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Abstract 

Massive efforts have documented hundreds of thousands of putative 

enhancers in the human genome. A pressing genomic challenge is to identify 

which of these enhancers are functional and map them to the genes they 

regulate. We developed a novel method for inferring enhancer-promoter (E-P) 

links based on correlated activity patterns across many samples. Our method, 

called FOCS, uses rigorous statistical validation tailored for zero-inflated data, 

identifying the most important E-P links in each gene model. We applied 

FOCS to the wide epigenomic and transcriptomic datasets recorded by the 

ENCODE, Roadmap Epigenomics and FANTOM5 projects, together covering 

2,630 samples of human primary cells, tissues and cell lines. In addition, 

building on expression of enhancer RNAs (eRNAs) as an exquisite mark of 

enhancer activity and on the robust detection of eRNAs by the GRO-seq 

technique, we compiled a compendium of eRNA and gene expression profiles 

based on public GRO-seq data from 245 samples and 23 human cell types. 

Applying FOCS to this compendium further expanded the coverage of our 

inferred E-P map. Benchmarking against gold standard E-P links from ChIA-

PET and eQTL data, we demonstrate that FOCS prediction of E-P links 

outperforms extant methods. Collectively, we inferred >300,000 cross-

validated E-P links spanning ~16K known genes. Our study presents an 

improved method for inferring regulatory links between enhancers and 

promoters, and provides an extensive resource of E-P maps that could greatly 

assist the functional interpretation of the noncoding regulatory genome. FOCS 

and our predicted E-P map are publicly available at 

http://acgt.cs.tau.ac.il/focs.  
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Introduction 

Deciphering the regulatory role of the noncoding part of the human genome 

is a major challenge. With the completion of the sequencing of the genome, efforts 

have shifted over the last decade towards understating the epigenome. These 

efforts aim at understanding regulatory mechanisms outside the protein-coding 

sequences that allow the production of thousands of different cell types from the 

same DNA blueprint. Enhancer elements that distally control the activity of target 

promoters play critical roles in this process. Consequently, large-scale epigenomic 

projects set out to identify all the cis-regulatory elements that are encoded in the 

genome. Prominent among them is the ENCODE consortium [1,2], which applied a 

variety of epigenomics techniques to a large panel of human cell lines. Profiling 

epigenetic marks of regulatory activity (including DHS-seq profiling of DNase I 

hypersensitive sites, which is accepted as a common feature of all active elements), 

ENCODE collectively identified hundreds of thousands of putative regulatory 

elements in the genome [2]. As ENCODE analyses were mainly applied to cancer cell 

lines, a follow-up project, the Roadmap Epigenomics, applied similar analyses to a 

large collection of human primary cells and tissues, in order to establish more 

physiological maps of common and cell-type specific putative regulatory elements 

[3]. Given the plethora of candidate enhancer regions called by these projects, the 

next pressing challenge is to identify which of them is actually functional and map 

them to the genes they regulate. A naïve approach that is still widely used in 

genomic studies links enhancers to their nearest genes. Yet, emerging indications 

suggest that up to 50% of enhancers cross over their most proximal gene and control 

a more distal one [4]. A common approach that improves this naïve E-P mapping is 

by using pairwise correlation, which calculates activity patterns for each promoter 

(P) and putative enhancer (E) over the probed cell panel, and identifies E-P pairs, 

located within a distance limit, that show highly correlated patterns across many 

samples [2,3]. However, this approach does not take into account interactions 

among multiple enhancers that control the same target promoter. Furthermore, 

Pearson correlation, which is typically applied for this task, is highly sensitive to 

outliers and thus prone to false positives.  

Improved detection of functional enhancers is offered by a recently 

discovered class of non-coding transcripts, named enhancer RNAs (eRNAs) [5]. 

eRNAs are mostly transcribed bi-directionally from regions of enhancers that are 

actively engaged in transcriptional regulation [5] (reviewed in [6,7]), and, 

importantly, changes in eRNA expression at specific enhancer regions in response to 

different stimuli correlate both with changes in the amount of epigenetic marks at 

these enhancers and with the expression of their target genes [8–11]. Most eRNAs 

are not polyadenylated and are typically expressed at low levels due to their 

instability (reviewed in [12]). Therefore, eRNAs are not readily detected by standard 

RNA-seq protocols, but can be effectively measured by global run-on sequencing 

(GRO-seq), a technique that measures production rates of all nascent RNAs in a cell 

[8–10,13,14] or by cap-analysis of gene expression (CAGE) followed by sequencing 
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[4,15,16]. Utilizing eRNA expression as a mark of enhancer activity, the FANTOM5 

consortium recently generated an atlas of predicted enhancers in a large panel of 

human cancer and primary cell lines and tissues [4]. This study too used pairwise 

correlation (in this case, calculated between expression levels of an eRNA and  a 

gene whose TSS is within a distance limit from it) to infer E-P links.Regression 

analysis was applied to characterize the architecture of promoter regulation by 

enhancers [4]. However, since all samples were used for training the regression 

models, this analysis is prone to over-fitting and thus their predictive power on new 

samples is unclear. 

Here, we present FOCS (FDR-corrected OLS with Cross-validation and 

Shrinkage) - a novel procedure for inference of E-P links based on correlated activity 

patterns across many samples from heterogeneous sources. FOCS uses a cross-

validation scheme in which regression models are learnt on a training set of samples 

and then evaluated on left-out samples from other cell types. The models are 

subjected to a new statistical validation scheme that is tailored for zero-inflated 

data. Finally, validated models are optimally reduced to derive the most important E-

P links. We applied FOCS on massive genomic datasets recorded by ENCODE, 

Roadmap Epigenomics and FANTOM5, and on a large compendium of eRNA and 

gene expression profiles that we compiled from publicly available GRO-seq datasets. 

We demonstrate that FOCS outperforms extant methods in terms of concordance 

with E-P interactions identified by ChIA-PET and eQTL data. Collectively, applying 

FOCS to these four data resources, we inferred ~300,000 cross-validated E-P 

interactions spanning ~16K known genes. FOCS and our predicted E-P maps are 

publicly available at http://acgt.cs.tau.ac.il/focs.  

                        

 Results 

The FOCS procedure for predicting enhancer-promoter links 

We set out to develop an improved statistical framework for prediction of E-P 

links based on their correlated activity patterns measured over many cell types. As a 

test case, we first focused on ENCODE's DHS profiles [2], which constitute 208 

samples measured in 106 different cell lines (Online Methods) [2]. This rich resource 

was previously used to infer E-P links based on pairwise correlation between DHS 

patterns of promoters and enhancers located within a distance of ±500 kbp. Out of 

~42M pairwise comparisons, ~1.6M pairs showed Pearson's correlation>0.7 and 

were regarded as putatively functional E-P links [2]. However, Pearson's correlation 

is sensitive to outliers and thus may be prone to high rate of false positive 

predictions. This is especially exacerbated in cases of sparse data (zero inflation), 

which are prevalent in enhancer activity patterns, as many of the enhancers will be 

active only in a limited set of conditions. In addition, the combinatorial nature of 

transcriptional regulation in which a promoter is regulated by multiple enhancers is 

not considered by such pairwise approach. 
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To address these points we developed a novel statistically-controlled 

regression analysis scheme for E-P mapping, that we dubbed FOCS. Specifically, FOCS 

uses regression analysis to learn predictive models for promoter's activity from the 

activity levels of its 𝑘 closest enhancers, located within a window of ±500 kb around 

the gene’s TSS. (Throughout our analyses we used 𝑘 = 10). Importantly, to avoid 

overfitting of the regression models to the training samples, FOCS implements a 

leave-cell-type-out cross validation (LCTO CV) procedure, as follows. In a dataset that 

contains samples from C different cell-types, for each promoter, FOCS performs C 

iterations of model learning. In each iteration, all samples belonging to one cell-type 

are left out and the model is trained on the remaining samples. The trained model is 

then used to predict promoter activity in the left-out samples (Fig. 1).  

We implemented and evaluated three alternative regression methods: ordinary least 

squares (OLS), generalized linear model with the negative binomial distribution 

(GLM.NB) [17] and zero-inflated negative binomial (ZINB) [18]. GLM.NB accounts for 

unequal mean-variance relationship within subpopulations of replicates. ZINB is 

similar to GLM-NB but also accounts for excess of samples with zero entries (Online 

Methods). For each promoter and regression method, the learning phase yields an 

activity vector, containing the promoter's activity in each sample as predicted when 

it was left out. FOCS applies two non-parametric tests, tailored for zero-inflated 

data, to evaluate the ability of the inferred models (consisting of the k nearest 

enhancers) to predict the activity of the target promoter in the left-out samples. The 

first test is a "binary test" in which samples are divided into two sets, positive and 

negative, containing the samples in which the promoter was active or not, 

respectively, based on their measured signal. (We used a signal threshold of 1.0 

RPKM for this classification.) Then, Wilcoxon signed-rank test is used to compare the 

predicted promoter activities between these two sets (Fig. 1). The second test is an 

"activity level test", which examines the agreement between the predicted and 

observed promoter's activities using Spearman's correlation. In this test, only the 

positive samples (that is, samples in which the measured promoter signal is ≥1.0 

RPKM) are considered. Gene models with good predictive power should discriminate 

well between positive and negative samples (the binary test) and preserve the 

original activity ranks of the positive samples (the activity level test), and models that 

pass these tests are regarded as statistically cross-validated. Of note, these two 

validation tests evaluate each promoter model non-parametrically without assuming 

any underlying distribution on the data when inferring significance. Next, FOCS 

corrects the p-values obtained by these tests for multiple testing using the Benjamini 

and Yekutieli (BY) FDR procedure [19] with q-value<0.1. The BY FDR procedure takes 

into account possible positive dependencies between tests while the more 

frequently used Benjamini and Hochberg (BH) FDR procedure [20] assumes the tests 

are independent.    
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FOCS results for ENCODE DHS epigenomic data 

Applying FOCS to the ENCODE DHS dataset, we only considered promoters 

and enhancers that were active (that is, with signal > 1.0 RPKM) in at least 30 out of 

the 208 samples. Overall, this dataset contained 92,909 and 408,802 active 

promoters and enhancers, respectively (Online Methods). We first evaluated the 

performance of the three alternative regression methods in terms of the number of 

validated models each of them yielded. We found that the OLS method consistently 

produced more validated models that passed both the binary and activity level tests 

(Fig. 2A-B; Supplementary Table 1). Out of the 92,909 analyzed promoters, 52,658 

had models that passed both tests (q-value≤0.1), while for 7,007 promoters, models 

passed none of these two tests (Fig. 2C). As expected, promoters with models that 

passed only the activity level test were active in a very high number of samples while 

those with models that passed only the binary test were active in much lower 

number of samples (Fig. 2D) (see Supplementary Fig. 1 for examples of promoters in 

different validation categories). To examine the effect of the leave-cell-type-out 

cross validation (CV) procedure we compared R2 values obtained by OLS models 

generated without CV to the values obtained when CV was applied (Fig. 2E). The 

results indicate that without CV, many models are over-fitted to the training samples 

and have low predictive power on new ones. This problem is more severe in other 

datasets that we analyzed, as shown in subsequent section. Fig. 2F shows an 

example of promoter model with low predictive power on new samples, and 

demonstrates the high sensitivity of Pearson's correlation (or equivalently, of R2) to 

outliers. Such promoter models do not pass our CV tests and are considered to have 

low confidence. 

The architecture of promoter regulation by enhancers 

Next, we sought to characterize the architecture of promoter regulation by 

its enhancers, in terms of the number of regulating enhancers and their relative 

contribution. For each promoter that passed the validation tests, we now calculated 

a final model, this time considering all samples (Fig. 1), and estimated the relative 

contribution of each of its k enhancers to this full model. As in [4], per model, we 

measured the proportional contribution of each enhancer by calculating the ratio 

𝑟2/𝑅2 where 𝑟 is the pairwise Pearson correlation between the enhancer and 

promoter activity patterns and 𝑅2 is the coefficient of determination of the entire 

promoter's model. In the analysis of the ENCODE DHS data, we included in this step 

the 70,465 promoters that passed the activity level test (or both tests). In agreement 

with previous observation [4], the closest enhancers have significantly higher 

contribution than the distal ones (Fig. 3A). However, the proportional contribution 

quickly reaches a plateau, indicating that above a certain threshold, distance to 

promoter is no longer an important factor, and enhancers #6-#10 (ordered according 

to their distance from the promoter) contribute similarly to promoter activity (Fig. 

3A). Second, we examined the distribution of 𝑅2 values of these statistically 

validated models. 54% of the models (37,716 out of 70,465) had 𝑅2 ≥ 0.5 (Fig. 3B). 
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61% of the 52,658 models that passed both tests had 𝑅2 ≥ 0.5, compared to 32% of 

the 17,807 models that passed only the activity level test. (In contrast, only 13% of 

15,437 models that passed only the binary test had 𝑅2 ≥ 0.5). We note that models 

that passed the CV tests but have low 𝑅2 do contain confident and predictive 

information on E-P links, though the low 𝑅2 suggests that there are additional 

missing regulatory elements that play important roles in the regulation of the target 

promoter.  

A promoter's model produced by OLS regression contains all k variables (i.e., 

enhancers), where each variable is assigned a significance level (p-value) reflecting 

its statistical strength. Next, to focus on the most informative E-P interactions, FOCS 

seeks the strongest enhancers in each model. To this end, FOCS derives, per 

promoter, an optimally reduced model by applying model shrinkage (Online 

Methods). Lasso-based shrinkage was previously used for such task [4]. Here, we 

chose elastic-net (enet) approach, which combines Lasso and Ridge regularizations, 

since in cases of highly correlated variables (i.e., the enhancers), Lasso tends to 

select a single variable while Ridge gives them more equal coefficients (Online 

Methods). In this analysis too, we included the 70,465 models that passed the 

activity level test. Fig. 3C shows the distribution of the number of enhancers that 

were included in the enet-reduced models. On average, each promoter was linked to 

2.4 enhancers. Inclusion rate decreased with E-P distance: the most proximal 

enhancer was included in 63% of the models while the 10th enhancer was included in 

only 16% of them (Fig. 3D). Here too, the graph reaches a plateau and enhancers #6-

#10 show very similar inclusion rates.  

Comparison of FOCS and extant methods performance using external validation 

resources 

After optimally reducing the promoter models FOCS predicted in the ENCODE 

DHS dataset a total of 167,988 E-P links covering 70,465 promoters and 92,603 

distinct enhancers (http://acgt.cs.tau.ac.il/focs/data/encode_interactions.txt). Next, 

we compared the performance of FOCS and three alternative methods for E-P 

mapping: (1) Pairwise: pairwise Pearson correlation > 0.7 between E-P pairs located 

within ±500 kbp, and accounting for multiple testing using BH (FDR <10−5) (this was 

the main method used in [4], and also in [2] without multiple testing correction) (2) 

OLS+LASSO: Models are derived by OLS analysis using all samples without CV, 

selected based on 𝑅2 ≥ 0.5  and reduced using LASSO shrinkage (Online Methods) 

(this method was also applied in [4]). (3) OLS+enet: Same as (2) but with enet 

shrinkage in place of LASSO. Table 1 summarizes the number of E-P links obtained by 

each method. FOCS yielded ~75% more models than the other methods.  

To evaluate the validity of E-P mappings predicted by each method, we used 

two external omics resources: physical E-P interactions derived from ChIA-PET data 

and functional E-P links indicated by eQTL analysis. For E-P physical interactions, we 

used public ChIA-PET data that used RNAPІІ as the immunoprecipitated factor in 

MCF7, HCT-116, K562 and HelaS3 cell lines (a total of 922,997 interactions 
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downloaded from the CCSI DB [21]). eQTL data was downloaded from the GTEx 

project (2,283,827 unique significant eQTL-gene pairs) [22]. We defined a 1 kbp 

interval for each promoter and enhancer and calculated the fraction of E-P links that 

were supported by either ChIA-PET or eQTL data (Online Methods). Remarkably, 

FOCS not only yielded many more E-P links (15,000-40,000 more), but also 

outperformed the alternative methods in terms of the fraction of predictions 

supported by either ChIA-PET (Fig. 4A) or eQTL data (Fig. 4B). Figure 5 shows two 

FOCS-derived promoter models that are supported by ChIA-PET and eQTLs. Note 

that in CD4 promoter model (Fig. 5B) the 𝑅𝐶𝑉
2  value was low (~0.1) while the 

Spearman correlation (𝜌𝑠) was 0.53 after CV. This demonstrates that FOCS can 

capture promoter models that exhibit non-linear relationship between the promoter 

and enhancer activities.  

FOCS performance on additional large-scale datasets 

 Having demonstrated FOCS proficiency in predicting E-P links on the ENCODE 

DHS data, we next wished to expand the scope of our E-P mapping. We therefore 

applied FOCS to three additional large-scale genomic datasets: (1) DHS profiles 

measured by the Roadmap Epigenomics project, consisting of 350 samples from 73 

different cell types and tissues; and (2) FANTOM5 CAGE data that measured 

expression profiles in more than 600 human cell lines and primary cells. The analysis 

of FANTOM5 data uses eRNA and TSS expression levels for estimating the activity of 

enhancers and promoters, respectively (Online Methods). (3) a GRO-seq 

compendium that we compiled. Building on eRNAs as quantitative markers of 

enhancer activity and the effectiveness of the GRO-seq technique in detecting eRNA 

expression [23], we compiled a large compendium of eRNA and gene expression 

profiles from publicly available GRO-seq datasets, spanning a total of 245 samples 

measured on 23 different human cell lines (Online Methods).  

We applied to these datasets the same procedure that we applied above to the 

ENCODE data. In the analysis of these datasets, OLS yielded more validated models 

than the other regression methods on the Roadmap Epigenomics and GRO-seq 

datasets (as was the case in the ENCODE DHS data (Fig. 1A-B)), while GLM.NB and 

ZINB produced more models on FANTOM5 (Supplementary Fig. 2A-C; 

Supplementary Table 1). The performance of GLM.NB and ZINB on the FANTOM5 

dataset is probably due to the high fraction of zeros entries in the count matrix of 

this dataset (~54%) compared to ENCODE, Roadmap, and GRO-seq data matrices 

(8%, 4%, and 19%, respectively). As OLS performed better on most datasets, all the 

results reported below are based on OLS. The number of promoter models that 

passed each validation test in each dataset is provided in Supplementary Fig. 3A-C. 

The effect of CV is presented in Supplementary Fig. 4A-C. In these datasets too, 

many of the models with high coefficient of determination (𝑅2 ≥ 0.5) when trained 

on all samples, had low predictive power on novel samples (𝑅𝐶𝑉
2 < 0.25) (Empirical 

FDR 16%, 20%, and 22% in Roadmap, FANTOM5, and GRO-seq, respectively; 
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Supplementary Fig. 4), demonstrating the utility of CV in alleviating overfitting and 

thus reducing false positive models.   

  We next examined the relative contribution of each of the 10 participating 

enhancers to the validated models, and in these datasets too, the most proximal 

enhancers had the highest role, but more distal ones had very similar contribution 

(Supplementary Fig. 5A). In terms of explained fraction of the observed variability in 

promoter activity, 41% and 84% of the models that passed both tests in the 

Roadmap Epigenomics and GRO-seq datasets, respectively, had 𝑅2 ≥ 0.5, but only 

11% of the validated models reached this performance in the FANTOM5 dataset 

(Supplementary Fig. 5B), probably due to its exceptionally sparse data matrix . Last, 

FOCS applied enet model shrinkage to the models that passed the validation tests. 

(The number of validated models and E-P links derived by FOCS on each dataset is 

summarized in Supplementary Table 2). In the optimally-reduced models, each 

promoter was linked, on average, to 3.2, 2.8 and 3.6 enhancers, in the Roadmap, 

FANTOM5 and GRO-seq datasets, respectively (Supplementary Fig. 6A), and 

inclusion rate decreased with E-P distance (Supplementary Fig. 6B). Finally, 

benchmarking against ChIA-PET and eQTL data, in these datasets too, FOCS 

outperformed the alternative methods for E-P mapping, by yielding many more E-P 

predictions at similar external validation rates (Supplementary Fig. 7; 

Supplementary Table 3). Collectively, we provide a rich resource of predicted E-P 

mapping that covers 16,349 known genes, 113,653 promoters, 181,236 enhancers, 

and 302,050  cross-validated E-P links.  

 

Discussion  

In this study we present FOCS - a novel statistical framework for predicting E-

P interactions based on activity patterns derived from large-scale omic datasets. 

Applying FOCS to four different genomic data sources, we derived an extensive 

resource of statistically cross-validated E-P links. Our E-P mapping resource further 

illuminates different facets of transcriptional regulation. First, a common naïve 

practice is to map enhancers to their nearest promoters. In FOCS predicted E-P links, 

~26% of the enhancers are mapped to a promoter that is not the closest one 

(Supplementary Fig. 8). Second, intronic enhancers are very common - 70% of the 

predicted E-P links involve an intronic enhancer (Supplementary Table 2). Third, 

while on average, in the shrunken models, each promoter was linked to ~3 

enhancers, many promoters were linked to a single dominant enhancer and some 

were linked to a very high number of enhancers (8-10).  

As an initial step in exploring relationships between the architecture of E-P 

interactions and gene function, we examined the set of housekeeping genes taken 

from [24]. These genes are ubiquitously expressed across different cell types, 

suggesting that they are likely to have a simple regulation logic. Indeed, the 
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promoters of these genes were involved in significantly lower number of E-P links 

compared to all other genes (p-value<0.001 in all data types; Supplementary Fig. 9).  

We also observed that while the vast majority (~90%) of enhancers in FOCS-

derived models had positive Pearson and Spearman correlation with the activity 

pattern of their target promoters, the models also included cases of negative 

correlation, suggesting that the regulatory element functions as a repressor 

(Supplementary Fig. 10). Finally, the activity level test in FOCS, computed using the 

Spearman correlation, can also account for promoter models where the relationship 

between the enhancer and promoter activity patterns is not linear, perhaps 

explaining the 𝑅2 < 0.5 values observed in the majority of FANTOM5 and Roadmap 

models (Fig. S5B). 

One aspect that we did not consider in our analysis is the constraints 

imposed on transcriptional regulation by the 3D organization of the genome. Recent 

findings indicate that most E-P interactions are limited by chromosomal territories 

called topologically associated domains [25,26]. Further research is needed to better 

elucidate this connection between 3D organization and E-P links and to better 

understand to what extent such constraints are universally or differentially imposed 

in different cell types.        

Our broad compendium of E-P interactions can greatly assist the functional 

interpretation of genetic variants that are associated with disease susceptibility, as 

the majority of such variants (~90%), as detected by GWAS studies, are located in 

noncoding sequences [27]. Similarly, it can help the interpretation of recurrent 

noncoding somatic mutations (SM) in cancer genomes. SM hot-spots in regulatory 

regions are detected at an accelerated pace with the rapid accumulation of whole-

genome sequencing (WGS) of tumor samples [28,29]. Additionally, the predicted E-P 

links can be integrated into and boost bioinformatics pipelines that seek DNA motifs 

in regulatory elements that putatively regulate sets of co-expressed genes. Overall, 

the FOCS method that we developed and the compendium we provide hold promise 

for advancing our understanding of the noncoding regulatory genome.  

 

Methods 

Methods and any associated references are available in the online version of the 

paper. 
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Figure Legends 

Figure 1.  FOCS statistical procedure for inference of E-P links. In a dataset with samples 

from N different cell types, FOCS starts by performing N cycles of leave-cell-type out cross-

validation (LCTO CV). In cycle 𝑗, the set of samples from cell-type 𝐶𝑗 is left out as a test set, 

and a regression model is trained, based on the remaining samples, to estimate the level of 

the promoter P (the independent variable) from the levels of its k closest enhancers (the 

dependent variables). The model is then used to predict promoter activity in the test set 

samples. After the N cycles, FOCS tests the agreement between the predicted (Pmodel) and 

observed (Pobs) promoter activities using two non-parametric tests. In the binary test, 

samples are divided into positive (Pobs ≥1RPKM) and negative (Pobs <1RPKM) sets, and the 

ability of the inferred models to separate between the sets is examined using Wilcoxon rank-

sum test. In the activity level test, the consistency between predicted and observed activities 

in the positive set of samples is tested using Spearman correlation. P-values are corrected 

using the BY-FDR procedure, and promoters that passed the validation tests (FDR≤0.1) are 

considered validated, and full regression models, this time based on all samples, are 

calculated for them. In the last step, FOCS shrinks each promoter model using elastic net to 

select its most important enhancers. 

Figure 2. Performance of three alternative regression methods for inferring E-P models. 

(a) Performance of optimal least squares (OLS), generalized linear model with negative 

binomial distribution (GLM.NB) and zero-inflated negative binomial (ZINB) regression using 

the binary test.  Point (x,y) on a plot indicates that a fraction x of the models had  –log10[q-

values] < y computed by Wilcoxon rank sum test. OLS yields a higher fraction of validated 

models at any q-value cutoff. (b) Same as (a) but using the activity level validation test, with 

p-values computed by the Spearman correlation test. Here too, OLS yields a higher fraction 

of validated models than the other methods. (c) Number of promoters whose OLS models 

passed (at q<0.1) each of the tests (or none). (d) The distribution of the number of positive 

samples (samples in which the promoter is active, i.e., has RPKM ≥ 1) for promoters in each 

category. (e) Comparison between the 𝑅2 values with/without cross-validation (CV). Each 

dot is a promoter model. Blue dots denote models with 𝑅2 ≥ 0.5 and 𝑅𝐶𝑉
2 ≥ 0.25. Red dots 

denote models with and 𝑅2 > 0.5 and 𝑅𝐶𝑉
2 < 0.25 corresponding to over-fitted models with 

low predictive power on novel samples. (f) A promoter whose model as computed without 

CV gets very high 𝑅2  (left plot) but when CV is applied a low 𝑅𝐶𝑉
2  is obtained (right plot). This 

example demonstrates the sensitivity of 𝑅2 (and Pearson correlation) to outliers. 𝜌𝑠: 

Spearman correlation, Q-value: FDR corrected P-value. 

Figure 3. Architecture of promoter regulation by enhancers. (a) The proportional 

contribution of the 10 most proximal enhancers (within ±500kb of the target promoter) to 

models predicting promoter activity. The X axis indicates the order of the enhancers by their 

relative distance from the promoter, with 1 being the closest. (b) 𝑅2 values of the models 

that passed one or both CV tests. (c) Distribution of the number of enhancers included in the 

validated, optimally reduced models (i.e. after elastic net shrinkage). Most shrunken models 

contain 1-3 enhancers. (d) Inclusion rate of enhancers in the shrunken models as a function 

of their relative proximity to the target promoter. 

Figure 4. Comparison of the performance of different methods for predicting E-P links 

using ChIA-PET and eQTL data as external validation. Y-axis shows the total number of 

predicted E-P links. X-axis shows the percentage supported by the external source: (A) Pol-II 
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ChIA-PET. (B) GTEX eQTLs. In (B) the y-axis shows the total number of predicted E-P links 

where the promoter is annotated with a known gene. FOCS (green triangle) makes more 

predictions and also manifests highest support rate by both ChIA-PET (59%) and eQTL (38%). 

In all methods, empirical p-value by random permutation test was < 0.01 (Online Methods). 

Figure 5. Examples of FOCS predicted E-P links supported by ChIA-PET/eQTL data. (A-B) 

CD4. (C-D) ESRP1. TSS location is highlighted in light blue. (B,D) Heatmaps (log2[RPKM 

Signal]) for the activity patterns of CD4/ESRP1 promoters and their 10 nearest enhancers. 

Enhancers included in the shrunken model are denoted by ‘ep’ and those that are not are 

denoted by ‘e’. For each enhancer, its Pearson and Spearman correlations with the promoter 

are reported (left and right values in the parentheses). For each model, the 𝑅2, 𝑅𝐶𝑉
2 , and the 

Spearman correlation after CV (𝜌𝑠) are listed. 
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Table 1. Number of inferred promoter models obtained by four alternative methods on 

the ENCODE DHS dataset  

Method type #promoter models #E-P links #Unique enhancers 

Pairwise (𝒓 ≥ 𝟎. 𝟕)+ FDR 39,372 139,170 53,950 

OLS-LASSO (𝑹𝟐 ≥ 𝟎. 𝟓  )* 39,368 122,064 74,104 

OLS-enet  (𝑹𝟐 ≥ 𝟎. 𝟓  )* 39,407 150,158 85,926 

FOCS 70,465 167,988 92,603 

(*) The number of OLS models (𝐑𝟐 ≥ 𝟎. 𝟓) was 39,892 before LASSO / enet shrinkage. 

These methods eliminate models in which no enhancer passed the shrinkage.  
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