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ABSTRACT

Healthy cortical development depends on precise regulation of transcription and translation.
However, the dynamics of how proteins are expressed, function and interact across postnatal
human cortical development remain poorly understood. We surveyed the proteomic landscape
of 69 dorsolateral prefrontal cortex samples across seven stages of postnatal life and
integrated these data with paired transcriptome data. We detected 911 proteins by liquid
chromatography-mass spectrometry, and 83 were significantly associated with postnatal age
(FDR p < 0.05). Network analysis identified three modules of co-regulated proteins correlated
with age, including two modules with increasing expression involved in gliogenesis and NADH-
metabolism and one neurogenesis-related module with decreasing expression throughout
development. Integration with paired transcriptome data revealed that these age-related
protein modules overlapped with RNA modules and displayed collinear developmental
trajectories. Importantly, RNA expression profiles that are dynamically regulated throughout
cortical development display tighter correlations with their respective translated protein
expression compared to those RNA profiles that are not. Moreover, the correspondence
between RNA and protein expression significantly decreases as a function of cortical aging,
especially for genes involved in myelination and cytoskeleton organization. Finally, we used
this data resource to elucidate the functional impact of genetic risk loci for intellectual disability,
converging on gliogenesis, myelination and ATP-metabolism modules in the proteome and
transcriptome. We share all data in an interactive, searchable companion website. Collectively,
our findings reveal dynamic aspects of protein regulation and provide new insights into brain
development, maturation and disease.

Keywords: dorsolateral prefrontal cortex; neurodevelopment; brain development; postnatal
aging; proteomics; transcriptomics.
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INTRODUCTION

The human prefrontal cortex plays a critical role for higher cognitive processes, including
executive function, social cognition and judgment, and has been implicated in the onset and
progression of many, if not most, neurodevelopmental disorders'®. The development of a
properly functioning prefrontal cortex depends upon the proliferation and signaling of several
cell types as well as the reprograming of transcriptional and translational pathways that unfold
over the first two-three decades of postnatal life’. During this time, the brain quadruples in size,
and grows through interneuronal genesis and maturation, glial multiplication, myelination,
formation of new synaptic connections and pruning of unused synaptic connections®'°. Such
processes are orchestrated by thousands of molecules in a tightly synchronized spatiotemporal
fashion, and the disruption of any one of which may result in loss of cortical integrity and
homeostasis'®, leading to cognitive deficits seen in patients with neurodevelopmental
abnormalities. Therefore, understanding the molecular factors governing long-term brain
development in normal individuals is critical for the identification of neurodevelopment
mechanisms and developmental vulnerability periods.

Much of our current knowledge of the biological changes underlying human brain development
has been inferred from large transcriptomic investigations. Initial reports of the developing
human brain transcriptome revealed marked changes across development and aging, with the
largest gene expression changes occurring prenatally and during infancy and early
childhood'''*; ages when many neurodevelopmental disorders become clinically recognizable.
In parallel, several studies have identified developmental transcriptional networks with regional
and cell type specific expression patterns enriched within neurodevelopmental disorder-
associated genetic risk loci'®'®, providing mechanistic insights of how mutations in risk genes
might perturb typical brain development. Several studies consistently report however, that
levels of messenger RNA and their respective translated proteins often correlate poorly'®?%. As
proteins are the main functional components in all cells, generating equivalent proteomic
information across human brain development represents a critical gap in the field.

Mass spectrometry-based proteomics provides a comprehensive and complimentary
perspective to transcriptomic changes and can serve as an indicator for functional and network
levels of aging. Although human proteome research has predominately focused on defining a
disease signature within a specific developmental period, there has been some progress in
understanding the developmental proteome®*?°. For example, a recent study profiled the
orbitofrontal cortex and identified 127 proteins implicated in cellular growth and proliferation
that were differentially expressed between young or old human male individuals®. A separate
study profiled seven different brain regions across 11 developmentally distinct individuals and
found substantial differences in protein abundance between brain regions, reflective of
cytoarchitectural and functional variation®®. While these investigations have been key for
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informing mechanisms of brain development, it has been challenging for proteome research to
identify highly abundant and reproducible proteins across dozens of biological replicates. More
selective mass spectrometry techniques that are tailored to detect highly abundant proteins
across larger sample sizes are required to accurately infer long-term time-dependent protein
expression patterns. As such, a critical remaining question is how the brain proteome unfolds
throughout development, and ultimately how this information may inform brain mechanisms
governing health and disease.

The current investigation applied label-free liquid chromatography-mass spectrometry (LC-MS)
proteomics to 69 dorsolateral prefrontal cortex (DLPFC) samples from healthy individuals aged
39 days to 49.5 years. These proteomic data were integrated with paired transcriptome data
from matching DLPFC samples and together comprise a unique resource of well-annotated
anatomical structures of fresh human brains from seven different developmental stages. A
multistep analytic approach was used that specifically sought to address two main goals: (1) to
identify proteins and networks of highly correlated proteins significantly associated with distinct
developmental stages and that changed with human age; and (2) to determine the biological
organization of the proteome across postnatal development and clarify the relationship
between protein levels and their corresponding mRNA levels in the DLPFC. We share our data
in an integrative, searchable companion website to enable the discovery and localization of
RNAs and proteins of interest for further investigation and to enhance our understanding of the
temporally-defined molecular mechanisms governing typical and pathological DLPFC
development.

MATERIALS AND METHODS

Postmortem brain sample ascertainment

The current study analyzed fresh frozen postmortem dorsolateral prefrontal cortex (DLPFC)
tissue (BA46) from 69 individuals varying in age from 39 days to 49.5 years (Table S1). The
age range investigated in the current study reflects the vulnerability period for the development
of neurodevelopmental and neuropsychiatric disorders. All samples were obtained from the
National Child Health and Human Development Brain and Tissue Bank for Developmental
Disorders at the University of Maryland, Baltimore, USA (UMBB). All subjects were defined as
healthy individuals by forensic pathologists at UMBB, having no history of psychiatric or
neurological complaints, also confirmed by next of kin interviews. These collected DLPFC
samples comprised a broad range of developmental milestones, spanning neonatal (n=11),
infantile (n=14), toddler (n=10), school aged (n=9), adolescence (n=8), young adulthood (n=9)
and adulthood (n=8). Each developmental stage was matched for gender, postmortem interval
(PMI), pH and ethnicity. The total sample included 41 males and 28 females covering African
American (n=36), Caucasian (n=34), and Hispanic (n=1) ethnic backgrounds. The average
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measures for PMI and pH are as follows: PMI (17.1 = 7.0 hrs.); pH (6.6 + 0.2). A subgroup of
these samples also underwent microarray transcriptome profiling (n=44), consisting of 27
males and 17 females, and covariates were recorded: pH (6.7 = 0.15), PMI (16.9 = 7.5 hrs.)
and ethnicity (24 Caucasian, 20 African American). Detailed demographic and technical
information on all samples can be found in Table S1.

Tissue and protein extraction

Samples were dissected using a fine dental drill from the middle frontal gyrus at a level just
rostral to the genu of the corpus callosum and the resulting tissue (average weight ~500 mg)
was stored at —80°C until use. Proteins were extracted by sonicating each sample (~70mg) in
350ul lysis buffer (7M urea, 2M thiourea, 4% 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS), 2% ASB14 and 70mM dithiotreitol (DTT), followed by sonication
for 2 cycles of 15 seconds on ice using a Branson Sonifier 150 (Thistle Scientific; Glasgow,
UK). A 50ul aliquot of each protein extract was precipitated for 4hr with 200ul of acetone at -
20°C. The precipitates were centrifuged for 30 min at 13400 rpm, at 4°C, the acetone
supernatant decanted and discarded. The resulting pellets were re-suspended in 200ul of
50mM ammonium bicarbonate (pH 8.0) and sonicated for 10 seconds. Once re-suspended,
protein concentration was measured by Bradford Assay. An aliquot of each precipitated protein
extract, equivalent to 100ug of protein, was reduced with 100mM DTT for 30 min at 60°C,
alkylated with 200mM iodoacetamide at room temperature for 30 min in dark and digested with
4ul of 0.5ug/ul of modified sequencing grade trypsin at 37°C for 17hrs. Digestion reaction was
stopped by adding 0.80ul 8.8M Hydrochloric acid (1:60). An aliquot of 5ul from each digested
sample was pooled together to be used as standard?.

Liquid chromatography-mass spectrometry and protein quantification

Tryptic peptides were analyzed by a shotgun LC-MS approach using a 1290 Infinity LC
coupled to Agilent 6550 iFunnel Q-TOF instrument (Agilent technology, USA). Peptide
separation was carried out using an Agilent AdvanceBio Peptide column (2.1 ym x 250 mm,
2.7 uym) over a 90 min linear gradient of 3 to 45% ACN. The flow rate was 0.3mL/min and the
column temperature was set to 50°C. Peptides were then detected by quadrupole time-of-flight
(Q-TOF) MS operated in positive mode. Acquisition was in data-dependent mode over m/z
300-1700. The top 10 precursor ions were scanned from 300-1700 and MS/MS from 50—1700.
The precursor ions were then automatically isolated and fragmented using collision induced
dissociation (CID) with a relative collision energy calculated using the formula, 3.6*(m/z)/100+-
4.8. Data files were processed by Spectrum Mill Protein Identification software (Rev
B.05.00.180, Agilent Technologies, USA). The protein identification was executed against the
Swiss-Prot database (released in February 2015, Homo sapiens). Search parameters were as
follows; precursor mass tolerance, 20 ppm; product ion mass tolerance, 50 ppm; maximum two
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missed cleavages allowed; digested by trypsin; fixed modification of carbamidomethyl cysteine;
variable modifications of oxidized methionine. After MS/MS searching, auto-validation was
carried out by calculating the false-discovery rate (FDR). A FDR threshold of 1.2 was applied.
Relative protein quantification was achieved using only distinct peptides that assigned to each
protein. Unique peptide intensities were calculated from extracted ion chromatograms (MS1)
from the precursor ions. Total peak intensities of all distinct peptides were then calculated to
form relative protein expression levels.

RNA isolation and microarray hybridization

All RNA procedures have previously been described®’. Briefly, total RNA was extracted from
dorsolateral prefrontal cortex samples using Trizol (Sigma-Aldrich, St. Louis, MO, USA) and RNA
quality was assessed using a high-resolution electrophoresis system (Agilent Technologies, Santa
Clara, CA, USA). Isolated total RNA was subjected to Affymetrix preparation protocol and each
sample was hybridized to one HG-U133 Plus 2.0 GeneChip (Affymetrix, Santa Clara, CA, USA) to
quantify transcriptome-wide gene expression.

Data pre-processing

All data pre-processing and statistical analyses were conducted in the statistical package R.
Proteins detected in at least 60% of all samples were labeled high-confidence proteins and
used for downstream analyses. First, all data were normalized to fit approximate normal
distribution. Protein data were median scaled by all runs and log(e) transformed. Protein
Uniprot IDs were converted to HGNC symbols using the Uniprot database
(http://www.uniprot.org/uploadlists/). Microarray data were normalized using the robust multi-
array average normalization with additional GC-correction (GCRMA)?®. When multiple
microarray probes mapped to the same HGNC symbol, the probe the highest average
expression across all samples was used. Following normalization, all data were inspected for
outlying samples using unsupervised hierarchical clustering (based on Pearson coefficient and
average distance metric) and principal component analysis to identify potential outliers outside
two standard deviations from these grand averages; no outliers were present in these data.
Linear mixed models from the R package® were used to characterize and identify biological
and/or technical drivers that may affect the observed RNA and protein abundance. This
approach quantifies the main sources of variation in each expression dataset attributable to
differences in age, age group, gender, PMI, pH and ethnicity. Finally, to identify age-related
genes and proteins, generalized linear models with Bonferroni multiple test correction were
implemented. The covariates gender, pH, PMI and ethnicity were included in the models to
adjust for their potential confounding influence on RNA and protein expression (Im(Age ~
Expression + PMI + sex + pH + ethnicity)). Further, a Spearman’s correlation test was used to
identify individual genes and proteins whose expression profile were significantly correlated
with a pre-defined developmental stage or template (e.g. toddlers), which had been binarized
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(0 or 1) to quantify associations with expression.

Weighted correlation network analyses

Prior to network analysis, missing protein values were imputed using predictive mean matching
in the MICE package® (number of multiple imputations, m=5; the number of iterations,
maxit=50). A high confidence set of proteins detected in at least 60% of the sample were used
to make meaningful imputations. Weighted gene correlation network analysis (WGCNA)31 was
used to build signed co-expression networks independently for the transcriptome (n=20,122
genes) and proteome (n=584 proteins). To construct each network, the absolute values of
Pearson correlation coefficients were calculated for all possible gene pairs (transcriptome
data) and protein pairs (proteome data), and resulting values were transformed with an
exponential weight () so that the final matrices followed an approximate scale-free topology
(R2). Thus, for each network we only considered powers of 3 that lead to a network satisfying
scale-free topology (i.e. R*>0.80), so the mean connectivity is high and the network contains
enough information for module detection. The dynamic tree-cut algorithm was used to detect
network modules with a minimum module size set to 30 and cut tree height set to 0.9999. The
identified RNA and protein modules were inspected for association to age, as well as seven
distinct postnatal stages and all recorded covariates. To do so, singular value decomposition of
each modules expression matrix was performed and the resulting module eigengene (ME),
equivalent to the first principal component, was used to represent the overall expression
profiles for each module per sample. Modules were evaluated both quantitatively and
qualitatively for expression patterns significantly associated with age (Figure S3). Fisher’s
exact tests were used to assess the overlap of RNA and protein modules and correlations
amongst RNA and protein ME’s were explored using Pearson’s correlation coefficients.

A series of module preservation analyses sought to determine whether (/) co-regulated
modules of proteins are preserved at the RNA level and (i) whether RNA modules are
reproducible in independent BrainSpan data. We collected publically available BrainSpan data
(http://www.brainspan.org/) and used only postnatal samples (n=17) to best reflect the
developmental biology of our current sample (Fig. S8). For these analyses, module
preservation was assessed using a permutation-based preservation statistic, Zsummary,
implemented within WGCNA with 500 random permutations of the data®. Zsummary takes into
account the overlap in module membership as well as the density and connectivity patterns of
genes within modules. A Zsymmary SCOre <2 indicates no evidence of preservation, 2<Zsummary<10
implies weak preservation and Zsummary>10 suggests strong preservation.

Functional annotation and protein-protein interaction networks
All age-related RNAs and proteins identified through either linear regression or network-based

analyses, were subjected to functional annotation using the ToppFun module of ToppGene
Suite software®*. We explored gene ontology terms related to biological processes and
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molecular factors using a one-tailed hyper-geometric tested (Benjamini-Hochberg FDR
corrected) to assess the significance of the overlap. All terms must pass an FDR corrected p-
value and a minimum of five genes/proteins per ontology were used as filters prior to pruning
ontologies to less redundant terms.

The STRING database v9.1** was used to assess whether RNA and protein modules were
significantly enriched for direct protein-protein interactions (PPls) and to identify key
genes/proteins mediating the regulation of multiple targets. For these analyses, our signature
query of RNA or protein modules were used as input. STRING implements a scoring scheme
to report the confidence level for each direct PPI (low confidence: <0.4; medium: 0.4-0.7; high:
>0.7). We used a combined STRING score >0.04. Hub genes within the PPI network are
defined as those with the highest degree of network connections. We further used STRING to
test whether the number of observed PPIls were significantly more than expected by chance
using a nontrivial random background model. For visualization, the STRING network was
imported into Cytoscape®.

Cell type and genetic risk loci enrichment analyses

CNS cell type specific markers were collected from three independent resources, including cell
type specific genes from RNA-sequencing®®®’ and mass spectrometry-based proteomics®. In
order for a gene/protein to be labeled cell type specific, each marker required a minimum logz
expression of 1.4 units and a difference of 0.8 units above the next most abundance cell type
measurement, as previously shown'®. Mouse homologues were identified and converted into
human HGNC gene symbols using the mygene R package®. In parallel, neurodevelopmental
disorder genetic risk loci were curated from human whole exome and genome-wide
association studies of autism spectrum disorder*’, epilepsy*', developmental delay (OMIM)*2,
intellectual disability’® and schizophrenia®. Overrepresentation of cell type markers and
genetic risk-related gene sets within proteome and transcriptome modules was analyzed using
a one-sided Fisher exact test to assess the statistical significance. All P-values, from all gene
sets and modules, were adjusted for multiple testing using the Benjamini Hochberg procedure.
We required an adjusted P-value <0.05 to claim that a gene set is enriched within a module.
Lists of neurodevelopmental genetic risk loci can be found in Table S7.

Cell type deconvolution

The frequencies of brain cell types were estimated for proteomic using Cibersort** cell type de-
convolution (https://cibersort.stanford.edu/). Cibersort relies on known cell subset specific
marker genes and applies linear support vector regression, a machine learning approach
highly robust compared to other methods with respect to noise, unknown mixture content and
closely related cell types. As input, we used a curated cell type specific protein signature
matrix®® to distinguish between neurons, oligodendrocytes, astrocytes and microglia. We were
unable to obtain sufficient enough overlap for microglial markers based on protein detection to
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make meaningful predictions for this cell type.
Data availability

To promote the exchange of this information, we developed an interactive website with an
easily searchable interface to act as a companion site for this paper: the DEveLopmental
Trajectory Atlas (DELTA) in DLPFC is available from the following URL:
http://amp.pharm.mssm.edu/DELTA. In addition, all sample descriptions, proteomic and
transcriptomic data are available and can directly downloaded from this site. Alternatively,
gene expression data can be downloaded from GEO using accession GSE13564.

RESULTS

Proteome organization in the developing dorsolateral prefrontral cortex

A shotgun proteomics approach was applied to measure temporal protein abundance in 69
DLPFC samples (Brodmann area 46) from normal individuals, aged 39 days to 49.5 years of
age. Following standardized data pre-processing (Fig. S1), we detected 911 proteins for which
a total of 386 proteins were assigned low-confidence measures of protein detection and 584
proteins were assigned high-confidence on the basis of being detected across >60% of all
samples (see methods). For the low-confidence proteins, rates of protein detection were
moderately influenced by different developmental stages, whereby 60 proteins, which were
predominately post-synaptic density proteins, were more likely to be detected during early
developmental stages and 99 proteins, which were implicated in cellular respiration and
GTPase binding, were more likely to be detected during adulthood (Fig. S2, Table S2).

To reduce the probability of false positives, we restricted downstream analyses to only proteins
with high-confidence levels of protein detection. For these proteins, a substantial amount of
protein expression variation was explained by age relative to other biological factors (Fig. 1 A-
C). Next, we sought to identify proteins that were significantly regulated as a function of
postnatal age and identified 83 proteins (FDR p<0.05), including 66 with decreasing
abundance and 17 with increasing abundance across postnatal stages (Table S2). The top ten
most significantly increased and decreased age-related proteins are displayed in Table 1.
Several significant age-related proteins mapped to known neurodevelopmental genetic risk
loci, including genetic loci implicated in autism spectrum disorder (ASD) (ANK2, YWHAE,
L1CAM, FABP5, NRCAM), intellectual disability (L1CAM, PLP1, PSAP, QDPR) and
schizophrenia (NCAN, ALCAM, GNAO1, PSAP, NFASC). In addition, we also observed that
the neonatal time period (38-89 days) explained the largest fraction of protein level variability
according to age, including 131 neonatal-related proteins (FDR p<0.05) strongly enriched for
central nervous system development, neurogenesis and gliogenesis (Fig. S3, Table S3).
Notably, no proteins displayed sex-dependent effects across development.
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To characterize the temporal organization of the proteome we ran unsupervised weighted
correlation network analysis and identified five modules of co-regulated proteins, three of which
were significantly associated with development and age (Fig. 1D, Fig. S4-5). Two age-related
modules displayed increasing expression throughout development (FDR P<0.05) and were
enriched for processes related to myelination and gliogenesis (M1, 82 proteins, r=0.71,
p=1.0x10"") and gluconeogenesis and NADH metabolism (M2, 30 proteins, r=0.58, p=2.0x10"
’) (Fig. 1E-G). One age-related module displayed decreasing expression across development
and was implicated in axonogenesis, neurogenesis and cytoskeleton organization (M4, 198
proteins, r=-0.77, p=2.3x10"%) (Fig. 1H). The remaining two modules were not significantly
associated with age nor with any other developmental stages or technical factors, and were
enriched for functions related to cellular respiration and ATP metabolic processes (M3, 194
proteins) and nucleotide metabolism and oxidation-reduction processes (M5, 80 proteins) (Fig.
S$6). Collectively, all five modules were significantly enriched for direct protein-protein
interactions (PPI), beyond what would be expected by chance (Table S4), and PPl networks
were constructed for each module (Fig. S6-7). Densely connected hub proteins for each age-
related module included, MBP and PGM1 for module M1, ENOZ2 and MDH1 for module M2 and
UBC and HSP90AA1 for module M4. Further, cell type deconvolution revealed that the majority
of proteins expressed across all DLPFC samples were specific to neuronal and
oligodendrocyte cell types, and further highlighted substantial decreases in neuronal cell
populations paralleled by increases in oligodendrocytes throughout development (Fig. 1l);
results which correlated with transcriptome-based estimates (Fig. S8).

Correspondence between transcriptome and proteome module organization

A total of 556 common HGNC symbols were detected between our high confidence,
reproducible proteins and transcriptome-wide gene expression assays (Fig. 2A). Similar to the
proteome, the largest amount of gene expression variability was explained by age, as
compared to any other factor (Fig. S1). Comparably, the neonatal time period (39-89 days)
also explained the largest fraction of transcriptome variation by age, albeit to a lesser extent
than in the proteome, including genes primarily involved in ATP metabolic processes (Fig. S2).
Meanwhile, variation across the sexes was small genome-wide, but it explained a large
percentage of expression variation for genes on chrX and chrY. Linear regression analyses
identified ~11.5% of the transcriptome was associated with postnatal development, including
1145 genes with increasing expression and 1181 genes with decreasing expression across all
developmental stages (FDR p<0.05). (Fig. S2, Table S5). These age-related genes also
included several known neurodevelopmental genetic risk loci implicated in ASD (LRP1,
RNF135, YWHAE), schizophrenia (TEKT4, LRP1, DNAH1, BRSK1, INTS1, ZC3H10,
METTL14) and developmental delay (SCYL1, PIGQ, OBSL1, SMARCB1, CEP135, SPG11,
TAF1, TAT, FAM126A, RAD21). Notably, 27 molecules were uniquely detected at the protein
level, and a significant fraction were enriched for oxidative phosphorylation-related processes
(FDR p=2.3x10%).

10
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Weighted correlation network analysis identified eight modules of co-regulated genes (Fig.
2B), which displayed a high degree of reproducibility compared to existing postmortem
BrainSpan data (Fig. S9). Four of the eight modules were significantly associated with
postnatal development, including two modules implicated in gliogenesis (M4_t, 2624 genes,
r=0.54, p=2.4x10*) and ATP metabolic processes (M6_t, 5078 genes, r=0.72, p=4.1x107°) with
increasing expression, and two modules involved in neurogenesis (M1_t, 3046 genes, r=-0.71,
p=8.6x10®%) and synaptic signaling (M2_t, 403 genes, r=-0.53, p=2.2x10™) with decreasing
expression throughout postnatal development (Fig. S10). One immune response-related
module was significantly associated to the toddler postnatal age group (1.2-5.1 years) (M7_t,
384 genes, r=0.52, p=3.3x10™). Interestingly, a number of significant overlaps were identified
between transcriptome modules and proteome modules (Fig. 2B). The majority of overlapping
RNA- and protein-based modules also displayed a high degree of collinearity (Fig. 2C) and
shared similar biological functions, including modules involved in gliogenesis and myelination
(M1, M4_t), ATP metabolic processes (M2, M3, M5, M6_t) and neurogenesis (M4, M1_t) (Fig.
2D-G). Overall, all five protein modules were well represented at the RNA level (Fig. 2G).

Correspondence between RNA and protein levels throughout postnatal development

We further quantified the association between gene and protein level expression using a
subgroup of DLPFC samples for which paired transcriptome and proteome data were available
(n=44). We first examined the degree of within-sample correlation using 556 paired RNAs and
proteins, and then by sub-setting these analytes according to the five previously identified
protein modules (Fig. 3A). Across all analytes, we found weak-to-moderate within-sample
correspondence (Pearson’s r=0.15-0.40), with the highest correlations observed for RNA and
protein products involved in gliogenesis and myelination (M1, r=0.26-0.53) and the lowest
correlations for RNA and protein products involved in nucleotide and ATP metabolic processes
(M5, r=-0.05-0.22). Subsequently, we explored these within-sample correlations as a function
of age and found that the correspondence between RNAs and their respective translated
proteins is higher for early developmental stages and lower for later developmental stages,
indicating an overall decrease in correlation between RNA and protein level expression
throughout postnatal development (r=-0.56, p=6.4x10"). This decreased correlation was also
significant for subgroupings of RNAs and proteins involved in processes of myelination and
gliogenesis (M1, r=-0.30, p=0.04) and neurogenesis and cytoskeleton organization (M4, r=-
0.67, p=3.9x107) (Fig. 3B,E). These age-related differences prompted us to investigate the
degree of conservation in protein-based co-expression networks at the RNA level, for which we
found no preservation for co-regulated RNAs implicated in nucleotide metabolic processes
(M5) (Fig S11). Finally, we examined correlations between the 556 RNA-protein pairs across
all samples (opposed to within-samples), as a function of postnatal development. Overall, a
high level of correspondence was observed when comparing age-related linear regression
results (t-statistics) computed separately for individual RNAs and proteins (r=0.62, p=2.4x10°)
(Fig. 3C). Upon closer inspection, 78.4% of all RNA-protein pairs were positively correlated
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throughout development while the remaining were negatively correlated (Table S6). Notably,
we find that RNA expression profiles that are significantly associated with cortical development
(FDR p < 0.05) display higher correlations with their respective translated protein level
expression compared to RNA expression profiles that are not significantly age-related
(p=6.4x10"%) (Fig. 3D).

Cell type and neurodevelopmental disorder genetic risk loci enrichment

We sought to determine whether the transcriptome- and proteome-based modules were
strongly linked to the underlying cellular architecture in the developing DLPFC using previously
defined cell type specific markers (Fig. 4A). Three different cell type specific resources were
used to discover and validate cell type enrichments, including those based on RNA***" and
protein discovery®. As expected, several proteome and transcriptome modules were
significantly enriched for known cell type specific markers and demonstrated high
reproducibility across three independent resources. Protein module M1 was consistently
enriched for oligodendrocyte and astrocyte cell types. Protein modules M3 and M4 also
consistently displayed significant over-representation for neuronal cell type markers. In parallel,
several transcriptome-based modules displayed consistent enrichment for CNS cell type
markers, including modules M1_t, M2_t and M6_t enriched for neuronal markers, M3_t
enriched for astrocyte markers, M5_t enriched for oligodendocyte markers, and M7_t enriched
for microglial markers. Notably, no protein module displayed enrichment for microglial cell
markers, which is consistent with our cell type estimates that indicate our DLPFC proteome
samples are predominately comprised of neuronal and oligodendocytes cell types.

Subsequently, we sought to determine whether genes associated with risk for
neurodevelopmental disorders converge on common cellular and biological processes during
human cortical development in the proteome and transcriptome. Intellectual disability (ID)
genes tightly coalesce in proteome and transcriptome modules that implicate gliogenesis
(M1, N=7, p=0.009; M4_t, N=70, p=0.006) and ATP metabolism functions
(M3, N=20, p=2.2x10"%; M6_t, N=120, p=0.01) (Fig. 4B). Similarly, developmental delay (DD)
risk variants were concentrated in the same modules associated with gliogenesis (M1, N=11,
p=0.001; M4_t, N=147, p=0.003) and ATP metabolism (M3, N=35, p=2.4x10""%). The ID genes
used here represent high confidence genes implicated in monogenic forms of ID from multiple
publications, whereas the DD genes are those available from the Developmental Disorders
Genotype-Phenotype Database (DDG2P). Both ID and DD are relatively common pediatric
disorders with overlapping symptomologies. These loci also constituted several hub proteins
within proteome module M3, including NDUFS1-8, SYN1, STXBP1 and MAP2K1 (Fig
S6A).Together, these results support the notion that common and rare variants contribute to ID
and DD by perturbation of processes encoding ATP metabolism and myelination. In addition,
similar to previous reports, we also confirm strong enrichment for several ASD and SCZ
genetic risk loci in neurogenesis-related module M4 in the proteome (N=4, p=0.04;
N=10, p=0.04, respectively) as well as module M1_t in the transcriptome (N=59, p=8.2x107'°;

12


https://doi.org/10.1101/188565
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/188565; this version posted October 1, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

N=134, p=4.3x10°, respectively). These analyses, and others, can be performed using our
online software tool (http://amp.pharm.mssm.edu/DELTA).

DISCUSSION

Proteins are the functional components of cells in the CNS, however our understanding of the
brain proteome continues to lag behind the pace of transcriptome discovery. This discrepancy
is largely due to the lack of established proteome-wide technologies, which have only recently
matured to enable improved protein detection and coverage. To provide a foundation for an
age-dependent brain proteome map, we performed label-free LC-MS proteomic analysis
across 69 human DLPFC (BA46) samples, aged 35 days to 49.5 years of age, which
comprised seven different developmental stages. Our approach identified 911 highly abundant
and reproducible proteins across a large number of developmentally distinct biological
replicates and resulted in the largest collection thus far of protein expression data in the
developing human DLPFC. The proteins detected here function to sub-serve some of the most
fundamental CNS cell signaling cascades required for typical cortical development. By
integrating these data with transcriptome data, we were able to examine relationships between
RNA and protein expression levels, which revealed a much tighter coupling of RNA and protein
expression during early developmental stages (i.e. neonatal and infant) compared to later
stages (i.e. adulthood). Finally, we examined RNA and protein networks enriched for
neurodevelopmental genetic risk loci, to gain insight into how mutations in risk genes may
perturb molecular pathways during healthy brain development. We discuss these points in turn
below.

The majority of the detected proteins in the current investigation (~64.1%) were associated
with cortical development and formed functional protein modules, which harbored a large
number of direct protein-protein interactions. Two protein modules were identified, which
gradually increased in expression across cortical development and enriched for gliogenesis,
myelination and olidodendrocyte cell type specificity (M1) as well as NADH metabolism and
gluconeogenesis (M2), while one module was decreasing in expression and implicated in
axonogenesis, cytoskeleton organization and neuronal cell types. These modules represent
some of the most basic CNS functions and their expression profiles are at least partially driven
by a shifting CNS cellular landscape throughout cortical development, as reflected by the
observed neuron-glia oscillations. Although cell division and migration of neurons are largely
prenatal events, neurogenesis is known to persist throughout adult life, albeit to a limited level
and produce only a small fraction of the neuronal population®®*’. In contrast, proliferation and
migration of glial progenitors, while beginning prenatally, continue for a protracted period as
oligodendrocytes and astrocytes differentiate. Oligodendrocyte cells begin to differentiate by
increasing myelin protein expression, as evident in the current study. However, much
uncertainty has existed regarding the extent of postnatal proliferation, migration and
differentiation, and about the timing of these processes relative to each other*®. Our results
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indicate that the greatest degree of change likely occur during school age years (3-15 years of
age), and that these neuron-glia changes appear to play an important role in the functional
organization of neural circuits during early and late stages of postnatal development. We also
report marked increases in discretely co-regulated proteins involved in NADH metabolism and
gluconeogenesis (M2) across development, which is consistent with the well-known energy
requirements of the brain®®. Previous work by us and others suggests that myelination is also a
major energy-demanding process in the brain®*°, especially during postnatal life. For
example, myelin synthesis is an ATP-dependent process and oligodendrocytes often oxidize
glucose at higher rates than neurons®, supporting these distinct changes in protein modules
across time. To this end, two additional protein modules were identified peaking in expression
during the ages of 6 months to 1 year and were enriched for cellular respiration and ATP
metabolism (M3) and purine ribonucleoside monophosphate activity (M5), which likely
represent shared components of a larger glycolysis, cellular respiration and oxidative
phosphorylation cycle, along with M2. Importantly, glucoregulatory abnormalities, oxidative
stress vulnerability and oligodendrocyte dysfunction have been prominently linked to
neuropsychiatric and neurodegenerative disorders® %, and a detailed understanding of how
these proteins unfold in expression throughout cortical development may guide future follow-up
studies targeting these pathways.

In the context of the temporally dynamic expression profiles, a fundamental question is
whether RNAs and their respective translated proteins correlate throughout postnatal
development. We observed within-sample Pearson correlation coefficients between 0.15 and
0.40. Several studies have also found similar low correlations in human'®?° and murine
tissues®®. These discrepancies may be due to well-known differences in the regulation,
localization, structures and functions of mMRNA and proteins. However, a novel finding from the
current study, is that when presenting these correlations as a function of postnatal age, we
identified that correlations between RNA and protein expression tend to decrease throughout
development (r=-0.56, p=6.4x107), in that younger samples tend to have higher RNA-protein
correlations and older samples tend to have weaker RNA-protein correlations (Fig 3B). This
negative trend accelerated for genes implicated in myelination (M1) and cytoskeleton
organization (M4). Interestingly, the efficiency of myelination decreases with age, a process
largely regulated by age-dependent epigenetic control of gene expression®*. That is, during
infancy, myelin synthesis is preceded by down-regulation of oligodendrocyte differentiation
inhibitors, and this is associated with recruitment of histone deacetylase to promoter regions; a
process that becomes less efficient in adulthood and ultimately prevents a successive surge in
myelin gene expression®*°°. Regarding the weakening correlation of cytoskeleton-related RNA
and protein expression across postnatal development, it is clear that cytoskeleton plays a vital
role in regulating CNS cell mechanics with age. Moreover, since several studies have shown
that many neurodevelopmental disorders are likely influenced by aberrant cytoskeleton
organization, it is important to understand how the expression and interaction of cytoskeletal
proteins change with age. Overall, these results shed light on several candidate myelination
and cytoskeleton proteins for follow-up functional studies to assess whether insufficient
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amounts of translated protein product during early development may negatively impact nerve
cell shape, motility and communication thereby leading to behavioral and/or developmental
deficits.

We also examined the correspondence between 556 RNA-protein pairs across all samples and
found that the majority of pairs (78.4%) correlate positively across development, while others
do not, and in some instances display strong negative correlations (Table S6). It is unlikely that
false positives can fully explain these low/negative correlations. Therefore, it may be that
varied levels of regulation, such as translational regulation, supersede the transcriptional level
and provide biological fine-tuning for the specific conditions encountered by the cells.
Furthermore, protein half-life and translational rates can also vary, which can effect the
correlation between RNA and protein levels. However, it is notable that RNA profiles, which
were not associated with postnatal development displayed significantly lower correlation
distributions compared to RNA profiles, which were significantly associated with aging and
development (Fig. S11). Thus, our results show that significant age-related changes in gene
expression commonly co-occur with tighter correlations with protein levels, giving further
confidence for the use of mMRNA data for biological discovery.

One important similarity across the brain transcriptome and proteome was the consistent
mapping of intellectual disability and developmental delay genetic risk loci to modules enriched
for myelination, gliogenesis, and ATP metabolic processes. These modules displayed a
collinear patter of expression between RNA and protein products, peaking in expression during
adolescence and adulthood (Fig. 2D-F). As there is a close interdepency between myelin
synthesis and ATP-dependent processes, a disorder affecting one of the two inevitably also
leads to disturbance of the other. Indeed, defective myelination and ATP processes have been
reported as key factors causing pathogenic processes involved in these disorders'*"°8 and
these data provide further substantial evidence in the broader context of long-term brain
development. These results support the notion that common and rare variants contribute to 1D
and DD by perturbation of common gliogenesis and ATP metabolism networks. In parallel,
ASD variants resided primarily in neuronal-based modules in the transcriptome, and not in the
proteome. These results echo recent large transcriptome network studies that demonstrate the
involvement of neuronal and synaptic processes involved in ASD'?'®'". We also mapped
epilepsy genetic risk loci to oxidative phosphorylation-related modules in the proteome,
consistent with growing evidence that deficits in oxidative phosphorylation complexes can
result in increased oxygen and free-radical release likely implicated in the initiation and
progression of epilepsy®’.

Our study also has some limitations. First, while our selective approach sought to inform CNS
development by detecting highly abundant and reproducible proteins across 69
developmentally distinct biological replicates, the data presented here may represent an
incomplete picture of the entire proteome. We are unable to discuss the developmental role of
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lowly abundant proteins. Moreover, 556 proteins were represented at the mRNA level, a
marginal 3.5% of the detected transcriptome. Despite, with this level of detection we were able
to capture a considerable amount of protein variability and functionality across postnatal
development compared to paired transcriptome data. That is, all of the age-related
transcriptome modules (M1_t, M2_t, M4_t, M6_t: 11,150 genes total), which comprised 55.4%
of the observed transcriptome, were well represented at a functional level in the proteome,
even though fewer proteins were detected; emphasizing that the majority of the detected
proteins are highly expressed and sub-serve for some of the most fundamental CNS molecular
processes. Nonetheless, it is possible that future reports applying deeper analytical techniques
will enable both greater proteome coverage. A second caveat to these data is the lack of
prenatal samples, developmental stages when gene expression patterns appear to be most
dynamic. For example, vast increases in expression for synapse and dendrite development
genes occur prenatally and taper off in the first decade of postnatal life'®®, and went
undetected in the current investigation likely due to the lack of prenatal samples. Moreover, it is
challenging to directly compare these age-related proteomics results to those derived from
other studies due to extensive differences in proteomic technologies and the ascertainment of
postmortem tissues. However, in contrast to previous proteomic studies, we were able to
capitalize on larger postnatal developmental group sizes (2.5x larger), thus increasing our
ability to identify biologically meaningful age-related proteins and protein networks. As these
concerns are addressed in the future, it will be possible to reveal further insights into the
transcriptional and translational foundations of human brain development.

Our unbiased, global approach outlined both similarities and differences of the developing
DLPFC between the transcriptome and proteome across postnatal development. The various
proteins detected and discussed are likely to be candidates for further functional and/or
synaptic developmental studies. Therefore, to promote the exchange of this information, we
developed a website with an easily searchable interface to act as a companion to this resource
paper: the DEveLopmental Trajectory Atlas (DELTA) in DLPFC is available from the following
URL: http://amp.pharm.mssm.edu/DELTA. This website will be maintained and periodically
updated as additional data emerge from this unique cohort. Using the website researchers can:
1) query any protein/gene symbol of interest to determine at which developmental stage it is
expressed; 2) determine whether a user submitted input list of proteins/genes is over-
represented within our identified proteomic and transcriptomic gene modules; 3) download all
corresponding proteomic and transcriptomic data. Our expectation is that the website and the
data that it hosts will serve as a resource to stimulate and enable additional studies to further
elucidate the complex molecular controls guiding postnatal human cortical development.
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Table 1

Table 1. Top ten up and down age-related proteins throughout postnatal development with paired RNA products.

Uniprot ID | HUGO gene symbol (name) . _Proteorr!e Trénsc"ptf’me
t-statistic Adj. P-value | t-statistic Adj. P-value

015075 DCLK1 (doublecortin like kinase 1) -10.786 6.02E-16 -3.836 4.46E-04
P22676 CALB2 (calbindin 2) -9.154 3.51E-13 -11.731 2.31E-14
Q9BPUG DPYSL5 (dihydropyrimidinase like 5) -8.951 7.86E-13 -12.522 3.05E-15
P52306 RAP1GDS1 (Rap1 GTPase-GDP dissociation stimulator 1) -8.950 7.90E-13 -5.331 4.39E-06
P05413 FABPS3 (fatty acid binding protein 3) -8.511 4.57E-12 -2.295 2.72E-02
P29966 MARCKS (myristoylated alanine rich protein kinase C substrate) -8.321 9.79E-12 -11.097 1.24E-13
Q12860 CNTNT1 (contactin 1) -7.733 1.05E-10 -3.490 1.22E-03
P55072 VCP (valosin containing protein) * -7.688 1.25E-10 -3.995 2.78E-04
Q6PCE3 PGM2L1 (phosphoglucomutase 2 like 1) -7.639 1.53E-10 -7.150 1.33E-08
014594 NCAN (neurocan) -7.256 7.13E-10 -8.759 9.49E-11
P09417 QDPR (quinoid dihydropteridine reductase) t 7.707 1.16E-10 10.303 1.09E-12
P49189 ALDHO9A1 (aldehyde dehydrogenase 9 family member A1) 6.201 4.81E-08 2.478 1.77E-02
094856 NFASC (neurofascin) 1 5.917 1.47E-07 3.699 6.65E-04
P07602 PSAP (prosaposin) t ¥ 5.818 2.16E-07 9.804 4.47E-12
P12277 CKB (creatine kinase B) 5.590 5.22E-07 N/A N/A

094811 TPPP (tubulin polymerization promoting protein) 5.257 1.86E-06 10.842 2.47E-13
P14618 PKM (pyruvate kinase, muscle) 5.190 2.39E-06 10.344 9.73E-13
Q16653 MOG (myelin oligodendrocyte glycoprotein) 5.180 2.48E-06 4.991 1.29E-05
P13611 VCAN (versican) 5.170 2.58E-06 -2.601 1.31E-02
Q969P0 IGSF8 (immunoglobulin superfamily member 8) 5.038 4.21E-06 2.104 4.19E-02

Linear regression models adjusted for pH, PMI, sex and ethnicity. The direction of change (t-statistic) across postnatal
development and P-value significance are displayed for each protein and paired RNA product. Candidate neurodevelopmental
genetic risk loci are symbolized: *, autism; t, intellectual disability; F, schizophrenia. N/A indicates not detected.
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Figure 1. Protein expression and function in the developing DLPFC. (A) Sample characteristics for LC-MS
proteomic data (N=69) and a subgroup of DLPFC samples with additional transcriptome data (N=44). (B)
Principal component analysis on global normalized protein abundance, samples are shaded by age (39 days -
49.5 years). (C) variancePartition linear mixed model analysis of global protein abundance identifies age as a
leading trait explaining most of observed protein variability. (D) Weighted correlation network analysis identified
five protein modules, three significantly associated with age. X-axis indicates -logq P-value significance. Module
names and the number of proteins within each module are displayed right of dendrogram. (E) Age (x-axis) relative
to module eigengene (ME) expression (y-axis) for modules M1 and M2 increasing throughout development and
module M4 decreasing throughout development. Smoothing linear spline models (knot=4) were fit for each ME
across age. Seven post-natal developmental stages are color shaded and labeled (SA, school age; YA, young
adult). Functional annotation of age-related modules M1 (F), M2 (G) and M4 (H) according to gene ontology
biological processes. (l) Cell-type deconvolution on global protein abundance. Data information: In (C) HGNC
symbol abbreviations; CNTN1, contactin 1; HNRNPU, heterogeneous Nuclear ribonucleoprotein U; CSRP1,
cysteine and glycine rich protein 1; CLTB, clathrin light chain b; COX7C, cytochrome c oxidase subunit 7c.

22



Figure 2

Module Overlap ME Correlations
M1 t 70 -10g1o M8_t nPCC
Proteome Transcriptome - (P-value) 2 |7t /| 1
27 E M2_t 12 40 % M6_t !n
S £ ms_t
K M3_t 30 S | v 'Aﬂ 0
556 g 2 |mat S
® m4_t[40 20 S M3t /]
E =Mt 4 B -1
19566 2 M5_t 0 M1_t .. Y,
5 o| ms
g wetl 1sfll] 43 Bl e ﬂ
s M7_t 0 2l m /|
& e |
M8_t w1
o ERGRS)
— Proteome Proteome Proteome Transcriptome
D = Transcriptome E
03 Gliogenesis and.myelinatiqn 0.3TATP and NADH metabolic procésses
0.24 0.2
=
5 01 0.1
[N 0.0V
(7]
W 0.1 -0.11
-0.24 -0.2
-0.34 -0.34
G Module Enrichment
M1 FDR
[}
£ M2 P-value
3| M3 0.05
) M4
o M5 0.04
o m;_: 1 0.03
1S !
S| M3t 0.02
2 M4t 0.01
S| M5t
2| M6t 0
S| M7t
M8_t S K R S R
B S e R S N S e N e A S N I S R S R I R RS T i\ e e O I SRS S
&oe'&\§}é‘_\\@\\é oozooiﬁg}* (g,oe’ <§§,§§ <‘§Q‘°°i’\<”q}\ (gj\@\oq& &“2@(’1\0’% < @7}: é\rz}\ ((\\g?\\ é\q};‘ Ooiarzi & rf&é}@;« < <§\<§o®e%:>9§oﬁé\o%§aQo’\\ereroo o _\Q\'Zy ‘_\\\\rz?
WO & @*W.O.OQQQ,%Q‘,&QO.Q P P OAG G QY P& DR O P RN O S @ @@ @ o
G W E ¥ AP € F KR OGS N 3T 0 F e S e X P F TR L o @ Saete
S FFFLEL S FF oo FITF S FF L RS R € T Xt S S F S ELF
f§°@v“~*°° &Q'\@i'é‘oec’\\»o“\\g?@\«O“\&ée}"}o S &Q"\\&q}@b@*(;a\\o«\#\\aﬁ*?@“ﬁ(\ ‘*&\cs"@ 6‘0\'\\0‘\ Q.e°°’©a>“&b®&\&&°é'@&é§ il
£ & & 2 N
s° VQQ\%?Q s¢ \Q'OV«Q s v & o‘z"}é\ S A Q§Y‘<§'\o & zoe\e)c} F$S
2 ~ ° & & F N PSE & S e N
& S S ¢ PO S
e},&\ 5 cJQ&Co\\\> & N < o
& & QY @Y 4
[ W& QQ 8 <

Figure 2. Overlap of age-related RNA and protein modules. (A) Venn diagram of detected the proteome and
transcriptome. (B) Overlap analysis of transcriptome- and proteome-based modules. The number of overlapping
HGNC symbols are displayed for significant intersects. (C) Pearson’s correlation coefficient analysis of module
eigengenes (MEs) within and across transcriptome- and proteome-based modules. White diamonds indicate
p<0.05. Convergent ME expression patterns for modules with significant overlap and shared function between
transcriptome and proteome, including gliogenesis and myelination (D), ATP and NADH metabolic processes (E)
and neurogenesis (F) . Smoothing linear spline models (knot=4) were fit for each ME across seven postnatal
stages (shaded grey/white). (G) Overlap and correspondence of the top four functional categories for all RNA-
and protein-based modules.
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Figure 3. Concordance between transcriptome and proteome in the developing DLPFC. (A) Within-sample Pearson
correlation coefficients (PCC) between paired transcriptome and proteome samples (N=44). Associations were tested for
all paired RNA and protein molecules (proteome) and then by focusing on RNA and protein content accordingly to protein
module status. The number of molecules compared within each module are listed on the x-axis. (B) Average PCC'’s within
paired transcriptome and proteome samples (y-axis) measured as a function of age (x-axis). Samples are ranked
according to age, and shaded accordingly to postnatal developmental period (1, neonate; 2, infant; 3, toddler; 4, school
age; 5, teenager; 6, young adult; 7, adult). (C) Scatterplot of age-related linear regression f-statistics computed for the
overlapping 556 mRNAs and proteins, colored according to protein module membership. (D) Across-sample Spearman
correlation coefficient (SCC) comparing RNA expression profiles to their respective translated protein expression. SCC'’s
are parsed by RNA’s which are significantly associated with cortical development (FDR p <0.05), compared to those
which do not (Table S6). A Mann-Whitney U test was used to compute significance between these two groups. (E) Direct
protein-protein interaction network of protein module M1, displaying significant decrease in correlation between RNA and

proteins across postnatal developmen

t.
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Figure 4. Cell type and neurodevelopmental disorder genetic risk loci enrichment. (A) Cell type enrichment
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Figure 4

analysis for the identified transcriptome- and proteome-based modules. The number of significantly overlapping

HGNC symbols are displayed (*

*, P<0.0001; *,

0.01 > P < 0.05). (B) Genetic risk loci enrichment analysis

according to transcriptome- and proteome-based modules. Five previously generated lists of neurodevelopmental

disorder risk loci were used, including intellectual disability (ID

), developmental delay (DD), autism spectrum

disorder (ASD), epilepsy and schizophrenia (SCZ). Data information: In (A) Three cell type marker resources

were leveraged, including two based on transcriptome profiling

36,37

and one based on proteome profiling®
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