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	6	

The	environment	can	moderate	the	effect	of	genes	–	a	phenomenon	called	gene–environment	(GxE)	interaction.	There	are	7	

two	broad	types	of	GxE	modeled	in	human	behavior	–	qualitative	GxE,	where	the	effects	of	 individual	genetic	variants	8	

differ	depending	on	some	environmental	moderator,	and	quantitative	GxE,	where	the	additive	genetic	variance	changes	9	

as	a	function	of	an	environmental	moderator.	Tests	of	both	qualitative	and	quantitative	GxE	have	traditionally	relied	on	10	

comparing	the	covariances	between	twins	and	close	relatives,	but	recently	there	has	been	interest	in	testing	such	models	11	

on	unrelated	individuals	measured	on	genomewide	data.	However,	to	date,	there	has	been	no	ability	to	test	quantitative	12	

GxE	effects	in	unrelated	individuals	using	genomewide	data	because	standard	software	cannot	solve	nonlinear	constraints.	13	

Here,	we	 introduce	a	maximum	likelihood	approach	with	parallel	constrained	optimization	to	 fit	 such	models.	We	use	14	

simulation	 to	 estimate	 the	 accuracy,	 power,	 and	 type	 I	 error	 rates	 of	 our	 method	 and	 to	 gauge	 its	 computational	15	

performance,	and	then	apply	this	method	to	IQ	data	measured	on	40,172	individuals	with	whole-genome	SNP	data	from	16	

the	UK	Biobank.	We	found	that	the	additive	genetic	variation	of	IQ	tagged	by	SNPs	increases	as	socioeconomic	status	(SES)	17	

decreases,	opposite	the	direction	found	by	several	twin	studies	conducted	in	the	U.S.	on	adolescents,	but	consistent	with	18	

several	studies	from	Europe	and	Australia	on	adults.	19	

	20	

The	effects	of	genes	do	not	exist	in	a	vacuum;	they	are	likely	to	be	influenced	by	the	environmental	background	to	various	21	

degrees.	Understanding	such	GxE	interactions	has	been	a	major	focus	of	disease	and	behavioral	genetic	research	over	the	22	

past	twenty	years.	Much	of	this	research	has	investigated	qualitative	GxE	effects	using	a	candidate	gene	approach,	such	that	23	

the	effects	of	specific	genetic	polymorphisms	chosen	a-priori	based	on	biological	hypotheses	were	modeled	as	a	function	of	24	

environmental	moderators	(e.g.,	[1]).	However,	concerns	of	high	false	positive	rates	[2],	a	history	of	poor	replication	[3],	and	25	
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the	realization	that	individual	genetic	effect	sizes	are	typically	very	small	[4]	has	cast	doubt	on	the	utility	of	candidate	gene-1	

by-environment	interaction	studies.	An	alternative	approach	is	to	ask	whether	genetic	effects	across	the	genome	change,	on	2	

average,	across	an	environmental	moderator	[5].	Qualitative	GxE	effects	(see	Supplemental	Text)	manifest	as	a	non-unity	3	

genetic	correlation	between	the	same	trait	at	different	levels	of	an	environment.	Tests	of	such	qualitative	GxE	effects	have	4	

long	been	employed	in	samples	of	close	relatives	and	twins	[6],	but	have	recently	been	tested	among	unrelated	individuals	5	

using	genome-wide	SNP	data,	instantiated	in	the	popular	GCTA	software	using	a	mixed	linear	effects	approach	[7].		6	

	7	

Maximum	likelihood	methods	using	close	relatives	have	also	been	used	to	test	quantitative	GxE	effects,	in	which	genetic	or	8	

environmental	variance	components	change	across	the	level	of	moderator	[8].	Twin	analyses	of	depression	[1]	[9]	[10]	[11]	9	

[12]	[13],	schizophrenia	and	bipolar	disorder	[14],	alcohol	and	drug	use	and	abuse	[15]	[16]	[17],	and	others	traits	[18]	[16]	10	

[17]	have	shown	that	the	genetic	and/or	environmental	variation	underlying	human	behavior	is	often	non-constant	across	11	

different	environments.	Perhaps	the	best	known	example	of	this	approach	was	Turkheimer’s	[19],	finding	that	the	additive	12	

genetic	variance,	VA,	of	IQ	was	lower	for	low	SES	than	high	SES	individuals,	which	had	also	been	reported	previously	[20]	[21]	13	

[22]	[23]	[24]	[25]	[26].	This	study	prompted	multiple	follow-up	studies,	with	some	replicating	the	original	finding	and	others	14	

not	(Table	S1).		15	

	16	

Testing	for	quantitative	GxE	effects	in	unrelated	individuals	is	important	because	close	family	members	share	environmental	17	

and	non-additive	genetic	factors	that,	in	combination,	can	lead	to	serious	biases	in	estimates	of	additive	genetic	variation	18	

[27]	 [28]	 [29].	 Furthermore,	much	more	 genome-wide	data	 is	 available	 to	 researchers	 than	 twin/family	data,	 and	 this	 is	19	

especially	so	for	rare	disorders.	To	date,	however,	there	has	been	no	ability	to	directly	test	quantitative	GxE	effects	in	a	unified	20	

modeling	approach	using	genome-wide	SNPs	in	unrelated	samples.	Instead,	to	investigate	changes	in	the	genetic	variance	21	

tagged	by	SNPs	across	a	moderator,	samples	have	been	binned	at	different	levels	of	the	moderator,	with	genetic	variance	or	22	

SNP-heritability	assessed	separately	in	each	group	[30]	[31].	Unfortunately,	such	an	approach	loses	power	compared	to	an	23	

approach	that	models	all	 the	data	simultaneously,	assumes	that	variances	do	not	change	as	a	 function	of	 the	moderator	24	

within	bins,	and	it	make	it	difficult	to	test	functionally	different	forms	of	possible	interactions.	Furthermore,	 if	heritability	25	

(rather	than	additive	genetic	variance)	is	estimated	separately	per	bin,	it	is	implicitly	assumed	that	variances	are	equal	across	26	

bins,	whereas	what	is	often	of	interest	is	whether	the	absolute	magnitude	of	genetic	or	environmental	variation	changes.	27	
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	1	

In	this	paper,	we	introduce	a	model	for	testing	quantitative	GxE	effects	in	unrelated	samples	using	genome-wide	SNPs	and	2	

assess	 its	 accuracy	 by	 simulation.	 We	 then	 apply	 this	 method	 to	 a	 sample	 of	 40,172	 individuals	 in	 the	 UK	 Biobank	 to	3	

understand	whether	and	how	genetic	variation	underlying	IQ	changes	as	a	function	of	SES	in	this	population.		4	

	5	

	6	

To	model	unrelated	individuals,	let		7	

z"# =
x"# − 2p#
2p#q#

,												(1)	8	

be	the	standardized	genotype	for	individual	i	and	variant	k,	where	x"# ∈ {0,1,2}	and	p#	 is	the	allele	frequency	for	the	kth	9	

variant.	Denote	by	V6	the	phenotypic	variance	component	and	V7	non-genetic	variance	component,	such	that	V6 = V8 + V7.	10	

	11	

We	write	the	quantitative	gene	by	environment	interaction	model	for	individual	i	as	12	

𝑦" = 𝛽< + 𝛽== w"= + 𝜆M" + (𝑎 + 𝑎′M")g" + (𝑒 + 𝑒′M")ϵ",	(2)	13	

where	 𝛽=’s	 are	 coefficients	 corresponding	 to	 w"=	 covariates,	M"	 is	 the	 standardized	 moderator	 and	 λ	 its	 effect,	 g" =14	

z"#F
#GH 𝛼#,	with	the	coefficients	𝛼#’s	representing	genetic	effects	for	each	of	m	SNPs	assumed	to	be	drawn	from	a	normal	15	

distribution	with	mean	zero	and	variance	1/m,	and	ϵ"’s	representing	error	effects	drawn	from	a	standard	normal	distribution	16	

and	independent	from	α#.	The	𝑎	and	𝑒	coefficients	represent	the	importance	of	additive	genetic	and	environmental	factors,	17	

respectively,	while	the	𝑎M	and	𝑒′	coefficients	represent	the	degree	to	which	the	additive	genetic	and	environmental	influences	18	

change	as	a	function	of	the	moderator,	𝑀.	In	this	(full)	model,	denoted	Model	1,	the	additive	and	error	variances	are	V8 =19	

(𝑎 + 𝑎′M)O	and	V7 = (𝑒 + 𝑒MM)O,	which	change	as	a	function	of	moderator.	Purcell	[8]	used	a	similar	model	for	twin	data.		20	

	21	

From	within	this	framework,	we	can	define	other	models	where	V8	is	constant	but	V7	changes	as	a	function	of	moderator	by	22	

setting	𝑎M = 0	(Model	2),	where	V8	changes	as	a	function	of	moderator	but	V7	is	constant	by	setting	𝑒M = 0	(Model	3),	and	23	

where	 both	 V8	 and	 V7	 are	 constant	 by	 setting	 𝑎M = 𝑒M = 0	 (Model	 4).	 Model	 4	 is	 the	 same	 as	 the	 base	 REML	 model	24	

instantiated	 in	GCTA,	such	that	V8,	V7	and	ℎO	are	constant,	but	 is	useful	 for	comparison	and	hypothesis	 testing.	We	also	25	

define	a	final	model,	Model	5,	where	V8	and	V7	change	as	a	function	of	moderator,	but	ℎO	is	constant,	by	constraining	𝑒M =26	
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𝑒𝑎M/𝑎	(note	that	setting	𝑒M = 𝑎M	does	not	accomplish	this;	see	Supplement).	This	model	is	useful	for	testing	if	changes	in	V8	1	

and	V7	are	more	parsimoniously	explained	by	a	change	in	VQ.	To	the	best	of	our	knowledge,	Model	5	or	equivalent	models,	2	

where	the	proportionate	changes	of	V8	and	V7	are	constrained	to	be	equal,	have	not	been	developed	or	tested	in	models	3	

designed	for	twin/family	data	(e.g.,	[8]).	The	best	model	for	fitting	the	data	can	be	determined	based	on	formal	hypothesis	4	

tests	or,	for	models	that	are	not	nested,	on	the	AIC/BIC	fit	criteria.		5	

	6	

For	Model	1,	7	

cov[Y|Z, T] =
1
m
T ∘ ZZ′ + K ∘ I^,					(3)	8	

where	𝑌 = [𝑦H, … , 𝑦b]′	is	the	column	vector	of	phenotypes	and	𝐼b	is	the	identity	matrix	of	size	𝑛,	𝑍 = [𝑧gh]	is	the	standardized	9	

genotype	matrix,	𝑇 = [(𝑎 + 𝑎′𝑀g)(𝑎 + 𝑎′𝑀j)],	𝐾 = [(𝑒 + 𝑒′𝑀g)(𝑒 + 𝑒′𝑀j)],	and	the	operator	∘	is	Schur	product	(or	matrix	10	

element–wise	product).	(Details	for	computing	the	covariance	matrices	for	all	five	models	are	shown	in	the	Supplement).	We	11	

assume	Y = [yH, … , y^]′	follows	a	normal	distribution	with	mean	β< + β== w"= + λM"	and	the	covariance	matrix	estimated	12	

for	 each	model.	 If	we	 let	𝐴 = H
F
ZZ′	 be	 the	 estimated	 genetic	 relationship	matrix	 (GRM)	 from	whole	 genome	 SNP	 data,	13	

equation	(3)	becomes	14	

cov Y Z, T = 𝑎OA + 𝑎𝑎MAO + 𝑎M
OAq + K ∘ I^				(4) 	15	

where	𝐴O	and	𝐴q	are	additional	GRMs	that	are	functions	of	both	the	moderator	and	A	(see	Supplement	for	details).	As	can	16	

be	 seen,	 the	 coefficient	 of	 the	 second	 term	 (𝑎𝑎′)	 is	 a	 function	 of	 the	 first	 and	 third	 term,	which	makes	 equation	 (3)	 a	17	

constrained	 covariance	 matrix.	 REML	 (implemented	 by	 GCTA)	 can	 deal	 with	 multiple	 GRMs	 if	 their	 coefficients	 are	18	

independent	of	each	other,	but	that	is	not	the	case	here.	If	these	three	GRMs	(A,	A2,	A3)	are	entered	into	GCTA,	it	will	estimate	19	

a	coefficient	of	the	second	term	that	is	not	constrained	to	equal	𝑎𝑎M.	Here,	we	maximize	the	log-likelihood	function	using	20	

parallel	constrained	optimization	 (see	the	definition	of	matrix	𝑉	 in	 [32],	page	77)	assuming	that	 the	phenotypes	 follow	a	21	

multivariate	normal	distribution	(see	Methods).	22	

	23	

We	 ran	 a	 comprehensive	 set	 of	 simulations	 (Method	 section)	 to	 investigate	 the	 performance	 of	 the	 proposed	method.	24	

Phenotypes	were	simulated	from	each	of	the	5	models	with	6	different	sets	of	parameters	(Table	S2)	and	different	sample	25	

sizes.	The	results	are	shown	in	Tables	S3-S6.	The	biases	of	the	estimated	parameters	were	not	statistically	significant	from	26	
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zero.	The	simulation	results	for	type	I	error	are	presented	in	Supplementary	Figures	S1-S9	and	Tables	S7-S12,	and	show	no	1	

inflation	of	type-I	error	rates.	Figure	1	presents	the	statistical	power	for	testing	𝑎M = 0	in	Model	3,	and	shows	80%	power	for	2	

detecting	a	5%	increase	in	VA	for	every	standard	deviation	increase	in	the	moderator	(when	a=.63	and	a’=.04)	once	sample	3	

sizes	 are	 above	 8000.	 The	 power	 for	 a	 given	 parameter	 differs	 across	 models	 (see	 Supplementary	 Tables	 S7-S12	 and	4	

Supplementary	 Figures	 S10-S17),	 and	 is	 lower	 in	 models	 attempting	 to	 estimate	 more	 parameters	 due	 to	 correlations	5	

between	the	estimates.	For	example,	80%	power	for	detecting	𝑎′	in	Model	3	requires	a	sample	size	of	1000,	but	due	to	the	6	

correlation	between	estimates	of	𝑎M	and	𝑒′,	requires	a	sample	of	size	6000	in	Model	1.		7	

	8	

Figure	 2	 shows	 results	 from	 a	 sensitivity	 analysis,	 where	 the	 data	 are	 simulated	 from	Model	 1	 and	 the	 parameters	 are	9	

estimated	from	Models	1-5,	to	show	the	effects	of	model	misspecification	on	parameter	estimates.	Estimates	are	unbiased	10	

when	the	correct	model	 is	used,	but	𝑎′	 is	overestimated	and	𝑎	underestimated	when	𝑒′	 is	 incorrectly	dropped,	and	𝑒′	 is	11	

overestimated	and	𝑒	underestimated	when	𝑎′	is	incorrectly	dropped.	When	both	𝑎′	and	𝑒′	are	incorrectly	dropped,	such	as	12	

would	occur	using	the	traditional	approach	and	not	allowing	for	moderation	of	V8	or	V7,	estimates	for	𝑎	are	unbiased	but	13	

estimates	for	𝑒	are	overestimated,	 leading	to	underestimation	of	h2.	Figures	S18-S20	show	similar	results	where	data	are	14	

simulated	from	models	2,	3,	4,	and	5	respectively	(see	also	Tables	S18-S21).	Overall,	our	results	indicate	that	estimates	are	15	

unbiased	when	the	correct	model	is	chosen	but	can	be	biased	to	various	degrees	under	model	misspecification.	16	

	17	

It	 is	 important	 to	note	that	environmental	effect	may	be	correlated	with	the	genetic	effect	on	the	trait	 (𝑟uv)	 rather	 than	18	

modifying	the	genetic	effects	on	the	trait	(GxE).	𝑟uv 	implies	that	certain	alleles	are	over-	or	under-represented	depending	on	19	

the	value	of	the	moderator,	and	can	appear	as	quantitative	GxE	in	certain	ways	of	modeling	GxE,	e.g.,	by	stratifying	the	sample	20	

by	the	moderator.	Entering	the	moderator	in	the	means	model	as	a	main	effect,	as	is	done	here,	will	effectively	remove	from	21	

the	covariance	model	any	genetic	effects	that	are	shared	between	trait	and	moderator	[8].	22	

	23	

The	use	of	 unrelated	 samples	with	 genome-wide	 SNP	data	 allow	 investigations	 of	 quantitative	GxE	hypotheses	 in	 larger	24	

sample	sizes	and	on	more	phenotypes	than	are	available	in	twin	and	family	datasets	while	avoiding	potential	biases	that	exist	25	

when	close	relatives	are	modeled.	To	demonstrate	our	approach,	we	investigate	the	moderation	of	variance	components	of	26	

IQ	as	a	function	of	a	measure	of	SES	(the	reverse-scaled	Townsend	Deprivation	Index)	in	the	UK	Biobank,	given	that	this	has	27	
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been	a	hypothesis	of	great	interest	(Table	S1).	The	estimated	parameters	along	with	their	95%	confidence	intervals	(CI)	and	1	

p-values	for	all	five	models	are	presented	in	Table	1.	Across	all	models,	the	estimated	parameters	𝑎	and	𝑒	are	similar,	showing	2	

consistency	of	 the	estimated	 	V8	and	 	V7	at	 the	mean	 level	of	SES,	and	estimates	of	a’	and	e’	are	negative,	showing	that	3	

estimated		V8	and		V7	decrease	as	a	function	of	SES	in	the	range	of	SES	investigated.	Constraining	the	heritability	to	be	the	4	

same	across	the	moderator	by	setting	𝑒M = 𝑒𝑎M/𝑎	(Model	5	vs.	Model	1)	led	to	a	non-significant	decrease	in	fit	(p	=	.145),	5	

suggesting	that	overall	VQ	changes	as	a	function	of	SES	and	that	V8	and		V7	change	roughly	proportionately.	Consistent	with	6	

this,	Model	5	had	the	lowest	AIC	and	BIC	values,	making	it	the	most	parsimonious	model	(see	Figure	3).	7	

	8	

Our	results	are	in	the	opposite	direction	of	those	reported	by	several	studies	conducted	in	the	US	[19]	[21]	[22].	However,	9	

our	results	are	more	consistent	with	several	findings	from	Western	Europe	and	Australia,	where	V8,	on	average,	decreases	10	

slightly	as	a	function	of	SES	[20].	However,	even	studies	from	Western	Europe	and	Australia	have	tended	to	find	virtually	no	11	

change	in	overall	VQ	(due	to	a	counter-balancing	effect	of	V7	increases	as	a	function	of	SES),	whereas	we	found	a	significant	12	

decrease	 in	VQ	across	SES.	While	 it	 is	possible	that	moderation	of	unmodeled	non-additive	genetic	effects	 in	twin	studies	13	

could	lead	to	discrepancies	between	the	current	results	and	those	based	on	twins,	this	cannot	explain	different	patterns	of	14	

changes	in	VQ.	Thus,	the	source	of	discrepancies	across	this	studies	and	previous	ones	based	on	twins	may	have	to	do	with	15	

differences	in	measures	of	IQ,	of	SES,	or	in	differences	in	study	populations.	Almost	all	the	US	twin	studies	are	conducted	in	16	

adolescent	and	early	childhood,	while	this	study	and	[20]	are	on	adults	(see	Table	S1).	17	

	18	

There	are	two	limitations	regarding	the	modeling	approach	for	quantitative	GxE	we	introduced.	First,	because	codes	were	19	

written	in	R,	the	computational	speed	is	not	optimal	(see	Table	1),	although	we	have	partially	resolved	this	problem	by	finding	20	

a	better	starting	point	from	moment	matching	methods	(Haseman-Elston	regression).	Second,	we	have	not	yet	developed	21	

methods	 to	 estimate	 quantitative	 GxE	 for	 categorical	 outcomes,	 such	 as	 occurs	 in	 case-control	 studies.	 Both	 issues	 are	22	

potentially	addressable	with	further	refinement	of	the	code	and	model	in	the	future.	23	

	24	

We	 have	 demonstrated	 a	 general	 approach	 for	 estimating	 quantitative	 GxE	 in	 unrelated	 samples	 using	 constrained	25	

optimization.	 We	 showed	 by	 simulation	 that	 the	 bias	 of	 the	 estimated	 parameters	 is	 negligible,	 that	 type-I	 errors	 are	26	

appropriately	controlled,	and	that	estimates	can	be	biased	under	model	misspecification.	In	particular,	 if	quantitative	GxE	27	
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effects	occur,	we	 showed	 that	 traditional	 approaches	 that	do	not	model	GxE	underestimate	heritability.	We	applied	our	1	

method	to	whole-genome	SNP	data	from	the	UK	Biobank,	and	found	that	phenotypic	variance	of	IQ	decreases	as	a	function	2	

of	SES,	but	that	heritability	of	SES	remains	roughly	constant.	3	

		4	

Materials	and	Methods	5	

Data.	 UK	 Biobank	 recruited	 500,000	 people	 aged	 between	 40-79	 years	 in	 2006-2010	 from	 across	 the	 UK.	 Prospective	6	

participants	were	 invited	 to	 visit	 an	 assessment	 center,	 at	which	 they	 completed	an	automated	questionnaire	 and	were	7	

interviewed	about	lifestyle,	medical	history	and	nutritional	habits;	basic	variables	such	weight,	height,	blood	pressure	etc.	8	

were	measured;	and	blood	and	urine	samples	were	taken,	and	DNA	was	extracted	from	blood.	Genotyping	was	done	using	9	

two	closely	related	arrays,	with	each	having	~800,000	SNP	markers.	Samples	were	analyzed	in	batches	of	approximately	4700	10	

individuals.		11	

	12	

Data	quality	control.	Participants	were	tested	for	fluid	intelligence	at	up	to	three	separate	occasions;	when	more	than	one	13	

score	was	available	for	an	individual,	we	selected	the	first	score.	Fluid	intelligence	score	is	a	simple	unweighted	sum	of	the	14	

number	of	correct	answers	given	to	the	13	fluid	intelligence	questions.	Participants	who	did	not	answer	all	of	the	questions	15	

within	 the	 allotted	 2-minute	 limit	 were	 scored	 as	 zero	 for	 each	 unanswered	 question.	 The	mean	 for	 standardized	 fluid	16	

intelligence	score	was	.046	in	males	and	-.042	in	females	(p	<	0.001).	Participant	age	(mean=58.2,	SD=7.99)	was	computed	17	

from	the	appropriate	fluid	intelligence	collection	date	minus	the	birthday.	The	standardized	fluid	intelligence	score	decreased	18	

slightly	 as	 age	 increased	 (beta	 =	 -.0095,	p	∼ 0,	 adjusted	 R2	= 0.006).	 Townsend	 deprivation	 index	 (TDI)	 was	 calculated	19	

immediately	prior	to	participant	joining	UK	Biobank	based	on	the	area	in	which	their	postcode	was	located.	The	mean	for	20	

standardized	TDI	was	0.0028	and	−0.0025	 in	males	and	females,	respectively	 (p= 0.60).	 In	this	paper,	we	used	reverse-21	

coded	TDI	as	a	measure	for	SES.	22	

	23	

After	merging	fluid	intelligence	scores	with	non-missing	TDI,	sex,	age	at	recruitment,	place	born	and	genotype	measurement	24	

batch,	41,908	Caucasian	individuals	remained	with	genotype	information.	After	dropping	individuals	with	SNP	missingness	>	25	
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.03	and	dropping	a	minimal	number	of	individuals	in	pairs	with	genomic	relatedness	>	0.05,	the	final	sample	size	was	40,172.	1	

We	used	the	first	15	principal	components	as	covariates	(see	Table	S25).	In	addition	to	the	UKB	standard	genotypic	quality	2	

control,	we	dropped	SNPs	with	missingness	>	.05	and	with	Hardy-Weinberg	equilibrium	threshold	p	<	10|},	leaving	345,767	3	

SNPs.	4	

	5	

Simulation	 procedure.	 We	 simulated	 populations	 with	 sizes	 𝑁 ∈ {500,1000,2000,4000, 8000}	 for	 different	 sets	 of	6	

parameters	𝜃 = (𝑎, 𝑎′, 𝑒, 𝑒′).	These	values	for	𝜃	are	shown	in	Table	S2.	For	𝜃}	with	(𝑎, 𝑎′) = (0.633,0.038),	the	genotypic	7	

variance	 was	 𝑉� = 𝑎O = .4	 for	𝑀 = 0	 and	 was	 (𝑎 + 𝑎′ 𝑀)O = .45	 for	𝑀 = 1,	 i.e.,	 increasing	 one	 standard	 unit	 of	 the	8	

moderator	led	to	an	increase	of	0.05	units	of	𝑉�.	Similarly,	for	(𝑒, 𝑒′) = (0.774, 0.032),	the	non-genotypic	variance	was	𝑉v =9	

𝑒O = .6	for	𝑀 = 0	and	was	(𝑒 + 𝑒′ 𝑀)O = .65	for	𝑀 = 1.	10	

	11	

Genotypes	were	simulated	from	UK	Biobank	array	data	and	phenotypes	were	simulated	using	models	1–5	for	different	sets	12	

of	1000	causal	variants	 (CVs)	 in	each	replication.	For	each	set	of	 the	parameters,	we	simulated	𝑟 = 200	 replications	 (for	13	

N=8000,	𝑟 = 100).	To	gauge	the	performance	of	the	proposed	method,	we	estimated	the	parameters	for	each	replication	14	

and	computed	the	bias	and	variance	of	each	estimate	as	15	

bias(𝜃) =
1
𝑟

𝜃� − 𝜃
�

,

var(𝜃) =
1
𝑟

𝜃� − 𝔼(𝜃)
O

�

,
	16	

for	𝜃 ∈ {𝑎, 𝑎′, 𝑒, 𝑒′},	where	𝔼(𝜃) = 1/𝑟 𝜃�� 	(Tables	2	and	S3-S6).		17	

	18	

To	investigate	statistical	power	and	type-I	error	rates,	we	simulated	𝑟	data	sets	with	sizes	𝑁 ∈ {500,1000,2000,4000,8000}	19	

from	models	defined	under	the	alternative	and	null	hypotheses	respectively,	and	then	computed	the	maximum	value	of	the	20	

log-likelihood	for	the	alternative,	ℓ(𝛩H)	and	the	null,	ℓ(𝛩<).	The	test	statistics	is	21	

𝜒O = −2(ℓ(𝛩<) − ℓ(𝛩H))	22	

was	 compared	 to	 the	 critical	 value	𝑄H|�,	which	 is	 obtained	 from	 the	 central	 chi-square	 distribution	with	𝑑𝑓	 degrees	 of	23	

freedom	and	𝛼 = 0.05,	where	𝑑𝑓	is	the	difference	between	the	number	of	free	parameters	of	models	alternative	and	null.	24	

Power	was	computed	as	25	
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Power =
1
𝑟

1[𝜒gO > 𝑄H|�]
�

gGH

,	1	

where	𝑟 = 200	replications.	Similarly,	we	computed	the	type	I	error	by	simulating	𝑟	data	sets	from	the	null	distribution,	and	2	

calculated	the	proportion	of	rejected	test,		3	

Type	I	Error =
1
𝑟

1 𝜒gO > 𝑄H|�

�

gGH

.	4	

	5	

Code	availability.	The	R	codes	are	freely	available	at	https://github.com/rtahmasbi/GxE.		6	
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	1	

Figure	1.	Power	plot	for	testing	𝑎M = 0	in	model	3	with	different	set	of	parameters.	2	
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	1	

Figure	2.	Data	were	simulated	from	model	1,	and	estimated	with	5	different	model.	The	vertical	red	lines	are	the	true	values.	A	red	star	2	

appears	above	each	boxplot	if	the	estimated	parameter	is	significantly	different	from	its	true	value.	The	vertical	blue	liens	are	95%	3	

confidence	intervals.	Model	1	is	the	only	model	that	can	estimate	all	the	parameters,	accurately.	4	
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Table	1:	Estimated	parameters	for	the	proposed	5	models	and	Turkeimer	model.	Green	lines	are	CI	and	number	in	brackets	are	p-value.	1	

The	bold	numbers	are	the	minimum	AIC/BIC.	Computational	time	and	memory	used	in	gigabyte	are	also	reported.	2	

Parameter	
Model	

1	 2	 3	 4	 5	 Turkeimer	

λ	 -0.110	 -0.110	 -0.110	 -0.110	 -0.110	 0.360	

𝑎	
0.507	 0.506	 0.508	 0.507	 0.507	 0.572	

(0.48,0.53)	 (0.48,0.53)	 (0.49,0.53)	 (0.49,0.53)	 (0.49,0.53)	 –	

𝑎′	
-0.026	[0.032]	 –	 -0.041	[1.4e-10]	 –	 -0.011	 0.141	

(-0.05,0.00)	 –	 (-0.054,-0.028)	 –	 (-0.02,-0.00)	 –	

𝑒	
0.848	 0.849	 0.847	 0.849	 0.849	 –	

(0.84,0.86)		 (0.84,0.86)	 (0.83,0.86)	 (0.84,0.86)		 (0.84,0.86)	 –	

𝑒′	
-0.010	[0.108]		 -0.024	[3e-10]		 –	 –	 –	 –	

(-0.03,0.00)	 (-0.03,-0.01)			 –	 –	 –	 –	

Log-like	 -19234.13	 -19235.85	 -19234.9	 -19254.82	 -19234.69	 -2873.2	

AIC	 38476.27	 38477.71	 38475.8	 38513.64	 38475.38	 6777.3	

BIC	 38510.67	 38503.51	 38501.60	 38530.84	 38501.19	 6812.5	

Time	 21:30:54	 9:39:27	 8:50:18	 12:27:43	 13:13:52	 –	

Memory	(GB)	 167.4	 155.4	 155.4	 155.4	 167.4	 –	

	3	
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	1	

	

(a)	

	

(b)	

Figure	3.	a)	V8 = (a + a′ SES)O,	V7 = 𝑒O	and	V6 = V8 + V7	as	a	function	of	SES	with	a	%95	CI	for	model	3.	b)	V8 = (a + a′ SES)O,	V7 =2	

(e + e𝑎M/𝑎 SES)O	and	V6 = V8 + V7	as	a	function	of	SES	with	a	%95	CI	for	model	5.	3	
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Table	2.	Simulation	results	for	model	1	with	different	set	of	parameters	and	sample	sizes.	Columns	are	bias	and	standard	deviation	of	the	1	

estimated	parameters.	2	

True	Parameters	
N	

𝐚	 𝐚′	 𝐞	 𝒆′	

𝑎	 𝑎′	 𝑒	 𝑒′	 bias	 sd	 bias	 sd	 bias	 sd	 bias	 sd	

0.633	 0.115	 0.775	 0.095	

2000	 -0.009	 0.113	 0.003	 0.073	 -0.009	 0.088	 0.003	 0.061	

4000	 -0.005	 0.059	 -0.002	 0.051	 -0.001	 0.045	 0.004	 0.040	

8000	 0.000	 0.035	 0.004	 0.033	 0.000	 0.025	 -0.002	 0.027	

0.633	 0.077	 0.775	 0.095	

2000	 -0.015	 0.110	 -0.001	 0.075	 -0.011	 0.090	 -0.004	 0.058	

4000	 -0.003	 0.058	 -0.001	 0.057	 -0.005	 0.046	 0.003	 0.046	

8000	 -0.001	 0.030	 -0.001	 0.034	 -0.003	 0.022	 0.001	 0.027	

0.633	 0.077	 0.775	 0.063	

2000	 -0.004	 0.105	 0.000	 0.073	 -0.014	 0.084	 0.002	 0.059	

4000	 -0.003	 0.052	 0.003	 0.060	 -0.002	 0.040	 0.001	 0.047	

8000	 0.000	 0.033	 0.008	 0.034	 -0.002	 0.024	 -0.006	 0.027	

0.633	 0.077	 0.775	 0.032	

2000	 -0.001	 0.115	 -0.006	 0.080	 -0.019	 0.090	 0.004	 0.066	

4000	 0.001	 0.054	 -0.010	 0.056	 -0.007	 0.042	 0.007	 0.047	

8000	 0.003	 0.031	 -0.002	 0.037	 -0.004	 0.022	 0.002	 0.029	

0.633	 0.038	 0.775	 0.063	

2000	 -0.012	 0.125	 -0.004	 0.075	 -0.011	 0.089	 0.004	 0.058	

4000	 -0.003	 0.062	 0.004	 0.061	 -0.006	 0.048	 -0.003	 0.049	

8000	 -0.001	 0.035	 0.003	 0.038	 -0.003	 0.026	 -0.002	 0.030	

0.633	 0.038	 0.775	 0.032	

2000	 -0.022	 0.117	 -0.004	 0.077	 0.000	 0.081	 0.004	 0.062	

4000	 -0.006	 0.058	 -0.005	 0.065	 -0.002	 0.047	 0.005	 0.053	

8000	 0.000	 0.034	 0.004	 0.035	 -0.002	 0.024	 -0.003	 0.027	

	3	
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