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Abstract. Immune therapies have shown promise in a number of cancers, and clinical trials
using the anti-PD-L1/PD-1 checkpoint inhibitor in lung cancer have been successful for a
number of patients. However, some patients either do not respond to the treatment or have
cancer recurrence dfter an initial response. It is not clear which patients might fall into these
categories or what mechanisms are responsible for treatment failure. To explore the different
underlying biological mechanisms of resistance, we created a spatially explicit mathematical
model with a modular framework. This construction enables different potential mechanisms
to be turned on and off in order to adjust specific tumor and tissue interactions to match a
specific patient's disease. In parallel, we developed a software suite to identify significant
computed tomography (CT) imaging features correlated with outcome using data from an
anti-PDL-1 checkpoint inhibitor clinical trial for lung cancer and a tool that extracts these
features from both patient CT images and “virtual CT” images created from the cellular
density profile of the model. The combination of our two toolkits provides a framework that
feeds patient data through an iterative pipeline to identify predictive imaging features
associated with outcome, whilst at the same time proposing hypotheses about the underlying

resistance mechanisms.

INTRODUCTION

Lung cancer is the leading cause of cancer death in the U.S.
for both women and men [1]. While cancer survival overall
has improved, reduction in lung cancer mortality has been
modest [1]. This may be attributed to late diagnosis, early
metastasis, and development of resistance to conventional
and targeted therapies. Accordingly, efforts had been
made to apply different therapeutic modalities to the
treatment of lung cancer. Immunotherapies, in particular,
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have had a profound and durable response in a variety of
other metastatic cancers [2]. In 2016, checkpoint inhibitor
immunotherapies were approved in the US as a first line
therapy for some patients with non-small-cell lung cancer
following the success of clinical trials using Nivolumab and
Pembrolizumab [3]. Unfortunately, as has been seen with
melanoma, even long term responders to these treatments
may eventually acquire resistance [4], [5].

Checkpoint inhibitors are monoclonal antibodies that
enhance the immune response to cancer by blocking
inhibitory signals that restrict T-cell cytotoxicity. T-cells
are an important part of the adaptive immune system that
helps fight “foreign” cells, such as cancer cells. However,
cancer cells can evade the immune attack by
downregulating T-cell activity. One specific pathway that
checkpoint inhibitors can target is the PD-1/PD-L1
pathway, which acts as an “on/off” switch for immune
activity. When PD-1, a checkpoint protein on tumor-
reactive T-cells, binds to PD-L1, a protein usually
expressed on macrophages and some cancer cells, T-cell
reactivity is turned off. Therefore, checkpoint inhibitors
(anti-PD-1 or anti-PD-L1 therapeutic antibodies) can boost
the immune response by disrupting the interaction
between these cell surface proteins [6]. Expression of PD-
L1 in tumor cells (or T-cells) or PD-1 in tumor infiltrating
T-cells are associated with a larger likelihood of response
to checkpoint inhibitors, although the predictive power of
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these biomarkers is not compelling [7], [8]. Some clinical
trials don’t even take into account a significant threshold
for PD-L1 expression [9]. Furthermore, the spatial context
and dynamics of PD-L1 expression in both the tumor and
inflammatory microenvironment is often ignored [9], [10].

In addition to intratumor heterogeneity in PD-L1 status,
other microenvironmental factors may cause treatment
failure. Heterogeneous and inefficient vasculature,
contributes to regions of hypoxia and acidosis [11], [12]. In
turn, acidity and hypoxia can block T-cell activation and
induce severe anergy [13]. The study also found that
neutralizing acidity in combination with checkpoint
inhibitors elicited a synergistic anti-tumor response.

Radiomics attempts to quantify features from
radiological images and use them as predictive or
prognostic biomarkers of treatment response. These
features are used as covariates in statistical or machine
learning models to predict individual patient outcomes,
and have been utilized to predict treatment response from
pre-treatment images in multiple contexts [14], [15].
Statistical radiomics models enable correlations between
imaging features and treatment response to be inferred,
however, they cannot provide mechanistic explanations
for the causes of treatment success or failure. This is
beginning to change, however, as a recent report has
linked radiomic signatures in NSCLC to upregulation of
inflammatory gene sets in a bi-clustering approach [16].
However, these associations are only now emerging and
can benefit from biologically-informed mathematical
modeling, which allows causal mechanisms of treatment
response to be explored.

In a novel combination of mathematical modeling with
radiomics, we developed a spatial model of tumor cell and
T-cell proliferation focused on response to
immunotherapy. In parallel, we trained a radiomics model
using computed tomography (CT) imaging data from lung
cancer immunotherapy patients. We used these tools to
gain insight into the mechanisms of treatment resistance.
To link the cell- resolution mathematical model to the
millimeter resolution radiological images, we developed a
method to generate “virtual CT” images from the
mathematical model and compare the features derived
from the virtual CT images to the features identified in the
patient CT images. The tools that we have developed
enable an exploration of multiple mechanisms of
immunotherapy resistance that can generate new
hypotheses to guide future experiments.

II. RADIOMIC FEATURES ASSOCIATED WITH TREATMENT RESPONSE

CT image data were available for a cohort of 51 metastatic
lung adenocarcinoma patients treated as part of three
different checkpoint blockade clinical trials conducted at
Moffitt Cancer Center. The CT data consists of a 3-
dimensional map of Hounsfield units (HUs), a measure of
radiodensity. Radiomic features such as intensity, shape
and texture were computed using methods described
previously [17], [18]. Sparse partial least-squares-
discriminant analysis was performed to determine the
radiomic features with strongest association with
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Figure 1. Results of the radiomics analysis. A) Sparse partial
least squares discriminant analysis loadings of the 5 variables
with strongest association with treatment response. Orange
bars indicate that an increase in the feature value is
associated with response to treatment. Blue bars represent
that an increase in the feature value is associated with non-
response to treatment. B) Example of a CT image of a lung
tumor with poor response (stable or progressive disease)
and good response (partial or complete response) to
immunotherapy.

treatment response. Response was defined as good
(complete or partial response) versus poor (stable or
progressive disease) according to the RECIST version 1.1
criteria. Figure 1 shows the loading weights of the first
partial least squares component for the five features with
strongest association with treatment response. We found
that the skewness (a measure of the asymmetry of the
distribution) of the HU histogram was most strongly
associated with outcome, followed by the root mean
square of the HU distribution, relative volume of air in the
segmented tumor, then mean and median of the HU
distribution.

We also developed a computational toolbox to extract
radiomic features concerning the shape and texture of the
tumor from a subset of images from the cohort. This tool is
equally capable of performing the same analysis on results
from our mathematical model for comparison. Response to
immunotherapy was found to correlate negatively with the
tumor convexity and positively with the edge-to-core size
ratio. The images in Fig. 1B show one tumor that responds
poorly and one that responds well. While higher convexity
(more round) has been shown in lung tumors to correlate
with better survival [14], it is an interesting finding here
that the more concave, invasive tumors respond better to
immunotherapy. It is not clear why this occurs, but a
possible explanation is that the more aggressive tumors
that respond worse to conventional therapies are more
susceptible to immune modulation. In a recent study
patients who had faster growing tumors before initiation
of immunotherapy had better responses [19]. To get a
better perspective of the mechanisms involved, we
developed a mathematical model to describe how
checkpoint inhibition can affect tumor cells and their
microenvironment.
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Figure 2. We consider both tumor and microenvironmental
factors in the model. Tumor cells are either PD-L1 positive, PD-
L1 negative, or glycolytic, which affects response to T-cell kill.
Growth and immune interactions are also modulated by
spatially-dependent concentrations of oxygen, drug, and
metabolic inhibitory factors.

III. MODULAR MODEL OF RESISTANCE MECHANISMS

Our model considers spatial interactions of different types
of cells through a number of biological processes projected
to be relevant. Most of these processes were implemented
as separate modules, which can be turned on and off,
allowing for a mutable model with the ability to test the
impact of adding or removing different elements. The
intention is to elucidate how mechanisms, or combinations
of mechanisms, affect patient outcomes.

The system was modeled as a spatial simulation of the
tumor microenvironment with a stochastic partial
differential equation based structure. We considered four
main populations that compete for resources within a two-
dimensional plane: normal cells, which constitute the
untransformed epithelial tissue and stromal cells; PD-L1
cells, which are those cancerous cells that may successfully
bind to the PD-1 receptors of the T-cells; non-PD-L1 cells,
comprising the malignant cells that lack sufficient immune
checkpoints on the cell surface to evade attack; and
glycolytic cells, which produce diffusible immune-
inhibiting factors as a byproduct of glycolytic metabolism.
All cells have a turnover, but cancer cells proliferate faster
than normal cells, with a small cost to proliferation
associated with producing PD-L1 and using glycolysis.

In order to survive and proliferate, all cells require
nutrients which are introduced into the system via
randomly distributed blood vessel entry points and are
further dispersed via diffusion. The local oxygen
concentration modulates the proliferation rates of cells.
The immune system’s T-cells enter through the blood
vessels and interact with the cancer cells, destroying non-
PD-L1 cells, but are simultaneously suppressed by their
interaction with PD-L1 cells. Finally, the drug is introduced
via the blood vessels and reverses the T-cells’ suppression
by PD-L1 cells upon contact. The full interaction network
of these mechanisms is shown in Fig. 2. Using the modular
model setup, we can investigate each mechanism
separately and combined to explore how treatment
response could manifest both spatially and temporally.

IV. PD-L1 STATUS AFFECTS TUMOR SHAPE AND RESPONSE

To demonstrate how the interaction between the tumor
and its microenvironment manifests at the spatial imaging
scale, we investigated a simple example within this
framework consisting of a tumor with only PD-L1 and non-
PD-L1 cancer cells. We ran the model with two different
compositions of cell types and otherwise identical initial
conditions. One tumor was composed of a greater
proportion of non-PDL1 tumor cells to PDL1 tumor cells,
and in the second the proportions were reversed.

Figure 3 shows the population dynamics of the two
tumors and the spatial distribution of cell types prior to
treatment. The density profile shown is representative of a
baseline clinical CT scan, which are commonly used to
inform treatment planning. Regardless of the ratio of cell
types, the dominant population outgrows and suppresses
the minority population. The non-PD-L1 tumor (Fig. 3A)
shows a more spiculated morphology, which can be
explained by the fact that the non-PD-L1 cells are
effectively attacked by the immune system. To proliferate
and survive, the tumor must grow around blood vessels,
which act as a delivery system for the immune cells. The
PD-L1 cells, however, are able to evade immune attack;
this facilitates their coexistence with the vasculature and
allows them to form a more rounded mass (Fig. 3B).

When immunotherapy was introduced, the non-PD-L1
tumor effectively continued its growth trajectory. The
death of the few PD-L1 cells was compensated by a small
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Figure 3. Comparing growth and treatment of a tumor that
contains mostly non-PD-L1 cells (A) with a tumor that
contains mostly PDL1 cells (B). Population dynamics plots
show how each tumor composition grows and responds to
anti-PD-L1 treatment. the spatial layout of cell types and total
cell density is shown to the right of each plot.
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increase in the growth rate of non-PD-L1 cells. In contrast,
the PDL1 tumor growth was significantly slowed as a
result of treatment. With a larger number of targeted cells,
there was a significant decrease in the PD-L1 population,
which caused a decline in the total population of cells.
After a period of response however, there was an increase
in the total population; this was due to regrowth of the
non-PD-L1 cell population after spatial competition with
the PD-L1 cells was removed.

These results demonstrate that if tumor heterogeneity is
based solely on PD-L1 status, deviation from isotropic
invasion is a result of immune evasion by the non-PD-L1
cells, which lack the PD-L1 suppression mechanism.
However, using shape from this model as a predictor for
response is in exact opposition to the data. It is clear that
more factors are involved than just cell type and that this
mechanism may not be the most dominant factor in
determining tumor response. We can, however, further
characterize the tumor profile using the cell density matrix
as a “virtual image” and extract radiomics features. We
quantified several features from the virtual images that
overlapped with the features with the highest outcome
associations from the exploratory radiomics analysis and
found that some features agreed with the data (RMS HU
and skewness HU), and others did not (convexity and
mean HU). It is possible that these features match well
with the model because they correspond to intratumor
heterogeneity characteristics, which we investigated here
by using different ratios of cell types. At the same time,
other mechanisms not considered here may be stronger
drivers of shape and overall density.

V. DiscussIoN

Quantitative radiological features extracted from routine
patient imaging have been shown to correlate with patient
outcome [14], [15]. Often clinical radiological assessment
is based on the size and number of tumors alone, while the
tumor heterogeneity, shape, and dynamics are observed
but not quantified. In our analysis, we found several
radiomics features correlated with outcome using a cohort
of patients with heterogeneous response to
immunotherapy, and found a single mechanism that
underlies changes shape and texture characteristics of
tumors. The relationship between tumor features and
molecular or phenotypic characteristics of the tumor and
the microenvironment are complex. However, we propose
that relating feature to function can be possible through
mathematical modeling.

The computational structure of this mathematical
model was designed to easily turn on and off individual
components to enable investigation of how each might
contribute to overall tumor growth and treatment
response. Mathematical models of biological phenomena
can often be overly complex, leading to overfitting to
available data and inability to make accurate predictions.
The basis of modeling is to simplify a system in order to
understand it. However, when dealing with large
heterogeneous populations of cells that interact with each
other and their environment, overly simple models often

neglect relevant biological processes. Our computational
framework was created to be both reductionist and
integrated, in order to try to understand both the singular
components and the interconnected whole.

The main portion of this work was developed over an
intense 4-day workshop and is just the start of a broader
framework to use mathematical modeling to bridge
cellular and tissue level mechanisms to large cohorts of
patient data. Statistical analysis of clinical data, histological
features, and imaging data are regularly used to define
prognostic and diagnostic criteria, but the focus is usually
on accurately determining patient outcome rather than the
mechanisms leading to those outcomes.

In this work we proposed a novel framework for
bridging multiscale data by combining two approaches
that have previously been applied separately: statistical
radiomics modeling and mechanism-driven mathematical
models.  Statistical radiomics modeling enables
identification of imaging features that correlate with
patient response to currently employed treatment
strategies and the prediction of individual patient
outcomes. Mathematical modeling, on the other hand,
through the quantitative description of biologically-
relevant mechanisms, may be used to test many different
treatment  strategies = computationally. = Promising
treatment strategies informed by the mathematical models
can then be validated using a range of biological
experiments. Our framework uses multiscale data and
combines both approaches. The use of all available data
and multi-disciplinary analysis feeds-forward a refined
understanding of underlying biological interactions and a
narrowed set of radiomic features that are correlated to
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Figure 4. Data-driven, statistical-based radiomics approaches
and mechanism-based mathematical models are often used
for separate purposes. We propose a larger framework that
bridges patient data to biological mechanisms by using tools
from each approach to iteratively inform the other.
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mechanisms of interest for treatment success. Using a
larger cohort of patient data would allow for responders
and non-responders to be better defined on all scales so
that the range of possible responses for a specific tumor
can be reduced. Testing different treatments on the
reduced “model space” can then be assessed for the best
and most probable outcome.
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