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Abstract	
  
Visual	
  metacognition	
  is	
  the	
  ability	
  to	
  employ	
  confidence	
  ratings	
  in	
  order	
  to	
  predict	
  
the	
  accuracy	
  of	
  one’s	
  decisions	
  about	
  visual	
  stimuli.	
  Despite	
  years	
  of	
  research,	
  it	
  is	
  
still	
  unclear	
  how	
  visual	
  metacognitive	
  efficiency	
  can	
  be	
  manipulated.	
  Here	
  we	
  show	
  
that	
  a	
  hierarchical	
  model	
  of	
  confidence	
  generation	
  makes	
  a	
  counterintuitive	
  
prediction:	
  Higher	
  sensory	
  noise	
  should	
  increase	
  metacognitive	
  efficiency.	
  The	
  
reason	
  is	
  that	
  sensory	
  noise	
  has	
  a	
  large	
  negative	
  influence	
  on	
  the	
  decision	
  (where	
  it	
  
is	
  the	
  only	
  corrupting	
  influence)	
  but	
  a	
  smaller	
  negative	
  influence	
  on	
  confidence	
  
(where	
  it	
  is	
  one	
  of	
  two	
  corrupting	
  influences;	
  the	
  other	
  one	
  being	
  metacognitive	
  
noise).	
  To	
  test	
  this	
  prediction,	
  we	
  used	
  a	
  perceptual	
  learning	
  paradigm	
  to	
  decrease	
  
the	
  amount	
  of	
  sensory	
  noise.	
  In	
  Experiment	
  1,	
  seven	
  days	
  of	
  training	
  led	
  to	
  
significant	
  decrease	
  in	
  noise	
  as	
  well	
  as	
  a	
  corresponding	
  decrease	
  in	
  metacognitive	
  
efficiency.	
  Experiment	
  2	
  showed	
  the	
  same	
  effect	
  in	
  a	
  brief	
  97-­‐‑trial	
  learning	
  for	
  each	
  
of	
  two	
  different	
  tasks.	
  	
  Finally,	
  in	
  Experiment	
  3,	
  we	
  experimentally	
  manipulated	
  
stimulus	
  contrast	
  to	
  increase	
  sensory	
  noise	
  and	
  observed	
  a	
  corresponding	
  increase	
  
in	
  metacognitive	
  efficiency.	
  Our	
  findings	
  demonstrate	
  the	
  existence	
  of	
  a	
  robust	
  
positive	
  relationship	
  between	
  sensory	
  noise	
  and	
  metacognitive	
  efficiency.	
  These	
  
results	
  could	
  not	
  be	
  captured	
  by	
  a	
  standard	
  model	
  in	
  which	
  decision	
  and	
  confidence	
  
judgments	
  are	
  made	
  based	
  on	
  the	
  same	
  underlying	
  information.	
  Thus,	
  our	
  study	
  
provides	
  a	
  novel	
  way	
  to	
  directly	
  manipulate	
  metacognitive	
  efficiency	
  and	
  suggests	
  
the	
  existence	
  of	
  metacognitive	
  noise	
  that	
  corrupts	
  confidence	
  but	
  not	
  the	
  perceptual	
  
decision.	
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Introduction	
  

When	
  faced	
  with	
  difficult	
  decisions,	
  people	
  not	
  only	
  make	
  an	
  informed	
  choice	
  but	
  

can	
  also	
  provide	
  a	
  metacognitive	
  estimate	
  of	
  the	
  likelihood	
  that	
  their	
  response	
  was	
  

correct	
  (Metcalfe	
  &	
  Shimamura,	
  1994).	
  This	
  judgment	
  is	
  usually	
  provided	
  in	
  the	
  

form	
  of	
  a	
  confidence	
  rating.	
  The	
  ability	
  of	
  confidence	
  judgments	
  to	
  distinguish	
  

between	
  correct	
  and	
  wrong	
  answers	
  determines	
  the	
  degree	
  of	
  visual	
  metacognition.	
  

High	
  metacognitive	
  scores	
  suggest	
  that	
  confidence	
  judgments	
  are	
  informative	
  and	
  

should	
  be	
  trusted,	
  while	
  low	
  scores	
  suggest	
  the	
  opposite.	
  Despite	
  the	
  importance	
  of	
  

understanding	
  when	
  confidence	
  judgments	
  are	
  particularly	
  useful	
  and	
  when	
  they	
  

are	
  less	
  so,	
  the	
  factors	
  determining	
  the	
  quality	
  of	
  metacognition	
  are	
  still	
  not	
  

understood.	
  	
  

	
  

Research	
  into	
  the	
  determinants	
  of	
  visual	
  metacognition	
  has	
  been	
  hampered	
  by	
  

existing	
  measures	
  of	
  metacognition.	
  Traditional	
  metrics	
  include	
  the	
  trial-­‐‑to-­‐‑trial	
  

Pearson	
  correlation	
  between	
  confidence	
  and	
  accuracy	
  (Nelson,	
  1984),	
  the	
  area	
  

under	
  the	
  Type	
  2	
  curve	
  (Fleming,	
  Weil,	
  Nagy,	
  Dolan,	
  &	
  Rees,	
  2010),	
  and	
  type-­‐‑2	
  d’	
  

(Higham,	
  Perfect,	
  &	
  Bruno,	
  2009).	
  The	
  quantities	
  measured	
  by	
  all	
  of	
  these	
  metrics	
  

increase	
  trivially	
  as	
  stimulus	
  sensitivity	
  increases	
  (Maniscalco	
  &	
  Lau,	
  2012).	
  

Consequently,	
  such	
  metrics	
  are	
  said	
  to	
  measure	
  metacognitive	
  sensitivity	
  (Fleming	
  &	
  

Lau,	
  2014):	
  the	
  quality	
  of	
  confidence	
  ratings	
  without	
  regard	
  for	
  stimulus	
  sensitivity.	
  	
  

	
  

Recently,	
  Maniscalco	
  and	
  Lau	
  (2012)	
  developed	
  a	
  way	
  to	
  measure	
  metacognitive	
  

efficiency	
  (Fleming	
  &	
  Lau,	
  2014):	
  the	
  quality	
  of	
  confidence	
  ratings	
  normalized	
  by	
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stimulus	
  sensitivity.	
  Their	
  method	
  computes	
  an	
  index	
  (of	
  metacognitive	
  sensitivity)	
  

meta-­‐‑d’	
  that	
  can	
  then	
  be	
  divided	
  by	
  the	
  level	
  of	
  stimulus	
  sensitivity	
  d’.	
  The	
  resulting	
  

metric	
  is	
  called	
  Mratio	
  (Maniscalco	
  &	
  Lau,	
  2012).	
  (Note	
  that	
  meta-­‐‑d’	
  can	
  alternatively	
  

be	
  normalized	
  by	
  subtracting	
  d’;	
  the	
  resulting	
  metric	
  is	
  called	
  Mdiff.)	
  By	
  constructing	
  

a	
  measure	
  of	
  metacognitive	
  efficiency,	
  the	
  development	
  of	
  Mratio	
  allows	
  researchers	
  

to	
  investigate	
  metacognition	
  independent	
  of	
  stimulus	
  sensitivity.	
  

	
  

Armed	
  with	
  a	
  measure	
  of	
  metacognitive	
  efficiency,	
  we	
  explored	
  what	
  factors	
  

influence	
  metacognitive	
  efficiency	
  and	
  whether	
  it	
  is	
  possible	
  to	
  manipulate	
  it	
  

experimentally.	
  To	
  do	
  so,	
  we	
  turned	
  to	
  existing	
  models	
  of	
  confidence	
  generation.	
  

Most	
  current	
  models	
  assume	
  that	
  confidence	
  is	
  based	
  on	
  the	
  exact	
  same	
  information	
  

used	
  to	
  make	
  the	
  perceptual	
  decision	
  (Fetsch,	
  Kiani,	
  Newsome,	
  &	
  Shadlen,	
  2014;	
  

Hangya,	
  Sanders,	
  &	
  Kepecs,	
  2016;	
  Pouget,	
  Drugowitsch,	
  &	
  Kepecs,	
  2016;	
  Rahnev,	
  

Bahdo,	
  de	
  Lange,	
  &	
  Lau,	
  2012;	
  Sanders,	
  Hangya,	
  &	
  Kepecs,	
  2016).	
  These	
  models	
  

predict	
  that	
  while	
  higher	
  stimulus	
  sensitivity	
  leads	
  to	
  higher	
  metacognitive	
  

sensitivity,	
  it	
  results	
  in	
  constant	
  metacognitive	
  efficiency.	
  However,	
  several	
  newer	
  

models	
  have	
  included	
  an	
  extra	
  level	
  of	
  metacognitive	
  noise	
  that	
  corrupts	
  the	
  

confidence	
  but	
  not	
  the	
  decision	
  judgments	
  (Berg	
  &	
  Ma,	
  2016;	
  De	
  Martino,	
  Fleming,	
  

Garrett,	
  &	
  Dolan,	
  2013;	
  Jang,	
  Wallsten,	
  &	
  Huber,	
  2012;	
  Mueller	
  &	
  Weidemann,	
  2008;	
  

Rahnev,	
  Nee,	
  Riddle,	
  Larson,	
  &	
  D’Esposito,	
  2016).	
  We	
  refer	
  to	
  these	
  models	
  as	
  

“hierarchical”	
  models	
  of	
  confidence	
  (Maniscalco	
  &	
  Lau,	
  2016)	
  since	
  they	
  include	
  two	
  

separate	
  stages	
  of	
  noise	
  corruption:	
  the	
  perceptual	
  decision	
  is	
  corrupted	
  by	
  a	
  first-­‐‑

level	
  sensory	
  noise,	
  while	
  the	
  confidence	
  rating	
  is	
  additionally	
  corrupted	
  by	
  a	
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second-­‐‑level	
  metacognitive	
  noise	
  (Figure	
  1A).	
  Because	
  the	
  perceptual	
  decision	
  and	
  

confidence	
  are	
  based	
  on	
  different	
  information,	
  hierarchical	
  models	
  of	
  confidence	
  

allow	
  in	
  principle	
  for	
  dissociations	
  between	
  metacognition	
  and	
  stimulus	
  sensitivity	
  

resulting	
  in	
  non-­‐‑constant	
  metacognitive	
  efficiency.	
  Still,	
  there	
  has	
  been	
  no	
  

theoretical	
  or	
  empirical	
  work	
  on	
  how	
  such	
  dissociations	
  can	
  be	
  achieved.	
  	
  

	
  

Here	
  we	
  report	
  on	
  a	
  counter-­‐‑intuitive	
  prediction	
  of	
  hierarchical	
  models	
  of	
  

confidence,	
  namely	
  that	
  higher	
  sensory	
  noise	
  should	
  lower	
  stimulus	
  sensitivity	
  but	
  

increase	
  metacognitive	
  efficiency.	
  This	
  prediction	
  stems	
  from	
  the	
  differential	
  effect	
  

of	
  sensory	
  noise	
  on	
  stimulus	
  and	
  metacognitive	
  sensitivity.	
  Stimulus	
  sensitivity	
  is	
  

only	
  corrupted	
  by	
  sensory	
  noise,	
  while	
  metacognitive	
  sensitivity	
  is	
  corrupted	
  by	
  

both	
  sensory	
  and	
  metacognitive	
  noise.	
  Therefore,	
  increasing	
  sensory	
  noise	
  is	
  more	
  

detrimental	
  to	
  stimulus	
  sensitivity	
  than	
  metacognitive	
  sensitivity,	
  resulting	
  in	
  

higher	
  metacognitive	
  efficiency.	
  Mathematically,	
  stimulus	
  sensitivity	
  d’	
  is	
  the	
  ratio	
  of	
  

the	
  signal	
  and	
  sensory	
  noise,	
  while	
  meta-­‐‑d’	
  is	
  the	
  ratio	
  of	
  the	
  signal	
  and	
  a	
  

combination	
  of	
  sensory	
  and	
  metacognitive	
  noise.	
  Therefore,	
  increasing	
  sensory	
  

noise	
  levels	
  has	
  a	
  large	
  negative	
  effect	
  on	
  d’	
  but	
  a	
  smaller	
  negative	
  effect	
  on	
  meta-­‐‑d’,	
  

thus	
  leading	
  to	
  an	
  increase	
  in	
  their	
  ratio	
  (that	
  is,	
  Mratio;	
  Figure	
  1B;	
  for	
  a	
  complete	
  

proof,	
  see	
  Methods).	
  Importantly,	
  a	
  standard	
  model	
  based	
  on	
  signal	
  detection	
  theory	
  

(SDT),	
  which	
  lacks	
  a	
  separate	
  metacognitive	
  noise	
  stage,	
  predicts	
  that	
  metacognitive	
  

efficiency	
  remains	
  constant	
  for	
  different	
  sensory	
  noise	
  levels	
  (Figure	
  1C).	
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Figure	
  1:	
  Hierarchical	
  model	
  of	
  confidence.	
  A.	
  Generative	
  model	
  of	
  confidence	
  
generation.	
  At	
  the	
  stimulus	
  level,	
  two	
  stimulus	
  categories	
  S1	
  and	
  S2	
  (e.g.,	
  Gabor	
  patches	
  
of	
  counterclockwise	
  and	
  clockwise	
  orientation)	
  are	
  presented.	
  The	
  stimuli	
  are	
  perfectly	
  
distinguishable.	
  However,	
  the	
  internal	
  representation	
  at	
  the	
  decision	
  level,	
  rsens,	
  is	
  
corrupted	
  by	
  Gaussian	
  noise	
  σsens	
  and	
  thus	
  the	
  two	
  stimulus	
  categories	
  are	
  not	
  
perfectly	
  distinguishable	
  at	
  the	
  time	
  of	
  the	
  decision.	
  The	
  confidence	
  judgment	
  is	
  then	
  
made	
  at	
  the	
  meta	
  level	
  based	
  on	
  an	
  internal	
  response	
  rmeta	
  that	
  is	
  derived	
  from	
  rsens	
  but	
  
is	
  corrupted	
  by	
  additional	
  noise	
  σmeta.	
  B.	
  Depiction	
  of	
  the	
  model	
  predictions.	
  Seven	
  
simulations	
  with	
  a	
  gradually	
  decreasing	
  level	
  of	
  sensory	
  noise,	
  σsens,	
  show	
  a	
  gradual	
  
increase	
  in	
  sensory	
  sensitivity	
  d’	
  and	
  confidence	
  ratings	
  (given	
  on	
  a	
  2-­‐‑point	
  scale	
  such	
  
that	
  high	
  confidence	
  was	
  provided	
  when	
  probability	
  of	
  being	
  correct	
  exceeded	
  70%),	
  
but	
  a	
  decrease	
  in	
  metacognitive	
  efficiency	
  Mratio.	
  C.	
  Depiction	
  of	
  predictions	
  made	
  by	
  a	
  
standard	
  model	
  based	
  on	
  signal	
  detection	
  theory	
  (SDT).	
  The	
  SDT-­‐‑based	
  model	
  is	
  
equivalent	
  to	
  the	
  hierarchical	
  model	
  but	
  lacks	
  a	
  metacognitive	
  noise	
  stage.	
  The	
  same	
  
decrease	
  in	
  sensory	
  noise	
  leads	
  to	
  similar	
  increases	
  in	
  sensory	
  sensitivity	
  and	
  
confidence,	
  but	
  no	
  change	
  in	
  metacognitive	
  efficiency.	
  
	
  

We	
  empirically	
  tested	
  and	
  confirmed	
  the	
  hierarchical	
  model’s	
  prediction	
  that	
  higher	
  

sensory	
  noise	
  leads	
  to	
  higher	
  metacognitive	
  efficiency.	
  In	
  two	
  experiments,	
  we	
  used	
  

learning	
  to	
  decrease	
  the	
  level	
  of	
  sensory	
  noise	
  and	
  observed	
  a	
  corresponding	
  

decrease	
  in	
  metacognitive	
  efficiency.	
  In	
  a	
  third	
  experiment,	
  we	
  experimentally	
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increased	
  the	
  level	
  of	
  sensory	
  noise	
  and	
  found	
  a	
  corresponding	
  increase	
  in	
  

metacognitive	
  efficiency.	
  These	
  results	
  demonstrate	
  that	
  metacognitive	
  efficiency	
  

depends	
  on	
  low-­‐‑level	
  stimulus	
  characteristics	
  and	
  provide	
  strong	
  support	
  for	
  the	
  

existence	
  of	
  metacognitive	
  noise	
  assumed	
  by	
  hierarchical	
  models	
  of	
  confidence.	
  

	
  

	
  

Results	
  

Experiment	
  1:	
  Perceptual	
  learning	
  decreases	
  metacognitive	
  efficiency	
  

To	
  test	
  the	
  counterintuitive	
  prediction	
  that	
  decreasing	
  sensory	
  noise	
  leads	
  to	
  lower	
  

metacognitive	
  efficiency,	
  we	
  employed	
  a	
  perceptual	
  learning	
  paradigm.	
  Twelve	
  

subjects	
  participated	
  in	
  a	
  7-­‐‑day	
  training	
  on	
  a	
  visual	
  task.	
  Subjects	
  performed	
  a	
  2-­‐‑

interval	
  forced	
  choice	
  (2IFC)	
  orientation	
  detection	
  task	
  in	
  which	
  they	
  indicated	
  the	
  

interval	
  (first	
  or	
  second)	
  that	
  contained	
  a	
  Gabor	
  patch	
  (Figure	
  2A).	
  Stimulus	
  

intensity	
  was	
  adjusted	
  using	
  a	
  2-­‐‑down-­‐‑1-­‐‑up	
  staircase	
  procedure	
  that	
  allowed	
  us	
  to	
  

determine	
  subjects’	
  intensity	
  threshold.	
  

	
  

Consistent	
  with	
  a	
  decrease	
  in	
  sensory	
  noise,	
  training	
  gradually	
  decreased	
  subjects’	
  

intensity	
  threshold	
  (t11	
  =	
  -­‐‑5.28,	
  p	
  =	
  .0003;	
  one-­‐‑sample	
  t-­‐‑test	
  on	
  the	
  slope	
  of	
  change;	
  

Figure	
  2B).	
  Next,	
  we	
  selected	
  the	
  same	
  range	
  of	
  intensity	
  values	
  across	
  all	
  seven	
  

days	
  of	
  training	
  (we	
  used	
  intensity	
  values	
  in	
  the	
  35-­‐‑65	
  percentile	
  range;	
  using	
  larger	
  

percentile	
  ranges	
  produced	
  similar	
  results;	
  see	
  Supplementary	
  Results).	
  When	
  

considering	
  only	
  this	
  range	
  of	
  intensity	
  values,	
  we	
  observed	
  that	
  training	
  increased	
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stimulus	
  sensitivity	
  d’	
  (t11	
  =	
  5.2,	
  p	
  =	
  .0003;	
  Figure	
  2B)	
  as	
  well	
  as	
  average	
  confidence	
  

(t11	
  =	
  2.43,	
  p	
  =	
  .034;	
  Figure	
  2B).	
  	
  

	
  

	
  

Figure	
  2:	
  Visual	
  training	
  decreases	
  metacognitive	
  efficiency.	
  	
  A.	
  Subjects	
  
performed	
  a	
  2-­‐‑interval	
  forced	
  choice	
  orientation	
  detection	
  task.	
  Two	
  stimuli	
  –	
  a	
  target	
  
consisting	
  of	
  a	
  noisy	
  Gabor	
  patch	
  and	
  a	
  non-­‐‑target	
  consisting	
  of	
  pure	
  noise	
  –	
  were	
  
presented	
  in	
  a	
  temporal	
  sequence.	
  Subjects	
  indicated	
  the	
  interval	
  in	
  which	
  the	
  target	
  
appeared	
  and	
  provided	
  a	
  confidence	
  rating	
  on	
  a	
  4-­‐‑point	
  scale.	
  B.	
  Results	
  of	
  the	
  seven	
  
days	
  of	
  training	
  indicate	
  that	
  intensity	
  threshold	
  gradually	
  decreased,	
  while	
  stimulus	
  
sensitivity	
  and	
  confidence	
  ratings	
  increased.	
  Critically,	
  as	
  predicted	
  by	
  our	
  model	
  
(Figure	
  1B),	
  training	
  decreased	
  metacognitive	
  efficiency.	
  C-­‐‑D.	
  The	
  strength	
  of	
  the	
  Mratio	
  
decrease	
  on	
  a	
  subject-­‐‑by-­‐‑subject	
  basis	
  depended	
  on	
  the	
  decrease	
  in	
  intensity	
  threshold	
  
(C)	
  and	
  increase	
  in	
  stimulus	
  sensitivity	
  (D).	
  E.	
  Increased	
  stimulus	
  sensitivity	
  does	
  not	
  
automatically	
  result	
  in	
  a	
  Mratio	
  decrease.	
  Comparing	
  low	
  and	
  high	
  intensity	
  stimuli	
  
shows	
  a	
  large	
  difference	
  in	
  stimulus	
  sensitivity	
  d’	
  but	
  no	
  difference	
  in	
  Mratio.	
  Error	
  bars	
  
indicate	
  S.E.M.	
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Critically,	
  as	
  predicted	
  by	
  our	
  hierarchical	
  model	
  of	
  confidence,	
  the	
  decreased	
  

sensory	
  noise	
  also	
  resulted	
  in	
  decreased	
  metacognitive	
  efficiency	
  Mratio	
  (t11	
  =	
  -­‐‑3.06,	
  p	
  

=	
  .011;	
  Figure	
  2B).	
  The	
  same	
  effect	
  was	
  also	
  present	
  for	
  the	
  alternative	
  measure	
  of	
  

metacognitive	
  efficiency	
  Mdiff	
  (=	
  meta-­‐‑d’	
  –	
  d’;	
  t11	
  =	
  -­‐‑2.99,	
  p	
  =	
  .012).	
  Note	
  that	
  while	
  

this	
  effect	
  was	
  predicted	
  by	
  our	
  hierarchical	
  model	
  (Figure	
  1B),	
  it	
  cannot	
  be	
  

accounted	
  for	
  by	
  a	
  standard	
  model	
  with	
  no	
  metacognitive	
  noise	
  (Figure	
  1C).	
  	
  

	
  

Further,	
  we	
  examined	
  whether	
  the	
  Mratio	
  decrease	
  was	
  indeed	
  due	
  to	
  the	
  decrease	
  in	
  

sensory	
  noise	
  or	
  to	
  some	
  nonspecific	
  effect	
  of	
  training.	
  We	
  found	
  that	
  subjects	
  who	
  

showed	
  a	
  larger	
  decrease	
  in	
  Mratio	
  also	
  exhibited	
  a	
  larger	
  decrease	
  in	
  intensity	
  

threshold	
  (r	
  =	
  .62,	
  p	
  =	
  .03;	
  Figure	
  2C)	
  and	
  a	
  larger	
  increase	
  in	
  d’	
  values	
  (r	
  =	
  -­‐‑.74,	
  p	
  

=	
  .005;	
  Figure	
  2D),	
  thus	
  indicating	
  that	
  the	
  Mratio	
  decrease	
  is	
  directly	
  related	
  to	
  the	
  

change	
  in	
  performance	
  on	
  the	
  perceptual	
  task.	
  

	
  

Further,	
  one	
  may	
  worry	
  that	
  Mratio	
  has	
  an	
  intrinsic	
  negative	
  relationship	
  with	
  

stimulus	
  sensitivity	
  d’	
  independent	
  of	
  sensory	
  noise.	
  To	
  check	
  for	
  this	
  possibility,	
  we	
  

computed	
  d’	
  and	
  Mratio	
  across	
  all	
  seven	
  sessions	
  for	
  the	
  lower	
  vs.	
  upper	
  half	
  of	
  

intensities	
  used.	
  We	
  found	
  that	
  higher	
  intensities	
  led	
  to	
  a	
  significantly	
  higher	
  d’	
  

(average	
  d’	
  =	
  2.85	
  and	
  0.82	
  for	
  the	
  upper	
  and	
  lower	
  intensity	
  halves,	
  respectively;	
  t11	
  

=	
  46.23,	
  p	
  =	
  5.9*10-­‐‑14)	
  but	
  did	
  not	
  affect	
  Mratio	
  (average	
  Mratio	
  =	
  .98	
  vs.	
  1.02	
  for	
  the	
  

upper	
  and	
  lower	
  intensity	
  halves,	
  respectively;	
  t11	
  =	
  -­‐‑.38,	
  p	
  =	
  .71;	
  Figure	
  2E).	
  Thus,	
  

the	
  training-­‐‑induced	
  decrease	
  in	
  Mratio	
  cannot	
  be	
  explained	
  as	
  trivially	
  arising	
  from	
  

the	
  corresponding	
  d’	
  increase.	
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Experiment	
  2:	
  Brief	
  learning	
  leads	
  to	
  lower	
  across-­‐‑subject	
  metacognitive	
  efficiency	
  

Experiment	
  1	
  provided	
  strong	
  support	
  for	
  a	
  causal	
  link	
  between	
  decreased	
  sensory	
  

noise	
  and	
  decreased	
  metacognitive	
  efficiency.	
  It	
  employed	
  a	
  standard	
  perceptual	
  

learning	
  design	
  with	
  extensive	
  training	
  over	
  a	
  number	
  of	
  days.	
  In	
  Experiment	
  2	
  we	
  

tested	
  whether	
  much	
  shorter	
  learning	
  period	
  can	
  also	
  lead	
  to	
  decreased	
  

metacognitive	
  efficiency.	
  To	
  this	
  end,	
  we	
  recruited	
  a	
  large	
  number	
  of	
  subjects	
  (N	
  =	
  

178)	
  to	
  complete	
  97	
  trials	
  of	
  two	
  different	
  perceptual	
  tasks.	
  Critically,	
  we	
  inverted	
  

our	
  analyses:	
  rather	
  than	
  combining	
  many	
  trials	
  for	
  each	
  subject	
  (the	
  standard	
  way	
  

of	
  analyzing	
  psychophysics	
  data),	
  we	
  combined	
  the	
  data	
  across	
  subjects	
  for	
  a	
  given	
  

trial	
  (Figure	
  3A).	
  This	
  approach	
  allowed	
  us	
  to	
  track	
  the	
  evolution	
  of	
  across-­‐‑subject	
  

performance	
  in	
  terms	
  of	
  both	
  stimulus	
  sensitivity	
  and	
  metacognitive	
  efficiency.	
  

Subjects	
  engaged	
  in	
  coarse	
  discrimination	
  of	
  low-­‐‑contrast	
  Gabor	
  patches	
  (Figure	
  

3B)	
  and	
  fine	
  discrimination	
  on	
  high-­‐‑contrast	
  Gabor	
  patches	
  (Figure	
  3C).	
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Figure	
  3:	
  Visual	
  training	
  decreases	
  across-­‐‑subject	
  metacognitive	
  efficiency.	
  A.	
  
Depiction	
  of	
  standard	
  subject-­‐‑based	
  analysis	
  techniques	
  (which	
  depend	
  on	
  considering	
  
all	
  data	
  for	
  a	
  given	
  subject)	
  and	
  trial-­‐‑based	
  analysis	
  (which	
  depends	
  on	
  considering	
  all	
  
data	
  for	
  a	
  given	
  trial	
  number).	
  We	
  investigated	
  the	
  evolution	
  of	
  the	
  trial-­‐‑based	
  d’	
  and	
  
Mratio.	
  B-­‐‑C.	
  Depictions	
  of	
  the	
  two	
  tasks.	
  Subjects	
  indicated	
  the	
  tilt	
  (clockwise	
  or	
  
counterclockwise	
  from	
  vertical)	
  of	
  a	
  Gabor	
  patch	
  and	
  provided	
  a	
  confidence	
  rating	
  on	
  
a	
  4-­‐‑point	
  scale.	
  In	
  the	
  coarse	
  discrimination	
  task	
  (B),	
  the	
  stimulus	
  was	
  a	
  Gabor	
  patch	
  
of	
  low	
  contrast	
  but	
  large	
  tilt	
  (+/-­‐‑45°).	
  In	
  the	
  fine	
  discrimination	
  task	
  (C),	
  the	
  stimulus	
  
was	
  a	
  Gabor	
  patch	
  of	
  high	
  contrast	
  but	
  small	
  tilt.	
  D-­‐‑E.	
  Practice	
  resulted	
  in	
  a	
  gradual	
  
increase	
  in	
  stimulus	
  sensitivity	
  d’	
  but	
  a	
  decrease	
  in	
  Mratio.	
  Both	
  of	
  these	
  effects	
  were	
  
larger	
  for	
  the	
  coarse	
  (D)	
  compared	
  to	
  the	
  fine	
  (E)	
  discrimination	
  task.	
  The	
  timecourses	
  
are	
  smoothed	
  with	
  a	
  11-­‐‑point	
  moving	
  window	
  for	
  display	
  purposes.	
  
	
  

As	
  expected,	
  stimulus	
  sensitivity	
  d’	
  increased	
  over	
  the	
  course	
  of	
  the	
  97	
  trials	
  for	
  

both	
  of	
  our	
  tasks	
  (coarse	
  discrimination	
  task:	
  t95	
  =	
  5.26,	
  p	
  =	
  8.8*10-­‐‑7;	
  fine	
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discrimination	
  task:	
  t95	
  =	
  2.34,	
  p	
  =	
  .02;	
  t-­‐‑tests	
  on	
  the	
  slope	
  parameter	
  in	
  a	
  linear	
  

regression;	
  Figure	
  3D-­‐‑E).	
  Critically,	
  as	
  in	
  Experiment	
  1,	
  we	
  observed	
  a	
  

corresponding	
  decrease	
  in	
  Mratio	
  (coarse	
  discrimination	
  task:	
  t95	
  =	
  -­‐‑6.28,	
  p	
  =	
  9.9*10-­‐‑9;	
  

fine	
  discrimination	
  task:	
  t95	
  =	
  -­‐‑2.31,	
  p	
  =	
  .02;	
  t-­‐‑tests	
  on	
  the	
  slope	
  parameter	
  in	
  a	
  linear	
  

regression;	
  Figure	
  3D-­‐‑E).	
  	
  

	
  

As	
  can	
  be	
  seen	
  in	
  Figures	
  3D-­‐‑E,	
  the	
  learning	
  rate	
  was	
  different	
  for	
  the	
  two	
  tasks.	
  

Indeed,	
  the	
  d’	
  increase	
  was	
  steeper	
  for	
  the	
  coarse	
  discrimination	
  than	
  for	
  the	
  fine	
  

discrimination	
  task	
  (t190	
  =	
  2.53,	
  p	
  =	
  .01).	
  Importantly,	
  we	
  observed	
  a	
  corresponding	
  

effect	
  in	
  Mratio,	
  which	
  showed	
  a	
  steeper	
  decrease	
  for	
  the	
  coarse	
  than	
  the	
  fine	
  

discrimination	
  task	
  (t190	
  =	
  -­‐‑2.85,	
  p	
  =	
  .005),	
  suggesting	
  a	
  direct	
  relationship	
  between	
  

the	
  amount	
  of	
  learning	
  and	
  the	
  decrease	
  in	
  metacognitive	
  efficiency.	
  All	
  effects	
  

pertaining	
  to	
  Mratio	
  remained	
  significant	
  with	
  the	
  alternative	
  measure	
  of	
  

metacognitive	
  efficiency	
  Mdiff.	
  

	
  

Experiment	
  3:	
  Experimentally	
  increasing	
  sensory	
  noise	
  leads	
  to	
  higher	
  

metacognitive	
  efficiency	
  

The	
  results	
  of	
  Experiments	
  1	
  and	
  2	
  lend	
  strong	
  support	
  for	
  the	
  notion	
  that	
  training-­‐‑

induced	
  decrease	
  in	
  sensory	
  noise	
  leads	
  to	
  a	
  corresponding	
  decrease	
  in	
  

metacognitive	
  efficiency.	
  Nevertheless,	
  it	
  remains	
  possible	
  that	
  the	
  results	
  of	
  both	
  

experiments	
  depended	
  on	
  the	
  use	
  of	
  training	
  and	
  that	
  other	
  manipulations	
  of	
  

sensory	
  noise	
  would	
  not	
  produce	
  equivalent	
  results.	
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To	
  investigate	
  the	
  influence	
  of	
  sensory	
  noise	
  independent	
  of	
  visual	
  training,	
  in	
  

Experiment	
  3	
  we	
  manipulated	
  the	
  level	
  of	
  sensory	
  noise	
  directly.	
  To	
  do	
  so,	
  we	
  used	
  

three	
  levels	
  of	
  contrast	
  and	
  combined	
  them	
  in	
  different	
  ways	
  to	
  construct	
  four	
  

conditions	
  that	
  vary	
  on	
  the	
  amount	
  of	
  trial-­‐‑to-­‐‑trial	
  variability	
  in	
  the	
  perceptual	
  

signal.	
  Twelve	
  subjects	
  performed	
  a	
  Gabor	
  patch	
  orientation	
  discrimination	
  task	
  

(Figure	
  4A)	
  and	
  completed	
  4,200	
  trials	
  over	
  the	
  course	
  of	
  three	
  testing	
  days.	
  The	
  

Gabor	
  patches	
  were	
  presented	
  with	
  three	
  different	
  levels	
  of	
  contrast.	
  By	
  combining	
  

more	
  and	
  more	
  dissimilar	
  contrasts	
  in	
  the	
  same	
  analysis,	
  we	
  constructed	
  four	
  

different	
  levels	
  of	
  increasing	
  across-­‐‑trial	
  stimulus	
  variability	
  (Figure	
  4B).	
  

	
  

	
  

Figure	
  4:	
  Experimentally	
  increasing	
  sensory	
  noise	
  increases	
  metacognitive	
  
efficiency.	
  A.	
  Subjects	
  indicated	
  the	
  tilt	
  (clockwise	
  or	
  counterclockwise	
  from	
  vertical)	
  
of	
  a	
  noisy	
  Gabor	
  patch	
  and	
  provided	
  a	
  confidence	
  rating	
  (on	
  a	
  2-­‐‑point	
  scale)	
  using	
  a	
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single	
  button	
  press.	
  B.	
  Analysis	
  logic.	
  Three	
  contrast	
  levels	
  were	
  interleaved	
  during	
  the	
  
experiment.	
  Different	
  combinations	
  of	
  these	
  contrasts	
  resulted	
  in	
  different	
  levels	
  of	
  
stimulus	
  variability.	
  At	
  the	
  lowest	
  level	
  of	
  variability	
  (Level	
  1),	
  each	
  contrast	
  was	
  
analyzed	
  separately	
  and	
  the	
  resulting	
  d’	
  and	
  Mratio	
  values	
  were	
  averaged.	
  At	
  the	
  next	
  
variability	
  levels,	
  increasingly	
  disparate	
  contrasts	
  were	
  combined:	
  nearby	
  contrast	
  
pairs	
  in	
  Level	
  2,	
  all	
  contrast	
  levels	
  in	
  Level	
  3,	
  and	
  the	
  far-­‐‑contrasts	
  pair	
  in	
  Level	
  4.	
  The	
  
increased	
  variability	
  in	
  stimulus	
  contrast	
  induced	
  increased	
  sensory	
  variability.	
  C.	
  The	
  
four	
  levels	
  of	
  contrast	
  variability	
  were	
  associated	
  with	
  a	
  decreasing	
  stimulus	
  
sensitivity	
  d’.	
  This	
  effect	
  was	
  well	
  captured	
  by	
  both	
  our	
  hierarchical	
  model	
  and	
  a	
  
standard	
  SDT-­‐‑based	
  model.	
  D.	
  Higher	
  stimulus	
  variability	
  led	
  to	
  higher	
  metacognitive	
  
efficiency	
  Mratio.	
  This	
  effect	
  was	
  captured	
  by	
  our	
  hierarchical	
  model	
  but	
  not	
  by	
  the	
  
standard	
  SDT-­‐‑based	
  model.	
  Note	
  that	
  the	
  SDT	
  model	
  predicts	
  both	
  higher	
  Mratio	
  values	
  
and	
  a	
  shallower	
  slope	
  of	
  Mratio	
  increase.	
  Error	
  bars	
  indicate	
  S.E.M.	
  
	
  

	
  

We	
  found	
  that	
  higher	
  levels	
  of	
  stimulus	
  variability	
  led	
  to	
  a	
  decreased	
  d’	
  (t11	
  =	
  4.53,	
  p	
  

=	
  .0009;	
  Figure	
  4C).	
  This	
  result	
  may	
  appear	
  surprising	
  since	
  the	
  different	
  conditions	
  

consisted	
  largely	
  of	
  the	
  same	
  actual	
  trials	
  that	
  were	
  simply	
  combined	
  in	
  different	
  

ways.	
  The	
  robust	
  but	
  relatively	
  modest	
  decrease	
  in	
  d’	
  can	
  be	
  explained	
  by	
  the	
  non-­‐‑

linear	
  relationship	
  between	
  accuracy	
  and	
  d’	
  (a	
  detailed	
  explanation	
  can	
  be	
  found	
  in	
  

Supplementary	
  Figure	
  1).	
  Indeed,	
  both	
  our	
  hierarchical	
  and	
  a	
  SDT-­‐‑based	
  model	
  

(see	
  Figure	
  1C)	
  could	
  capture	
  this	
  decrease	
  (Figure	
  4C).	
  

	
  

Critically,	
  higher	
  levels	
  of	
  across-­‐‑trial	
  stimulus	
  variability	
  led	
  to	
  an	
  increased	
  Mratio	
  

(t11	
  =	
  6.21,	
  p	
  =	
  .00007;	
  Figure	
  4D;	
  same	
  effect	
  was	
  observed	
  for	
  Mdiff	
  too,	
  t11	
  =	
  5.85,	
  p	
  

=	
  .0001).	
  This	
  effect	
  was	
  quantitatively	
  accounted	
  for	
  by	
  our	
  hierarchical	
  model	
  but	
  

not	
  by	
  the	
  standard	
  SDT	
  model	
  (Figure	
  4D).	
  Most	
  saliently,	
  the	
  SDT	
  model	
  

predicted	
  overall	
  higher	
  Mratio	
  values	
  (average	
  difference	
  =	
  0.22,	
  t11	
  =	
  6.06,	
  p	
  

=	
  .00008).	
  Note	
  that	
  even	
  without	
  metacognitive	
  noise,	
  the	
  SDT	
  model	
  predicts	
  

increasing	
  Mratio	
  values	
  for	
  higher	
  levels	
  of	
  stimulus	
  variability.	
  The	
  reason	
  is	
  that	
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combining	
  disparate	
  contrast	
  values	
  results	
  in	
  violations	
  of	
  the	
  Gaussian	
  variability	
  

assumption	
  and	
  this	
  violation	
  is	
  greater	
  for	
  the	
  higher	
  variability	
  levels.	
  

Nevertheless,	
  the	
  increase	
  of	
  Mratio	
  that	
  can	
  be	
  attributed	
  to	
  violations	
  of	
  the	
  

Gaussian	
  assumption	
  is	
  smaller	
  than	
  the	
  increase	
  in	
  the	
  data.	
  Indeed,	
  the	
  SDT	
  model	
  

predicted	
  a	
  shallower	
  slope	
  of	
  increasing	
  Mratio	
  values	
  (.026	
  in	
  model	
  vs.	
  .048	
  in	
  data,	
  

t11	
  =	
  4.84,	
  p	
  =	
  .0005),	
  indicating	
  that	
  metacognitive	
  noise	
  is	
  needed	
  to	
  explain	
  both	
  

the	
  lower	
  Mratio	
  values	
  and	
  the	
  steep	
  Mratio	
  increase	
  caused	
  by	
  increased	
  stimulus	
  

variability.	
  

	
  

Since	
  the	
  hierarchical	
  model	
  was	
  more	
  complex	
  than	
  the	
  SDT	
  one	
  (it	
  had	
  one	
  more	
  

free	
  parameter),	
  we	
  compared	
  the	
  Akaike	
  Information	
  Criterion	
  (AIC)	
  for	
  each	
  

model’s	
  fit.	
  AIC	
  measures	
  the	
  quality	
  of	
  the	
  fit	
  while	
  punishing	
  for	
  the	
  number	
  of	
  

parameters.	
  The	
  hierarchical	
  model	
  still	
  significantly	
  outperformed	
  the	
  SDT	
  model	
  

(average	
  AIC	
  difference	
  across	
  the	
  12	
  subjects	
  =	
  23.48	
  signifying	
  that	
  the	
  

hierarchical	
  model	
  is	
  1.3*105	
  more	
  likely	
  than	
  the	
  SDT	
  model).	
  

	
  

Importantly,	
  as	
  in	
  Experiment	
  1,	
  we	
  confirmed	
  that	
  simply	
  increasing	
  d’	
  does	
  not	
  

necessarily	
  lead	
  to	
  a	
  decrease	
  in	
  Mratio.	
  To	
  demonstrate	
  this	
  point,	
  we	
  analyzed	
  each	
  

level	
  of	
  contrast	
  separately	
  and	
  found	
  that	
  higher	
  contrast	
  levels	
  led	
  to	
  higher	
  d’	
  

(𝑑"#$%&'(%)* = 1.06,	
  𝑑"#$%&'(%0* = 1.93,	
  𝑑"#$%&'(%)* = 3.21;	
  slope	
  was	
  significantly	
  

positive,	
  t11	
  =	
  12.9,	
  p	
  =	
  5.5*10-­‐‑8)	
  but	
  without	
  decreasing	
  significantly	
  Mratio	
  

(𝑀&'%5#6789:;<9= = .87,	
  𝑀&'%5#6789:;<9@ = .84,	
  𝑀&'%5#6789:;<9B = .81;	
  slope	
  was	
  not	
  

different	
  from	
  0,	
  t11	
  =	
  -­‐‑1.04,	
  p	
  =	
  .32).	
  Further,	
  the	
  d’	
  increase	
  from	
  the	
  lowest	
  to	
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highest	
  contrast	
  (Δd’	
  =	
  2.16)	
  was	
  much	
  higher	
  than	
  between	
  the	
  lowest	
  and	
  highest	
  

variability	
  level	
  in	
  Figure	
  4C	
  (Δd’	
  =	
  .25;	
  t11	
  =	
  16.49,	
  p	
  =	
  4.2*10-­‐‑9),	
  indicating	
  that	
  the	
  

effects	
  in	
  Figure	
  4D	
  cannot	
  be	
  simply	
  due	
  to	
  the	
  difference	
  in	
  d’.	
  

	
  

Having	
  confirmed	
  that	
  increasing	
  external	
  stimulus	
  variability	
  in	
  Experiment	
  3	
  

resulted	
  in	
  increased	
  Mratio,	
  we	
  looked	
  for	
  a	
  similar	
  effect	
  in	
  Experiment	
  1.	
  We	
  took	
  

advantage	
  of	
  the	
  fact	
  that	
  Experiment	
  1	
  included	
  a	
  range	
  of	
  intensity	
  levels	
  and	
  

examined	
  the	
  effect	
  of	
  selecting	
  increasingly	
  larger	
  ranges	
  of	
  intensity	
  values.	
  We	
  

created	
  four	
  ranges	
  (35-­‐‑65,	
  25-­‐‑75,	
  15-­‐‑85,	
  and	
  5-­‐‑95	
  percentile	
  of	
  all	
  intensities	
  used)	
  

and	
  found	
  that	
  larger	
  ranges	
  did	
  not	
  change	
  d’	
  (t11	
  =	
  1.53,	
  p	
  =	
  .15)	
  but	
  led	
  to	
  

significantly	
  higher	
  Mratio	
  values	
  (t11	
  =	
  5.004,	
  p	
  =	
  .0004;	
  Supplementary	
  Figure	
  2),	
  

thus	
  mirroring	
  the	
  effects	
  from	
  Experiment	
  3.	
  

	
  

Discussion	
  

We	
  found	
  that	
  increasing	
  the	
  levels	
  of	
  sensory	
  noise	
  increases	
  metacognitive	
  

efficiency.	
  This	
  effect	
  was	
  robust	
  across	
  experiments	
  and	
  manipulations.	
  The	
  

increase	
  of	
  metacognitive	
  efficiency	
  with	
  higher	
  sensory	
  noise	
  was	
  predicted	
  by	
  our	
  

hierarchical	
  model	
  of	
  confidence	
  generation	
  that	
  posits	
  a	
  stepwise	
  organization	
  of	
  

information	
  flow	
  for	
  perceptual	
  decisions	
  and	
  confidence.	
  Conversely,	
  a	
  standard	
  

model	
  based	
  on	
  signal	
  detection	
  theory	
  and	
  lacking	
  independent	
  metacognitive	
  

noise	
  could	
  not	
  explain	
  our	
  results.	
  These	
  findings	
  demonstrate	
  the	
  possibility	
  of	
  

directly	
  manipulating	
  subjects’	
  metacognitive	
  efficiency	
  and	
  provide	
  strong	
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evidence	
  for	
  the	
  notion	
  that	
  confidence	
  ratings	
  are	
  based	
  on	
  different	
  information	
  

than	
  perceptual	
  decisions.	
  

	
  

A	
  hierarchical	
  model	
  of	
  confidence	
  generation	
  motivated	
  our	
  studies	
  and	
  provided	
  

excellent	
  fit	
  to	
  the	
  data.	
  The	
  model	
  assumes	
  that	
  the	
  information	
  available	
  for	
  

metacognition	
  is	
  corrupted	
  by	
  extra	
  noise	
  compared	
  to	
  the	
  information	
  available	
  for	
  

the	
  perceptual	
  decision.	
  Several	
  previous	
  papers	
  have	
  proposed	
  similar	
  architecture	
  

(Berg	
  &	
  Ma,	
  2016;	
  De	
  Martino	
  et	
  al.,	
  2013;	
  Jang	
  et	
  al.,	
  2012;	
  Maniscalco	
  &	
  Lau,	
  2016;	
  

Mueller	
  &	
  Weidemann,	
  2008;	
  Rahnev	
  et	
  al.,	
  2016).	
  Here	
  we	
  tested	
  a	
  strong,	
  and	
  

previously	
  unrecognized,	
  prediction	
  of	
  hierarchical	
  models	
  on	
  the	
  relationship	
  

between	
  sensory	
  noise	
  and	
  metacognitive	
  efficiency.	
  While	
  previous	
  work	
  included	
  

metacognitive	
  noise	
  purely	
  to	
  improve	
  model	
  fit,	
  we	
  tested	
  a	
  direct	
  prediction	
  of	
  

hierarchical	
  models.	
  Therefore,	
  our	
  results	
  provide	
  some	
  of	
  the	
  strongest	
  evidence	
  

to	
  date	
  for	
  the	
  existence	
  of	
  independent	
  metacognitive	
  noise.	
  

	
  

An	
  important	
  question	
  concerns	
  how	
  this	
  metacognitive	
  noise	
  can	
  be	
  manipulated	
  

directly.	
  Previous	
  research	
  has	
  demonstrated	
  that	
  metacognitive	
  efficiency	
  is	
  

affected	
  by	
  fatigue	
  (Maniscalco,	
  McCurdy,	
  Odegaard,	
  &	
  Lau,	
  2017),	
  working	
  memory	
  

demands	
  (Maniscalco	
  &	
  Lau,	
  2015),	
  and	
  can	
  be	
  enhanced	
  pharmacologically	
  via	
  

noradrenaline	
  blockade	
  (Hauser	
  et	
  al.,	
  2017).	
  All	
  of	
  these	
  previous	
  findings	
  rely	
  on	
  

taxing	
  subjects’	
  “resources”	
  for	
  metacognition.	
  Our	
  findings	
  demonstrate	
  that	
  

hierarchical	
  models	
  of	
  confidence	
  can	
  also	
  be	
  used	
  to	
  predict	
  how	
  metacognitive	
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efficiency	
  depends	
  on	
  low-­‐‑level	
  stimulus	
  characteristics	
  independent	
  of	
  high-­‐‑level	
  

resources.	
  

	
  

We	
  modeled	
  the	
  effects	
  of	
  visual	
  perceptual	
  learning	
  as	
  a	
  simple	
  decrease	
  in	
  sensory	
  

noise.	
  There	
  is	
  indeed	
  ample	
  evidence	
  that	
  perceptual	
  learning	
  leads	
  to	
  noise	
  

attenuation	
  (B.	
  A.	
  Dosher	
  &	
  Lu,	
  1998,	
  1999;	
  B.	
  Dosher	
  &	
  Lu,	
  2017;	
  Petrov,	
  Dosher,	
  &	
  

Lu,	
  2005;	
  Raiguel,	
  Vogels,	
  Mysore,	
  &	
  Orban,	
  2006).	
  However,	
  at	
  the	
  same	
  time,	
  

perceptual	
  learning	
  may	
  also	
  increase	
  the	
  signal	
  (Solovey,	
  Shalom,	
  Pérez-­‐‑Schuster,	
  

&	
  Sigman,	
  2016),	
  sharpen	
  the	
  perceptual	
  template	
  used	
  to	
  process	
  the	
  stimulus	
  (Li,	
  

Levi,	
  &	
  Klein,	
  2004),	
  improve	
  probabilistic	
  inference	
  (Bejjanki,	
  Beck,	
  Lu,	
  &	
  Pouget,	
  

2011),	
  etc.	
  (for	
  reviews,	
  see	
  Dosher	
  and	
  Lu,	
  2017;	
  Lu	
  et	
  al.,	
  2011;	
  Watanabe	
  and	
  

Sasaki,	
  2015).	
  Perceptual	
  learning	
  likely	
  has	
  many	
  consequences	
  and	
  our	
  

experiments	
  were	
  not	
  designed	
  to	
  distinguish	
  or	
  weight	
  the	
  importance	
  of	
  each	
  of	
  

the	
  above	
  effects.	
  Rather,	
  perceptual	
  learning	
  was	
  used	
  as	
  a	
  tool	
  that	
  allowed	
  us	
  to	
  

decrease	
  sensory	
  noise	
  in	
  our	
  model.	
  Several	
  previous	
  studies	
  have	
  combined	
  

confidence	
  ratings	
  and	
  perceptual	
  learning	
  (Guggenmos,	
  Wilbertz,	
  Hebart,	
  &	
  Sterzer,	
  

2016;	
  Schwiedrzik,	
  Singer,	
  &	
  Melloni,	
  2011;	
  Solovey	
  et	
  al.,	
  2016;	
  Zizlsperger,	
  

Kümmel,	
  &	
  Haarmeier,	
  2016)	
  but	
  while	
  they	
  found	
  important	
  effects	
  of	
  learning	
  on	
  

the	
  overall	
  confidence	
  level,	
  none	
  investigated	
  how	
  training	
  affects	
  metacognitive	
  

efficiency.	
  

	
  

Our	
  finding	
  of	
  a	
  positive	
  relationship	
  between	
  sensory	
  noise	
  and	
  metacognitive	
  

efficiency	
  raises	
  the	
  question	
  as	
  to	
  how	
  metacognitive	
  scores	
  should	
  be	
  interpreted.	
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Influential	
  theories	
  pose	
  that	
  metacognition	
  stems	
  from	
  second-­‐‑order	
  monitoring	
  

processes	
  (Shimamura,	
  2000).	
  The	
  contents	
  of	
  these	
  second-­‐‑order	
  metacognitive	
  

processes	
  are	
  often	
  assumed	
  to	
  reflect	
  the	
  contents	
  of	
  consciousness	
  (Kunimoto,	
  

Miller,	
  &	
  Pashler,	
  2001;	
  Persaud	
  et	
  al.,	
  2011).	
  However,	
  our	
  results	
  demonstrate	
  that	
  

while	
  metacognitive	
  judgments	
  may	
  indeed	
  be	
  related	
  to	
  consciousness,	
  they	
  cannot	
  

generally	
  be	
  used	
  as	
  a	
  direct	
  measure	
  of	
  consciousness	
  (Jachs,	
  Blanco,	
  Grantham-­‐‑

Hill,	
  &	
  Soto,	
  2015).	
  Indeed,	
  perceptual	
  learning	
  has	
  been	
  argued	
  to	
  increase	
  

consciousness	
  (Schwiedrzik	
  et	
  al.,	
  2011)	
  but,	
  as	
  seen	
  here,	
  decreases	
  metacognitive	
  

efficiency.	
  We	
  see	
  metacognitive	
  scores	
  as	
  invaluable	
  in	
  constructing	
  and	
  testing	
  

models	
  of	
  decision	
  making	
  but	
  remain	
  agnostic	
  about	
  their	
  relationship	
  to	
  

constructs	
  such	
  as	
  consciousness	
  and	
  working	
  memory.	
  

	
  

An	
  important	
  question	
  for	
  future	
  research	
  is	
  whether	
  metacognitive	
  efficiency	
  can	
  

be	
  trained.	
  Given	
  that	
  subjects	
  completed	
  the	
  same	
  metacognitive	
  task	
  for	
  seven	
  

days,	
  one	
  may	
  expect	
  that	
  their	
  metacognitive	
  noise	
  would	
  decrease.	
  Our	
  design	
  did	
  

not	
  allow	
  us	
  to	
  separate	
  the	
  effects	
  of	
  training	
  on	
  sensory	
  and	
  metacognitive	
  noise	
  

but	
  given	
  the	
  decrease	
  of	
  metacognitive	
  efficiency,	
  putative	
  decreases	
  in	
  

metacognitive	
  noise	
  must	
  have	
  been	
  small.	
  Importantly,	
  we	
  did	
  not	
  include	
  trail-­‐‑to-­‐‑

trial	
  feedback;	
  such	
  feedback	
  may	
  be	
  more	
  important	
  for	
  decreasing	
  metacognitive	
  

compared	
  to	
  sensory	
  noise.	
  

	
  

In	
  conclusion,	
  we	
  showed	
  the	
  existence	
  of	
  a	
  robust	
  positive	
  relationship	
  between	
  

the	
  level	
  of	
  sensory	
  noise	
  and	
  metacognitive	
  efficiency.	
  These	
  results	
  point	
  to	
  the	
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existence	
  of	
  independent	
  metacognitive	
  noise	
  and	
  have	
  strong	
  implications	
  about	
  

the	
  meaning	
  and	
  interpretation	
  of	
  metacognitive	
  efficiency.	
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Methods	
  

Subjects	
  

A	
  total	
  of	
  225	
  subjects	
  participated	
  in	
  the	
  three	
  experiments	
  (12	
  in	
  Experiment	
  1,	
  

201	
  in	
  Experiment	
  2,	
  and	
  12	
  in	
  Experiment	
  3).	
  Each	
  subject	
  participated	
  in	
  only	
  one	
  

experiment.	
  Experiments	
  1	
  and	
  3	
  were	
  conducted	
  in	
  a	
  traditional	
  laboratory	
  setting,	
  

while	
  Experiment	
  2	
  was	
  conducted	
  online	
  with	
  subjects	
  recruited	
  using	
  Amazon’s	
  

Mechanical	
  Turk.	
  In	
  Experiment	
  2,	
  subjects	
  who	
  had	
  performed	
  at	
  chance	
  level	
  or	
  

failed	
  to	
  clear	
  our	
  attention	
  checks	
  were	
  excluded	
  from	
  the	
  analyses	
  (see	
  below	
  for	
  

details).	
  All	
  procedures	
  were	
  approved	
  by	
  the	
  local	
  Institutional	
  Review	
  Board	
  

committee.	
  Subjects	
  reported	
  normal	
  or	
  corrected-­‐‑to-­‐‑normal	
  vision	
  and	
  provided	
  

informed	
  consent.	
  

	
  

Experiment	
  1	
  

Subjects	
  performed	
  a	
  2-­‐‑interval	
  forced	
  choice	
  (2IFC)	
  orientation	
  detection	
  task.	
  Two	
  

stimuli	
  were	
  shown	
  in	
  quick	
  succession	
  and	
  subjects	
  indicated	
  the	
  interval	
  (first	
  or	
  

second)	
  that	
  contained	
  the	
  target	
  (Figure	
  2A).	
  The	
  target	
  was	
  a	
  Gabor	
  patch	
  of	
  a	
  

particular	
  orientation	
  (circular	
  diameter	
  =	
  5°,	
  standard	
  deviation	
  of	
  Gaussian	
  filter	
  =	
  

2.5°,	
  spatial	
  frequency	
  =	
  1	
  cycle/degree,	
  random	
  spatial	
  phase).	
  The	
  Gabor	
  patch	
  

was	
  superimposed	
  by	
  noise	
  generated	
  from	
  a	
  sinusoidal	
  luminance	
  distribution.	
  We	
  

varied	
  stimulus	
  intensity	
  by	
  controlling	
  the	
  ratio	
  of	
  noise	
  pixels.	
  The	
  non-­‐‑target	
  

consisted	
  of	
  the	
  superimposed	
  noise	
  only.	
  The	
  target	
  interval	
  was	
  determined	
  

randomly	
  on	
  each	
  trial.	
  The	
  center	
  of	
  the	
  Gabor	
  patch	
  was	
  positioned	
  4°	
  away	
  from	
  

the	
  center	
  of	
  the	
  screen	
  in	
  a	
  direction	
  of	
  45°	
  toward	
  either	
  lower	
  left	
  or	
  lower	
  right.	
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Each	
  trial	
  started	
  with	
  a	
  500-­‐‑ms	
  fixation	
  period.	
  The	
  two	
  stimulus	
  intervals	
  lasted	
  

50	
  ms	
  each,	
  separated	
  by	
  a	
  300-­‐‑ms	
  blank	
  period	
  (Figure	
  2A).	
  Subjects	
  were	
  asked	
  

to	
  make	
  two	
  responses:	
  first,	
  to	
  indicate	
  the	
  target	
  interval,	
  and	
  second,	
  to	
  indicate	
  

their	
  confidence	
  level.	
  Once	
  the	
  first	
  response	
  was	
  made,	
  the	
  central	
  fixation	
  dot	
  

changed	
  color	
  from	
  white	
  to	
  green	
  to	
  signal	
  that	
  the	
  response	
  has	
  been	
  recorded	
  

and	
  to	
  cue	
  the	
  need	
  to	
  make	
  a	
  second	
  response.	
  Subjects	
  indicated	
  their	
  confidence	
  

using	
  a	
  4-­‐‑point	
  scale.	
  

	
  

We	
  trained	
  subjects	
  on	
  a	
  specific	
  visual	
  quadrant	
  (either	
  lower	
  left	
  or	
  lower	
  right)	
  

and	
  a	
  specific	
  orientation	
  (either	
  10°	
  or	
  70°).	
  The	
  trained	
  quadrant	
  and	
  orientation	
  

were	
  determined	
  randomly	
  for	
  each	
  subject.	
  Sessions	
  1	
  and	
  7	
  included	
  testing	
  on	
  

the	
  untrained	
  quadrant	
  and	
  orientation	
  (data	
  not	
  reported	
  here).	
  Subjects	
  

completed	
  12	
  blocks	
  of	
  trials.	
  Each	
  block	
  involved	
  a	
  2-­‐‑down	
  1-­‐‑up	
  staircase	
  

procedure	
  that	
  continuously	
  adjusted	
  the	
  stimulus	
  intensity	
  and	
  terminated	
  after	
  10	
  

reversals.	
  The	
  intensity	
  threshold	
  for	
  each	
  block	
  was	
  calculated	
  as	
  the	
  geometric	
  

mean	
  of	
  the	
  last	
  six	
  reversals	
  per	
  block.	
  In	
  sessions	
  2-­‐‑6,	
  all	
  12	
  blocks	
  came	
  from	
  the	
  

trained	
  condition,	
  while	
  in	
  sessions	
  1	
  and	
  7,	
  four	
  blocks	
  were	
  presented	
  from	
  each	
  

of	
  the	
  trained	
  and	
  two	
  untrained	
  conditions	
  (in	
  a	
  randomized	
  order).	
  To	
  keep	
  the	
  

sessions	
  as	
  equivalent	
  as	
  possible,	
  data	
  analyses	
  included	
  all	
  four	
  blocks	
  from	
  the	
  

trained	
  condition	
  in	
  sessions	
  1	
  and	
  7,	
  as	
  well	
  as	
  the	
  first	
  four	
  blocks	
  in	
  sessions	
  2-­‐‑6.	
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Stimuli	
  were	
  generated	
  using	
  Psychophysics	
  Toolbox	
  (Brainard,	
  1997)	
  in	
  MATLAB	
  

(MathWorks,	
  Natick,	
  MA)	
  and	
  were	
  shown	
  on	
  a	
  LCD	
  display	
  (1024	
  ×	
  768	
  pixel	
  

resolution,	
  60	
  Hz	
  refresh	
  rate).	
  

	
  

Experiment	
  2	
  

Subjects	
  performed	
  two	
  separate	
  tasks	
  –	
  coarse	
  and	
  fine	
  discrimination	
  –	
  that	
  

involved	
  discrimination	
  between	
  clockwise	
  and	
  counterclockwise	
  oriented	
  Gabor	
  

patches	
  (circular	
  diameter	
  =	
  1.91˚).	
  In	
  the	
  coarse	
  discrimination	
  task	
  (Figure	
  3B),	
  

the	
  stimulus	
  was	
  a	
  Gabor	
  patch	
  of	
  large	
  tilt	
  (+/-­‐‑45°)	
  overlaid	
  on	
  a	
  noisy	
  background	
  

composed	
  of	
  uniformly	
  distributed	
  intensity	
  values.	
  In	
  the	
  fine	
  discrimination	
  task	
  

(Figure	
  3C),	
  the	
  stimulus	
  was	
  a	
  Gabor	
  patch	
  of	
  small	
  tilt	
  (less	
  than	
  1°)	
  presented	
  

without	
  any	
  additional	
  noise.	
  	
  

	
  

Each	
  trial	
  started	
  with	
  a	
  fixation	
  cross	
  appearing	
  at	
  the	
  center	
  of	
  the	
  screen.	
  The	
  

first	
  trial	
  of	
  each	
  block	
  had	
  was	
  preceded	
  by	
  a	
  longer	
  fixation	
  period	
  of	
  two	
  seconds	
  

to	
  allow	
  the	
  subjects	
  time	
  to	
  focus.	
  All	
  other	
  trials	
  had	
  a	
  variable	
  fixation	
  period	
  that	
  

was	
  sampled	
  from	
  a	
  uniform	
  distribution	
  with	
  a	
  range	
  of	
  300-­‐‑700	
  ms.	
  The	
  stimulus	
  

was	
  then	
  presented	
  for	
  500	
  ms.	
  Once	
  the	
  Gabor	
  patch	
  disappeared,	
  subjects	
  were	
  

asked	
  to	
  make	
  two	
  responses	
  using	
  their	
  keyboard:	
  first	
  to	
  indicate	
  the	
  tilt	
  of	
  the	
  

stimulus	
  and	
  second	
  to	
  rate	
  their	
  confidence	
  on	
  a	
  4-­‐‑point	
  scale.	
  	
  

	
  

We	
  collected	
  data	
  from	
  three	
  batches	
  of	
  50	
  subjects	
  and	
  one	
  batch	
  of	
  51	
  subjects.	
  In	
  

order	
  to	
  ensure	
  similar	
  average	
  performance	
  on	
  both	
  tasks,	
  we	
  varied	
  the	
  difficulty	
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/189399doi: bioRxiv preprint 

https://doi.org/10.1101/189399
http://creativecommons.org/licenses/by/4.0/


	
   23	
  

of	
  each	
  task	
  across	
  the	
  batches.	
  For	
  the	
  coarse	
  discrimination	
  task,	
  difficulty	
  was	
  

manipulated	
  by	
  adjusting	
  the	
  contrast	
  level	
  (mean	
  contrast	
  =	
  5.25%,	
  SD	
  =	
  0.7%).	
  For	
  

the	
  fine	
  discrimination	
  task,	
  difficulty	
  was	
  manipulated	
  by	
  changing	
  the	
  offset	
  from	
  

the	
  vertical	
  (mean	
  =	
  0.69°,	
  SD	
  =	
  0.09°).	
  Average	
  accuracy	
  was	
  76.44%	
  for	
  the	
  coarse	
  

discrimination	
  task	
  and	
  74.12%	
  for	
  the	
  fine	
  discrimination	
  task.	
  	
  

	
  

Subjects	
  had	
  to	
  complete	
  a	
  total	
  of	
  100	
  trials	
  of	
  each	
  task.	
  Each	
  task	
  was	
  divided	
  into	
  

five	
  blocks	
  of	
  20	
  trials	
  each.	
  Subjects	
  were	
  allowed	
  to	
  take	
  breaks	
  between	
  each	
  

block	
  and	
  the	
  order	
  of	
  the	
  tasks	
  was	
  randomized	
  across	
  subjects.	
  	
  

	
  

To	
  ensure	
  high	
  data	
  quality,	
  we	
  included	
  six	
  attention	
  check	
  trials	
  –	
  three	
  in	
  each	
  

task.	
  These	
  trials	
  were	
  designed	
  to	
  be	
  much	
  easier	
  than	
  the	
  regular	
  trials	
  (contrast	
  

for	
  coarse	
  discrimination	
  task	
  =	
  15%,	
  offset	
  for	
  the	
  fine	
  discrimination	
  task	
  =	
  5˚)	
  and	
  

subjects	
  paying	
  attention	
  to	
  the	
  task	
  were	
  expected	
  have	
  a	
  high	
  degree	
  of	
  accuracy	
  

for	
  such	
  trials.	
  Therefore,	
  we	
  excluded	
  subjects	
  who	
  responded	
  incorrectly	
  to	
  more	
  

than	
  two	
  out	
  of	
  six	
  catch	
  trials	
  (total	
  15	
  excluded).	
  Additionally,	
  we	
  excluded	
  

subjects	
  whose	
  performance	
  was	
  close	
  to	
  chance	
  level	
  (<	
  55%	
  correct)	
  on	
  the	
  non-­‐‑

catch	
  trials	
  of	
  either	
  task	
  (additional	
  8	
  subjects	
  excluded).	
  These	
  criteria	
  led	
  to	
  the	
  

exclusion	
  of	
  a	
  total	
  of	
  23	
  of	
  the	
  initial	
  201	
  subjects	
  (11%	
  exclusion	
  rate).	
  Note	
  that	
  

the	
  final	
  analyses	
  were	
  based	
  only	
  on	
  the	
  97	
  non-­‐‑catch	
  trials	
  per	
  task.	
  

	
  

The	
  Gabor	
  stimuli	
  were	
  generated	
  online	
  via	
  in-­‐‑house	
  code	
  written	
  in	
  JavaScript	
  and	
  

the	
  experiment	
  was	
  designed	
  using	
  the	
  JSPsych	
  5.0.3	
  library.	
  To	
  account	
  for	
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variability	
  in	
  the	
  resolution	
  and	
  size	
  of	
  screens	
  across	
  subjects,	
  subjects	
  were	
  asked	
  

to	
  adjust	
  the	
  size	
  of	
  images	
  of	
  real	
  life	
  objects	
  displayed	
  on	
  the	
  computer	
  screen	
  to	
  

match	
  their	
  dimensions	
  to	
  the	
  actual	
  objects.	
  This	
  calibration	
  ensured	
  that	
  the	
  size	
  

of	
  the	
  stimulus	
  displayed	
  was	
  uniform	
  across	
  different	
  screens.	
  

	
  

Experiment	
  3	
  

This	
  study	
  was	
  originally	
  reported	
  as	
  Experiment	
  2	
  in	
  Rahnev	
  et	
  al.	
  (2013).	
  All	
  study	
  

details	
  can	
  be	
  found	
  in	
  the	
  original	
  publication.	
  Briefly,	
  subjects’	
  task	
  was	
  to	
  indicate	
  

the	
  tilt	
  (clockwise	
  or	
  counterclockwise)	
  of	
  a	
  grating	
  presented	
  at	
  fixation.	
  Each	
  trial	
  

began	
  with	
  50	
  ms	
  presentation	
  of	
  the	
  grating	
  followed	
  by	
  a	
  fixation	
  period	
  of	
  200	
  

ms	
  (Figure	
  4A).	
  On	
  each	
  trial,	
  the	
  orientation	
  of	
  the	
  grating	
  was	
  randomly	
  selected	
  

to	
  be	
  tilted	
  10°	
  clockwise	
  or	
  10°	
  counterclockwise	
  away	
  from	
  vertical.	
  The	
  grating	
  

pattern	
  was	
  presented	
  on	
  an	
  annulus	
  (inner	
  circle	
  radius:	
  1.5°,	
  outer	
  circle	
  radius:	
  

4.5°)	
  region.	
  The	
  stimulus	
  consisted	
  of	
  a	
  noisy	
  background	
  composed	
  of	
  uniformly	
  

distributed	
  intensity	
  values	
  on	
  top	
  of	
  which	
  we	
  added	
  a	
  grating	
  (0.5	
  cycles/degree).	
  

Subjects	
  were	
  required	
  to	
  fixate	
  on	
  a	
  small	
  white	
  square	
  for	
  the	
  duration	
  of	
  the	
  

experiment.	
  They	
  were	
  seated	
  in	
  a	
  dim	
  room	
  50	
  cm	
  away	
  from	
  a	
  computer	
  monitor.	
  

Stimuli	
  were	
  generated	
  using	
  Psychophysics	
  Toolbox	
  (Brainard,	
  1997)	
  in	
  MATLAB	
  

(MathWorks,	
  Natick,	
  MA)	
  and	
  were	
  shown	
  on	
  a	
  MacBook	
  (13	
  inch	
  monitor	
  size,	
  

1200	
  ×	
  800	
  pixel	
  resolution,	
  60	
  Hz	
  refresh	
  rate).	
  	
  	
  

	
  

After	
  each	
  stimulus	
  presentation,	
  subjects	
  used	
  one	
  of	
  four	
  keys	
  to	
  give	
  their	
  

response	
  indicating	
  the	
  perceived	
  orientation	
  of	
  the	
  grating	
  and	
  a	
  wager	
  on	
  whether	
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they	
  were	
  correct.	
  Subjects	
  used	
  the	
  keys	
  1-­‐‑4	
  indicating	
  “certainly	
  left”,	
  “guess	
  left”,	
  

“guess	
  right”,	
  and	
  “certainly	
  right,”	
  respectively.	
  A	
  correct	
  “certain”	
  (i.e.,	
  high	
  

confidence)	
  choice	
  was	
  awarded	
  with	
  two	
  points	
  while	
  a	
  correct	
  “guess”	
  (i.e.,	
  low	
  

confidence)	
  choice	
  was	
  awarded	
  with	
  one	
  point.	
  An	
  incorrect	
  “guess”	
  (i.e.,	
  low	
  

confidence)	
  choice	
  resulted	
  in	
  no	
  points	
  being	
  won	
  or	
  lost	
  but	
  an	
  incorrect	
  “certain”	
  

(i.e.,	
  high	
  confidence)	
  choice	
  resulted	
  in	
  a	
  loss	
  of	
  two	
  points.	
  We	
  chose	
  this	
  point	
  

structure	
  to	
  ensure	
  that	
  subjects	
  gave	
  a	
  sufficient	
  number	
  of	
  both	
  “guess”	
  and	
  

“certain”	
  responses.	
  The	
  optimal	
  strategy	
  for	
  this	
  payoff	
  structure	
  was	
  to	
  choose	
  the	
  

“certain”	
  choice	
  only	
  when	
  the	
  probability	
  of	
  being	
  correct	
  exceeded	
  66.7%.	
  We	
  

informed	
  subjects	
  of	
  this	
  contingency	
  in	
  order	
  to	
  guarantee	
  that	
  all	
  subjects	
  were	
  

aware	
  of	
  the	
  optimal	
  strategy.	
  To	
  further	
  encourage	
  optimal	
  usage	
  of	
  the	
  wagers,	
  we	
  

gave	
  the	
  two	
  subjects	
  with	
  highest	
  final	
  scores	
  an	
  additional	
  cash	
  prize.	
  Since	
  the	
  

wagers	
  that	
  subjects	
  used	
  were	
  a	
  proxy	
  for	
  their	
  confidence	
  on	
  each	
  trial,	
  for	
  

simplicity	
  we	
  refer	
  to	
  the	
  wagers	
  as	
  confidence	
  ratings	
  in	
  the	
  rest	
  of	
  the	
  manuscript.	
  

	
  

Each	
  trial	
  lasted	
  for	
  two	
  seconds.	
  Subjects	
  had	
  1.8	
  seconds	
  to	
  give	
  their	
  response	
  

after	
  the	
  onset	
  of	
  the	
  stimulus.	
  Once	
  a	
  response	
  was	
  given,	
  the	
  text	
  indicating	
  the	
  

four	
  possible	
  answers	
  disappeared	
  and	
  the	
  next	
  trial	
  started.	
  If	
  a	
  response	
  was	
  not	
  

given	
  in	
  the	
  1.8-­‐‑second	
  period,	
  subjects	
  were	
  penalized	
  by	
  a	
  subtraction	
  of	
  four	
  

points	
  and	
  the	
  text	
  was	
  removed	
  at	
  the	
  end	
  of	
  the	
  1.8-­‐‑second	
  period	
  in	
  order	
  to	
  

avoid	
  any	
  potential	
  interference	
  with	
  the	
  processing	
  of	
  the	
  stimulus	
  in	
  the	
  next	
  trial.	
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The	
  study	
  consisted	
  of	
  four	
  days:	
  one	
  training	
  and	
  three	
  days	
  of	
  testing.	
  In	
  the	
  initial	
  

training	
  session	
  on	
  day	
  1,	
  subjects	
  practiced	
  with	
  the	
  task	
  over	
  the	
  course	
  of	
  five	
  

blocks	
  of	
  120	
  trials	
  each.	
  Days	
  2-­‐‑4	
  involved	
  theta	
  burst	
  stimulation	
  (TBS)	
  to	
  three	
  

different	
  brain	
  areas	
  (visual	
  cortex,	
  Pz,	
  and	
  sham).	
  TBS	
  had	
  a	
  modest	
  effect	
  on	
  

subjects’	
  performance	
  (reported	
  in	
  the	
  original	
  publication).	
  Here	
  we	
  combined	
  all	
  

sessions	
  regardless	
  of	
  TBS	
  condition	
  in	
  order	
  to	
  increase	
  the	
  power	
  of	
  our	
  analyses,	
  

which	
  were	
  orthogonal	
  to	
  the	
  TBS	
  effects.	
  Based	
  on	
  the	
  results	
  of	
  the	
  training	
  

session	
  on	
  day	
  1,	
  we	
  chose	
  a	
  grating	
  contrast	
  for	
  each	
  subject	
  that	
  would	
  produce	
  

~80%	
  correct	
  responses.	
  However,	
  we	
  included	
  two	
  more	
  levels	
  of	
  contrast:	
  75%	
  

and	
  125%	
  of	
  the	
  above	
  contrast.	
  These	
  three	
  contrast	
  levels	
  were	
  used	
  on	
  days	
  2-­‐‑4	
  

without	
  further	
  adjustments	
  even	
  if	
  performance	
  deviated	
  from	
  the	
  80%	
  correct	
  

target	
  for	
  the	
  middle	
  contrast.	
  Contrast	
  level	
  was	
  chosen	
  randomly	
  on	
  each	
  trial	
  and	
  

subjects	
  were	
  not	
  explicitly	
  informed	
  about	
  the	
  presence	
  of	
  multiple	
  contrast	
  levels.	
  	
  

In	
  each	
  session,	
  subjects	
  completed	
  five	
  blocks	
  of	
  140	
  trials	
  each	
  for	
  a	
  total	
  of	
  4,200	
  

trials.	
  Note	
  that	
  the	
  original	
  publication	
  excluded	
  three	
  of	
  the	
  subjects	
  because	
  they	
  

did	
  not	
  see	
  phosphenes.	
  These	
  subjects	
  were	
  included	
  here.	
  

	
  

Analyses	
  

To	
  determine	
  observers’	
  performance	
  on	
  the	
  task,	
  we	
  computed	
  the	
  signal	
  detection	
  

theory	
  (SDT)	
  measure	
  d’	
  (a	
  measure	
  of	
  stimulus	
  sensitivity)	
  by	
  calculating	
  the	
  hit	
  

rate	
  (HR)	
  and	
  false	
  alarm	
  rate	
  (FAR):	
  

	
  

𝑑* = 	
  𝛷E) 𝐻𝑅 −	
  𝛷E) 𝐹𝐴𝑅 	
   	
   	
   	
   	
   	
   	
   (1)	
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where	
  𝛷E)	
  is	
  the	
  inverse	
  of	
  the	
  cumulative	
  standard	
  normal	
  distribution	
  that	
  

transforms	
  HR	
  and	
  FAR	
  into	
  z-­‐‑scores.	
  In	
  all	
  experiments,	
  HR	
  and	
  FAR	
  were	
  defined	
  

by	
  treating	
  the	
  clockwise	
  orientation	
  as	
  the	
  target.	
  The	
  measures	
  of	
  metacognitive	
  

efficiency	
  Mratio	
  and	
  Mdiff	
  were	
  computed	
  using	
  the	
  codes	
  provided	
  by	
  Maniscalco	
  

and	
  Lau	
  (2012).	
  

	
  

Model	
  development	
  

Following	
  standard	
  assumptions	
  dating	
  back	
  to	
  the	
  development	
  of	
  signal	
  detection	
  

theory	
  (SDT;	
  Green	
  and	
  Swets,	
  1966),	
  each	
  stimulus	
  category	
  was	
  assumed	
  to	
  

produce	
  an	
  internal	
  response	
  corrupted	
  by	
  Gaussian	
  noise.	
  Without	
  loss	
  of	
  

generality,	
  we	
  set	
  the	
  counterclockwise	
  stimuli	
  to	
  produce	
  internal	
  response	
  𝑟(L$( =

𝑁(− O
0
, 𝜎(L$(0 )	
  and	
  clockwise	
  stimuli	
  to	
  produce	
  internal	
  response	
  𝑟(L$( = 𝑁(O

0
, 𝜎(L$(0 ),	
  

such	
  that	
  the	
  distance	
  between	
  the	
  two	
  distributions	
  was	
  𝜇.	
  Note	
  that	
  the	
  SDT	
  

parameter	
  d’	
  can	
  then	
  be	
  expressed	
  as:	
  

	
  

𝑑* = O
T<U8<

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (2)	
  

	
  

Perceptual	
  decisions	
  were	
  modeled	
  by	
  specifying	
  a	
  decision	
  criterion	
  𝑐W	
  and	
  

confidence	
  criteria	
  𝑐E$, 𝑐E$X), … , 𝑐E), 𝑐), … , 𝑐$E), 𝑐$	
  where	
  n	
  =	
  number	
  of	
  confidence	
  

ratings.	
  Importantly,	
  the	
  criteria	
  𝑐E$, 𝑐E$X), … , 	
  𝑐$	
  were	
  constrained	
  to	
  be	
  

monotonically	
  increasing	
  with	
  𝑐E$ = −∞	
  and	
  𝑐$ = ∞.	
  Counterclockwise	
  (clockwise)	
  

decisions	
  were	
  made	
  based	
  on	
  whether	
  the	
  internal	
  response	
  𝑟(L$(	
  was	
  smaller	
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(larger)	
  than	
  𝑐W.	
  Confidence	
  responses	
  were	
  given	
  such	
  that	
  an	
  internal	
  response	
  

𝑟(L$(	
  falling	
  in	
  the	
  internal	
  [𝑐5, 𝑐5X))	
  resulted	
  in	
  a	
  confidence	
  of	
  𝑖 + 1	
  when	
  𝑖 ≥ 0,	
  and	
  

of	
  – 𝑖	
  when	
  𝑖 ≤ −1.	
  	
  

	
  

The	
  hierarchical	
  model	
  was	
  constructed	
  similarly	
  but	
  with	
  the	
  important	
  addition	
  of	
  

an	
  extra	
  layer	
  of	
  noise.	
  The	
  perceptual	
  decision	
  (about	
  stimulus	
  orientation)	
  was	
  

made	
  just	
  as	
  in	
  the	
  standard	
  model	
  described	
  above.	
  However,	
  the	
  confidence	
  

judgment	
  was	
  made	
  on	
  the	
  internal	
  signal	
  at	
  a	
  metacognitive	
  stage	
  that	
  was	
  

additionally	
  corrupted	
  by	
  Gaussian	
  noise	
  with	
  standard	
  deviation	
  of	
  𝜎aL%'	
  such	
  that	
  

signal	
  at	
  the	
  metacognitive	
  stage	
  was	
  given	
  by	
  the	
  formula	
  𝑟aL%' = 𝑁(𝑟(L$(, 𝜎aL%'0 ).	
  

The	
  confidence	
  response	
  was	
  made	
  equivalently	
  to	
  the	
  standard	
  SDT	
  model.	
  

However,	
  in	
  cases	
  in	
  which	
  𝑟(L$(	
  and	
  𝑟aL%'	
  fell	
  on	
  different	
  sides	
  of	
  the	
  decision	
  

criterion	
  𝑐W,	
  confidence	
  was	
  constrained	
  to	
  always	
  equal	
  1.	
  

	
  

The	
  seven	
  simulations	
  shown	
  in	
  Figure	
  1B,C	
  were	
  produced	
  by	
  setting	
  𝜎(L$( =	
  

1,	
  .83,	
  .7,	
  .6,	
  .55,	
  .52,	
  or	
  .5,	
  while	
  all	
  other	
  parameters	
  were	
  kept	
  constant:	
  𝜇 = 1,	
  

𝜎aL%'	
  =	
  .3	
  (in	
  the	
  hierarchical	
  model)	
  or	
  0	
  (in	
  the	
  standard	
  SDT	
  model),	
  and	
  the	
  

criteria	
  set	
  to	
  𝑐E0 = 	
  −∞, 𝑐0 = ∞,	
  while	
  𝑐E), 𝑐W,	
  and	
  𝑐)	
  were	
  set	
  to	
  values	
  

corresponding	
  to	
  30,	
  50,	
  and	
  70%	
  posterior	
  probability	
  of	
  a	
  clockwise	
  stimulus.	
  

Note	
  that	
  the	
  pattern	
  of	
  results	
  reported	
  in	
  Figures	
  1B,C	
  is	
  completely	
  insensitive	
  to	
  

the	
  exact	
  parameters	
  chosen.	
  

	
  

Prediction	
  of	
  hierarchical	
  models	
  of	
  confidence	
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Here	
  we	
  give	
  the	
  simple	
  mathematical	
  proof	
  for	
  why	
  hierarchical	
  models	
  of	
  

confidence	
  predict	
  that	
  higher	
  sensory	
  noise	
  would	
  lead	
  to	
  higher	
  metacognitive	
  

efficiency.	
  As	
  seen	
  in	
  Equation	
  2,	
  stimulus	
  sensitivity	
  d’	
  equals	
  the	
  ratio	
  of	
  the	
  signal	
  

and	
  noise	
  present	
  at	
  the	
  decision	
  stage.	
  Equivalently,	
  metacognitive	
  sensitivity	
  

meta-­‐‑d’	
  equals	
  the	
  ratio	
  of	
  the	
  signal	
  and	
  noise	
  present	
  at	
  the	
  metacognitive	
  stage.	
  

According	
  to	
  our	
  hierarchical	
  model	
  of	
  confidence,	
  the	
  signal	
  at	
  the	
  metacognitive	
  

stage	
  is	
  still	
  𝜇	
  but	
  the	
  noise	
  is	
  a	
  combination	
  of	
  two	
  Gaussian	
  distributions	
  with	
  

standard	
  deviations	
  of	
  𝜎(L$(	
  and	
  𝜎aL%' .	
  Therefore,	
  we	
  can	
  derive	
  that:	
  

	
  

meta-­‐‑𝑑* = O

T<U8<@ X	
  TbU9;
@

	
   	
   	
   	
   	
   	
   	
   	
   (3)	
  

	
  

Combining	
  Equations	
  2	
  and	
  3,	
  we	
  obtain:	
  

	
  

𝑀&'%5# =
aL%'Ecd

cd
= T<U8<

T<U8<@ X	
  TbU9;
@

	
  	
   	
   	
   	
   	
   	
   	
   (4)	
  

	
  

which	
  is	
  an	
  increasing	
  function	
  of	
  𝜎(L$(.	
  Therefore,	
  as	
  sensory	
  noise	
  𝜎(L$(	
  increases,	
  

so	
  does	
  metacognitive	
  efficiency	
  𝑀&'%5# .	
  

	
  

Model	
  fitting	
  

To	
  model	
  the	
  effect	
  of	
  stimulus	
  contrast	
  in	
  Experiment	
  3,	
  we	
  set	
  𝜎(L$(6789:;<9 e = 𝐶g ,	
  

where	
  C	
  was	
  set	
  to	
  .75,	
  1,	
  and	
  1.25	
  for	
  the	
  three	
  levels	
  of	
  contrast	
  (since	
  contrast	
  

levels	
  were	
  75%,	
  100%,	
  and	
  125%	
  of	
  the	
  subject-­‐‑specific	
  contrast	
  threshold).	
  We	
  do	
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not	
  claim	
  that	
  𝜎(L$(	
  has	
  a	
  power	
  relationship	
  with	
  contrast.	
  However,	
  since	
  this	
  

relationship	
  is	
  not	
  generally	
  known,	
  this	
  way	
  of	
  specifying	
  the	
  relationship	
  allowed	
  

us	
  to	
  capture	
  any	
  combination	
  of	
  the	
  two	
  ratios	
  between	
  the	
  sensory	
  noise	
  

corresponding	
  to	
  successive	
  contrast	
  levels.	
  Importantly,	
  the	
  parameter	
  𝛼	
  was	
  

strongly	
  correlated	
  between	
  the	
  fits	
  for	
  the	
  SDT	
  and	
  the	
  hierarchical	
  models	
  (r	
  =	
  .77,	
  

p	
  =	
  .004),	
  demonstrating	
  that	
  the	
  superior	
  fits	
  of	
  the	
  hierarchical	
  model	
  were	
  not	
  

due	
  to	
  an	
  interaction	
  between	
  𝛼	
  and	
  the	
  extra	
  parameter	
  𝜎aL%' .	
  Finally,	
  since	
  three	
  

of	
  the	
  12	
  subjects	
  exhibited	
  Mratio	
  values	
  larger	
  than	
  1	
  in	
  at	
  least	
  one	
  condition,	
  we	
  

included	
  additional	
  decision-­‐‑level	
  noise	
  for	
  them	
  and	
  applied	
  it	
  to	
  both	
  the	
  

hierarchical	
  and	
  the	
  SDT	
  models.	
  

	
  

The	
  SDT	
  and	
  hierarchical	
  models	
  were	
  instantiated	
  with	
  four	
  and	
  five	
  free	
  

parameters,	
  respectively.	
  Importantly,	
  the	
  signal	
  𝜇	
  corresponding	
  to	
  each	
  contrast	
  

level	
  was	
  not	
  treated	
  as	
  a	
  free	
  parameter	
  but	
  was	
  directly	
  computed	
  using	
  Equation	
  

2	
  using	
  the	
  contrast-­‐‑specific	
  d’	
  and	
  sensory	
  noise	
  values.	
  The	
  standard	
  SDT	
  model	
  

thus	
  had	
  four	
  free	
  parameters:	
  𝛼	
  and	
  the	
  criteria	
  𝑐E), 𝑐W,	
  and	
  𝑐)	
  (since	
  confidence	
  

was	
  provided	
  on	
  a	
  2-­‐‑point	
  scale).	
  The	
  hierarchical	
  model	
  was	
  instantiated	
  with	
  five	
  

free	
  parameters	
  (the	
  four	
  from	
  the	
  SDT	
  model	
  and	
  𝜎aL%').	
  The	
  criteria	
  𝑐5 	
  were	
  

constrained	
  to	
  be	
  non-­‐‑decreasing	
  and	
  𝜎aL%'	
  was	
  constrained	
  to	
  be	
  ≥ 0.	
  

	
  

We	
  fit	
  the	
  models	
  to	
  the	
  data	
  as	
  previously	
  (Rahnev	
  et	
  al.,	
  2011,	
  2013;	
  Rahnev,	
  

Maniscalco,	
  Luber,	
  Lau,	
  &	
  Lisanby,	
  2012)	
  using	
  a	
  maximum	
  likelihood	
  estimation	
  

approach.	
  The	
  models	
  were	
  fit	
  to	
  the	
  full	
  distribution	
  of	
  probabilities	
  of	
  each	
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response	
  type	
  contingent	
  on	
  each	
  stimulus	
  type.	
  Model	
  fitting	
  was	
  done	
  by	
  finding	
  

the	
  maximum-­‐‑likelihood	
  parameter	
  values	
  using	
  a	
  simulated	
  annealing	
  (Kirkpatrick,	
  

Gelatt	
  and	
  Vecchi,	
  1983).	
  Fitting	
  was	
  conducted	
  separately	
  for	
  each	
  subject’s	
  data	
  by	
  

first	
  running	
  the	
  fitting	
  five	
  times	
  with	
  general	
  starting	
  parameter	
  set,	
  and	
  then	
  

running	
  the	
  fitting	
  five	
  more	
  times	
  using	
  a	
  starting	
  parameter	
  set	
  derived	
  from	
  the	
  

best	
  fit	
  from	
  the	
  previous	
  stage.	
  The	
  best	
  fitting	
  model	
  from	
  the	
  second	
  stage	
  was	
  

used	
  for	
  further	
  analyses.	
  Akaike	
  Information	
  Criterion	
  (AIC)	
  was	
  used	
  for	
  model	
  

comparison	
  though	
  the	
  results	
  remained	
  the	
  same	
  if	
  Bayesian	
  Information	
  Criterion	
  

(BIC)	
  was	
  used	
  instead.	
  

	
  

Data	
  and	
  code	
  availability	
  

All	
  data	
  and	
  codes	
  for	
  the	
  analyses	
  are	
  freely	
  available	
  online	
  at	
  

https://github.com/DobyRahnev/sensory_noise_metacognitive_efficiency.	
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Supplementary	
  Results	
  

In	
  Experiment	
  1,	
  we	
  selected	
  a	
  limited	
  range	
  of	
  stimulus	
  intensity	
  values	
  for	
  

analyses	
  in	
  order	
  to	
  investigate	
  how	
  training	
  affected	
  stimulus	
  sensitivity,	
  

confidence,	
  and	
  metacognitive	
  efficiency.	
  Specifically,	
  we	
  considered	
  all	
  stimulus	
  

intensity	
  values	
  used	
  across	
  the	
  seven	
  days	
  and	
  selected	
  all	
  intensities	
  within	
  the	
  

35-­‐‑65	
  percentile.	
  We	
  used	
  a	
  relatively	
  small	
  window	
  in	
  order	
  to	
  avoid	
  excessive	
  

stimulus	
  variability.	
  However,	
  this	
  choice	
  may	
  appear	
  arbitrary.	
  Therefore,	
  we	
  

tested	
  the	
  robustness	
  of	
  our	
  results	
  to	
  using	
  larger	
  ranges	
  of	
  intensity	
  values.	
  In	
  

three	
  more	
  analyses,	
  we	
  selected	
  all	
  intensities	
  within	
  30-­‐‑70,	
  20-­‐‑80,	
  and	
  10-­‐‑90	
  

percentile	
  of	
  all	
  intensities.	
  We	
  found	
  that	
  when	
  considering	
  these	
  intensity	
  ranges,	
  

we	
  still	
  found	
  the	
  same	
  increase	
  in	
  stimulus	
  sensitivity	
  d’	
  (30-­‐‑70	
  percentile:	
  t11	
  =	
  

4.92,	
  p	
  =	
  .0005;	
  20-­‐‑80	
  percentile:	
  t11	
  =	
  5.65,	
  p	
  =	
  .0001;	
  10-­‐‑90	
  percentile:	
  t11	
  =	
  7.26,	
  p	
  

=	
  .00002)	
  and	
  decrease	
  in	
  metacognitive	
  efficiency	
  Mratio	
  (30-­‐‑70	
  percentile:	
  t11	
  =	
  -­‐‑

2.82,	
  p	
  =	
  .0165;	
  20-­‐‑80	
  percentile:	
  t11	
  =	
  -­‐‑2.6,	
  p	
  =	
  .0246;	
  10-­‐‑90	
  percentile:	
  t11	
  =	
  -­‐‑2.66,	
  p	
  

=	
  .0223).	
  Therefore,	
  our	
  results	
  do	
  not	
  depend	
  on	
  the	
  exact	
  percentile	
  selected.	
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Supplementary	
  Figures	
  

	
  

	
  

Supplementary	
  Figure	
  1.	
  A	
  graphical	
  explanation	
  as	
  to	
  why	
  the	
  d’	
  value	
  of	
  two	
  
combined	
  conditions	
  is	
  lower	
  than	
  the	
  average	
  d’	
  values	
  of	
  those	
  conditions.	
  The	
  
figure	
  shows	
  the	
  receiver	
  operating	
  characteristic	
  (ROC)	
  curves	
  for	
  d’	
  of	
  0,	
  1,	
  2,	
  3,	
  4,	
  
and	
  5.	
  The	
  ROC	
  curve	
  plots	
  the	
  false	
  alarm	
  rate	
  (FAR)	
  on	
  the	
  x	
  axis	
  vs.	
  the	
  hit	
  rate	
  
(HR)	
  on	
  the	
  y	
  axis.	
  Assume	
  that	
  an	
  unbiased	
  observer	
  (who	
  chooses	
  each	
  stimulus	
  
category	
  equally	
  often)	
  shows	
  stimulus	
  sensitivity	
  values	
  of	
  d’	
  =	
  1	
  and	
  d’	
  =	
  3	
  in	
  two	
  
different	
  conditions.	
  Such	
  performance	
  would	
  result	
  in	
  the	
  red	
  dots	
  marked	
  on	
  the	
  
graph,	
  lying	
  on	
  the	
  diagonal	
  perpendicular	
  to	
  the	
  line	
  of	
  d’	
  =	
  0.	
  Assuming	
  that	
  the	
  
two	
  conditions	
  had	
  equal	
  number	
  of	
  trials	
  from	
  each	
  category,	
  then	
  their	
  
combination	
  would	
  result	
  in	
  a	
  point	
  on	
  the	
  ROC	
  curve	
  (marked	
  in	
  blue)	
  lying	
  exactly	
  
midway	
  between	
  the	
  two	
  red	
  circles.	
  As	
  can	
  be	
  seen	
  in	
  the	
  graph,	
  this	
  point	
  
corresponds	
  to	
  d’	
  of	
  1.773,	
  which	
  is	
  lower	
  than	
  2	
  –	
  the	
  average	
  of	
  1	
  and	
  3.	
  
Mathematically,	
  the	
  distance	
  from	
  the	
  d’	
  =	
  0	
  line	
  (which	
  we	
  can	
  denote	
  with	
  𝑙)	
  is	
  

equal	
  to	
  𝑙 = 𝛷 𝑑′ = )
0
1 + 𝑒𝑟𝑓 cd

0
,	
  where	
  𝛷	
  is	
  the	
  cumulative	
  normal	
  

distribution,	
  and	
  𝑒𝑟𝑓	
  signifies	
  the	
  error	
  function.	
  Therefore,	
  𝑑′ = 𝛷E) 𝑙 	
  and	
  since	
  
𝛷E) 𝑥 	
  is	
  convex	
  in	
  [0,	
  1],	
  then	
  𝛷E) n=Xn@

0
< pq= n= Xpq= n@

0
	
  	
  for	
  0 ≤ 𝑥) < 𝑥0 ≤ 1,	
  

which	
  means	
  that	
  the	
  d’	
  of	
  two	
  combined	
  conditions	
  is	
  lower	
  than	
  the	
  average	
  d’	
  of	
  
each	
  of	
  those	
  conditions.	
  The	
  same	
  arguments	
  hold	
  even	
  if	
  the	
  observer	
  is	
  not	
  
unbiased	
  and	
  thus	
  points	
  on	
  the	
  ROC	
  curve	
  do	
  not	
  lie	
  on	
  the	
  diagonal	
  perpendicular	
  
to	
  the	
  line	
  of	
  d’	
  =	
  0.	
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Supplementary	
  Figure	
  2.	
  Effects	
  of	
  larger	
  intensity	
  range	
  on	
  d’	
  and	
  Mratio.	
  In	
  
Experiment	
  1,	
  we	
  created	
  four	
  different	
  conditions	
  by	
  choosing	
  intensities	
  that	
  lie	
  
within	
  a	
  certain	
  percentile	
  range	
  of	
  all	
  used	
  stimulus	
  intensities.	
  We	
  chose	
  35-­‐‑65,	
  
25-­‐‑75,	
  15-­‐‑85,	
  and	
  5-­‐‑95	
  percentiles,	
  though	
  different	
  choices	
  result	
  in	
  the	
  same	
  
pattern	
  of	
  results.	
  As	
  reported	
  in	
  the	
  main	
  text,	
  larger	
  ranges	
  resulted	
  in	
  slope	
  of	
  d’	
  
change	
  over	
  the	
  four	
  conditions	
  that	
  is	
  not	
  significantly	
  different	
  from	
  0	
  (t11	
  =	
  1.53,	
  p	
  
=	
  .15)	
  but	
  led	
  to	
  significantly	
  positive	
  slopes	
  of	
  Mratio	
  values	
  (t11	
  =	
  5.004,	
  p	
  =	
  .0004),	
  
indicating	
  that	
  larger	
  ranges	
  resulted	
  in	
  higher	
  metacognitive	
  efficiency.	
  Error	
  bars	
  
represent	
  S.E.M.	
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