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ABSTRACT  
 
Healthy cortical development depends on precise regulation of transcription and translation. 
However, the dynamics of how proteins are expressed, function and interact across postnatal 
human cortical development remain poorly understood. We surveyed the proteomic landscape 
of 69 dorsolateral prefrontal cortex samples across seven stages of postnatal life and 
integrated these data with paired transcriptome data. We detected 911 proteins by liquid 
chromatography-mass spectrometry, and 83 were significantly associated with postnatal age 
(FDR p < 0.05). Network analysis identified three modules of co-regulated proteins correlated 
with age, including two modules with increasing expression involved in gliogenesis and NADH-
metabolism and one neurogenesis-related module with decreasing expression throughout 
development. Integration with paired transcriptome data revealed that these age-related 
protein modules overlapped with RNA modules and displayed collinear developmental 
trajectories. Importantly, RNA expression profiles that are dynamically regulated throughout 
cortical development display tighter correlations with their respective translated protein 
expression compared to those RNA profiles that are not. Moreover, the correspondence 
between RNA and protein expression significantly decreases as a function of cortical aging, 
especially for genes involved in myelination and cytoskeleton organization. Finally, we used 
this data resource to elucidate the functional impact of genetic risk loci for intellectual disability, 
converging on gliogenesis, myelination and ATP-metabolism modules in the proteome and 
transcriptome. We share all data in an interactive, searchable companion website. Collectively, 
our findings reveal dynamic aspects of protein regulation and provide new insights into brain 
development, maturation and disease. 
 
Keywords: dorsolateral prefrontal cortex; neurodevelopment; brain development; postnatal 
aging; proteomics; transcriptomics.
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INTRODUCTION 
 
The human prefrontal cortex plays a critical role for higher cognitive processes, including 
executive function, social cognition and judgment, and has been implicated in the onset and 
progression of many, if not most, neurodevelopmental disorders1-6. The development of a 
properly functioning prefrontal cortex depends upon the proliferation and signaling of several 
cell types as well as the reprograming of transcriptional and translational pathways that unfold 
over the first two-three decades of postnatal life7. During this time, the brain quadruples in size, 
and grows through interneuronal genesis and maturation, glial multiplication, myelination, 
formation of new synaptic connections and pruning of unused synaptic connections8-10. Such 
processes are orchestrated by thousands of molecules in a tightly synchronized spatiotemporal 
fashion, and the disruption of any one of which may result in loss of cortical integrity and 
homeostasis10, leading to cognitive deficits seen in patients with neurodevelopmental 
abnormalities. Therefore, understanding the molecular factors governing long-term brain 
development in normal individuals is critical for the identification of neurodevelopment 
mechanisms and developmental vulnerability periods. 
 
Much of our current knowledge of the biological changes underlying human brain development 
has been inferred from large transcriptomic investigations. Initial reports of the developing 
human brain transcriptome revealed marked changes across development and aging, with the 
largest gene expression changes occurring prenatally and during infancy and early 
childhood11-14; ages when many neurodevelopmental disorders become clinically recognizable. 
In parallel, several studies have identified developmental transcriptional networks with regional 
and cell type specific expression patterns enriched within neurodevelopmental disorder-
associated genetic risk loci15-18, providing mechanistic insights of how mutations in risk genes 
might perturb typical brain development. Several studies consistently report however, that 
levels of messenger RNA and their respective translated proteins often correlate poorly19-22. As 
proteins are the main functional components in all cells, generating equivalent proteomic 
information across human brain development represents a critical gap in the field.  
 
Mass spectrometry-based proteomics provides a comprehensive and complimentary 
perspective to transcriptomic changes and can serve as an indicator for functional and network 
levels of aging. Although human proteome research has predominately focused on defining a 
disease signature within a specific developmental period, there has been some progress in 
understanding the developmental proteome23-25. For example, a recent study profiled the 
orbitofrontal cortex and identified 127 proteins implicated in cellular growth and proliferation 
that were differentially expressed between young or old human male individuals23. A separate 
study profiled seven different brain regions across 11 developmentally distinct individuals and 
found substantial differences in protein abundance between brain regions, reflective of 
cytoarchitectural and functional variation25. While these investigations have been key for 
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informing mechanisms of brain development, it has been challenging for proteome research to 
identify highly abundant and reproducible proteins across dozens of biological replicates. More 
selective mass spectrometry techniques that are tailored to detect highly abundant proteins 
across larger sample sizes are required to accurately infer long-term time-dependent protein 
expression patterns. As such, a critical remaining question is how the brain proteome unfolds 
throughout development, and ultimately how this information may inform brain mechanisms 
governing health and disease.  
 
The current investigation applied label-free liquid chromatography-mass spectrometry (LC-MS) 
proteomics to 69 dorsolateral prefrontal cortex (DLPFC) samples from healthy individuals aged 
39 days to 49.5 years. These proteomic data were integrated with paired transcriptome data 
from matching DLPFC samples and together comprise a unique resource of well-annotated 
anatomical structures of fresh human brains from seven different developmental stages. A 
multistep analytic approach was used that specifically sought to address two main goals: (1) to 
identify proteins and networks of highly correlated proteins significantly associated with distinct 
developmental stages and that changed with human age; and (2) to determine the biological 
organization of the proteome across postnatal development and clarify the relationship 
between protein levels and their corresponding mRNA levels in the DLPFC. We share our data 
in an integrative, searchable companion website to enable the discovery and localization of 
RNAs and proteins of interest for further investigation and to enhance our understanding of the 
temporally-defined molecular mechanisms governing typical and pathological DLPFC 
development. 
 
MATERIALS AND METHODS 
 
Postmortem brain sample ascertainment 
 
The current study analyzed fresh frozen postmortem dorsolateral prefrontal cortex (DLPFC) 
tissue (BA46) from 69 individuals varying in age from 39 days to 49.5 years (Table S1). The 
age range investigated in the current study reflects the vulnerability period for the development 
of neurodevelopmental and neuropsychiatric disorders. All samples were obtained from the 
National Child Health and Human Development Brain and Tissue Bank for Developmental 
Disorders at the University of Maryland, Baltimore, USA (UMBB). All subjects were defined as 
healthy individuals by forensic pathologists at UMBB, having no history of psychiatric or 
neurological complaints, also confirmed by next of kin interviews. These collected DLPFC 
samples comprised a broad range of developmental milestones, spanning neonatal (n=11), 
infantile (n=14), toddler (n=10), school aged (n=9), adolescence (n=8), young adulthood (n=9) 
and adulthood (n=8). Each developmental stage was matched for gender, postmortem interval 
(PMI), pH and ethnicity. The total sample included 41 males and 28 females covering African 
American (n=36), Caucasian (n=34), and Hispanic (n=1) ethnic backgrounds. The average 
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measures for PMI and pH are as follows: PMI (17.1 ± 7.0 hrs.); pH (6.6 ± 0.2). A subgroup of 
these samples also underwent microarray transcriptome profiling (n=44), consisting of 27 
males and 17 females, and covariates were recorded: pH (6.7 ± 0.15), PMI (16.9 ± 7.5 hrs.) 
and ethnicity (24 Caucasian, 20 African American). Detailed demographic and technical 
information on all samples can be found in Table S1. 
 
Tissue and protein extraction  
 
Samples were dissected using a fine dental drill from the middle frontal gyrus at a level just 
rostral to the genu of the corpus callosum and the resulting tissue (average weight ~500 mg) 
was stored at −80°C until use. Proteins were extracted by sonicating each sample (~70mg) in 
350μl lysis buffer (7M urea, 2M thiourea, 4% 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS), 2% ASB14 and 70mM dithiotreitol (DTT), followed by sonication 
for 2 cycles of 15 seconds on ice using a Branson Sonifier 150 (Thistle Scientific; Glasgow, 
UK). A 50μl aliquot of each protein extract was precipitated for 4hr with 200μl of acetone at -
20°C. The precipitates were centrifuged for 30 min at 13400 rpm, at 4°C, the acetone 
supernatant decanted and discarded. The resulting pellets were re-suspended in 200μl of 
50mM ammonium bicarbonate (pH 8.0) and sonicated for 10 seconds. Once re-suspended, 
protein concentration was measured by Bradford Assay. An aliquot of each precipitated protein 
extract, equivalent to 100ug of protein, was reduced with 100mM DTT for 30 min at 60°C, 
alkylated with 200mM iodoacetamide at room temperature for 30 min in dark and digested with 
4μl of 0.5μg/ul of modified sequencing grade trypsin at 37°C for 17hrs. Digestion reaction was 
stopped by adding 0.80μl 8.8M Hydrochloric acid (1:60). An aliquot of 5μl from each digested 
sample was pooled together to be used as standard26.  
 
Liquid chromatography-mass spectrometry and protein quantification 
 
Tryptic peptides were analyzed by a shotgun LC-MS approach using a 1290 Infinity LC 
coupled to Agilent 6550 iFunnel Q-TOF instrument (Agilent technology, USA). Peptide 
separation was carried out using an Agilent AdvanceBio Peptide column (2.1 µm x 250 mm, 
2.7 µm) over a 90 min linear gradient of 3 to 45% ACN. The flow rate was 0.3mL/min and the 
column temperature was set to 500C. Peptides were then detected by quadrupole time-of-flight 
(Q-TOF) MS operated in positive mode. Acquisition was in data-dependent mode over m/z 
300–1700. The top 10 precursor ions were scanned from 300-1700 and MS/MS from 50–1700. 
The precursor ions were then automatically isolated and fragmented using collision induced 
dissociation (CID) with a relative collision energy calculated using the formula, 3.6*(m/z)/100+-
4.8. Data files were processed by Spectrum Mill Protein Identification software (Rev 
B.05.00.180, Agilent Technologies, USA). The protein identification was executed against the 
Swiss-Prot database (released in February 2015, Homo sapiens). Search parameters were as 
follows; precursor mass tolerance, 20 ppm; product ion mass tolerance, 50 ppm; maximum two 
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missed cleavages allowed; digested by trypsin; fixed modification of carbamidomethyl cysteine; 
variable modifications of oxidized methionine. After MS/MS searching, auto-validation was 
carried out by calculating the false-discovery rate (FDR). A FDR threshold of 1.2 was applied. 
Relative protein quantification was achieved using only distinct peptides that assigned to each 
protein.  Unique peptide intensities were calculated from extracted ion chromatograms (MS1) 
from the precursor ions. Total peak intensities of all distinct peptides were then calculated to 
form relative protein expression levels.  
 
RNA isolation and microarray hybridization 

 
All RNA procedures have previously been described27. Briefly, total RNA was extracted from 
dorsolateral prefrontal cortex samples using Trizol (Sigma-Aldrich, St. Louis, MO, USA) and RNA 
quality was assessed using a high-resolution electrophoresis system (Agilent Technologies, Santa 
Clara, CA, USA). Isolated total RNA was subjected to Affymetrix preparation protocol and each 
sample was hybridized to one HG-U133 Plus 2.0 GeneChip (Affymetrix, Santa Clara, CA, USA) to 
quantify transcriptome-wide gene expression. 

 
Data pre-processing 
 
All data pre-processing and statistical analyses were conducted in the statistical package R. 
Proteins detected in at least 60% of all samples were labeled high-confidence proteins and 
used for downstream analyses. First, all data were normalized to fit approximate normal 
distribution. Protein data were median scaled by all runs and log(e) transformed. Protein 
Uniprot IDs were converted to HGNC symbols using the Uniprot database 
(http://www.uniprot.org/uploadlists/). Microarray data were normalized using the robust multi-
array average normalization with additional GC-correction (GCRMA)28. When multiple 
microarray probes mapped to the same HGNC symbol, the probe the highest average 
expression across all samples was used. Following normalization, all  data were inspected for 
outlying samples using unsupervised hierarchical clustering (based on Pearson coefficient and 
average distance metric) and principal component analysis to identify potential outliers outside 
two standard deviations from these grand averages; no outliers were present in these data. 
Linear mixed models from the R package29 were used to characterize and identify biological 
and/or technical drivers that may affect the observed RNA and protein abundance. This 
approach quantifies the main sources of variation in each expression dataset attributable to 
differences in age, age group, gender, PMI, pH and ethnicity. Finally, to identify age-related 
genes and proteins, generalized linear models with Bonferroni multiple test correction were 
implemented. The covariates gender, pH, PMI and ethnicity were included in the models to 
adjust for their potential confounding influence on RNA and protein expression (lm(Age ~ 
Expression + PMI + sex + pH + ethnicity)). Further, a Spearman’s correlation test was used to 
identify individual genes and proteins whose expression profile were significantly correlated 
with a pre-defined developmental stage or template (e.g. toddlers), which had been binarized 
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(0 or 1) to quantify associations with expression.  
 
Weighted correlation network analyses 
 
Prior to network analysis, missing protein values were imputed using predictive mean matching 
in the MICE package30 (number of multiple imputations, m=5; the number of iterations, 
maxit=50). A high confidence set of proteins detected in at least 60% of the sample were used 
to make meaningful imputations. Weighted gene correlation network analysis (WGCNA) 31 was 
used to build signed co-expression networks independently for the transcriptome (n=20,122 
genes) and proteome (n=584 proteins). To construct each network, the absolute values of 
Pearson correlation coefficients were calculated for all possible gene pairs (transcriptome 
data) and protein pairs (proteome data), and resulting values were transformed with an 
exponential weight (β) so that the final matrices followed an approximate scale-free topology 
(R2). Thus, for each network we only considered powers of β that lead to a network satisfying 
scale-free topology (i.e. R2>0.80), so the mean connectivity is high and the network contains 
enough information for module detection. The dynamic tree-cut algorithm was used to detect 
network modules with a minimum module size set to 30 and cut tree height set to 0.9999. The 
identified RNA and protein modules were inspected for association to age, as well as seven 
distinct postnatal stages and all recorded covariates. To do so, singular value decomposition of 
each modules expression matrix was performed and the resulting module eigengene (ME), 
equivalent to the first principal component, was used to represent the overall expression 
profiles for each module per sample. Modules were evaluated both quantitatively and 
qualitatively for expression patterns significantly associated with age (Figure S3). Fisher’s 
exact tests were used to assess the overlap of RNA and protein modules and correlations 
amongst RNA and protein ME’s were explored using Pearson’s correlation coefficients.  
 
A series of module preservation analyses sought to determine whether (i) co-regulated 
modules of proteins are preserved at the RNA level and (ii) whether RNA modules are 
reproducible in independent BrainSpan data. We collected publically available BrainSpan data 
(http://www.brainspan.org/) and used only postnatal samples (n=17) to best reflect the 
developmental biology of our current sample (Fig. S8). For these analyses, module 
preservation was assessed using a permutation-based preservation statistic, Zsummary, 
implemented within WGCNA with 500 random permutations of the data32. Zsummary takes into 
account the overlap in module membership as well as the density and connectivity patterns of 
genes within modules. A Zsummary score <2 indicates no evidence of preservation, 2<Zsummary<10 
implies weak preservation and Zsummary >10 suggests strong preservation.  
 
Functional annotation and protein-protein interaction networks  
 
All age-related RNAs and proteins identified through either linear regression or network-based 
analyses, were subjected to functional annotation using the ToppFun module of ToppGene 
Suite software33. We explored gene ontology terms related to biological processes and 
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molecular factors using a one-tailed hyper-geometric tested (Benjamini-Hochberg FDR 
corrected) to assess the significance of the overlap. All terms must pass an FDR corrected p-
value and a minimum of five genes/proteins per ontology were used as filters prior to pruning 
ontologies to less redundant terms.  
 
The STRING database v9.134 was used to assess whether RNA and protein modules were 
significantly enriched for direct protein-protein interactions (PPIs) and to identify key 
genes/proteins mediating the regulation of multiple targets. For these analyses, our signature 
query of RNA or protein modules were used as input. STRING implements a scoring scheme 
to report the confidence level for each direct PPI (low confidence: <0.4; medium: 0.4-0.7; high: 
>0.7). We used a combined STRING score >0.04. Hub genes within the PPI network are 
defined as those with the highest degree of network connections. We further used STRING to 
test whether the number of observed PPIs were significantly more than expected by chance 
using a nontrivial random background model. For visualization, the STRING network was 
imported into Cytoscape35.  
 
Cell type and genetic risk loci enrichment analyses 
 
CNS cell type specific markers were collected from three independent resources, including cell 
type specific genes from RNA-sequencing36,37 and mass spectrometry-based proteomics38. In 
order for a gene/protein to be labeled cell type specific, each marker required a minimum log2 
expression of 1.4 units and a difference of 0.8 units above the next most abundance cell type 
measurement, as previously shown18. Mouse homologues were identified and converted into 
human HGNC gene symbols using the mygene R package39. In parallel, neurodevelopmental 
disorder genetic risk loci were curated from human whole exome and genome-wide 
association studies of autism spectrum disorder40, epilepsy41, developmental delay (OMIM)42, 
intellectual disability15 and schizophrenia43. Overrepresentation of cell type markers and 
genetic risk-related gene sets within proteome and transcriptome modules was analyzed using 
a one-sided Fisher exact test to assess the statistical significance. All P-values, from all gene 
sets and modules, were adjusted for multiple testing using the Benjamini Hochberg procedure. 
We required an adjusted P-value <0.05 to claim that a gene set is enriched within a module. 
Lists of neurodevelopmental genetic risk loci can be found in Table S7.  
 
Cell type deconvolution 
 
The frequencies of brain cell types were estimated for proteomic using Cibersort44 cell type de-
convolution (https://cibersort.stanford.edu/). Cibersort relies on known cell subset specific 
marker genes and applies linear support vector regression, a machine learning approach 
highly robust compared to other methods with respect to noise, unknown mixture content and 
closely related cell types. As input, we used a curated cell type specific protein signature 
matrix38 to distinguish between neurons, oligodendrocytes, astrocytes and microglia. We were 
unable to obtain sufficient enough overlap for microglial markers based on protein detection to 
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make meaningful predictions for this cell type.  
 
Data availability 
 
To promote the exchange of this information, we developed an interactive website with an 
easily searchable interface to act as a companion site for this paper: the DEveLopmental 
Trajectory Atlas (DELTA) in DLPFC is available from the following URL: 
http://amp.pharm.mssm.edu/DELTA. In addition, all sample descriptions, proteomic and 
transcriptomic data are available and can directly downloaded from this site. Alternatively, 
gene expression data can be downloaded from GEO using accession GSE13564.  
 
RESULTS 
 
Proteome organization in the developing dorsolateral prefrontral cortex 
 
A shotgun proteomics approach was applied to measure temporal protein abundance in 69 
DLPFC samples (Brodmann area 46) from normal individuals, aged 39 days to 49.5 years of 
age. Following standardized data pre-processing (Fig. S1), we detected 911 proteins for which 
a total of 386 proteins were assigned low-confidence measures of protein detection and 584 
proteins were assigned high-confidence on the basis of being detected across >60% of all 
samples (see methods). For the low-confidence proteins, rates of protein detection were 
moderately influenced by different developmental stages, whereby 60 proteins, which were 
predominately post-synaptic density proteins, were more likely to be detected during early 
developmental stages and 99 proteins, which were implicated in cellular respiration and 
GTPase binding, were more likely to be detected during adulthood (Fig. S2, Table S2). 
 
To reduce the probability of false positives, we restricted downstream analyses to only proteins 
with high-confidence levels of protein detection. For these proteins, a substantial amount of 
protein expression variation was explained by age relative to other biological factors (Fig. 1 A-
C). Next, we sought to identify proteins that were significantly regulated as a function of 
postnatal age and identified 83 proteins (FDR p<0.05), including 66 with decreasing 
abundance and 17 with increasing abundance across postnatal stages (Table S2). The top ten 
most significantly increased and decreased age-related proteins are displayed in Table 1. 
Several significant age-related proteins mapped to known neurodevelopmental genetic risk 
loci, including genetic loci implicated in autism spectrum disorder (ASD) (ANK2, YWHAE, 
L1CAM, FABP5, NRCAM), intellectual disability (L1CAM, PLP1, PSAP, QDPR) and 
schizophrenia (NCAN, ALCAM, GNAO1, PSAP, NFASC). In addition, we also observed that 
the neonatal time period (38-89 days) explained the largest fraction of protein level variability 
according to age, including 131 neonatal-related proteins (FDR p<0.05) strongly enriched for 
central nervous system development, neurogenesis and gliogenesis (Fig. S3, Table S3). 
Notably, no proteins displayed sex-dependent effects across development. 
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To characterize the temporal organization of the proteome we ran unsupervised weighted 
correlation network analysis and identified five modules of co-regulated proteins, three of which 
were significantly associated with development and age (Fig. 1D, Fig. S4-5). Two age-related 
modules displayed increasing expression throughout development (FDR P<0.05) and were 
enriched for processes related to myelination and gliogenesis (M1, 82 proteins, r=0.71, 
p=1.0×10-11) and gluconeogenesis and NADH metabolism (M2, 30 proteins, r=0.58, p=2.0×10-

7) (Fig. 1E-G). One age-related module displayed decreasing expression across development 
and was implicated in axonogenesis, neurogenesis and cytoskeleton organization (M4, 198 
proteins, r=-0.77, p=2.3×10-14) (Fig. 1H). The remaining two modules were not significantly 
associated with age nor with any other developmental stages or technical factors, and were 
enriched for functions related to cellular respiration and ATP metabolic processes (M3, 194 
proteins) and nucleotide metabolism and oxidation-reduction processes (M5, 80 proteins) (Fig. 
S6). Collectively, all five modules were significantly enriched for direct protein-protein 
interactions (PPI), beyond what would be expected by chance (Table S4), and PPI networks 
were constructed for each module (Fig. S6-7). Densely connected hub proteins for each age-
related module included, MBP and PGM1 for module M1, ENO2 and MDH1 for module M2 and 
UBC and HSP90AA1 for module M4. Further, cell type deconvolution revealed that the majority 
of proteins expressed across all DLPFC samples were specific to neuronal and 
oligodendrocyte cell types, and further highlighted substantial decreases in neuronal cell 
populations paralleled by increases in oligodendrocytes throughout development (Fig. 1I); 
results which correlated with transcriptome-based estimates (Fig. S8).  
 
Correspondence between transcriptome and proteome module organization  
 
A total of 556 common HGNC symbols were detected between our high confidence, 
reproducible proteins and transcriptome-wide gene expression assays (Fig. 2A). Similar to the 
proteome, the largest amount of gene expression variability was explained by age, as 
compared to any other factor (Fig. S1). Comparably, the neonatal time period (39-89 days) 
also explained the largest fraction of transcriptome variation by age, albeit to a lesser extent 
than in the proteome, including genes primarily involved in ATP metabolic processes (Fig. S2). 
Meanwhile, variation across the sexes was small genome-wide, but it explained a large 
percentage of expression variation for genes on chrX and chrY. Linear regression analyses 
identified ~11.5% of the transcriptome was associated with postnatal development, including 
1145 genes with increasing expression and 1181 genes with decreasing expression across all 
developmental stages (FDR p<0.05). (Fig. S2, Table S5). These age-related genes also 
included several known neurodevelopmental genetic risk loci implicated in ASD (LRP1, 
RNF135, YWHAE), schizophrenia (TEKT4, LRP1, DNAH1, BRSK1, INTS1, ZC3H10, 
METTL14) and developmental delay (SCYL1, PIGQ, OBSL1, SMARCB1, CEP135, SPG11, 
TAF1, TAT, FAM126A, RAD21). Notably, 27 molecules were uniquely detected at the protein 
level, and a significant fraction were enriched for oxidative phosphorylation-related processes 
(FDR p=2.3×10-8).  
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Weighted correlation network analysis identified eight modules of co-regulated genes (Fig. 
2B), which displayed a high degree of reproducibility compared to existing postmortem 
BrainSpan data (Fig. S9). Four of the eight modules were significantly associated with 
postnatal development, including two modules implicated in gliogenesis (M4_t, 2624 genes, 
r=0.54, p=2.4×10-4) and ATP metabolic processes (M6_t, 5078 genes, r=0.72, p=4.1×10-5) with 
increasing expression, and two modules involved in neurogenesis (M1_t, 3046 genes, r=-0.71, 
p=8.6×10-8) and synaptic signaling (M2_t, 403 genes, r=-0.53, p=2.2×10-4) with decreasing 
expression throughout postnatal development (Fig. S10). One immune response-related 
module was significantly associated to the toddler postnatal age group (1.2-5.1 years) (M7_t, 
384 genes, r=0.52, p=3.3×10-4). Interestingly, a number of significant overlaps were identified 
between transcriptome modules and proteome modules (Fig. 2B). The majority of overlapping 
RNA- and protein-based modules also displayed a high degree of collinearity (Fig. 2C) and 
shared similar biological functions, including modules involved in gliogenesis and myelination 
(M1, M4_t), ATP metabolic processes (M2, M3, M5, M6_t) and neurogenesis (M4, M1_t) (Fig. 
2D-G). Overall, all five protein modules were well represented at the RNA level (Fig. 2G).  

 
Correspondence between RNA and protein levels throughout postnatal development 
 
We further quantified the association between gene and protein level expression using a 
subgroup of DLPFC samples for which paired transcriptome and proteome data were available 
(n=44). We first examined the degree of within-sample correlation using 556 paired RNAs and 
proteins, and then by sub-setting these analytes according to the five previously identified 
protein modules (Fig. 3A). Across all analytes, we found weak-to-moderate within-sample 
correspondence (Pearson’s r=0.15-0.40), with the highest correlations observed for RNA and 
protein products involved in gliogenesis and myelination (M1, r=0.26-0.53) and the lowest 
correlations for RNA and protein products involved in nucleotide and ATP metabolic processes 
(M5, r=-0.05-0.22). Subsequently, we explored these within-sample correlations as a function 
of age and found that the correspondence between RNAs and their respective translated 
proteins is higher for early developmental stages and lower for later developmental stages, 
indicating an overall decrease in correlation between RNA and protein level expression 
throughout postnatal development (r=-0.56, p=6.4×10-5). This decreased correlation was also 
significant for subgroupings of RNAs and proteins involved in processes of myelination and 
gliogenesis (M1, r=-0.30, p=0.04) and neurogenesis and cytoskeleton organization (M4, r=-
0.67, p=3.9×10-7) (Fig. 3B,E). These age-related differences prompted us to investigate the 
degree of conservation in protein-based co-expression networks at the RNA level, for which we 
found no preservation for co-regulated RNAs implicated in nucleotide metabolic processes 
(M5) (Fig S11). Finally, we examined correlations between the 556 RNA-protein pairs across 
all samples (opposed to within-samples), as a function of postnatal development. Overall, a 
high level of correspondence was observed when comparing age-related linear regression 
results (t-statistics) computed separately for individual RNAs and proteins (r=0.62, p=2.4×10-60) 
(Fig. 3C). Upon closer inspection, 78.4% of all RNA-protein pairs were positively correlated 
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throughout development while the remaining were negatively correlated (Table S6). Notably, 
we find that RNA expression profiles that are significantly associated with cortical development 
(FDR p < 0.05) display higher correlations with their respective translated protein level 
expression compared to RNA expression profiles that are not significantly age-related 
(p=6.4×10-25) (Fig. 3D). 
 
Cell type and neurodevelopmental disorder genetic risk loci enrichment 
 
We sought to determine whether the transcriptome- and proteome-based modules were 
strongly linked to the underlying cellular architecture in the developing DLPFC using previously 
defined cell type specific markers (Fig. 4A). Three different cell type specific resources were 
used to discover and validate cell type enrichments, including those based on RNA36,37 and 
protein discovery38. As expected, several proteome and transcriptome modules were 
significantly enriched for known cell type specific markers and demonstrated high 
reproducibility across three independent resources. Protein module M1 was consistently 
enriched for oligodendrocyte and astrocyte cell types. Protein modules M3 and M4 also 
consistently displayed significant over-representation for neuronal cell type markers. In parallel, 
several transcriptome-based modules displayed consistent enrichment for CNS cell type 
markers, including modules M1_t, M2_t and M6_t enriched for neuronal markers, M3_t 
enriched for astrocyte markers, M5_t enriched for oligodendocyte markers, and M7_t enriched 
for microglial markers. Notably, no protein module displayed enrichment for microglial cell 
markers, which is consistent with our cell type estimates that indicate our DLPFC proteome 
samples are predominately comprised of neuronal and oligodendocytes cell types.  
 
Subsequently, we sought to determine whether genes associated with risk for 
neurodevelopmental disorders converge on common cellular and biological processes during 
human cortical development in the proteome and transcriptome. Intellectual disability (ID) 
genes tightly coalesce in proteome and transcriptome modules that implicate gliogenesis 
(M1, ∩=7, p=0.009; M4_t, ∩=70, p=0.006) and ATP metabolism functions 
(M3, ∩=20, p=2.2×10-9; M6_t, ∩=120, p=0.01) (Fig. 4B). Similarly, developmental delay (DD) 
risk variants were concentrated in the same modules associated with gliogenesis (M1, ∩=11, 
p=0.001; M4_t, ∩=147, p=0.003) and ATP metabolism (M3, ∩=35, p=2.4×10-12). The ID genes 
used here represent  high confidence genes implicated in monogenic forms of ID from multiple 
publications, whereas the DD genes are those available from the Developmental Disorders 
Genotype-Phenotype Database (DDG2P). Both ID and DD are relatively common pediatric 
disorders with overlapping symptomologies. These loci also constituted several hub proteins 
within proteome module M3, including NDUFS1-8, SYN1, STXBP1 and MAP2K1 (Fig 
S6A).Together, these results support the notion that common and rare variants contribute to ID 
and DD by perturbation of processes encoding ATP metabolism and myelination. In addition, 
similar to previous reports, we also confirm strong enrichment for several ASD and SCZ 
genetic risk loci in neurogenesis-related module M4 in the proteome (∩=4, p=0.04; 
∩=10, p=0.04, respectively) as well as module M1_t in the transcriptome (∩=59, p=8.2×10-16; 
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∩=134, p=4.3×10-9, respectively). These analyses, and others, can be performed using our 
online software tool (http://amp.pharm.mssm.edu/DELTA). 
 
DISCUSSION 
 
Proteins are the functional components of cells in the CNS, however our understanding of the 
brain proteome continues to lag behind the pace of transcriptome discovery. This discrepancy 
is largely due to the lack of established proteome-wide technologies, which have only recently 
matured to enable improved protein detection and coverage. To provide a foundation for an 
age-dependent brain proteome map, we performed label-free LC-MS proteomic analysis 
across 69 human DLPFC (BA46) samples, aged 35 days to 49.5 years of age, which 
comprised seven different developmental stages. Our approach identified 911 highly abundant 
and reproducible proteins across a large number of developmentally distinct biological 
replicates and resulted in the largest collection thus far of protein expression data in the 
developing human DLPFC. The proteins detected here function to sub-serve some of the most 
fundamental CNS cell signaling cascades required for typical cortical development. By 
integrating these data with transcriptome data, we were able to examine relationships between 
RNA and protein expression levels, which revealed a much tighter coupling of RNA and protein 
expression during early developmental stages (i.e. neonatal and infant) compared to later 
stages (i.e. adulthood). Finally, we examined RNA and protein networks enriched for 
neurodevelopmental genetic risk loci, to gain insight into how mutations in risk genes may 
perturb molecular pathways during healthy brain development. We discuss these points in turn 
below.  
 
The majority of the detected proteins in the current investigation (~64.1%) were associated 
with cortical development and formed functional protein modules, which harbored a large 
number of direct protein-protein interactions. Two protein modules were identified, which 
gradually increased in expression across cortical development and enriched for gliogenesis, 
myelination and olidodendrocyte cell type specificity (M1) as well as NADH metabolism and 
gluconeogenesis (M2), while one module was decreasing in expression and implicated in 
axonogenesis, cytoskeleton organization and neuronal cell types. These modules represent 
some of the most basic CNS functions and their expression profiles are at least partially driven 
by a shifting CNS cellular landscape throughout cortical development, as reflected by the 
observed neuron-glia oscillations. Although cell division and migration of neurons are largely 
prenatal events, neurogenesis is known to persist throughout adult life, albeit to a limited level 
and produce only a small fraction of the neuronal population46,47. In contrast, proliferation and 
migration of glial progenitors, while beginning prenatally, continue for a protracted period as 
oligodendrocytes and astrocytes differentiate. Oligodendrocyte cells begin to differentiate by 
increasing myelin protein expression, as evident in the current study. However, much 
uncertainty has existed regarding the extent of postnatal proliferation, migration and 
differentiation, and about the timing of these processes relative to each other46. Our results 
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indicate that the greatest degree of change likely occur during school age years (3-15 years of 
age), and that these neuron-glia changes appear to play an important role in the functional 
organization of neural circuits during early and late stages of postnatal development. We also 
report marked increases in discretely co-regulated proteins involved in NADH metabolism and 
gluconeogenesis (M2) across development, which is consistent with the well-known energy 
requirements of the brain48. Previous work by us and others suggests that myelination is also a 
major energy-demanding process in the brain27,49, especially during postnatal life. For 
example, myelin synthesis is an ATP-dependent process and oligodendrocytes often oxidize 
glucose at higher rates than neurons50, supporting these distinct changes in protein modules 
across time. To this end, two additional protein modules were identified peaking in expression 
during the ages of 6 months to 1 year and were enriched for cellular respiration and ATP 
metabolism (M3) and purine ribonucleoside monophosphate activity (M5), which likely 
represent shared components of a larger glycolysis, cellular respiration and oxidative 
phosphorylation cycle, along with M2. Importantly, glucoregulatory abnormalities, oxidative 
stress vulnerability and oligodendrocyte dysfunction have been prominently linked to 
neuropsychiatric and neurodegenerative disorders51-53, and a detailed understanding of how 
these proteins unfold in expression throughout cortical development may guide future follow-up 
studies targeting these pathways.  
 
In the context of the temporally dynamic expression profiles, a fundamental question is 
whether RNAs and their respective translated proteins correlate throughout postnatal 
development. We observed within-sample Pearson correlation coefficients between 0.15 and 
0.40. Several studies have also found similar low correlations in human19,20 and murine 
tissues38. These discrepancies may be due to well-known differences in the regulation, 
localization, structures and functions of mRNA and proteins. However, a novel finding from the 
current study, is that when presenting these correlations as a function of postnatal age, we 
identified that correlations between RNA and protein expression tend to decrease throughout 
development (r=-0.56, p=6.4×10-5), in that younger samples tend to have higher RNA-protein 
correlations and older samples tend to have weaker RNA-protein correlations (Fig 3B). This 
negative trend accelerated for genes implicated in myelination (M1) and cytoskeleton 
organization (M4). Interestingly, the efficiency of myelination decreases with age, a process 
largely regulated by age-dependent epigenetic control of gene expression54. That is, during 
infancy, myelin synthesis is preceded by down-regulation of oligodendrocyte differentiation 
inhibitors, and this is associated with recruitment of histone deacetylase to promoter regions; a 
process that becomes less efficient in adulthood and ultimately prevents a successive surge in 
myelin gene expression54-56. Regarding the weakening correlation of cytoskeleton-related RNA 
and protein expression across postnatal development, it is clear that cytoskeleton plays a vital 
role in regulating CNS cell mechanics with age. Moreover, since several studies have shown 
that many neurodevelopmental disorders are likely influenced by aberrant cytoskeleton 
organization, it is important to understand how the expression and interaction of cytoskeletal 
proteins change with age. Overall, these results shed light on several candidate myelination 
and cytoskeleton proteins for follow-up functional studies to assess whether insufficient 
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amounts of translated protein product during early development may negatively impact nerve 
cell shape, motility and communication thereby leading to behavioral and/or developmental 
deficits. 
 
We also examined the correspondence between 556 RNA-protein pairs across all samples and 
found that the majority of pairs (78.4%) correlate positively across development, while others 
do not, and in some instances display strong negative correlations (Table S6). It is unlikely that 
false positives can fully explain these low/negative correlations. Therefore, it may be that 
varied levels of regulation, such as translational regulation, supersede the transcriptional level  
and provide biological fine-tuning for the specific conditions encountered by the cells. 
Furthermore, protein half-life and translational rates can also vary, which can effect the 
correlation between RNA and protein levels. However, it is notable that RNA profiles, which 
were not associated with postnatal development displayed significantly lower correlation 
distributions compared to RNA profiles, which were significantly associated with aging and 
development (Fig. S11). Thus, our results show that significant age-related changes in gene 
expression commonly co-occur with tighter correlations with protein levels, giving further 
confidence for the use of mRNA data for biological discovery. 
 
One important similarity across the brain transcriptome and proteome was the consistent 
mapping of intellectual disability and developmental delay genetic risk loci to modules enriched 
for myelination, gliogenesis, and ATP metabolic processes. These modules displayed a 
collinear patter of expression between RNA and protein products, peaking in expression during 
adolescence and adulthood (Fig. 2D-F). As there is a close interdepency between myelin 
synthesis and ATP-dependent processes, a disorder affecting one of the two inevitably also 
leads to disturbance of the other. Indeed, defective myelination and ATP processes have been 
reported as key factors causing pathogenic processes involved in these disorders15,57,58, and 
these data provide further substantial evidence in the broader context of long-term brain 
development. These results support the notion that common and rare variants contribute to ID 
and DD by perturbation of common gliogenesis and ATP metabolism networks. In parallel, 
ASD variants resided primarily in neuronal-based modules in the transcriptome, and not in the 
proteome. These results echo recent large transcriptome network studies that demonstrate the 
involvement of neuronal and synaptic processes involved in ASD12,16,17. We also mapped 
epilepsy genetic risk loci to oxidative phosphorylation-related modules in the proteome, 
consistent with growing evidence that deficits in oxidative phosphorylation complexes can 
result in increased oxygen and free-radical release likely implicated in the initiation and 
progression of epilepsy59.  
 
Our study also has some limitations. First, while our selective approach sought to inform CNS 
development by detecting highly abundant and reproducible proteins across 69 
developmentally distinct biological replicates, the data presented here may represent an 
incomplete picture of the entire proteome. We are unable to discuss the developmental role of 
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lowly abundant proteins. Moreover, 556 proteins were represented at the mRNA level, a 
marginal 3.5% of the detected transcriptome. Despite, with this level of detection we were able 
to capture a considerable amount of protein variability and functionality across postnatal 
development compared to paired transcriptome data. That is, all of the age-related 
transcriptome modules (M1_t, M2_t, M4_t, M6_t: 11,150 genes total), which comprised 55.4% 
of the observed transcriptome, were well represented at a functional level in the proteome, 
even though fewer proteins were detected; emphasizing that the majority of the detected 
proteins are highly expressed and sub-serve for some of the most fundamental CNS molecular 
processes. Nonetheless, it is possible that future reports applying deeper analytical techniques 
will enable both greater proteome coverage. A second caveat to these data is the lack of 
prenatal samples, developmental stages when gene expression patterns appear to be most 
dynamic. For example, vast increases in expression for synapse and dendrite development 
genes occur prenatally and taper off in the first decade of postnatal life10,60, and went 
undetected in the current investigation likely due to the lack of prenatal samples. Moreover, it is 
challenging to directly compare these age-related proteomics results to those derived from 
other studies due to extensive differences in proteomic technologies and the ascertainment of 
postmortem tissues. However, in contrast to previous proteomic studies, we were able to 
capitalize on larger postnatal developmental group sizes (2.5× larger), thus increasing our 
ability to identify biologically meaningful age-related proteins and protein networks. As these 
concerns are addressed in the future, it will be possible to reveal further insights into the 
transcriptional and translational foundations of human brain development.  
 
Our unbiased, global approach outlined both similarities and differences of the developing 
DLPFC between the transcriptome and proteome across postnatal development. The various 
proteins detected and discussed are likely to be candidates for further functional and/or 
synaptic developmental studies. Therefore, to promote the exchange of this information, we 
developed a website with an easily searchable interface to act as a companion to this resource 
paper: the DEveLopmental Trajectory Atlas (DELTA) in DLPFC is available from the following 
URL: http://amp.pharm.mssm.edu/DELTA. This website will be maintained and periodically 
updated as additional data emerge from this unique cohort. Using the website researchers can: 
1) query any protein/gene symbol of interest to determine at which developmental stage it is 
expressed; 2) determine whether a user submitted input list of proteins/genes is over-
represented within our identified proteomic and transcriptomic gene modules; 3) download all 
corresponding proteomic and transcriptomic data. Our expectation is that the website and the 
data that it hosts will serve as a resource to stimulate and enable additional studies to further 
elucidate the complex molecular controls guiding postnatal human cortical development. 
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Table 1 

 
Table 1. Top ten up and down age-related proteins throughout postnatal development with paired RNA products.  

Uniprot ID HUGO gene symbol (name) Proteome Transcriptome 
t-statistic  Adj. P-value t-statistic  Adj. P-value 

O15075 DCLK1 (doublecortin like kinase 1) -10.786 6.02E-16 -3.836 4.46E-04 
P22676 CALB2 (calbindin 2) -9.154 3.51E-13 -11.731 2.31E-14 
Q9BPU6 DPYSL5 (dihydropyrimidinase like 5) -8.951 7.86E-13 -12.522 3.05E-15 
P52306 RAP1GDS1 (Rap1 GTPase-GDP dissociation stimulator 1) -8.950 7.90E-13 -5.331 4.39E-06 
P05413 FABP3 (fatty acid binding protein 3) -8.511 4.57E-12 -2.295 2.72E-02 
P29966 MARCKS (myristoylated alanine rich protein kinase C substrate) -8.321 9.79E-12 -11.097 1.24E-13 
Q12860 CNTN1 (contactin 1) -7.733 1.05E-10 -3.490 1.22E-03 
P55072 VCP (valosin containing protein) * -7.688 1.25E-10 -3.995 2.78E-04 
Q6PCE3 PGM2L1 (phosphoglucomutase 2 like 1) -7.639 1.53E-10 -7.150 1.33E-08 
O14594 NCAN (neurocan) ‡ -7.256 7.13E-10 -8.759 9.49E-11 
P09417 QDPR (quinoid dihydropteridine reductase) † 7.707 1.16E-10 10.303 1.09E-12 
P49189 ALDH9A1 (aldehyde dehydrogenase 9 family member A1) 6.201 4.81E-08 2.478 1.77E-02 
O94856 NFASC (neurofascin)  ‡ 5.917 1.47E-07 3.699 6.65E-04 
P07602 PSAP (prosaposin) † ‡ 5.818 2.16E-07 9.804 4.47E-12 
P12277 CKB (creatine kinase B) 5.590 5.22E-07 N/A N/A 
O94811 TPPP (tubulin polymerization promoting protein) 5.257 1.86E-06 10.842 2.47E-13 
P14618 PKM (pyruvate kinase, muscle) 5.190 2.39E-06 10.344 9.73E-13 
Q16653 MOG (myelin oligodendrocyte glycoprotein) 5.180 2.48E-06 4.991 1.29E-05 
P13611 VCAN (versican) 5.170 2.58E-06 -2.601 1.31E-02 
Q969P0 IGSF8 (immunoglobulin superfamily member 8) 5.038 4.21E-06 2.104 4.19E-02 
Linear regression models adjusted for pH, PMI, sex and ethnicity. The direction of change (t-statistic) across postnatal 
development and P-value significance are displayed for each protein and paired RNA product. Candidate neurodevelopmental 
genetic risk loci are symbolized: *, autism; †, intellectual disability; ‡, schizophrenia.  N/A indicates not detected. 
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Main Figures 
 

Figure 1 
 

 
Figure 1. Protein expression and function in the developing DLPFC.  (A) Sample characteristics for LC-MS 
proteomic data (N=69) and a subgroup of DLPFC samples with additional transcriptome data (N=44). (B) 
Principal component analysis on global normalized protein abundance, samples are shaded by age (39 days - 
49.5 years). (C) variancePartition linear mixed model analysis of global protein abundance identifies age as a 
leading trait explaining most of observed protein variability. (D) Weighted correlation network analysis identified 
five protein modules, three significantly associated with age. X-axis indicates -log10 P-value significance. Module 
names and the number of proteins within each module are displayed right of dendrogram. (E) Age (x-axis) relative 
to module eigengene (ME) expression (y-axis) for modules M1 and M2 increasing throughout development and 
module M4 decreasing throughout development. Smoothing linear spline models (knot=4) were fit for each ME 
across age. Seven post-natal developmental stages are color shaded and labeled (SA, school age; YA, young 
adult). Functional annotation of age-related modules M1 (F), M2 (G) and M4 (H) according to gene ontology 
biological processes. (I) Cell-type deconvolution on global protein abundance.  Data information: In (C) HGNC 
symbol abbreviations; CNTN1, contactin 1; HNRNPU, heterogeneous Nuclear ribonucleoprotein U; CSRP1, 
cysteine and glycine rich protein 1; CLTB, clathrin light chain b; COX7C, cytochrome c oxidase subunit 7c.  
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Figure 2 

 

 
Figure 2. Overlap of age-related RNA and protein modules. (A) Venn diagram of detected the proteome and 
transcriptome. (B) Overlap analysis of transcriptome- and proteome-based modules. The number of overlapping 
HGNC symbols are displayed for significant intersects. (C) Pearson’s correlation coefficient analysis of module 
eigengenes (MEs) within and across transcriptome- and proteome-based modules. White diamonds indicate 
p<0.05. Convergent ME expression patterns for modules with significant overlap and shared function between 
transcriptome and proteome, including gliogenesis and myelination (D), ATP and NADH metabolic processes (E) 
and neurogenesis (F) . Smoothing linear spline models (knot=4) were fit for each ME across seven postnatal 
stages (shaded grey/white). (G) Overlap and correspondence of the top four functional categories for all RNA- 
and protein-based modules.  
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Figure 3 
 
 
 

 
Figure 3. Concordance between transcriptome and proteome in the developing DLPFC. (A) Within-sample Pearson 
correlation coefficients (PCC) between paired transcriptome and proteome samples (N=44). Associations were tested for 
all paired RNA and protein molecules (proteome) and then by focusing on RNA and protein content accordingly to protein 
module status. The number of molecules compared within each module are listed on the x-axis. (B) Average PCC’s within 
paired transcriptome and proteome samples (y-axis) measured as a function of age (x-axis). Samples are ranked 
according to age, and shaded accordingly to postnatal developmental period (1, neonate; 2, infant; 3, toddler; 4, school 
age; 5, teenager; 6, young adult; 7, adult). (C) Scatterplot of age-related linear regression t-statistics computed for the 
overlapping 556 mRNAs and proteins, colored according to protein module membership. (D) Across-sample Spearman 
correlation coefficient (SCC) comparing RNA expression profiles to their respective translated protein expression. SCC’s 
are parsed by RNA’s which are significantly associated with cortical development (FDR p <0.05), compared to those 
which do not (Table S6). A Mann-Whitney U test was used to compute significance between these two groups. (E) Direct 
protein-protein interaction network of protein module M1, displaying significant decrease in correlation between RNA and 
proteins across postnatal development.  
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Figure 4 

 
Figure 4. Cell type and neurodevelopmental disorder genetic risk loci enrichment. (A) Cell type enrichment 
analysis for the identified transcriptome- and proteome-based modules. The number of significantly overlapping 
HGNC symbols are displayed (**, P<0.0001; *, 0.01 > P < 0.05). (B) Genetic risk loci enrichment analysis 
according to transcriptome- and proteome-based modules. Five previously generated lists of neurodevelopmental 
disorder risk loci were used, including intellectual disability (ID), developmental delay (DD), autism spectrum 
disorder (ASD), epilepsy and schizophrenia (SCZ). Data information: In (A) Three cell type marker resources 
were leveraged, including two based on transcriptome profiling36,37and one based on proteome profiling38.  
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