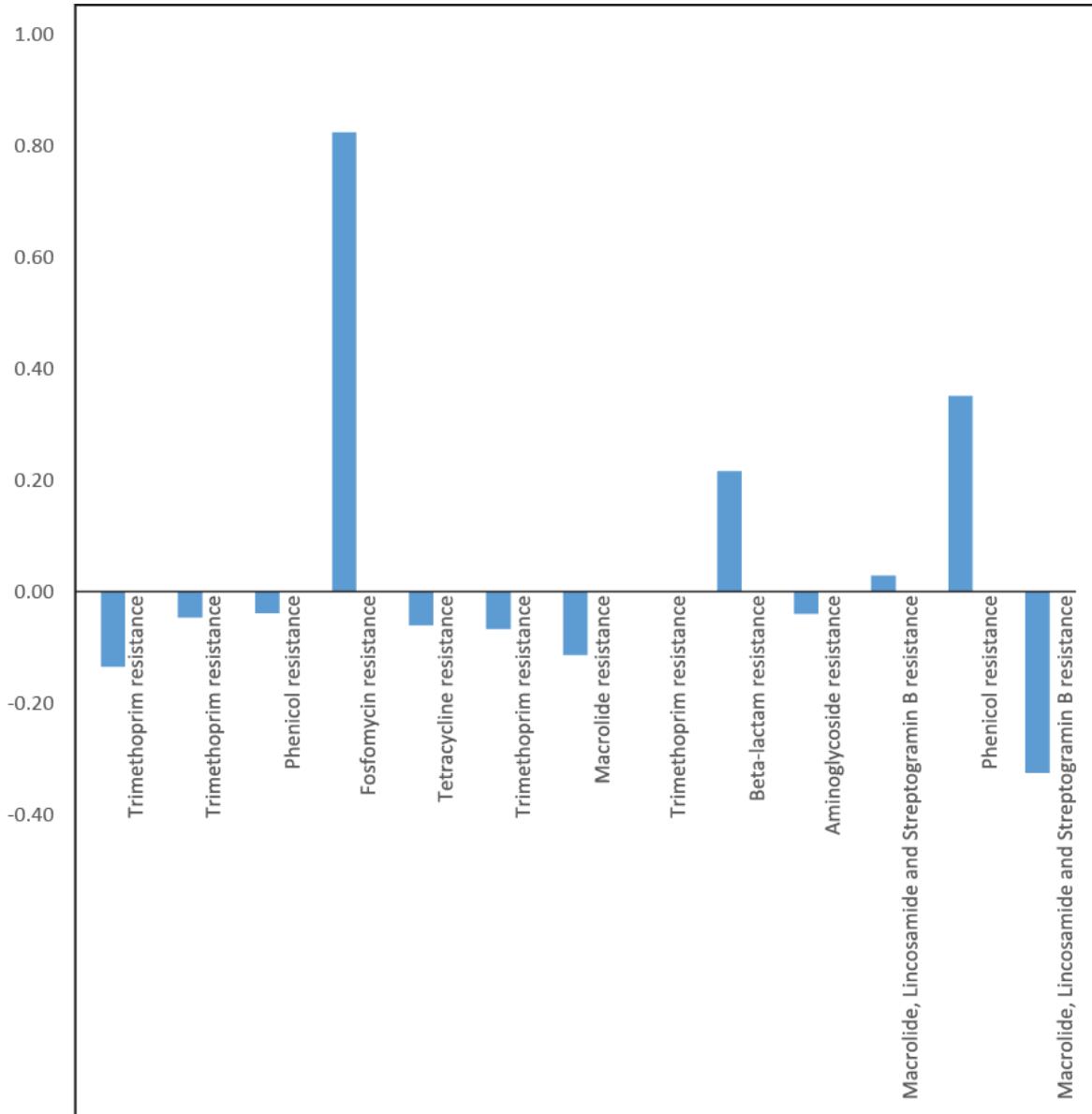
4 Suppl. Fig. 1. Workflow for QIIME analyses (A), and CLC Genomic Workbench (B).

A


B

5

6 **Suppl. Fig. 2. Evaluation of (A) the uniqueness of the reduced metagenome fragments and**
7 **(B) the quantitative properties.** The true concentrations are based amount of DNA added for the
8 different species.


9

10

11 **Suppl. Fig. 3. Correlation between number of RMS fragments detected and contig size.** The
12 number of mapping fragments was determined by using the contigs as reference for RMS fragment
13 mapping.

loading PC1 for antibiotics during labor

14

15 **Suppl. Fig. 4. Antibiotic resistance associated with antibiotic usage during labor.** The
16 importance (principal component loading) of the different resistance genes in explaining the
17 overall association with antibiotic usage.

18

19

20