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ABSTRACT

Infection of host cells by Toxoplasma gondii is an active process, which is
regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from
specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble
into an adhesin complex, secreted on the parasite surface and function to promote
infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues
and galactose residues, respectively and to induce IL-12 production from splenocytes.
Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages to
produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This
process depends on sugar recognition, since point mutations in the carbohydrate-
recognition domains (CRD) of tMIC1 and rMIC4 inhibit innate immune cells activation.
HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs.
Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC
proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-
12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic
levels of IL-12 and IFN-y in vivo. Together, our data show that MIC1 and MIC4 interact
physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is
playing a significant role in vivo by altering 7. gondii infection competency and murine

pathogenesis.

AUTHOR SUMMARY

Toxoplasmosis is caused by the protozoan Toxoplasma gondii, belonging to the
Apicomplexa phylum. This phylum comprises important parasites able to infect a broad
diversity of animals, including humans. A particularity of 7. gondii is its ability to
invade virtually any nucleated cell of all warm-blooded animals through an active
process, which depends on the secretion of adhesin proteins. These proteins are
discharged by specialized organelles localized in the parasite apical region, and termed
micronemes and rhoptries. We show in this study that two microneme proteins from 7.
gondii utilize their adhesion activity to stimulate innate immunity. These microneme
proteins, denoted MIC1 and MIC4, recognize specific sugars on receptors expressed on
the surface of mammalian immune cells. This binding activates these innate immune

cells to secrete cytokines, which promotes efficient host defense mechanisms against the
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parasite and regulate their pathogenesis. This activity promotes a chronic infection by

controlling parasite replication during acute infection.

INTRODUCTION

Toxoplasma gondii is a coccidian parasite belonging to the phylum Apicomplexa
and 1s the causative agent of toxoplasmosis. This protozoan parasite infects a variety of
vertebrate hosts, including humans with about one-third of the global population being
chronically infected [1]. Toxoplasmosis can be fatal in immunocompromised
individuals or when contracted congenitally [1], and is considered the second leading
cause of death from foodborne illnesses in the United States [2].

T. gondii invades host cells through an active process that relies on the parasite
actinomyosin system, concomitantly with the release of microneme proteins (MICs) and
rhoptry neck proteins (RONs) from specialized organelles in the apical pole of the
parasite [3]. These proteins are secreted by tachyzoites [4, 5] and form complexes
composed of soluble and transmembrane proteins. Some of the MICs act as adhesins,
interacting tightly with host cell-membrane glycoproteins and receptors, and are
involved in the formation of the moving junction [6]. This sequence of events ensures
tachyzoite gliding motility, migration through host cells, invasion and egress from
infected cells [4, 7]. Among the released proteins, MIC1, MIC4, and MIC6 form a
complex that, together with other 7. gondii proteins, plays a role in the adhesion and
invasion of host cells [8, 9], contributing to the virulence of the parasite [10, 11].

Several studies have shown that host-cell invasion by apicomplexan parasites
such as T. gondii involves carbohydrate recognition [12-15]. Interestingly, MIC1 and
MIC4 have lectin domains [11, 16-18] that recognize oligosaccharides with sialic acid
and D-galactose in the terminal position, respectively. Importantly, the parasite’s Lac”
subcomplex, consisting of MIC1 and MIC4, induces adherent spleen cells to release I1L-
12 [17], a cytokine critical for the protective response of the host to 7. gondii infection
[19]. In addition, immunization with this native subcomplex, or with recombinant MIC1
(rMIC1) and MIC4 (rMIC4), protects mice against experimental toxoplasmosis [20, 21].
The induction of IL-12 is typically due to detection of the pathogen by innate immunity
receptors, including members of the Toll-like receptor (TLR) family, whose stimulation
involves MyD88 activation and priming of Th1 responses, which protects the host

against 7. gondii [19, 22]. It is also known that dysregulated expression of IL-12 and
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IFN-y during acute toxoplasmosis can drive a lethal immune response, in which mice
succumb to infection by severe immunopathology, the result of insufficient levels of IL-
10 and/or a collapse in the regulatory CD4+Foxp3+ T cell population [23, 24].
Interestingly, regarding the innate immune receptors associated with 1L-12
response during several infections, the extracellular leucine-rich repeat domains of
TLR2 and TLR4 contain four and nine N-glycans, respectively [25]. Therefore, we
hypothesized that MIC1 and MIC4 bind TLR2 and TLR4 N-glycans on antigen-
presenting cells (APCs) and, through this interaction, trigger immune cell activation and
IL-12 production. To investigate this possibility, we assayed the ability of rMIC1 and
rMIC4 to bind and activate TLR2 and TLR4. Using several strategies, we demonstrated
that TLR2 and TLR4 are indeed critical targets for both MIC1 and MIC4. These
parasite and host cell structures establish lectin-carbohydrate interactions that contribute
to the induction of IL-12 production by innate immune cells, and we show here that the
MICI1 lectin promotes 7. gondii infection competency and regulates parasite virulence

during in vivo infection.

RESULTS
Lectin properties of recombinant MIC1 and MIC4 are consistent with those of the
native Lac" subcomplex

The native MIC1/4 subcomplex purified from soluble 7. gondii antigens has
lectin properties, so we investigated whether their recombinant counterparts retained the
sugar-binding specificity. The glycoarray analysis revealed the interactions of: 1) the
Lac’ subcomplex with glycans containing terminal a(2-3)-sialyl and p(1-4)- or B(1-3)-
galactose; i1), rMIC1 with a(2-3)-sialyl residues linked to B-galactosides; and ii1) of
rMIC4 with oligosaccharides with terminal B(1-4)- or B(1-3)-galactose (Fig 1A). The
combined specificities of the individual recombinant proteins correspond to the dual
sugar specificity of the Lac™ fraction, demonstrating that the sugar-recognition
properties of the recombinant proteins are consistent with those of the native ones.

Based on the sugar recognition selectivity of rtMIC1 and rtMIC4, we tested two
oligosaccharides (a(2-3)-sialyllactose and lacto-N-biose) for their ability to inhibit the
interaction of the MICs with the glycoproteins fetuin and asialofetuin [26]. Sialyllactose
inhibited the binding of rtMIC1 to fetuin, and lacto-N-biose inhibited the binding of
rMIC4 to asialofetuin (Fig 1B). To ratify the carbohydrate recognition activity of rMICI
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122 and rMIC4, we generated point mutations into the carbohydrate recognition domains
123 (CRDs) of the rMICs to abolish their lectin properties [11, 18, 27]. These mutated

124  forms, 1.e. IMIC1-T126A/T220A and rMIC4-K469M, lost their capacity to bind to

125  fetuin and asialofetuin, respectively (Fig 1B), having absorbance as low as that in the
126  presence of the specific sugars. Thus, our results indicate that rtMIC1 and rMIC4

127  maintained their lectin properties, and that the CRD function can be blocked either by
128  competition with specific sugars or by targeted mutations.

129  rMIC1 and rMIC4 trigger the activation of DCs and macrophages

130 We have previously demonstrated that the native Lac* subcomplex stimulates
131  murine adherent spleen cells to produce proinflammatory cytokines [20]. We evaluated
132 whether recombinant MIC1 and MIC4 retained this property and exerted it on BMDCs
133 and BMDMs. BMDCs (Fig 2A-2D) and BMDMs (Fig 2E-2H) produced high levels of
134 the proinflammatory cytokines IL-12 (Fig 2A and 2E), TNF-a (Fig 2B and 2F), and IL-
135 6 (Fig 2C and 2G). This was not attributable to residual LPS contamination as the

136  recombinant protein assays were done in the presence of polymyxin B, and LPS levels
137  were less than 0.5ng/ml [see Materials and Methods section]. Although conventional
138  CD4" Thl cells are known to be the major producers of IL-10 during murine 7. gondii
139  infection [28], we also found that rMIC1 and rMIC4 induced the production of this

140  cytokine by BMDCs (Fig 2D) and BMDMs (Fig 2H). We verified that the two

141  recombinant proteins induced the production of similar levels of IL-12, TNF-a, and IL-
142 6 by both BMDCs (Fig 2A-2C) and BMDMs (Fig 2E-2G). Both MICs induced the

143 production of similar levels of IL-10 in BMDCs (Fig 2D); however, BMDMs produced
144  significantly higher levels of IL-10 when stimulated with rtMIC1 than when stimulated
145  with rtMIC4 (Fig 2H). These cytokine levels were similar to those induced by the TLR4
146  agonist LPS. Thus, recombinant MIC1 and MIC4 induce a proinflammatory response in
147  innate immune cells, which is consistent with the results obtained for the native Lac™
148  subcomplex [20].

149  The activation of macrophages by rMIC1 and rMIC4 depends on TLR2 and TLR4
150 To investigate the mechanisms through which 7. gondii MIC1 and MIC4

151  stimulate innate immune cells to produce cytokines, we assessed whether these MICs
152 can activate specific TLRs. To this end, BMDMs from WT, MyD88”-, TRIF~, TLR2"",
153  TLR47-, or TLR2/4 DKO mice, as well as HEK293T cells transfected with TLR2 or
154  TLR4, were cultured in the presence or absence of rMIC1 and rMIC4 for 48 hours. The
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155  production of IL-12 by BMDMs (Fig 3A-31) and IL-8 by HEK cells (Fig 3J and 3K)
156  were used as an indicator of cell activation. IL-12 production by BMDMs from MyD88"
157 -, TRIF’-, TLR2", and TLR4” mice was lower than that of BMDMs from WT mice
158  (Fig 3A-3D); no IL-12 was detected in cultures of TLR2/4 DKO mice cells stimulated
159  with either rMIC1 or rtMIC4 (Fig 3E). These results show that TLR2 and TLR4 are both
160  relevant for the activation of macrophages induced by rMIC1 and rMIC4. The residual
161  cytokine production observed in macrophages from TLR2”- or MyD88”- mice may be
162  the result of activation of TLR4 (Fig 3A and 3C), and vice versa; e.g., the residual 1L-12
163 levels produced by macrophages from TLR4”-mice may be the result of TLR2

164  activation. The finding that MICs fail to induce IL-12 production in DKO mice

165 BMDMs suggests that cell activation triggered by 7. gondii MIC1 or MIC4 does not
166  require the participation of other innate immunity receptors beyond TLR2 and TLR4.
167  Nevertheless, because parasite components such as DNA or profilin engage TLRY,

168  TLRI11, and TLR12 to produce IL-12 in macrophages [19, 22, 29], we investigated the
169  involvement of these receptors, as well as TLR3 and TLRS, in the response to rMIC1 or
170  rMIC4. BMDMs from TLR3”-, TLR5”-, TLR9"", and TLR11/12 DKO mice stimulated
171 with rtMIC1 or rMIC4 produced similar levels of IL-12 as cells from WT (Fig 3F-3I),
172 indicating that the activation triggered by rMIC1 or rMIC4 does not depend on these
173 receptors. Additionally, stimulation of HEK cells transfected with human TLR2 (Fig 3J)
174  or TLR4 (Fig 3K) with optimal concentrations of tMIC1 (Fig S1A and S1C) and rtMIC4
175  (Fig S1B and S1D) induced IL-8 production at levels that were higher than those

176  detected in the absence of stimuli (medium), and similar to those induced by the

177  positive controls. Finally, by means of a pull-down experiment, we demonstrated a

178  physical interaction between rMIC1 and TLR2 or TLR4 and between rMIC4 and TLR2
179  or TLR4 (Fig 3L).

180  Cell activation induced by rMIC1 and rMIC4 results from the interaction of their
181  CRDs with TLR2 and TLR4 N-glycans

182 We hypothesized that in order to trigger cell activation, rMIC1 and rMIC4 CRDs
183  target oligosaccharides of the ectodomains of TLR2 (four N-linked glycans) [25] and
184  TLR4 (nine N-linked glycans) [30]. This hypothesis was tested by stimulating BMDCs
185  (Fig 4A) and BMDMs (Fig 4B) from WT mice with intact rMIC1 and rMIC4 or with
186  the mutated forms of these microneme proteins, namely rtMIC1-T126A/T220A and

187  rMIC4-K469M, which lack carbohydrate binding activity [11, 18, 27]. IL-12 levels in
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culture supernatants were lower upon stimulation with rMIC1-T126A/T220A or tMIC4-
K469M, showing that WT induction of cell activation requires intact rMIC1 and rMIC4
CRDs. The same microneme proteins were used to stimulate TLR2-transfected
HEK?293T cells (Fig 4C), and similarly, lower IL-8 production was obtained in response
to mutated rMIC1 or rMIC4 compared to that seen in response to intact proteins. These
observations demonstrated that rMIC1 and rMIC4 CRDs are also necessary for inducing
HEK cell activation.

We used an additional strategy to examine the ability of rtMIC1 and rMIC4 to
bind to TLR2 N-glycans. In this approach, HEK cells transfected with the fully N-
glycosylated TLR2 ectodomain or with the TLR2 glycomutants [25] were stimulated
with a control agonist (FSL-1) or with rMIC1 or rtMIC4. HEK cells transfected with any
TLR2 form, except those expressing totally unglycosylated TLR2 (mutant A1,2,3,4),
were able to respond to FSL-1 (Fig 4D), a finding that is consistent with the previous
report that the A1,2,3,4 mutant is not secreted by HEK293T cells [25]. Cells transfected
with TLR2 lacking only the first or the third N-glycan (mutant Al; A3) responded to all
stimuli. The response to the rMIC1 stimulus was significantly reduced in cells
transfected with five different TLR2 mutants, lacking some combination of the second,
third, and fourth N-glycans (Fig 4D). Moreover, rMIC4 stimulated IL-8 production was
significantly reduced in cells transfected with the mutants lacking some combination of
the third and fourth N-glycans (Fig 4D).

These results indicate that 7. gondii MIC1 and MIC4 use their CRDs to induce
TLR2- and TLR4-mediated cell activation. Among the TLR2 N-glycans, the rMICI1
CRD likely targets the second, third, and fourth glycan, whereas the rMIC4 CRD targets
only the third and fourth. Additionally, our findings suggested that TLR2 and TLR4
activation is required to enhance the production of IL-12 by APCs following rtMIC
stimulation.
The IL-12 production during 7. gondii in vitro infection depends partially on MIC1
and MIC4 proteins and their ability to recognize carbohydrates on APCs surface.

Because IL-12 production is induced by rMICs that engage TLR2 and TLR4 N-
glycans expressed on innate immune cells, we investigated whether such production is
impaired when APCs are infected with 7. gondii lacking MIC1 and/or MIC4 proteins,
as well as complemented strains expressing mutant versions of these proteins that fail to

bind TLR2 or TLR4 carbohydrates. We generated Amicl and Amic4 strains in an RH


https://doi.org/10.1101/187690
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/187690; this version posted June 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

221  strain expressing GFP and Luciferase using CRISPR/Cas9 to replace the endogenous
222 MIC gene with the drug-selectable marker HPT (HXGPRT — hypoxanthine-xanthine-
223 guanine phosphoribosyl transferase) (Fig SA and 5B). We then complemented MIC

224 deficient parasites with mutated versions expressing an HA-tag, thus generating the

225 Amicl::MICI1-T126A/T220A"A or Amic4::MIC4-K469M!4 strains (Fig 5A) that

226  expressed endogenous levels of MIC1 and MIC4 as confirmed by Western Blotting (Fig
227  5C).

228 IL-12 secretion by BMDCs and BMDMs infected with WT, Amicl,

229  Amicl::MIC1-T126A/T220A, Amic4 and Amic4::K469M parasites was assessed at 24
230  hours post infection. All mutant strains (Amicl, Amicl::MIC1-T126A/T220A, Amic4
231  and Amic4::K469M) induced lower IL-12 secretion by BMDCs (Fig 5D) and BMDMs
232 (Fig 5E) compared to that induced by WT parasites, indicating that engagement of

233 TLR2 and TLR4 cell surface receptors by the MIC lectin-specific activity led to an early
234 release of IL-12.

235 Using flow cytometry, we confirmed that parasites deficient in MIC1or MIC4,
236  or mutated in their carbohydrate recognition domain resulted in lower intracellular IL-
237 12 production than WT infected BMDCs (Fig 5F-5H). Interestingly, the Toxo™ BMDCs
238  presented the same level of intracellular IL-12, independent of the 7. gondii strain

239  infected (Fig SF and 5H). Whereas the Toxo BMDCs produced less IL-12 when they
240  were infected with knockout or CRD-mutated 7. gondii compared to WT-infected cells
241  (Fig 5G and 5H). Taken altogether, these results indicate that MIC1 and MIC4 induce
242 IL-12 production in innate immune cells during in vitro T. gondii infection. It is known
243 that other parasite factors act as IL-12 inducers, such as profilin, which is a TLR11 and
244 TLR12 agonist [29, 31], or GRA7 [32], GRA15 [33], and GRA24 [34], which directly
245  trigger intracellular signalling pathways in a TLR-independent manner, and these likely
246  account for the majority of IL-12 released after 24 hours of intracellular infection.

247

248  MIC1, but not MIC4, contributes to the cytokine storm and acute death during in
249  vivo murine infection with 7. gondii.

250 Given the importance of MIC1 and MIC4 as lectins that engage TLR2 and TLR4
251  N-glycans to induce increased levels of IL-12 release during 7. gondii in vitro infection,
252 we investigated the biological relevance of these proteins during in vivo infection. Mice

253  were injected with 50 tachyzoites of RH WT, Amicl, Amicl::MIC1-T126A/T220A,
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254 Amic4 and Amic4::MIC4-K469M strains into the peritoneum of CD-1 outbred mice, a
255  lethal dose that causes acute mortality. The survival curve showed that parasites

256  deficient in MIC1 (Amicl group) or mutated to remove MICI1 lectin binding activity
257  (Amicl::MIC1-T126A/T220A group) were less virulent, resulting in a slight, but

258  significant (p=0.0017) increase in mouse survival (12 days post-infection) compared to
259  WT infected mice that all succumbed to infection by day 10 (Fig 6A). This was not the
260  result of a difference in parasite load, which was equivalent across all 7. gondii-infected
261  mice at Day 5 (Fig 6D and 61). Whereas, the absence of the MIC4 gene or MIC4 lectin
262  activity did not change the survival curve (Fig 6E) indicating that MIC4 is less relevant
263  than MICI1 during in vivo infection.

264 Acute mortality in CD-1 mice infected with Type I 7. gondii is related to the
265  induction of a cytokine storm, mediated by high levels of IFN-y production. Thus, we
266  measured systemic levels of IFN-y and IL-12 in mice infected with WT, Amicl,

267  Amicl::MIC1-T126A/T220A, Amic4 and Amic4::MIC4-K469M strains. According to
268  Kugler et al. (2013), the peak of systemic IL-12p40 and IFN-y during ME49-T. gondii
269 infection is between days 5-6 post-infection, therefore, we measured these cytokines in
270  the serum of CD-I1-infected mice at day 5. Mice infected with Amicl or Amicl::MIC1-
271  TI126A/T220A strains had 3-5 fold lower systemic levels of IL-12 (Fig 6B; p=0.016)
272 and IFN-y (Fig 6C; p<0.0002) than WT infected mice. In contrast, mice infected with
273  parasites lacking the MIC4 gene, or those expressing the mutant version of MIC4

274  showed no difference in IL-12 (Fig 6F) or IFN-y (Fig 6G) compared to WT infected
275  mice. Hence, only MIC1 altered systemic levels of key cytokines induced during 7.
276  gondii in vivo infection, and mice survived longer with lower systemic levels of

277  cytokines typically associated with acute mortality.

278  MIC1 wild type complemented strain restores the cytokine storm and acute

279  mortality kinetics during in vivo infection with 7. gondii.

280 To formally show that MIC1 alters systemic levels of pro-inflammatory

281  cytokines associated with acute mortality, we complemented Amic/ parasites at the
282  endogenous locus with a Type I allele of MIC1 expressing an HA tag (MIC1H4),

283  Western blotting for either MIC1 or HA expression showed WT levels of MIC1

284  expression in the complemented parasites Amicl::MIC1H4 (Fig 7A). The complemented
285  strain restored WT virulence kinetics during in vivo infection and all mice died acutely,

286  in contrast to Amicl or Amicl::MIC1-T126A/T220A parasites, that had a slight, but
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significant delay in their acute mortality kinetics (Fig 7B; p=0.0082). Systemic levels of
IFN-y (Fig 7C) and parasite load (Fig 7D and 7E) from mice infected with the
complemented strain were indistinguishable from WT. To better resolve the apparent
difference in acute mortality, parasites were injected into the right footpad to monitor
mouse weight loss and survival kinetics [35]. Mice infected locally in the footpad with
Amicl survived significantly longer, or did not die (Fig 7G; p=0.0031), and lost less
weight during acute infection (Fig 7F) than those infected with WT or Amicl::MIC1
complemented parasites. Further, mice infected with Amicl::MIC1-T126A/T220A
parasites that fail to bind TLR2 and TLR4 N-glycans in vivo also lost less weight and
survived significantly longer than WT or Amicl::MIC1 complemented parasites (Fig 7F
and G). In conclusion, our results suggest that MIC1 operates in two distinct ways; as an
adhesin protein that promotes parasite infection competency, and as a lectin that
engages TLR N-glycans to induce a stronger proinflammatory immune response, one

that is unregulated and results in acute mortality upon RH infection of CD-1 mice.

DISCUSSION

In this study, we report a new function for MIC1 and MIC4, two T. gondii
microneme proteins involved in the host-parasite relationship. We show that rMIC1 and
rMIC4, by interacting directly with N-glycans of TLR2 and TLR4, trigger a
noncanonical carbohydrate recognition-dependent activation of innate immune cells.
This results in IL-12 secretion and the production of IFN-y, a pivotal cytokine that
mediates parasite clearance and the development of a protective T cell response [19,
22], but in some cases, as seen during RH infection of CD-1 mice, promotes a
dysregulated cytokine storm and acute mortality, as seen during RH infection of CD-1
mice [36]. This MIC-TLR activation event explains, at least in part, the resistance
conferred by rMIC1 and rMIC4 administration against experimental toxoplasmosis [20,
21].

T. gondii tachyzoites express microneme proteins either on their surface or
secrete them in their soluble form. These proteins may form complexes, such as those of
MIC1, MIC4, and MIC6 (MIC1/4/6), in which MIC6 is a transmembrane protein that
anchors the two soluble molecules MIC1 and MIC4 [8]. Genetic disruption of each one
of these three genes does not interfere with parasite survival [8] nor its interaction with,
and attachment to, host cells [10]; however, MIC1 has been shown to play a role in

10
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invasion and contributes to virulence in mice [10]. We previously isolated soluble

MIC1/4, a lactose-binding complex from soluble 7. gondii antigens (STAg) [17], and its
lectin activity was confirmed by the ability of MIC1 to bind sialic acid [9] and MIC4 to
B-galactose [18]. We also reported that MIC1/4 stimulates adherent splenic murine cells
to produce IL-12 at levels as high as those induced by STAg [20]. Recently, it was also
demonstrated that MIC1, MIC4 and MIC6 are capable of inducing IFN-y production
from memory T cells in mice chronically infected with 7. gondii [37]. Our data herein
shows that MIC1/4 binds to and activates TLRs via a novel lectin-carbohydrate
interaction, rather than by its cognate receptor-ligand binding groove, establishing
precisely how the interactions of microneme protein(s) with defined glycosylated
receptor(s) expressed on the host cell surface are capable of altering innate priming of
the immune system.

To formally demonstrate the MIC1/MIC4 binding to glycosylated TLR cell
surface receptors we generated recombinant forms of MIC1 and MIC4, which retained
their specific sialic acid- and B-galactose-binding properties as indicated by the results
of their binding to fetuin and asialofetuin as well as the glycoarray assay. Both
recombinant MIC1 and MIC4 triggered the production of proinflammatory and anti-
inflammatory cytokines in DCs and macrophages via their specific recognition of TLR2
and TLR4 N-glycans, as well as by signaling through MyD88 and, partially, TRIF.
Importantly, our results establish how binding of tMIC1 and rMIC4 to specific N-
glycans present on TLR2 and TLR4 induces cell activation through this novel lectin-
carbohydrate interaction. The ligands for MIC1 and MIC4, a2-3-sialyllactosamine and
B1-3- or B1-4-galactosamine, respectively, are terminal N-glycan residues found on a
wide-spectrum of mammalian cell surface-associated glycoconjugates. Thus, it is
possible that additional lectin-carbohydrate interactions may exist between MIC1/4 and
other cell surface receptors beyond TLR2 and TLR4. Such interactions likely evolved to
facilitate adhesion and promote the infection competency of a wide-variety of host cells
infected by 7. gondii, further underscoring how these proteins exist as important
virulence factors [10] beyond immune priming. However, it is the immunostimulatory
capacity of rMIC1 and rMIC4 to target N-glycans on the ectodomains of TLR2 and
TLR4 that likely rationalizes how these microneme proteins function as a double-edged
sword during 7. gondii infection. Mice infected by Type I strains die acutely due to a

failure to regulate the cytokine storm induced by high levels of IL-12 and IFN-y [38,
11
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353 39]. In this study, 7. gondii Type I strains engineered to be deficient in MIC1 or

354  defective in binding TLR2/4 N-glycans lost less weight, survived significantly longer,
355  and produced less IL-12 and IFN-y. Future studies that test whether the

356  immunostimulatory effect of MIC1/4 alters the pathogenesis and cyst burden of Type II
357  strains of T. gondii should be pursued to formally demonstrate that Type II parasites
358  rely on MIC1/4 induction of Thl-biased cytokines in order to limit tachyzoite

359  proliferation and induce a life-long persistent bradyzoite infection.

360 Several pathogens are known to synthesize lectins, which are most frequently
361  reported to interact with glycoconjugates on host cells to promote adherence, invasion,
362  and colonization of tissues [40-43]. Nonetheless, there are currently only a few

363  examples of lectins from pathogens that recognize sugar moieties present in TLRs and
364  induce IL-12 production by innate immune cells. Paracoccin, a GIcNAc-binding lectin
365  from the human pathogen Paracoccidioides brasiliensis, induces macrophage

366  polarization towards the M1 phenotype [44] and the production of inflammatory

367  cytokines through its interaction with TLR2 N-glycans [45]. Furthermore, the galactose-
368  adherence lectin from Entamoeba histolytica activates TLR2 and induces I1L-12

369  production [46]. In addition, the mammalian soluble lectin SP-A, found in lung alveoli,
370  interacts with the TLR2 ectodomain [47]. The occurrence of cell activation and 1L-12
371  production as a consequence of the recognition of TLR N-glycans has also been

372  demonstrated using plant lectins with different sugar-binding specificities [48, 49].

373 The binding of MIC1 and MIC4, as well as the lectins above, to TLR2 and

374  TLR4 may be associated with the position of the specific sugar residue present on the
375  receptor’s N-glycan structure. Since the N-glycan structures of TLR2 and TLR4 are still
376  unknown, we assume that the targeted MIC1 and MIC4 residues, e.g. sialic acid a2-3-
377  linked to galactose B1-3- and f1-4-galactosamines, are appropriately placed in the

378  receptors’ oligosaccharides to allow the recognition phenomenon and trigger the

379  activation of innate immune responses.

380 Several T. gondii proteins have previously been shown to activate innate

381  immune cells in a TLR-dependent manner, but independent of sugar recognition. This is
382  the case for profilin (TgPRF), which is essential for the parasite’s gliding motility based
383  on actin polymerization; it is recognized by TLR11 [29] and TLR12 [31, 50]. In

384  addition, T. gondii-derived glycosylphosphatidylinositol anchors activate TLR2 and
385 TLR4 [51], and parasite RNA and DNA are ligands for TLR7 and TLRO, respectively

12
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386  [19, 22, 50]. The stimulation of all of these TLRs culminate in MyD88 activation which
387  results in [L-12 production [19, 22]. Several other 7. gondii secreted effector proteins
388  regulate the production of proinflammatory cytokines such as IL-12, independent of
389  TLRs. For example, the dense granule protein 7 (GRA7) induces MyD88-dependent
390  NF-kB activation, which facilitates IL-12, TNF-a, and IL-6 production [32]. MIC3 is
391  reported to induce TNF-a secretion and macrophage M1 polarization [52], whereas

392  GRAI1S expressed by Type 11 strains activates NF-kB, promoting the release of I1L-12
393  [33], and GRA24 triggers the autophosphorylation of p38 MAP kinase and

394  proinflammatory cytokine and chemokine secretion [34]. In contrast, TgIST interferes
395  with IFN-y induction by actively inhibiting STAT1-dependent proinflammatory gene
396  expression indicating that the parasite is capable of both activating as well as inhibiting
397  effector arms of the host immune response to impact its pathogenesis in vivo [53]. Thus,
398  multiple secretory effector proteins of 7. gondii, including MIC1 and MIC4, appear to
399  work in tandem to ultimately promote protective immunity by either inducing or

400  dampening the production of proinflammatory cytokines, the timing of which is central
401  to controlling both the parasite’s proliferation during the acute phase of infection and
402  the induction of an effective immune response capable of establishing a chronic

403  infection [19].

404 Our results regarding soluble MIC1 and MIC4 confirmed our hypothesis that
405  these two effector proteins induce the innate immune response against 7. gondii through
406  TLR2- and TLR4-dependent pathways. This is consistent with previous studies that

407  highlight the importance of TLR signaling, as well as the MyD88 adapter molecule, as
408  essential for conferring resistance to 7. gondii infection [29, 51, 54, 55]. In addition, we
409  show that both MIC1 and MIC4 on the parasite surface contribute to the secretion of IL-
410 12 by macrophages and DCs during in vitro infection, but only MIC1 plays a significant
411  role during in vivo infection, demonstrated by its ability to promote a dysregulated

412 induction of systemic levels of [IFN-y and a proinflammatory cytokine storm that leads
413  to acute mortality during murine infection.

414

415 METHODS

416  Ethics statement

417 All experiments were conducted in accordance to the Brazilian Federal Law

418  11,794/2008 establishing procedures for the scientific use of animals, and State Law

13
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establishing the Animal Protection Code of the State of Sao Paulo. All efforts were
made to minimize suffering, and the animal experiments were approved by the Ethics
Committee on Animal Experimentation (Comissdo de Etica em Experimentagdo Animal
- CETEA) of the Ribeirao Preto Medical School, University of Sao Paulo (protocol
number 065/2012), following the guidelines of the National Council for Control of
Animal Experimentation (Conselho Nacional de Controle de Experimenta¢do Animal -
CONCEA).
Lac* fraction and recombinant MIC1 and MIC4

The lactose-eluted (Lac") fraction was obtained as previously reported [17, 21].
Briefly, the total soluble tachyzoite antigen (STAg) fraction was loaded into a lactose
column (Sigma-Aldrich, St. Louis, MO) and equilibrated with PBS containing 0.5 M
NaCl. The material adsorbed to the resin was eluted with 0.1 M lactose in equilibrating
buffer and dialyzed against ultrapure water. The obtained fraction was denoted as Lac”
and confirmed to contain MIC1 and MIC4. For the recombinant proteins, rMIC1 and
rMIC4 sequences were amplified from cDNA of the 7. gondii strain ME49 with a 6-
histidine tag added on the N-terminal, cloned into pDEST17 vector (Gateway Cloning,
Thermo Fisher Scientific Inc., Grand Island, NY), and used to transform DH5a E. coli
chemically competent cells for ampicillin expression selection, as described before [21].
The plasmids with rMIC1-T126A/T220A and rMIC4-K469M were synthesized by
GenScript (New Jersey, US) using a pET28a vector, and the MIC sequences carrying
the mutations were cloned between the Ndel and BamH I sites. All plasmids extracted
from DHS5a E. coli were transformed in E. coli BL21-DE3 chemically competent cells
to produce recombinant proteins that were then purified from inclusion bodies and
refolded by gradient dialysis, as described previously for rMIC1 and rMIC4 wild type
forms [21]. Endotoxin concentrations were measured in all protein samples using the
Limulus Amebocyte Lysate Kit — QCL-1000 (Lonza, Basel, Switzerland). The rMICI,
rMIC1-T126A/T220A, tMIC4 and rMIC4-K469M contained 7.2, 3.2, 3.5 and 1.1 EU
endotoxin/pg of protein, respectively. Endotoxin was removed by passing over two
polymyxin-B columns (Affi-Prep Polymyxin Resin; Bio-Rad, Hercules, CA).
Additionally, prior to all in vitro cell-stimulation assays, the proteins samples were
incubated with 50 ug/mL of polymyxin B sulphate salt (Sigma-Aldrich, St. Louis, MO)

for 30 min at 37 °C to remove possible residual LPS.

14
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Glycan array

The carbohydrate-binding profile of microneme proteins was determined by
Core H (Consortium for Functional Glycomics, Emory University, Atlanta, GA), using
a printed glycan microarray, as described previously [56]. Briefly, rMIC1-Fc, rMIC4-
Fc, and Lac*-Fc in binding buffer (1% BSA, 150 mM NaCl, 2 mM CaCl,, 2 mM MgCl,,
0.05% (w/v) Tween 20, and 20 mM Tris-HCI, pH 7.4) were applied onto a covalently
printed glycan array and incubated for 1 hour at 25 °C, followed by incubation with
Alexa Fluor 488-conjugate (Invitrogen, Thermo Fisher Scientific Inc., Grand Island,
NY). Slides were scanned, and the average signal intensity was calculated. The common
features of glycans with stronger binding are depicted in Fig. 1a. The average signal
intensity detected for all of the glycans was calculated and set as the baseline.
Sugar-inhibition assay

Ninety-six-well microplates were coated with 1 pg/well of fetuin or asialofetuin,
glycoproteins diluted in 50 pL of carbonate buffer (pH 9.6) per well, followed by
overnight incubation at 4 °C. Recombinant MIC1 or MIC4 proteins (both wild type
(WT) and mutated forms), previously incubated or not with their corresponding sugars,
1.e. a(2-3)-sialyllactose for MIC1 and lacto-N-biose for MIC4 (V-lab, Dextra, LA, UK),
were added into coated wells and incubated for 2 h at 25 °C. After washing with PBS,
T. gondii-infected mouse serum (1:50) was used as the source of the primary antibody.
The assay was then developed with anti-mouse peroxidase-conjugated secondary
antibody, and the absorbance was measured at 450 nm in a microplate-scanning
spectrophotometer (Power Wave-X; BioTek Instruments, Inc., Winooski, VT).
Mice and parasites

Female C57BL/6 (WT), MyD88”-, TRIF”-, TLR2"-, TLR3"-, TLR4", double
knockout (DKO) TLR2”-/TLR4”-, TLR5"-, and TLR9"~ mice (all from the C57BL/6
background), 8 to 12 weeks of age, were acquired from the University of Sdo Paulo -
Ribeirdo Preto campus animal facility, Ribeirdo Preto, Sdo Paulo, Brazil, and housed in
the animal facility of the Department of Cell and Molecular Biology - Ribeirdo Preto
Medical School, under specific pathogen-free conditions. The TLR11”/TLR127-DKO
mice were maintained at American Association of Laboratory Animal Care-accredited
animal facilities at NIAID/NIH. For the in vivo infections, female CD-1 outbred mice, 6

weeks of age were acquired from Charles River Laboratories, Germantown, MD, USA.
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A clonal isolate of the 7. gondii RH-Aku80/Ahpt strain was used to generate the
GFP/Luciferase strain, which was the recipient strain to generate the single-knockout
parasites. The GFP/Luc sequence was inserted into the UPRT locus of Toxoplasma by
double crossover homologous recombination using CRISPR/Cas-based genome editing
and selected for FUDR resistance to facilitate the targeted GFP/Luc gene cassette
knock-in. The MIC1 and MIC4 genes were replaced by the drug-selectable marker /pt¢
(hxgprt - hypoxanthine-xanthine-guanine phosphoribosyl transferase) flanked by LoxP
sites. For all gene deletions, 30 pug of guide RNA was transfected along with 15 pg of a
repair oligo. Parasites were transfected and selected as previously described [57, 58].
For the MIC gene complementation, the sequence was amplified from RH genomic
DNA with the addition of one copy of HA-tag sequence
(TACCCATACGATGTTCCAGATTACGCT) before the stop codon, and cloned into
pCR2.1-TOPO vector, followed by site-directed mutagenesis using the Q-5 kit (New
England Biolabs) in order to generate point mutations into MIC1 (MICI1-
T126A/T220A) and MIC4 (MIC4-K469M) sequences. For transfections, 30 pg of guide
RNA was transfected along with 20 pg of linearized pTOPO vector containing the MIC
mutated sequences.

Strains were maintained in human foreskin fibroblast (HFF) cells grown in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-
inactivated foetal bovine serum (FBS), 0.25 mM gentamicin, 10 U/mL penicillin, and
10 pg/mL streptomycin (Gibco, Thermo Fisher Scientific Inc., Grand Island, NY).
Bone marrow-derived dendritic cells and macrophages

Bone marrows of WT, MyD88-, TRIF”-, TLR2”-, TLR3"-, TLR4"-, DKO
TLR27/TLR4”-, TLR5"-, TLR9”-, and DKO TLR117/TLR12" mice were harvested
from femurs and hind leg bones. Cells were washed with RPMI medium and
resuspended in RPMI medium with 10% FBS, 10 U/mL penicillin, and 10 pg/mL
streptomycin (Gibco). For dendritic cell (DC) differentiation, we added 10 ng/mL of
recombinant murine GM-CSF (Prepotech, Rocky Hill, NJ), and 10 ng/mL murine
recombinant IL-4 (eBioscience, San Diego, CA); for macrophage differentiation, 30%
of L929 conditioned medium was added to RPMI medium with 10% FBS. The cells
were cultured in 100 x 20 mm dish plates (Costar; Corning Inc., Corning, NY),
supplemented with respective conditioned media at days 3 and 6 for DCs, and at day 4
for macrophages. DCs were incubated for 89 days and macrophages for 7 days; the
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517  cells were then harvested and plated into 24-well plates at 5 x 10° cells/well for protein
518  stimulations or 7. gondii infections, followed by ELISA. Cell purity was analyzed by
519  flow cytometry. Eighty-five percent of differentiated dentritic cells were

520 CDI11b"/CDI11c", while 94% of differentiated macrophages were CD11b".

521  HEK293T cells transfection

522 Human embryonic kidney 293T (HEK293T) cells, originally acquired from

523  American Tissue Culture Collection (ATCC, Rockville, MD), were used as an

524  expression tool [59] for TLR2 and TLR4 [45, 60]. The cells grown in DMEM

525  supplemented with 10% FBS (Gibco), and were seeded at 3.5 x 10° cells/mL in 96-well
526  plates (3.5 x 10* cells/well) 24 h before transfection. Then, HEK293T cells were

527  transiently transfected (70-80% confluence) with human TLR2 plasmids as described
528  previously [25] or with CD14, CD36, MD-2 and TLR4 [61] using Lipofectamine 2000
529  (Invitrogen) with 60 ng of NF-kB Luc, an NF-xB reporter plasmid, and 0.5 ng of

530  Renilla luciferase plasmid, together with 60 ng of each gene of single and multiple

531  glycosylation mutants and of TLR2 WT genes [25]. After 24 h of transfection, the cells
532 were stimulated overnight with positive controls: P3C (Pam3CSK4; EMC

533 Microcollections, Tiibingen, Germany), fibroblast stimulating ligand-1 (FSL-1; EMC
534  Microcollections), or LPS Ultrapure (standard LPS, E. coli 0111:B4; Sigma-Aldrich); or
535  with the negative control for cell stimulation (the medium). Cells transfected with

536  empty vectors, incubated either with the medium or with agonists (FSL-1 or P3C), were
537  also assayed; negative results were required for each system included in the study. IL-8
538  was detected in the culture supernatants. The absence of Mycoplasma contamination in
539  the cell culture was certified by indirect fluorescence staining as described previously
540  [62].

541  Cytokine measurement

542 The quantification of human IL-8 and mouse IL-12p40, IL-6, TNF-a, and IL-10
543  in the supernatant of the cultures was performed by ELISA, following the

544  manufacturer’s instructions (OptEIA set; BD Biosciences, San Jose, CA). Human and
545  murine recombinant cytokines were used to generate standard curves and determine
546  cytokine concentrations. The absorbance was read at 450 nm using the Power Wave-X
547  spectrophotometer (BioTek Instruments).

548 TLR2-FLAG and TLR4-FLAG plasmids
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The pcDNA4/TO-FLAG plasmid was kindly provided by Dr. Dario Simdes
Zamboni. The pcDNA4-FLAG-TLR2 and pcDNA4-FLAG-TLR4 plasmids were
constructed as follows. RNA from a P388D1 cell line (ATCC, Rockville, MD) was
extracted and converted to cDNA with Maxima H Minus Reverse Transcriptase
(Thermo-Fisher Scientific, Waltham, MA USA) and oligo(dT). TLR2 and TLR4 were
amplified from total cDNA from murine macrophages by using Phusion High-Fidelity
DNA Polymerase and the phosphorylated primers TLR2_F:
ATGCTACGAGCTCTTTGGCTCTTCTGG, TLR2 R:
CTAGGACTTTATTGCAGTTCTCAGATTTACCCAAAAC, TLR4 F:
TGCTTAGGATCCATGATGCCTCCCTGGCTCCTG and TLR4 _R:
TGCTTAGCGGCCGCTCAGGTCCAAGTTGCCGTTTCTTG. The fragments were

isolated from 1% agarose/Tris-acetate-ethylenediaminetetraacetic acid gel, purified
with GenelET Gel Extraction Kit (Thermo-Fisher Scientific), and inserted into the
pcDNA4/TO-FLAG vector by using the restriction enzymes sites for Notl and Xbal
(Thermo-Fisher Scientific) for TLR2, and BamHI and NotI (Thermo-Fisher Scientific)

for TLR4. Ligation reactions were performed by using a 3:1 insert/vector ratio with T4

DNA Ligase (Thermo-Fisher Scientific) and transformed into chemically competent
Escherichia coli DH5a cells. Proper transformants were isolated from LB agar

medium plates under ampicillin selection (100 pg/mL) and analyzed by PCR,
restriction fragment analysis, and DNA sequencing. All reactions were performed
according to the manufacturer’s instructions.
Pull-down assay and Western Blot

We used the lysate of HEK293T cells transfected (70-80% confluence) with

plasmids containing TLR2-FLAG or TLR4-FLAG. After 24 h of transfection, the HEK
cells were lysed with a non-denaturing lysis buffer (20 mM Tris, pH 8.0, 137 mM NacCl,
and 2 mM EDTA) supplemented with a protease inhibitor (Roche, Basel, Switzerland).
After 10 min of incubation on ice, the lysate was subjected to centrifugation (16,000 g,
at 4 °C for 5 min). The protein content in the supernatant was quantified by the BCA
method, aliquoted, and stored at -80 °C. For the pull-down assay, 100 ug of the lysate
from TLR2-FLAG- or TLR4-FLAG-transfected HEK cells were incubated with 10 pg
of TgMIC1 or TgMIC4 overnight at 4 °C. Since these proteins had a histidine tag, the

samples were purified on nickel-affinity resin (N1 Sepharose High Performance; GE
18
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Healthcare, Little Chalfont, UK) after incubation for 30 min at 25 °C and centrifugation
of the fraction bound to nickel to pull down the TgMIC-His that physically interacted
with TLR-FLAG (16,000 g, 4 °C, 5 min). After washing with PBS, the samples were
resuspended in 100 pL of SDS loading dye with 5 pL. of 2-mercaptoethanol, heated for
5 min at 95 °C, and 25 pL of total volume was run on 10% SDS-PAGE. After
transferring to a nitrocellulose membrane (Millipore, Billerica, MA), immunoblotting
was performed by following the manufacturer’s protocol. First, the membrane was
incubated with anti-FLAG monoclonal antibodies (1:2,000) (Clone G10, ab45766,
Sigma-Aldrich) to detect the presence of TLR2 or TLR4. The same membrane was then
subjected to secondary probing and was developed with anti-TgMIC1 (IgY; 1:20,000)
or anti-TgMIC4 (IgY; 1:8,000) polyclonal antibodies and followed by incubation with
secondary polyclonal anti-chicken IgY-HRP (1:4,000) (A9046, Sigma-Aldrich) to
confirm the presence of TgMIC1 and TgMICA4.
In vitro infections

Bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived
macrophages (BMDMs) were infected with WT (Aku80/Ahpt), Amicl, Amicl::MIC1-
T126A/T220A, Amic4 or Amic4::MIC4-K469M (Type I, RH background) strains
recovered from T25 flasks with HFF cell cultures. The T25 flasks were washed with
RPMI medium to completely remove parasites, and the collected material was
centrifuged for 5 min at 50 g to remove HFF cell debris. The resulting pellet was
discarded, and the supernatant containing the parasites was centrifuged for 10 min at
1,000 g and resuspended in RPMI medium for counting and concentration adjustments.
BMDCs and BMDMs were dispensed in 24-well plates at 5 x 103 cells/well (in RPMI
medium supplemented with 10% FBS), followed by infection with 3 parasites per cell
(multiplicity of infection, MOI 3). Then, the plate was centrifuged for 3 min at 200 g to
synchronize the contact between cells and parasites and incubated at 37 °C. The
supernatants were collected at 6, 12, 24, and 48 h after infection for quantification of
IL-12p40.
In vivo infections and Luciferase assay

Six-week-old female CD-1 outbred mice were infected by intraperitoneal
injection with 50 tachyzoites of RH engineered strains diluted in 500 pl of phosphate-

buffered saline. The mice were weighed daily and survival was evaluated
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Bioluminescent detection of firefly luciferase activity was performed at day 5
post-infection using an IVIS BLI system from Xenogen to monitor parasite burden.
Mice were injected with 3 milligrams (200 pl) of D-luciferin (PerkinElmer) substrate,

and after 5 minutes the mice were imaged for 300 seconds to detect the photons emitted.

Statistical analysis

The data were plotted and analysed using GraphPad Prism 7.0 software
(GraphPad, La Jolla, CA). Statistical significance of the obtained results was calculated
using analysis of variance (One-way ANOVA) followed by Bonferroni's multiple

comparisons test. Differences were considered significant when the P value was <0.05.
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Lac+
rMIC1
rMIC4

Probe Name

150 | Galp1-4GIcNAcp1-6(Galp1-3)GalNAca-Sp8

227 | Neu5Aca2-3Galp1-4[0SOs]GIcNACB-Sp8

139 | Galp1-4[0SO;]GIc-Sp0

260 | NeuSAca2-3Galp1-4GIcNAGE-Sp0

209 | Neu5Aca2-3(GalNAcp1-4)GalB1-4GIcNAca-Sp0

211 Neu5Aca2-3GalB1-3(NeuSAco2-6)GalNAca-Sp8

219 Neu5Aca2-3GalB1-3(NeuSAca2-3)GalNAcB-Sp8

210 | Neu5Aca2-3(GalNAcp1-4)Galp1-4GIcNACB-Sp8

52 GalB1-4GIcNAcB1-2Man1-3(GalB1-4GlcNAcB1-2Mana.1-6)
ManB1-4GIcNAcB-Sp13

275 | Galp1-3(Galp1-4GIcNAcB1-6)GalNAc-Sp14

143 Neu5Aca2-3GalpB1-4GIcNAcB1-2Man1-3(Neu5Aca2-3Galp1-4
GlcNAcB1-2Mana 1-6)Manp1-4GIcNAcB1-4GIcNAcB-Sp12

296 | Galp1-4GIcNACB1-3(Galp1-4GIcNACP1-6)Galp1-4GIcNAC-SpO

142 | Galp1-4GIcNACB1-3(Fucal-2)Galp1-4GIcNACH-Sps

294 | Galp1-3Galp1-4GIcNACS-Sp8

120 | Galp1-3(Galp1-4GIcNAcB1-6)GalNAca-Sps

130 GalB1-3Galp-Sp8

134 | Galp1-3GIcNACB-Sp8

0-10%
<10 - 30%
<30 - 70%
<70 - 100%

121 | Galp1-3(GlcNAcB1-6)GalNAca-Sp8

197 Mana1-6(Mana1-3)Mana1-6(Mano2Mana1-3)Manf 1-4
905 GIcNAcB1-4GIcNAcB-Sp12

906  Fig 1. Lectin activity of rMIC1 and rMIC4. (A) Glycoarray of the native MIC1/MIC4
907  subcomplex (Lac+) and of the recombinant forms of MIC1 and MICA4. In total, 320

908  oligosaccharide probes were analysed by reading their fluorescence intensities, and the 20
909  Dbest recognized glycans are shown. The results were represented as previously reported
910  [18]. (B) The activity and inhibition assays were performed in microplates coated with
911  glycoproteins with or without sialic acid, fetuin (black bars), or asialofetuin (white bars),
912  separately. After coating, wild type or mutated rMIC1 and rMIC4, pre-incubated with
913  PBS or their corresponding sugars, were added to the wells. Later, bound proteins were
914  detected through the addition of serum from 7. gondii-infected mice. Data in (B) are

915  expressed as mean £S.D. of triplicate wells and significance was calculated with

916 ANOVA followed by Bonferroni's multiple comparisons test. *p<0.05. Data are

917  representative of two (B) independent experiments. Gal: galactose; GalNAc: N-

918 acetylgalactosamine; Glc: glucose; Man: mannose; Fuc: fucose; NeuSAc: N-
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919  acetylneuraminic acid; wt: wild type protein; mut: protein with a mutation in the

920  carbohydrate-recognition domain (CRD); ns: not significant.
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923  Fig 2. Microneme proteins stimulate cytokine production by dendritic cells and
924  macrophages. (A-D) Bone marrow-derived dendritic cells (BMDCs) and (E-H) bone
925  marrow-derived macrophages (BMDMs) from C57BL/6 mice were stimulated with

926 rMICI (5 pg/mL) and rtMIC4 (5 pg/mL) for 48 h. LPS (100 ng/mL) was used as

927  positive control. The levels of IL-12p40, TNF-a, and IL-6 were measured by ELISA.
928  For this assay, rMIC1 and rMIC4 were passed through polymyxin B column, followed
929 by incubation with polymyxin B sulphate salt media preparation that was added to the
930 culture (see Material and Methods). Data are expressed as mean £S.D. of triplicate wells
931  and significance was calculated with ANOVA followed by Bonferroni's multiple

932  comparisons test. *p<0.05. Data are representative of three independent experiments.

933
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Fig 3. The IL-12 production induced by rMICs is dependent on binding to TLR2
and TLR4. (A-I) Bone marrow-derived macrophages from WT, TLR27, TLR4",
double knockout TLR2”/TLR4”-, TLR3"-, TLR5”-, TLR9"", and double knockout
TLR117/TLR127 mice, all of the C57BL/6 background, were stimulated with rMIC1
or tMIC4 (5 pg/mL) for 48 h. Pam3CSK4 (P3C) (1 pg/mL), LPS (100 ng/mL), Poly I:C
(10 pg/mL), Flagellin (FLA) (1 pg/mL) and CpG (25 pg/mL) were used as positive
controls. IL-12p40 levels were measured by ELISA. (J and K) Transfected HEK293T
cells expressing TLR2 were stimulated with rMIC1 (750 nM) or rtMIC4 (500 nM), and
rMICI (200 nM) or rtMIC4 (160 nM) for HEK cells expressing TLR4, for 24 h. FSL-1

(100 ng/mL) and LPS (100 ng/mL) were used as positive controls. IL-8 levels were
31
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measured by ELISA. (L) The interaction between rMICs and TLRs was evaluated by
western blot. HEK293T cells transiently expressing TLR2-FLAG and TLR4-FLAG
were lysed and incubated with His-rtMIC1 (rMIC11%) or His-rMIC4 (rMIC4H5). His-
rMICs were subjected to Ni**-affinity resin pull-down (lanes 6 to 9) and analysed for
TLR2 and TLR4 binding by protein blotting with antibodies specific for FLAG-tag and
then for rMIC (IgY, polyclonal). For these assays, rMIC1 and rMIC4 were passed
through polymyxin B column, followed by incubation with polymyxin B sulphate salt
media preparation that was added to the culture (see Material and Methods). Data in (A-
K) are expressed as mean +S.D. of triplicate wells and significance was calculated with
ANOVA followed by Bonferroni's multiple comparisons test. *p<0.05. Data are

representative of three (A-K) and two (L) independent experiments.

vy)
O

A 000, 8000, 8001
*
E 6000; — € 60007 _
ES) > =
=t = £
S 4000; S 40001 g
o (o} ©
o & -
-1 20001 =1 20001
NN 0
R IEINES )
z&o \3‘\&\ &"'fbﬂé\ s:oq 0&0
N oW N
&
S
o o
\) \)
N S
D 1000
800
£ 6001
Es)
£
w -
% 400
2004
Odrta_ix N
&o“\ @ >
@@

32


https://doi.org/10.1101/187690
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/187690; this version posted June 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

available under aCC-BY-NC-ND 4.0 International license.

Fig 4. The cellular activation induced by rMICs via TLRs depends on
carbohydrate recognition. (A) Bone marrow-derived macrophages and (B) bone
marrow-derived dendritic cells from C57BL/6 mice and (C) transfected HEK293T cells
expressing fully glycosylated TLR2 were stimulated with rtMIC1 (WT) and rtMIC4
(WT) or with their mutated forms, rtMIC1-T126A/T220A and rMIC4-K469M, 5 ng/mL
of each, for 48 h. LPS (100 ng/mL) and FSL-1 (100 ng/mL) were used as positive
controls. IL-12p40 and IL-8 levels were measured by ELISA. (D) HEK293T cells
expressing fully glycosylated TLR2 (with 4 N-glycans, WT) or glycosylation mutants
of TLR2 (A-1; A-4; A-1,2; A-3,4; A-2,4; A-1,2,3; A-1,2,3,4) were stimulated with rtMIC1
or tMIC4. FSL-1 (100 ng/mL) was used as positive control. IL-8 levels were measured
by ELISA. The statistical analysis compared fully glycosylated TLR2 (WT) and TLR2
mutants for the N-glycosylation sites for the same stimuli. For these assays, rMIC1,
rMICI-T126A/T220A, tMIC4 and rMIC4-K469M were passed through polymyxin B
column, followed by incubation with polymyxin B sulphate salt media preparation that
was added to the culture (see Material and Methods). Data are expressed as mean +S.D.
of triplicate wells and significance was calculated with ANOVA followed by
Bonferroni's multiple comparisons test. *p<0.05. Data are representative of three

independent experiments.
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977
978  Fig 5. The IL-12 production during 7. gondii in vitro infection partially depends on

979  MICs and their ability to recognize carbohydrates on APCs surface. (A) Schematic
980  representation of knockout and complementation constructs for MIC1 and MIC4 loci.
981  The endogenous loci were disrupted using the hypoxanthine-xanthine-guanine

982  phosphoribosyl transferase (HPT)-selectable marker and CRISPR methodology. (B)
983  PCR analysis for MIC1 and MIC4 loci of gDNA from parental (WT RH-Aku80/Ahpt-
984  GFP/Luc) and knockout (RH-Aku80/Amic1-GFP/Luc and RH-Aku80/Amic4-GFP/Luc)
985  strains. (C) Western blot analysis of an equal loading of whole cell lysates

986  corresponding to 3 x 10° tachyzoites (1 x 108/mL) from WT, Amicl, Amicl::MIC]1-
987  TI126A/T220A, Amic4 and Amic4::K469M parasites. The membrane was probed with
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anti-MIC1 (IgY, 1:20,000) and anti-MIC4 (IgY, 1:8,000). (D) Bone marrow-derived
dendritic cells (BMDCs) and (E) Bone marrow-derived macrophages (BMDMs) from
C57BL/6 were infected with WT, Amicl, Amicl::MIC1-T126A/T220A, Amic4 and
Amic4::K469M strains (MOI 3). LPS (100 ng/mL) was used as positive control. Cell-
culture supernatants were collected 24 hours post-infection and the IL-12p40 production
was analyzed by ELISA. (F and G) Frequency of IL-12p40" BMDCs (CD11b"IL-
12p40") after 20-24 hours of in vitro infection with WT, Amicl, Amicl::MIC1-
T126A/T220A, Amic4 and Amic4::K469M strains (MOI 1). Brefeldin A was added to
the culture for 8 hours. LPS (100 ng/mL) was used as positive control. (H)
Representative dot plots showing IL-12p40 staining in 7. gondii infected or non-
infected (SAG1* or SAG1") CD11b" cells after 20-24 hours of in vitro infection with
WT, Amicl, Amicl::MIC1-T126A/T220A, Amic4 and Amic4::K469M strains (MOI 1).
Brefeldin A was added to the culture for 8 hours. LPS (100 ng/mL) was used as positive
control. Data are expressed as mean £S.D. of triplicate wells and significance was
calculated with ANOVA followed by Bonferroni's multiple comparisons test. *p<0.05.

Data are representative of three (D and E) and two (F-H) independent experiments.
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Fig 6. MIC1 lectin activity, but not MIC4, contributes to virulence in mice during
in vivo infection with 7. gondii. CD-1 mice were infected intraperitoneally with RH
engineered strains of 7. gondii at an infectious dose of 50 tachyzoites/mouse (n=6).

Mortality kinetics of mice infected with (A) WT, Amicl and Amicl::MIC1-
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1010  T126A/T220A strains or (E) WT, Amic4 and Amic4::MIC4-K469M parasites. At day 5
1011  post-infection the sera were collected for measuring systemic (B and F) IL-12p40 and
1012 (C and G) IFN-y. (D, H and I) Bioluminescent detection in photons/sec/cm? shows
1013 parasite burden 5 days post-infection. Data are expressed as mean +S.D. and

1014  significance was calculated with ANOVA followed by Bonferroni's multiple

1015  comparisons test. *p<0.05. Data are representative of three independent experiments,
1016  with total n=16.
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1019  Fig 7. MIC1 wild type complemented strain restores virulence in mice during in

1020  vivo infection with 7. gondii. (A) Western blot analysis of an equal loading of whole
1021 cell lysates corresponding to 3 x 10° tachyzoites (1 x 10%/mL) from WT, Amicl,

1022 Amicl::MIC1-T126A/T220A and Amicl::MIC1 parasites. The membrane was probed
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with anti-MIC1 (IgY, 1:20,000), anti-HA (rabbit, 1:5,000) and anti-SAG1 (rabbit,
1:10,000). (B) Mortality kinetics of CD-1 mice infected intraperitoneally with WT,
Amicl, Amicl::MIC1-T126A/T220A and Amicl::MIC1 at an infectious dose of 50

tachyzoites/mouse (n=5). (C) At day 5 post-infection the sera were collected for

measuring systemic IFN-y. (D and E) Bioluminescent detection in photons/sec/cm?

shows parasite burden 5 days post-infection. (F and G) Body mass and mortality

kinetics of CD-1 mice infected subcutaneously with WT, Amicl, Amicl::MIC1-

T126A/T220A and Amicl::MIC1 using an infectious dose of 10* tachyzoites/mouse.

Data are expressed as mean £S.D. and significance were calculated with ANOVA

followed by Bonferroni's multiple comparisons test. *p<0.05. Data are representative of

two independent experiments, total n=10.
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S1 Fig. Effect of different concentrations of rMIC1 and rMIC4 on the transfected
HEK cells. HEK293T cells expressing (A and B) TLR2 or (C and D) TLR4 were
stimulated with increasing concentrations of (A and C) rMICI and (B and D) rMIC4
for 24 h. FSL-1 (100 ng/mL) LPS (100 ng/mL) were used as positive controls. IL-8

levels were measured by ELISA. Data are expressed as mean £S.D. of triplicate wells
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1042  and significance was calculated with ANOVA. *p<0.05. Data are representative of two

1043  independent experiments.
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