bioRxiv preprint doi: https://doi.org/10.1101/187609; this version posted September 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Selective and mechanistic sources of recurrent rearrangements
across the cancer genome

Jeremiah AWaIa*13 Ofer Shaplra*12 Yilong L|45 David Craft’, Steven E Schumacher , Marcin
Imielinski’®, James E Haber Nicola D Roberts Xiaotong Yao’, Chip Stewart', Cheng Zhongq
Zhang'*™, Jose Tubio® ,Young Seok J°, Peter J Campbell® 135 Joachim Weischenfeldt™®
and Rameen Beroukhlm , on behalf of the PCAWG- Structural Variation Working Group and
the PCAWG Network.

Broad Institute, Cambridge, MA 02142, USA
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Brornformatrcs and Integrative Genomics, Harvard University, Cambridge, MA, USA
SBGD Inc., Cambridge, MA 02142, USA
®Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Hlnxton Cambridgeshire CB10 1SA UK
Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital,
55 Fruit St., Boston, MA 02114, USA
"New York Genome Center, New York, NY 10013, USA
8Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine,
Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medicine, New
York, NY 10065, USA
Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis
UnlverS|ty, Waltham, MA 02454
Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 44
Binney Street DA1410, Boston, MA 02115, USA
“Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street 315B,
Boston, MA 02115, USA
“Mobile Genomes & Disease, The Biomedical Research Centre - CINBIO, University of Vigo,
36310 Vigo, Spain
13Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
“Biotech Research & Innovation Centre (BRIC); The Finsen Laboratory, Rigshospitalet,
UnlverS|ty of Copenhagen, Copenhagen, Denmark
European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
®*Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

*These authors contributed equally to this work.

Keywords: structural variation, rearrangements, cancer genomics, pan-cancer
SCo-corresponding authors:

Peter J Campbell, MD, PhD; Cancer Genome Project, Wellcome Trust Sanger Institute; Hinxton,

Cambridgeshire CB10 1SA, United Kingdom; Phone: +44 (0) 1223 834244; Email:
pc8@sanger.ac.uk

Joachim Weischenfeldt, PhD; Biotech Research & Innovation Centre (BRIC); The Finsen
Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark, Phone: +45
35456040; Email: joachim.weischenfeldt@bric.ku.dk

Rameen Beroukhim, MD, PhD; Dana-Farber Cancer Institute; 450 Brookline Avenue, Smith
1022C, Boston, MA, 02115, USA; Phone: 617-582-7941; Email: rameen@broadinstitute.org



https://doi.org/10.1101/187609
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/187609; this version posted September 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Abstract

Cancer cells can acquire profound alterations to the structure of their genomes, including
rearrangements that fuse distant DNA breakpoints. We analyze the distribution of
somatic rearrangements across the cancer genome, using whole-genome sequencing
data from 2,693 tumor-normal pairs. We observe substantial variation in the density of
rearrangement breakpoints, with enrichment in open chromatin and sites with high
densities of repetitive elements. After accounting for these patterns, we identify
significantly recurrent breakpoints (SRBs) at 52 loci, including novel SRBs near BRD4
and AKR1C3. Taking into account both loci fused by a rearrangement, we observe
different signatures resembling either single breaks followed by strand invasion or two
separate breaks that become joined. Accounting for these signhatures, we identify 90
pairs of loci that are significantly recurrently juxtaposed (SRJs). SRJs are primarily
tumor-type specific and tend to involve genes with tissue-specific expression. SRJs were
frequently associated with disruption of topology-associated domains, juxtaposition of
enhancer elements, and increased expression of neighboring genes. Lastly, we find that
the power to detect SRJs decreases for short rearrangements, and that reliable
detection of all driver SRJs will require whole-genome sequencing data from an order of
magnitude more cancer samples than currently available.
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Introduction

Rearrangements can substantially alter the structure and function of the genome
and underlie many strongly oncogenic driver alterations in cancer’. A single
rearrangement involves both the breaking of DNA and the formation of novel aberrant
juxtapositions between pairs of genomically distant breakpoints, often affecting large
stretches of DNA in a single event. Rearrangement topologies may be relatively simple
(deletions, inversions, duplications or balanced translocations), or highly complex, as in
the chromosomal shattering of chromothripsis? or clustered reciprocal rearrangements of
chromoplexy®. A single rearrangement can generate novel fusion gene products, affect
gene expression by altering gene copy number (dosage effects), or affect gene
expression by altering gene regulatory networks in cis®. Cis-regulatory effects of a
rearrangement can alter expression of genes up to two megabases from the event
locus®, and the changes in copy-number induced by a single rearrangement can span
over one hundred megabases. A complete understanding of the landscape of selective
pressures for rearrangements must therefore account for both loss-of-function and gain-
of-function effects, and the possibility that a single rearrangement can alter two or more
genes simultaneously®.

Whole-genome sequencing data are required to detect rearrangements genome-
wide, as the vast majority of rearrangement breakpoints lie outside of exons. As such,
large pan-cancer rearrangement analyses have been limited by the relatively small
numbers of cancers profiled by whole-genome sequencing. However, several questions
are often more easily addressed in pan-cancer analyses, due to the size of the datasets
involved and the abilty to compare data from different cancer types
(https://doi.org/10.1101/162784).

Here we assess rearrangements across 2,693 cancer whole-genomes from 30
histological subtypes as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG).
We identify genome-wide patterns that both predict the distribution of breakpoints and
rearrangements and inform the mechanisms by which they are formed. Accounting for
these patterns, we discover significantly recurrent breakpoints (SRBs) and significantly
recurrent juxtapositions (SRJs) between pairs of loci brought together by a
rearrangement. These recurrent events include both known and novel candidate drivers
and are associated with substantial changes in gene expression. We further find that the
recurrent SRJs, more than other types of somatic genetic events, are strongly
associated with cell-of-origin, suggesting that SRJs are shaped by the epigenetic state of
the cell. Finally, we calculate the statistical power required to identify SRJs. We show
that this is highly dependent on the genomic distance between the two breakpoints of a
rearrangement, and find that, when taking into account all distances, we are
substantially underpowered to detect important events.

Results

Rearrangement density along the genome is determined most strongly by
chromatin structure and sequence features

We analyzed 292,253 high-confidence somatic rearrangements (584,506
breakpoints) in 2,693 cancer-whole genomes across 30 histological cancer subtypes as
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part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) of the International
Cancer Genome Consortium (ICGC) (Supp. Note; Supp. Figs. 1-3). The effects of each
of these rearrangements may derive primarily from the disruption of genomic locations of
one or both of their breakpoints (such as disruption of a tumor suppressor) or may result
from the generation of a novel juxtaposition between loci due to reorganization of the
genome, as in the case of BRAF-KIAA1549 fusions. We therefore analyzed both where
breakpoints tended to occur (the one-dimensional analysis) and which pairs of loci
tended to be juxtaposed (the two-dimensional analysis; Fig. 1a).

Sources of variation in the 1D and 2D rearrangement densities could be from
mechanistic biases towards rearrangements involving certain genomic loci, or from
selective pressures that lead to enrichment of specific rearrangements among cancers.
We first evaluated genome-wide patterns suggestive of mechanistic pressures and then
identified specific loci where rearrangements were significantly enriched. This provided a
catalog of candidate driver SRBs in the 1D analysis and SRJs in the 2D analysis events.

For the 1D analysis, we modeled genome-wide background variations in
breakpoint density (Fig. 1b, top) using a gamma-Poisson (GP) model’ where DNA
breaks follow a Poisson distribution that can vary based on local genomic features (see
Methods; Supp. Fig. 4, 5; Supp. Table 1). We found that the density of short-
interspersed nuclear elements (SINES), fragile sites, gene expression, replication timing,
and DNAase hypersensitivity sites were significant predictors of increased breakpoint
density. Early replication timing, H3K36me3 density, GC content and heterochromatin
were significantly predictive of decreased breakpoint densities (Ext. Fig. 1).

For the 2D analysis, we determined how the density of rearrangements between
any two loci (Fig. 1b, bottom) varied with the genomic distance between those loci (the
rearrangement’s “span”), the breakpoint density and sequence features of the two loci,
and rearrangement topology.

Most rearrangements are short. Between 2 Kbp to 20 Mbp, the frequency of
rearrangements is approximately inversely proportional to the rearrangement span (Fig.
2a), and the probability density drops by four orders of magnitude over this distance.
This is similar to the global contact probability as a function of genomic distance
determined by Hi-C mapping of non-cancer genomes®, and distributions of lengths for
somatic copy-number alterations in cancer®*’. Rearrangements also tend to stay within
the same topologically associated domain (TAD; Fig. 2b), supporting the role of three-
dimensional chromatin organization in partner selection®**.

The rate of rearrangements between any two loci is highly correlated with the
rate at which each locus connects to other genomic loci (after controlling for
rearrangement span; p < 10" for all spans; Supp. Fig. 6). For example, frequent
rearrangements at chromosome 12 reflect juxtapositions to loci across the genome (Fig.
1b).

Rearrangements with high junction microhomology are substantially enriched in
the cancer genome. Overall, for rearrangements with junction microhomology between 3
and 10 bp, each additional base of microhomology is associated with an approximately
two-fold reduction in the number of rearrangements observed (Fig. 2c¢), a slower drop
rate than the approximately four-fold reduction expected by chance®. We suspect that
many of these rearrangements are due to microhomology-mediated end-joining (MMEJ);
the effect of additional base-pairing on MMEJ has been confirmed in budding yeast™.
For rearrangements with longer microhomology (>11 bases), we find each additional
base of microhomology is associated with only a 7% decrease in the number of
rearrangements observed. This transition may reflect a shift to single-strand annealing
(SSA). In yeast, the transition from MMEJ to SSA appears to occur at 12-13 bp*®.

Although rearrangements with high microhomology are enriched, as much as
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70% of somatic rearrangements in our cohort are likely to be non-microhomology
mediated. We determined this number by assuming that repair mechanisms that are not
microhomology-mediated generate a random distribution of observed lengths of
microhomology*? (Ext. Fig. 2).

We next compared microhomology levels across topologies, using the
topological classification from Li et al (https://doi.org/10.1101/181339). We distinguished
single, “isolated” rearrangements that were distant from other rearrangements from
clusters of multiple “linked” rearrangements that represented more complex events.

Among rearrangements with low microhomology (<11 bp), isolated rearrangements tend

to be short, whereas linked events tend to be long (Fig. 2d). Both isolated and linked
rearrangements with high microhomology (>11 bp) are enriched with short events. The
relationship between complex rearrangement topology and non-homologous or
microhomology-mediated repair processes has been proposed in the context of
chromothripsis’ and DNA replication mechanisms* and may explain some of this
observed bias.

We also observed significant enrichments for rearrangements connecting two
genes and rearrangements connecting two repetitive elements, particularly for
rearrangements connecting either two different long-terminal repeat (LTR) transposons
or short-interspersed nuclear elements (SINE; Fig. 2e; Ext. Fig. 3; Supp. Fig. 6).
Repetitive elements are sources of instability in the genome, and neighboring Alu
elements have been reported to be sites of frequent recombination in the human
genome™®*®. Rearrangements joining repetitive elements from the same family exhibited
significantly higher junction microhomology than rearrangements with only a single
breakpoint within a repetitive element (Fig. 2f), suggesting that the former are enriched
due to microhomology-mediated repair.

We used this information to develop two mathematically simple background
models for the 2D analysis (Ext. Fig. 4; see Methods) that explicitly account for both the
span distribution and the frequency with which each locus suffers rearrangements. The
first model hypothesizes that the background probability that loci i and j will be
juxtaposed is p% = gs; + gsi, where q is the marginal probability of a rearrangement
initiated in locus i and s; is the conditional probability that a break at i will connect to site
j. This “break-invasion” model is reminiscent of mechanisms like non-allelic homologous
recombination (NAHR), which involve a break in one locus followed by invasion into
another'’. The second model hypothesizes the background probability p;° = riril;;, where
ri, r; are the breakpoint densities and |;; is a length factor connecting i and j. This “double-
break join” model is reminiscent of non-homologous end joining (NHEJ) or MMEJ*®,
which involve separate breaks in two loci with an erroneous join.

The extent to which different classes of rearrangements fit either model therefore
indicates the physical process that generated those rearrangements. We tested
rearrangements stratified by level of homology, topology, and span (Fig. 2g).
Rearrangements with no junction homology (<2 bp) show preference for the double-
break join model, but rearrangements with increasing homology show increasing
likelihood to be represented by the break-invasion model. Rearrangements whose
junctions included an insertion longer than 10 bp (independent of junction homology), a
characteristic often attributed to microhomology-mediated break-induced replication
(MMBIR)'®, were 10% more likely to fit the break-invasion model (p<10™®). Simple
rearrangements tended to fit the break-invasion model whereas complex events tended
to fit the double-break join model (p<10™). Rearrangements shorter than 1 Mbp tended
to fit the break-invasion model, whereas longer and interchromosomal rearrangements
tended to fit the double-break join model (p<10™ in all cases).
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Significantly recurrent breakpoints reflect multiple selective processes

The 1D analysis identified 52 loci where breakpoints were observed at rates
significantly above the predictions of the background model, covering 38 Mbp or 1.2% of
the genome (Supp. Table 2). The median size of a locus was 501 Kbp (s.d. 794 Kbp).
Among the 2,693 genomes, 1,524 (57%) contained at least one SRB. The most
significantly altered loci were sites of oncogenic fusions and regions surrounding
recurrent somatic copy-number alterations (SCNAS), including a small number of fragile
sites. From the top twenty recurrent loci, (Fig. 3a), five contained genes that are
recurrently amplified (TERT, ERBB2, VMP1/MIR-21, CCND1, MDM2), four overlapped
recurrent deletions of known tumor suppressors (CDKN2A, PTEN, TP53, RB1), seven
contained genes involved in known oncogenic fusions (TMPRSS2, ERG, BRAF, IGH,
KIAA1549, BCL2, RUNX1), and four involved genes at known fragile sites (FHIT,
WWOX, LSAMP, PTPRD). Most SRBs were observed across several tissue types, but
several of the known oncogenic fusions were identified in only a single tissue type.

The rearrangements at the most significant loci exhibited two broad patterns
(Ext. Fig. 5). In the first, the rearrangement breakpoints were clustered at one end, but
the partner breakpoints were widely dispersed. These were largely associated with
recurrent SCNAs. The second pattern involved rearrangements where both breakpoints
were tightly clustered, resulting in oncogenic fusions.

With these patterns in mind, we developed a simple metric to quantify how tightly
breakpoints cluster within each locus, to better group loci by their potential functional
effects. For each locus, we calculated a “rearrangement dispersion-score” (RD-score) as
the median absolute deviation of the distance between breakpoints, normalized by the
median distance between breakpoints. The RD-scores of the 52 SRBs exhibited a
bimodal pattern with a local minimum at 0.075. Nine loci had RD-scores below 0.075,
with each locus containing genes involved in known oncogenic gene-gene fusions (e.g.
IGH). We therefore classified these loci as “fusion-type” (Fig. 3b). The other 43 loci had
RD-scores above this threshold and were associated with recurrent SCNAs and novel
loci.

Among SCNAs, a major difficulty has been distinguishing recurrent alterations
that are primarily driven by genome fragility from those resulting from positive
selection’®®. We sought to improve this distinction by taking into account the
rearrangements that generate these SCNAs. Fragile sites are thought to be generated
from replication errors, and are associated with late-replicating?* and low gene-density
regions of the genome'®. We therefore scored the non-fusion loci by their gene density
and replication timing, and found that the loci clustered into two distinct groups (Fig. 3c).
The late-replicating, low gene-density group comprised nine loci, including each of the
four known fragile sites among the top twenty loci. We therefore term these “fragile type”
events. The remaining 34 non-fusion loci included known driver SCNAs and several loci
not currently known to be altered by recurrent SCNAs. We therefore segregated these
remaining 34 loci into those with significantly elevated copy-number (‘amplifications’,
n=20), those with significantly decreased copy-number (‘deletions’, n=9), and copy-
neutral events (n=5) (Fig. 3d; Supp. Table 2).

Although both fragile type and deletion events were associated with copy-loss,
they appear to have different functional consequences. In particular, the rearrangements
in more than one third of the deletion clusters were associated with biallelic inactivation
of known tumor suppressor genes, whereas only 20% of rearrangements in fragile type
clusters were (p<0.001; Fig. 3e).

The five rearrangement classes (fusions, fragile, deletions, neutral,
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amplifications) also had varied impact on the expression of genes in the immediate
vicinity of their breakpoints. For each class, we compared the distance from the SRB to
the gene with the most altered expression in the rearranged tumors, within a 1 Mbp
window. Fusion-type clusters had the shortest distance to the nearest tissue-specific
enhancer (Fig. 3f), and the change in expression of the most expression-altered gene
was significantly greater than for deletions, neutral loci, fragile sites, and random non-
significant breakpoints (p<0.05 in all cases; Fig. 3g). Of the three cluster types, fragile
clusters displayed the weakest correlations with expression of neighboring genes, in
agreement with the hypothesis that these are often passenger events that are not under
selection®.

Many of the SRBs indicate novel and potentially functionally relevant events. For
example, we observed recurrent deletions on chromosome 19 just upstream of BRD4
and NOTCH3, which were significantly enriched for rearrangements in ovarian (10
tumors, p < 10®) and breast (6 tumors, p < 0.006) adenocarcinomas (Fig. 3h). BRD4 is
a chromatin regulator and a candidate target of BET-bromodomain inhibitor therapy in
several cancer types®®?, including ovarian and triple-negative breast cancer®*®.
NOTCHS is located 36 Kbp away from BRD4 and its activation may play a role in
ovarian cancer’®?®, The rearrangements in this locus tended to create tightly clustered
<50 Kbp deletions near the BRD4 promoter in both ovarian and breast
adenocarcinomas. These rearrangements also tend to occur in cancers with
amplifications of BRD4 and NOTCH3 (Fig. 3i), but are highly focal and do not contribute
to those amplifications. Ovarian cancers, but not breast cancers, with these
rearrangements had slightly increased expression of NOTCH3, consistent with its
amplified state (Fig. 3j). However, BRD4 expression was significantly decreased in the
breast tumors and exhibited no change in the ovarian tumors, despite having increased
copy-number in both tumor types. These findings, coupled with the expected result of
disrupting the BRD4 promoter, raise the possibility that this cluster of rearrangements
reduces BRD4 expression in cancers where it would otherwise have been
overexpressed. Overexpression of BRD4 has previously been found to suppress cell
growth?®. Deletions of promoters to prevent gene overexpression in the context of
amplification has to the best of our knowledge not previously been reported in cancer.

Significantly recurrent juxtapositions exhibit tissue-specific effects on expression

The 2D analysis (see Methods) identified 90 SRJs (juxtaposition clusters that
were significantly enriched above expected rates; Supp. Table 4). Among the 30 most
significant SRJs (Fig. 4a), 12 correspond to known oncogenic SRJs as curated by the
COSMIC database (http://cancer.sanger.ac.uk/cosmic). An additional two clusters have
been recently described to be oncogenic: a recurrent t(2;7) translocation between
THADA and IGF2BP3 in thyroid adenocarcinoma® (in all cases we list the 5’ end of the
SRJ first) and a recurrent t(22;23) translocation between BEND2 and EWSRL1 in
pancreatic endocrine tumors®. The sixteen remaining clusters include five with a known
driver gene in the COSMIC cancer gene census (MDM2, EGFR, TERT, ROS1, ERCCS5).
Eight loci (TMPRSS2, ERG, ROBO2, BRAF, TERT, BASP1, NEDDA4L, and IGH) were
involved in more than one SRJ, a significantly higher number than would be expected by
randomly choosing from all loci genome-wide (p < 10™, permutation test), indicating
different SRJs often share common molecular targets.

Strikingly, nine of the ten most significant clusters comprise rearrangements from
only a single cancer type. This restriction to individual cancer types seems to be specific
to SRJs and contrasts with the other two major modes of somatic genetic alteration:
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copy-number alteration and single nucleotide variation, where the 10 most significant
SCNAs and SNVs were each observed in an average of 11.9 and 6.7 cancer types,
respectively (Supp. Table 5).

The finding that SRJs tend to be cancer-type restricted indicates that they are
uniquely shaped by the epigenetic state of the cells in which they are observed. The
epigenetic features that lead to this tissue specificity could favor mechanisms that
generate specific rearrangements (e.g. due to varying three-dimensional organization of
DNA among tissues) and/or tissue-specific selection pressures (e.g. differences in the
transcriptional effects of the rearrangement or selective advantage for lineage-specific
oncogenes)***. We hypothesized that the SRJs underwent positive selection in large
part due to tissue-specific effects on expression of proto-oncogenes*®*.

We found three pieces of evidence that, as a rule, SRJs are enriched for their
tissue-specific effects on expression of one of the rearrangement partners. First,
rearrangements involved in SRJs lead to significant overexpression of one
rearrangement partner relative to randomly selected rearrangements (Fig. 4b left panel,
p<10™). Second, the rearrangement partner that is not overexpressed in the rearranged
samples tends to have high expression levels in that tissue relative to other tissue types,
suggesting that the rearrangement brings tissue-specific regulatory elements associated
with this gene to its partner (Fig. 4b right panel, p<2e-9). Third, the distance to the
nearest tissue-specific enhancers is smaller for SRJs than for rearrangements overall
(Ext. Fig. 6, p<le-6).

In many cases, the selective pressures favoring SRJs also involve generation of
novel protein coding sequences (including truncated and chimeric proteins). To some
extent, this is expected: 33% of the mappable genome is covered by introns and exons,
so a randomly placed rearrangement has a 56% chance of having at least one
breakpoint fall within an intron or exon, and indeed 56% of all rearrangements do so.
However, the rate is higher among SRJs, for which 68% have at least one breakpoint
within an intron or an exon (p < 10°).

However, the generation of novel protein coding sequences is not a general
feature of SRJs. Only eleven of the 30 most significant SRJs generate novel protein
coding sequences in all affected samples. An additional six exhibit a mix of protein-
disruptive and nondisruptive rearrangements (Fig. 4a), but the protein-disruptive
rearrangements in these six cases always occur within the first two introns of the
disrupted gene, which can leave most of the affected protein intact®. Moreover, SRJs
that generate novel proteins exhibit similar changes in expression to those that do not
generate novel proteins (p=0.4; Fig. 4c), suggesting that altering gene expression is a
function of both classes of SRJs.

The effects of SRJs are exemplified by the most significant cluster without a
known COSMIC fusion: t(2;7) translocations between THADA and IGF2BP3 in five
thyroid cancers. In all five cases, the rearrangements connected THADA, truncated
between introns 27 and 32, to a region just upstream of IGF2BP3 on chromosome 7,
always in the sense direction (Ext. Fig. 7a). Although not described in COSMIC,
THADA-IGF2BP3 fusions were recently shown® to lead to IGF2BP3 overexpression,
promoting transformation. In our analysis, IGF2BP3 was the most highly overexpressed
gene in samples with THADA-IGF2BP3 fusions, possibly because THADA has the
highest tissue-specific expression in normal thyroid tissue (Ext. Fig. 7b). THADA-
IGF2BP3 juxtapositions were also mutually exclusive with rearrangements involving RET
and other mutational driver events in thyroid cancers (e.g. BRAF; Ext. Fig. 7c), and
were anticorrelated with RET expression (Ext. Fig. 7d).

The finding that juxtapositions tend to be tissue-specific does not imply that the
oncogenes they generate are tissue-specific. For example, we found two novel SRJs
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involving TERT. TERT is known to undergo recurrent amplifications in 14 cancer types®®,
recurrent promoter mutations in over 50 cancer types®’, and promoter rearrangements in
16 cancer types®®. In our analysis, we identify significant juxtapositions between the
TERT promoter region and BASP1 in 4 melanomas (p<10”) and between the TERT
promoter region and NDUFC2 in two melanomas and one medulloblastoma (p<107?).
Among melanomas, these rearrangements are mutually exclusive to the C225T and
C250T TERT promoter mutations (p<10?, Fig. 4d). Examination of the TERT-BASP1
cluster indicates that in all four samples the rearrangement is part of a complex event
resulting both in focal gains of TERT and what appears as a relocation of enhancers in
and adjacent to BASP1 to the TERT promoter region (Fig. 4e). Similarly, the TERT-
NDUFC2 rearrangements in the two melanoma samples result in both focal amplification
of TERT and relocation of enhancers within a TAD containing NDUFC2 and ALGS to just
upstream of TERT (Ext. Fig. 8c).

Most SRJs were identified in only two or three samples, but even at this level of
recurrence were highly significant. For example, we identified a translocation between
EGFR on chromosome 7 and a locus adjacent to KL and STARD13 on chromosome 13
in two esophageal adenocarcinomas and one glioblastoma (Fig. 4f). The likelihood of
such narrow specific sites on two different chromosomes being connected in three
different samples is less than 10®. Additional features of these rearrangements support
an oncogenic role. First, in all three samples these rearrangements appear to contribute
to focal amplifications of EGFR. Second, EGFR was overexpressed beyond the
expected level based upon its copy-number status in the glioblastoma sample (the only
one with RNA-seq data; Fig. 4g), suggesting the rearrangement juxtaposed active
regulatory elements to EGFR. Third, such regulatory elements seem to be active in
esophageal tissue, where STARD13 has somewhat higher expression than in most
other tissues (Fig. 4g). Fourth, the glioblastoma sample with RNA-seq data exhibited
low expression of KL and STARD13 relative to other glioblastomas®. Both of these
genes have been proposed to act as tumor suppressors®. A second example is a
translocation connecting a region between KITLG and TMTC3 on chromosome 12 with a
locus just downstream of ITFG1 on chromosome 16, in two leiomyosarcomas (Fig. 4h).
Again, the likelihood of such specific regions on two different chromosomes being
connected in even two samples is less than 10®. Both of these samples show
overexpression of ITFG1, a conserved transmembrane protein that may interact with the
PP2A pathway and play a role in cell adhesion**** (Fig 4i). Both TMTC3 and KITLG
have high expression in normal fibroblast tissue (z-score > 3; Fig. 4i) and harbor an
enhancer rich genomic region, suggesting that the overexpression of ITFG1 may be due
to the relocation of enhancers to its promoter region.

TAD-disrupting rearrangements increase expression of neighboring genes more
than TAD-preserving rearrangements and reveal novel oncogenic events

We further investigated the effects of rearrangements on expression by
examining their interaction with TAD structure. TAD boundaries form functional barriers
separating enhancer-promoter interactions**, and rearrangement-mediated TAD
disruption can lead to activation of oncogenes®. For this reason, relative to TAD-
preserving rearrangements, TAD-disrupting rearrangements have been proposed to
have a larger impact on gene expression®. However, there has been no systematic
investigation of such effects.

We therefore assessed the impact of rearrangements on gene expression,

segregating rearrangements according to their spans and whether they disrupt nearby
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TADs on gene expression. We used CESAM, an analytical framework that we recently
developed to integrate breakpoints with gene expression data and tissue-specific
enhancer maps, to identify rearrangements associated with enhancer hijacking**. We
found that TAD-disrupting rearrangements had a significant positive effect on gene
expression compared with TAD-preserving rearrangements (p<0.001). We also found
that this difference was most pronounced for rearrangements of 100-400 Kbp and
became insignificant for >500 Kbp rearrangements (Fig. 5a).

We also performed a systematic search for specific rearrangements that disrupt
TAD structures and are associated with strong (more than two-fold) changes in
expression of nearby genes. We applied CESAM to TAD-bound breakpoint clusters for
six sets of tumor samples, grouped by cell of origin (endoderm, mesoderm, ectoderm,
neural crest, gastrointestinal and female urogenital organs) and evaluated all TADs for
which at least three samples exhibited intra-TAD breakpoints and for which gene
expression data were available.

Out of a total of 605 TAD-bound regions with sufficient data for CESAM analysis,
we identified 190 TAD-bound regions whose disruption was associated with significant
dysregulation of at least one gene (177 exhibiting upregulation and 13 downregulation;
Supp. Tables 3 and 6). These included all 7 of the 54 SRBs and all 7 of the 90 SRJs for
which we had sufficient number of samples with expression data to perform these
analyses. Among these, 37 genes were classified as cis-activating events associated
with enhancer juxtaposition. Many of the genes for which rearrangements were
associated with upregulated gene expression were known oncogenes, including BCL2,
MYC, TERT, and IGF2BP3 (noted above).

Across the cell-of-origin groups, between 7% and 45% of affected TADs were
associated with dysregulated gene expression, with tumors of neural crest and
gastrointestinal origin displaying the highest proportions. The most highly upregulated
CESAM hit associated with cis-regulatory rearrangement was a previously identified
enhancer-hijacking event leading to IGF2 upregulation® in gastrointestinal tissues
(mRNA expression 39-fold upregulated).

Several breakpoint clusters associated with robust expression alteration in cis
could not be ascribed to previously described cancer gene loci. For example, we
observed a breakpoint cluster at 10p15 (chr10:4.8 - 5.2 Mb), detected both in the 1D and
TAD-bound CESAM analysis, which was associated with greater than two-fold
upregulation of three AKR1C genes (AKR1C1, AKR1C2, and AKR1C3) within 11 Kbp of
the breakpoint in seven lung squamous cell and two liver cancers (Fig. 5c). All
breakpoints coincided with a cluster of lineage-specific enhancers at the locus,
suggesting that the rearrangements may alter promoter-enhancer interactions at the
locus to activate gene expression. Integration with chromatin conformation data revealed
the AKR1C-family activating breakpoints to intersect with an insulated neighborhood*°,
which are three-dimensional topological structures that have been suggested to contain
and ‘shield’ hard-wired enhancer-promoter interactions. All three AKR1C genes are
within this insulated neighborhood and exhibited dysregulated expression in samples
with these rearrangements. AKR1C proteins are aldo/keto reductases and involved in
maintenance of steroid homeostasis. Ectopic expression of AKR1C genes can transform
cell lines in vitro and germline mutations have been linked to increased susceptibility to
lung cancer*"*,

We also identified an interesting pattern of rearrangements near DSG3, leading
to upregulation in 13 breast cancer samples. Whereas the DSG3 gene is situated at a
TAD boundary, the rearrangements clustered inside this TAD, up to 2 Mbp away from
the gene locus (Fig. 5d and Supp. Table 3). suggesting that these rearrangements
perturb the TAD structure to activate DSG3 gene expression. DSG3 is involved in cell-
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cell adhesion and has previously been implicated has a putative oncogene with a role in
augmenting cell migration and invasion®®~°, but the mechanism of upregulation has not
been previously determined.

Larger cohorts are required to detect SJRs that recur in up to 20% of cancers
within individual tissue types

A central question in cancer genome discovery is how many samples need to be
analyzed to detect recurrent driver events. We calculated the number of samples
needed to obtain 90% power to detect SRJs as a function of the rate above background
at which those SRJs recur and the distance between their breakpoints.

We first noted that more samples are required to detect short SRJs than long
ones (Fig. 6a) due to the higher background rate (‘noise’) of the short events. For
example, to detect a 100 Kbp SRJ that recurs in 0.5% of cancer samples (corresponding
to 13 or more patients in our cohort) would require almost 3,000 samples--approximately
the size of our pan-cancer sample set. (Reliable detection of such short SRJs will also
require analytic improvements; see Methods.) Conversely, a 100 Mbp SRJ that recurs
in 0.5% of cancers would require only slightly more than 1,000 samples.

We next integrated across rearrangement spans to determine how many
samples are necessary to obtain 90% power to detect recurrent fusions across 90% of
paired loci genome-wide (Fig. 6b, see Methods). We found that our pan-cancer analysis
of 2,693 samples is limited to detecting rearrangements that recur in approximately 0.4%
of all cancers.

However, SRJs tend to be tissue-specific, so we also calculated power using the
number of samples available for each tissue type. We found that our current dataset,
comprising 18-317 samples per tissue type (tissues with less than 15 samples were not
considered), is powered to reliably detect 90% of driver fusions only for fusions that
recur at a minimum of 2% (in liver cancers) to 21% (bladder cancers) above the
background rate (Fig. 6b). For most cancer types, we are powered to detect events that
recur in 5-20% of samples.

A down-sampling analysis of our data also indicated that we have not yet
reached power to detect all recurrent driver fusions. When sufficient power is obtained
(‘saturation’), reducing the number of samples modestly should not reduce the number
of significant fusions clusters identified. However, when we down-sampled using random
subsets with varying sample sizes, we found an additional novel SRJ for every additional
25 samples and no evidence of a plateau at sample numbers near the full dataset (Fig.
6¢). SRJs that recur in greater than 12% of samples in a single tissue type did approach
saturation, but SRJs that recur in fewer samples did not. For example, reducing the
number of samples by 14% results in loss of detection of QKI-NTRK2 fusions in pediatric
gliomas--a potentially therapeutically relevant event®. The finding that low-recurrence
SRJs are not approaching saturation suggests that adding more samples would uncover
additional significant events.

Discussion

The distribution of rearrangements in the cancer genome is shaped by both the
mechanisms of their formation and the fithess advantages they confer on the cell. Our
analysis revealed significant predictors of the distribution of rearrangement across the
genome and identified known and novel rearrangements that recurred more often than
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expected given these predictions. Many of these recurrent rearrangements are likely
driver events subject to positive selection, but it is possible some of them reflect
mechanistic biases we did not account for. Indeed, nine of the SRBs likely reflect fragile
sites in the genome.

Achieving a full understanding of the biological effects of recurrent
rearrangements is complicated by the vast heterogeneity of their structure. We modeled
rearrangements as both isolated breakpoints and as two-breakpoint juxtapositions. The
vast majority of somatic rearrangements are in complex linked clusters, often involving
several chromosomes (Li et al, cosubmission). Explicitly accounting for more complex
topologies may improve our ability to detect driver rearrangements. Long-range
connectivity information in the form of long read sequencing®, linked-reads® and optical
mapping techniques® will be particularly useful for unravelling the structure of complex
rearrangements. Such DNA sequencing should be accompanied by RNA sequencing to
determine the expression consequences of these events.

Future efforts should be directed towards generating whole-genome sequencing
data from many more cancers. The space of possible juxtapositions is the length of the
genome squared, rather than simply the length of the genome, as is the case for other
somatic genetic events. Large numbers of observed events are required to fill this space
to understand the mechanistic biases influencing their distribution. Moreover, positively
selected juxtapositions tend to be tissue-specific, and these are naturally more difficult to
detect than alterations which span cancers. Our analysis indicates that we currently
have sufficient power to detect fusions that recur in greater than 5-10% of cancer
samples within each tissue type. However, we know that events that recur at lower rates
can be biologically and clinically significant. For example, ALK-EML4 fusions recur at a
rate of 1-3% in lung adenocarcinomas (and only one sample in our cohort)>>*®, At
current sample numbers, we appear to be discovering a new novel fusion for every 25
cancer samples we sequence--a remarkable return on investment.
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Figure Captions

Figure 1: Analysis overview. a) Schematic indicating rearrangements and
rearrangement junctions in three hypothetical genomes (top) and the two analysis
approaches (bottom): the 1D analysis for recurrent breakpoints and the 2D analysis for
recurrent juxtapositions between pairs of loci. b) The 1D density of breakpoints genome-
wide (top) and 2D density of juxtapositions (bottom) across 2,693 cancer genomes.

Figure 2: Determinants of the 2D density of rearrangements across the cancer genome.
a) The distribution of spans (distances between breakpoint; x-axis) for intra-
chromosomal rearrangements, superimposed upon an inverse power law distribution. b)
Observed (red arrows) and expected distribution of (gray) numbers of rearrangements
with both breakpoints within the same TAD (topologically associated domain; top)or with
breakpoints that cross TADs (bottom). The expected distribution is based on permuted
data. ¢) The frequency of rearrangements as a function of bases of microhomology. d)
Enrichment of rearrangements categorized by topology (isolated, left; linked, right) and
bases of microhomology relative to all rearrangements of similar span, as a function of
rearrangement span (horizontal axis). e) Fold-enrichment or depletion for
rearrangements between different elements for nine different genomic relationships,
compared with the permuted background. Error bars represent 3 standard deviations of
the fitted background distribution. f) Breakpoint microhomology for rearrangements
connecting repetitive elements of the same class (green) or rearrangements with only
one breakpoint in a repetitive element (orange). Comparisons with four stars indicate
p<0.0001. g) Likelihood that rearrangements were generated by two breaks followed by
a join, divided by the likelihood they were generated by a single break followed by strand
invasion, for subsets of rearrangements categorized by levels of homology, topology,
and distance between breakpoints. Error bars represent one standard deviation
calculated by the bootstrap method, and stars indicate significant differences from the
first subgroup of each category (p<0.0001).

Figure 3: Significantly recurrent breakpoints (SRBs). a) The relative enrichment for
events per histologic subtype (x-axis) for the top twenty most significantly rearranged loci
(y-axis) is indicated by the size of the circles displayed. b) Ranking of RD-scores,
representing the median absolute deviation of the distance between breakpoints relative
to the median distance between breakpoints, for the 52 loci with SRBs. c¢) Gene
densities (x-axis) and replication timing (y-axis) for recurrent breakpoint loci that were
not classified as fusions. Known fragile sites (green) and driver SCNAs (blue: deletion;
red: amplification) are annotated for the top 20 loci. d) Classification of recurrent
breakpoint loci using RD-score, gene density, replication timing, and T/N coverage
ratios. e) Fraction of recurrent breakpoint loci associated with biallelic inactivation of a
known tumor suppressor gene. f) Distance in bp to the nearest tissue-specific enhancer
(y-axis) for each breakpoint class. Dashed grey line represents randomly selected
breakpoints. g) Expression fold-change (y-axis) for the gene with the most altered
expression within 1 Mbp of the cluster centroid compared to samples without a
breakpoint at the cluster locus. Random controls (in dashed boxes) represents randomly
selected breakpoints. h) SRBs near BRD4 in breast ductal and ovarian
adenocarcinomas. i) Gene expression in FPKM (y-axis) for BRD4 and NOTCH3 in
breast and ovarian tumors with (rar-BRD4) and without (nr-BRD4) BRD4
rearrangements.
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Figure 4: Significantly recurrent fusions. a) The thirty most significantly recurrently fused
loci (y-axis), displayed by the relative fraction of events per histological subtype (x-axis).
Fusion clusters are annotated by whether they are in the COSMIC list of oncogenic
fusions (left bar, black box if on the list), whether at least one of their breakpoint loci
overlaps a gene on the COSMIC cancer gene list (center), and whether all (solid black)
or some (triangle) of the rearrangements within a cluster fall within introns or exons. b)
Expression correlates for fusions in clusters in the COSMIC list (blue), other clusters
(red), or not in any cluster (yellow). Displayed on the left is fold expression enrichment of
the most highly overexpressed gene in the primary locus in cancer samples with these
fusions relative to cancers of the same histology without the fusion. The primary locus is
defined as the fusion breakpoint within 100 kb of the gene that is most highly
overexpressed in samples with the fusion. Displayed on the right is the median
expression level, in cancer samples of the same tissue type but without the fusion, of the
gene closest to the partner locus breakpoint. Expression levels for the partner locus
represent z-scores calculated across all cancers without the fusion. ¢) Fold expression
enrichment of the most highly overexpressed gene in the primary locus, for fusions that
disrupt protein-coding sequences (blue) and fusions that do not (red). d) Comut plot
indicating TERT promoter mutations and rearrangements across all melanomas in the
dataset. Promoter mutations and rearrangements were mutually exclusive. e)
Rearrangements between TERT promoter and BASP1 and MYO10 locus result in focal
amplification of TERT and relocation of enhancers to its promoter region. f) Recurrent
translocation between EGFR in chromosome 7 and the KL/STARD13 locus on
chromosome 13. In all three samples the rearrangement contributed to the amplification
of EGFR. g) EGFR expression in GBM tumor tissue after adjusting for copy-number (left)
and KL and STARD13 expression in normal tissues (right). The single sample with the
rearrangement and expression data showed high EGFR even after copy-number
adjustment. h) Recurrent translocation in two leiomyosarcomas between a locus
bordering TMTC3 and KITLG on chromosome 12 and a locus bordering ITFG1 and
PHKB on chromosome 16. i) Expression of TMTC3 and KITLG in (left) sarcomas with
and without the rearrangement, and (right) fibroblasts compared to other tissue types.

Figure 5: Impact and association of rearrangements on gene expression. a) Effects on
expression (vertical axis) of TAD-disrupting and -preserving rearrangements, as a
function of their span (horizontal axis). b) Volcano plot of significance (vertical axis) and
associated gene-expression fold-change (horizontal axis) of CESAM hits for 1D, 2D and
TAD-bound analyses. ¢) Schematic of rearrangements in the vicinity of AKR1C genes
(top), locations of enhancers and TAD domains (middle), and expression of local genes
(bottom) in samples with and without these rearrangements. d) Schematic of
rearrangements in the vicinity of DSG genes on chromosome 18 (top), locations of
enhancers and TAD domains (middle), and expression of local genes (bottom) in
samples with and without these rearrangements.

Figure 6. Power and saturation analysis of fusions. a) Number of tumor-normal pairs
needed to detect fusions with 90% power as a function of the fusion’s span and the rate
above background at which it recurs. The red asterisks indicate the numbers of samples
required to detect 100 Kbp and 100 Mbp fusions that recur at 0.5% above their
background rates. b) Number of samples (y-axis) required to detect 90% of recurrent
fusions across 90% of pairs of loci, as a function of the median number of
rearrangements per sample (x-axis) and the rate above background at which the fusion
recurs (solid lines). The vertical dashed lines represent the median rearrangement rates
of each cancer type, and the stars on these lines indicate the numbers of whole
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genomes analyzed for that cancer type. ¢) Number of significant fusions (y-axis)
detected after down-sampling the data to various sample sizes (x-axis). Fusions that
recur at high (>12%) and low (<12%) rates above background are indicated in black and
red, respectively; their sum is indicated in blue.

Extended Figure Captions

Extended Figure 1: Genomic covariates predictive of rearrangement breakpoint
frequency (orange) and SNVs (purple) using a Gamma-Poisson regression model.
Regression coefficients less than zero predict a lower variant rate, and coefficients
greater than zero predict a higher rate. The GP model explained 71% of the variability
for SNVs and 12% for rearrangement breakpoints.

Extended Figure 2: Genome-wide frequency of different levels of micronomology. Blue
circles indicate observed data and black line indicates levels of microhomology expected
by chance in non-microhomology mediated joining. The red region is attributed to NHEJ
repair while the blue region corresponds to microhomology-mediated repair.

Extended Figure 3: Enrichment or depletion for rearrangements fusing different
genomic elements, compared with a permuted background. Enrichment scores near 1.0
(gray line) match a permuted background. Error bars represent three standard
deviations. There were an insufficient number of fusions between different fragile sites to
accurately assess an enrichment score.

Extended Figure 4: Two models for predicting the background rate of somatic fusions in
the cancer genome. The break-invasion model (left) describes rearrangements that form
at one locus (with probability q;) followed by invasion into another locus, with transition
probability s;. The double-break join model (right) describes rearrangements where both
breakpoints occur independently (probabilities r; and r;), and then fuse together with a
factor I, which is a function of the distance between the breakpoints. b) The frequencies
of rearrangements as a function of breakpoint densities, relative to model predictions.
The observed frequencies of rearrangements are shown as a surface while the
frequency predicted by the two models is indicated by solid blue and gray grids for the
double-break join and break-invasion models, respectively. The left panel presents
frequencies of isolated short rearrangements, and the right panel presents frequencies
of linked inter-chromosomal rearrangements.

Extended Figure 5: The two broad patterns of rearrangements observed at SRBs. a)
Sites of recurrent SCNAs, such as CDKN2A, contain rearrangements whose partner loci
are widely dispersed. b) Sites of recurrent juxtapositions, such as BRAF-KIAA1549,
contain rearrangements whose partner loci are tightly clustered.

Extended Figure 6: For SRJs, the distance from the partner site to the nearest
enhancer is significantly smaller compared to randomly selected breakpoints.

Extended Figure 7. Recurrent t(2;7) fusions involving THADA and IGF2BP3 in thyroid
adenocarcinoma. a) Schematic of rearrangement b) Expression of IGF2BP3 in thyroid
samples with and without the rearrangement. Stars indicate a significant difference
(p<0.01). c) THADA-IGF2BP3 are mutually exclusive with other known drivers of thyroid
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cancers, and d) are anticorrelated with RET expression.

Extended Figure 8: TERT-NDUFC2 fusion in two melanoma samples connecting TERT
with an enhancer-rich region next to NDUFC2. Both samples also have focal
amplifications of TERT.

Supplementary Figure Captions

Supplementary Figure 1: The cohort of cancer genomes included in this study. a) A
total of 2,693 cancer genomes were included, spanning 37 tumor types. b) Of the 2,693
donors with whole genome sequencing data, 1,241 had associated RNA-seq data (light
blue).

Supplementary Figure 2: The merged rearrangement call set. a) Distribution of somatic
rearrangements by tumor type. b) Comparison of the length of microhomology for
somatic rearrangements, as called by SvABA (x-axis) and DELLY (y-axis). The area of
the circle is proportional to the number of calls with a given microhomology. The two
methods were largely consistent, with a zero-intercept linear model showing a slight
trend towards higher microhomology calls from SvABA (perfect agreement: 1, observed:
0.928). c) Distribution of rearrangement call by support variant detection tool. d)
Correlation between tumor cellularity and number of rearrangements (y-axis), by tumor-
type (x-axis). There was no significant correlation between cellularity and number of
rearrangements detected.

Supplementary Figure 3: Schematic of the germline CNV and class switch
recombination filtering on the merged rearrangements calls. a) Germline CNVs identified
by SVABA and present in 4 or more genomes from the PCAWG cohort were compared
against the merged somatic rearrangements. Somatic rearrangements where each side
overlapped the same germline CNV were reclassified as germline CNVs and excluded
from further analysis. b) Example of filtering class switch recombination rearrangements
at the IGH@ locus. Rearrangements that begin in IGH@ (purple, portion shown), IGK@
or IGL@ and connect to a different locus (e.g. BCL2, portion shown in green) are
retained. Rearrangements with both breakpoints in the immunoglobulin loci are
removed.

Supplementary Figure 4: Gamma-Poisson model for identifying signatures of
mechanism and selection for rearrangement breakpoints. a) Histogram of breakpoint
counts per 50 Kbp bin (with only one sample-breakpoint per bin). The distribution more
closely follows a Gamma-Poisson (red) than a Poisson (green). b) Diagram of the full
breakpoint model (red) and a naive control with no covariates (green) and a randomized
control with all covariates but shuffled around the genome (blue). The full model
produces the highest log-likelihood (y-axis, bar chart), relative to the naive and random
models. c¢) Scaled regression coefficients (x-axis) for the three models using 11
covariates. Positive coefficients increase the predicted breakpoint count, negative
coefficients lower the breakpoint count. The naive model used only the mappability
covariate. Error bars represent 95% confidence intervals.

Supplementary Figure 5: Quantile-quantile (QQ) plot of the probability that the


https://doi.org/10.1101/187609
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/187609; this version posted September 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

breakpoint frequency within each 50 Kbp locus in the genome occurred at the observed
rate or higher (y-axis) compared against a uniform probability distribution (x-axis). The
genomic inflation factor (red) for this model was 1.09. An inflation factor much lower than
or much greater than unity describes a poorly fit model.

Supplementary Figure 6: Regression plots of the relationship between the number of
rearrangements connecting loci i and j and the breakpoint density at i (excluding
rearrangements to j). Four distances between i and j are tested: a) span < 5x10* b) 10° <
span < 5x10* ¢) span > 10° and d) inter-chromosomal translocations.

Supplementary Figure 7: Permutation model for identifying two-dimensional correlates
of rearrangements. a) Schematic of the Swap method. A sparse matrix representing
rearrangements [1] is permuted by swapping the x and y coordinates of two randomly
selected points, perfectly preserving the breakpoint counts per locus. After a burn-in
period, swaps that disrupt the rearrangement length distribution are rejected [4]. The full
permutation scheme is applied N times to create N separate matrices [5]. Connections
between two loci are represented as areas on the matrix, and rearrangements are tallied
by their membership in different areas [5]. The histogram of rearrangement tallies (black)
from the N permuted matrices are compared with the observed tally (red line) [6]. b)
Euclidean distance between the permuted and empirical rearrangement span
histograms (y-axis) as a function of the number of swaps (x-axis). After an initial period
of 5 million swaps for inter-chromosomal translocations (no span dependence), intra-
chromosomal swaps move the span distribution initially away from the observed
empirical distribution. The swaps are then rejection sampled to accept only those that
move the span distribution back towards the observed. ¢) The distribution of fusions in
the PCAWG cohort (original) compared with the permuted distribution from Swap
(permuted data). d) Swap results for true SINE elements (left), compared with
randomized SINE elements (right). e) Same as (d), but restricted to only inter-
chromosomal rearrangements.

Supplementary Figure 8: Binning scheme for the fusions recurrence analysis.
Distributions of (left) bins sizes and (right) number of rearrangements per bin.
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ONLINE METHODS

Annotation of potential functional effects of rearrangements

We annotated the potential functional effects of each rearrangement based on the
locations and orientations of its breakEJoints. Gene definitions for genome build hgl9 were
obtained from the UCSC Table Browser®’. Breakpoints were annotated by whether they fell inside
the body of a gene, and by all of the genes fully or partially contained within 100 Kbp of either
side of the break. Intergenic breakpoints were annotated with the distance to the nearest gene.

Rearrangements were evaluated for whether they could produce a possible in-frame
sense fusion transcript. The CCDS database®® from hgl9 was obtained from the UCSC Table
Browser. With the CCDS intervals, breakpoints contained within a gene were annotated by which
intron or exon they overlapped with, and the coding frame (1,2, or 3) of the first exon opposite the
direction of the breakpoints. Candidate fusions were called as in-frame and sense if 1) the relative
orientations of the breakpoints and directionality of the gene resulted in a potential sense fusion
and 2) the two breakpoints we in the same coding frame.

Classification of rearrangements by topology

We classified the rearrangements into topological groups based on their orientations,
spans, and whether they were significantly closer to neighboring breakpoints than expected by
chance, potentially indicating a complex rearrangement. A detailed description for this
classification scheme is described in our companion paper by Li et al. We combined the
classifications by Li et al into five major groups (complex rearrangement clusters, simple
deletions, simple inversions, tandem duplications and translocations) and examined their
distribution across the genome.

Assessing the significance of somatic rearrangement breakpoints
Modeling breakpoint counts with a Gamma-Poisson regression model

To model the background rate of somatic breakpoints, we first established a discrete
coordinate system on which to evaluate genomic covariates and breakpoint counts. We binned
the genome into 50 Kbp bins, with 1 Kbp of overlap between bins to reduce edge effects.
Excluding gaps in the reference genome (hg19) and the sex chromosomes, this produced 50,561
loci. Complex events with many tightly clustered breakpoints could dominate the breakpoint count
at a single bin and cause an over-estimation of the prevalence of breakpoints at those loci. To
account for this, we only considered one breakpoint per donor per locus. After removing locus-
donor duplicates, 336,496 breakpoints (55% of all breakpoints) were counted within our model.
The number of breakpoints per bin ranged between 0 and 120, with a median of 5.0 and mean of
6.1. The vast majority of bins (99.0%) of bins contained 20 or fewer breakpoints, and 2.6%
contained zero breakpoints.

The detected rate of breakpoints across the genome is also confounded by the mapping
quality within a locus. Rearrangements in regions that are difficult to align to (e.g. alpha-satellite
repeats) were rejected by our variant callers, leading to a relative depletion of events in regions
with low mappability. To control for this effect, we use the concept of “eligible territory” from
Imielinski et al*, and normalized the breakpoint counts within each locus by the number of bases
eligible for breakpoint detection. To establish an eligible territory, we used the “universal mask”
described in Li 2014% and used in Imielinski et al*®. Briefly, this mask filters regions of low
mappability, low complexity and sites of unusually high numbers of aberrant SNV calls from the
1000 Genomes Project.

The distribution of breakpoint frequencies per bin was widely over-dispersed (D = 9.12),
suggesting a Gamma-Poisson (GP) fit to the data (or equivalently, a negative binomial).
Compared with a Poisson fit, the GP distribution produced a 1.1-fold higher log-likelihood (Supp
Fig. 4a). We therefore elected to model the breakpoint frequencies using a GP regression model,
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where the log of the expected value of the breakpoint counts per bin could be modeled as a linear
combination of genomic covariates within each bin.

We then applied a GP regression model for breakpoint count data, adapted from the
model for SNVs and indels from Imielinski et al*®, and specified as:

B; ~ GP(w;ePi*ii, 0)

where w; is the eligible territory of locus i, B; is the breakpoint count at locus i, x; is the matrix
describing the values of covariate j at locus i, and (theta) is a single scalar representing the shape
parameter of the distribution. The regression coefficients (beta) were then found by maximum
likelihood estimation using MASS::gim.nb in R-3.3.2, which utilizes the NB2 parameterization of
the GP function. The source code for the GP model is available at
https://github.com/mskilab/fish.hook.

Genomic covariates that predict breakpoint frequencies

We hypothesized that local sequence features (e.g. density of repetitive elements),
replication-timing, chromatin state, epigenetic modifications, and other genomic features, could
be predictive of breakpoints rates within our GP model. We therefore fit our GP model using both
“interval” covariates that indicate genomic regions (e.g. SINE elements), and “numeric” tracks that
indicate values (e.g. GC content) associated with genomic regions. To enable direct comparisons
between different covariates, each covariate was transformed to a z-score, centered at zero,
using stats::scale (R-3.3.2). The complete list of genomic covariates and their scaled covariate
scores are for both the breakpoint and SNV models are listed in Supp. Table 1. We evaluated
the effects of these covariates using three different GP models: the full model with all covariates,
a naive model using only the mappability covariate, and a random model using all covariates but
with permuted annotations of genomic locations for each track. We then calculated the log-
likelihoods of each model using stats::logLik (R-3.3.2), and found that the full model achieved a
significantly higher log-likelihood than the naive or random models (Supp. Fig 4b). The random
model scored very slightly higher than the naive model, likely due the added degrees of freedom
and possibility for over-fitting. However, relative to the full model, the difference was small,
suggesting that the full model has a low degree of over-fitting. The naive and random models
each explained 0.02% of the variance (Pearson R?) compared to 12% for the full model.

We note that several factors are limiting the variance explained of the full model. First,
the training set of the regression model included loci that undergo selection which can not be
excluded a priori, and therefore inherently limit the variance explained. This is in contrast to SNVs
were synonymous mutations can be used to construct the background model. Second, in this
work we study a set of covariates (Supp. Table 1), and it well may be that additional covariates
and relationships (e.g. non-linear) would result in a better model. Third, heterogeneities in
breakpoint rates, for example across different cancer types, may require independent treatment
(addressed by Li et al).

Assessing the significance of loci with high breakpoint rates

We used the full GP model to estimate the background rates for each locus and to
calculate the probability that c; or more events would be observed at locus i. The count data ¢; is
restricted to a non-negative integer, and the probabilities will be a slight over-estimate of the true
value. To correct for this, we use the procedure employed in Imielinski et al® to select a random
probability from a uniform distribution between the probability of observing c; breakpoints and the
probability of observing ¢; + 1 breakpoints. To correct for multiple hypothesis testing, we
calculated the false discovery rate (FDR) using the Benjamini-Hochberg method®’. At an FDR
cutoff of 10%, we observed 206 separate 50 Kbp loci (0.4% of the tested loci) to be significantly
enriched for breakpoints beyond the predicted rate.

We next attempted to determine which breakpoints at each locus under positive selection
were themselves likely driver rearrangements. We noted that the breakpoint counts at many loci
were dominated by rearrangements from a small subset of tumor types, suggesting that the
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rearrangements in these tumor types were drivers. Some rearrangements from other tumor types,
however, would often also be seen at background rates expected for these tumor types.

We therefore calculated an enrichment p-value (binomial test) that tumor type T was
enriched at that locus:

k
pr=1-— ; (?)Tﬁn(l .
where k is the number of breakpoints from tumor type T intersecting the locus, n is the total
number of breakpoints intersecting the locus, and ry is the fraction of breakpoints from tumor type
T within the entire PCAWG cohort. Using this enrichment score, we considered as driver
rearrangements only rearrangements from the most enriched tumor-type and any tumor-type x
with log(py/pwp) < 3. Analysis of the p-values distribution and quantile-quantile plot (Supp. Fig. 6)
shows a uniform distribution without apparent biases of p-values.

The 206 significantly recurrent 50 Kbp loci tended to form clusters around a smaller
number of distinct loci (e.g. around CDKN2A). We therefore merged these clusters together by
joining significant loci and their intervening regions if they were separated by fewer than 200 Kbp.
This reduced the 206 recurrent 50 Kbp bins in 52 significantly recurrent loci.

Comparison of recurrent breakpoint loci with significantly recurrent SCNAs and known fusions

We compared the significantly recurrent breakpoint loci with sites of significantly recurrent
SCNAs obtained from GISTIC2% analyses and available on
https://www.synapse.org/#!Synapse:syn8341168 and the COSMIC cancer database curated list of
gene fusions in cancer (http://cancer.sanger.ac.uk/cosmic/fusion). Recurrent breakpoint loci that
overlapped a GISTIC peak region (deletion or amplification) from either the pan-cancer
(all_cancers) analysis or any tumor-type specific analysis were considered as representing a
recurrent SCNA. Recurrent breakpoint loci among the top twenty (ranked by g-value) were
labeled according to their overlap with known cancer genes from the COSMIC cancer gene
census (http://cancer.sanger.ac.uk/census). Recurrent fusions were considered supportive of a
known fusion if the two loci involved in the recurrent fusion overlapped both genes from an entry
in the COMIC fusion database.

Classification of rearrangement patterns at sites of recurrent breakpoints

To predict the functional effects of the recurrent breakpoint loci, we scored each locus
based on its pattern of rearrangements and genomic covariates. For each rearrangement
containing a significantly recurrent breakpoint, we calculated the “RD-score”, which we defined as
the median absolute deviation (MAD) of the breakpoint-breakpoint distance (or 10° for inter-
chromosomal rearrangements) divided by the median breakpoint-breakpoint distance. For inter-
chromosomal rearrangements, we evaluated only rearrangements to the most frequent
chromosome. Rearrangements at sites of known recurrent oncogenic fusions exhibited low RD-
scores (e.g. IGH-BCL2, RD-score: 0.01), while breakpoints at known fragile and driver SCNA
sites exhibited a high RD-score. Hartigans’ dip-test (in R v3.3 - diptest::dip.test) supported a non-
unimodal distribution (p = 0.02) with a discriminant of 0.075. The RD-score for all significant loci is
listed in Supp. Table 2. Recurrent breakpoints with RD < 0.075 were classified as supporting
fusion-type driver events.

For each recurrent breakpoint locus not classified as fragile-type or fusion-type, we
evaluated whether the breakpoints tended to delete, amplify or leave unchanged (neutral) the
copy-number state of the adjacent region. For each locus with width W;, we calculated the mean
tumor-over-normal coverage ratio from the raw coverage tracks (binned to 2 Kbp). We then
compared this with the mean tumor-over-normal coverage ratio for the region immediately to the
left (width W;) and immediately to the right (width W;). Regions with significantly higher coverage
profiles in the target window were classified as amplification-type, while regions with significantly
lower coverage were classified as deletion-type.
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Identifying mechanistic factors influencing fusion partner selection

We developed Swap, a non-parametric model for identifying factors that influence the
frequency with which two genomic locations will be fused (Supp. Fig. 7a). Swap controls for the
frequency of breaks at a given locus and the span (l) dependence of rearrangements, which
favors short events by a factor proportional to the inverse of the rearrangement span. Swap is
available at https://github.com/walaj/ginseng.

Swap permutes the data by randomly choosing two rearrangements (xi, y1) and (X, ¥a),
with the requirement that they either both represent inter-chromosomal translocations, or both
represent intra-chromosomal rearrangements. The x and y coordinates are then swapped to
create the new rearrangements (X;, y») and (X, yi). This preserves the total number of
breakpoints at a given locus (no new x or y coordinates are produced), while randomizing the
fusions joining two breaks.

The random swaps tend to change the span distribution from the 1/ distribution towards
a uniform distribution. To preserve the empirical span distribution, after an initial unconstrained
set of permutations, Swap only accepts only intra-chromosomal swaps that move towards the
empirical span distribution. To calculate the difference between the swapped and empirical span
distributions, we log-transformed the span distributions and created a histogram with 20 equally
spaced bins in log-space. After each swap we find the Euclidean distance D between the
observed empirical histogram Hempiica @nd the histogram Hpermuwea from the permuted matrix
(Supp. Fig. 7b). We continue randomly swapping points until the distance between the permuted
and the empirical histogram is less than 5%. The final product is a permuted set of
rearrangements that has the same distribution of spans and breakpoints as the original data
(Supp. Fig. 7c).

To test the hypothesis that a rearrangement fuses loci A (e.g. all SINE elements) to loci B
(e.g. all LINE elements), Swap compares the number of observed A-B fusions with the
distribution of A-B connections in the collection of randomized matrices. The A-B enrichment or
depletion factor is the ratio between the observed average number of permuted A-B connections
(see Supp. Fig. 6). As the number of matrices increases, the distribution of A-B connection tends
towards a normal distribution. We therefore fit the permuted A-B connection frequencies to a
normal distribution with the MASS:fitdist package in R-3.3 to obtain confidence intervals at +/-
1.96 standard deviations from the mean.

One possible explanation for signal enrichment of fusions between two tracks (or different
elements within one track) is that the genomic distance between these elements is similar to the
observed span distribution of the rearrangements. To test whether this was the case, we
randomized the locations of the SINE elements (SINE-SINE fusions being the most enriched
signal) and applied Swap using the randomized SINE track. We further ran Swap using only inter-
chromosomal translocations, which removes any possibility of confounding by the rearrangement
span distribution. We observed no enrichment or depletion for connections between the
randomized SINE elements, using either the full model or the inter-chromosomal-only model
(Supp. Fig. 7d). The degree of enrichment for SINE-SINE elements was nearly identical between
the full model (1.19 fold-enrichment) and the inter-chromosomal only model (1.23 fold-
enrichment).

Break-invasion and double-break join models

We considered two simple background models based on the span distribution and the
frequency with which each locus suffers rearrangements. The first model hypothesizes that the
background probability is pf’ji = q;Sij + q;s;;, where @ is the marginal probability of a
rearrangement initiated in locus i and s; is the conditional probability that a break at i will connect
to site j. Since we cannot distinguish between the start and end sites, we also add the reciprocal
term, to yield a probability proportional to the local rate of retreatments connecting sites i and j.
The marginal of the start site, ¢, is determined from the empirical breakpoint density, R, by
applying preconditioned conjugate gradient descent optimization to the following problem:
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The conditional probability matrix is determined from the empirical span distribution, illustrated in
Fig. 2a. The second model hypothesizes that the background probability is pidj" = r;1;l;;, where r;
and r; are the breakpoint densities and |;; is a span factor connecting sites i and j found by solving
the following constrained nonlinear optimization problem:

argmin, {Z||f(7”i7}'lij) — l||2}

j

The function f transforms the probability matrix to a span distribution function corresponding to
the empirical distribution, | (Fig. 2a).

Both of these models have physical interpretations: in the first case, a genomic locus
undergoes a break followed by invasion into another locus; and in the second case, both genomic
loci undergo breaks followed by an erroneous join. We therefore termed the first model “break-
invasion” and the second model “double-break join” (Ext. Fig. 4a). These physical interpretations
are reminiscent of known DNA repair mechanisms. For example, non-allelic homologous
recombination (NAHR)' involves strand invasion after an initial break, similar to the physical
interpretation of the break-invasion model. Conversely, non-homologous end joining (NHEJ) and
MMEJ" involve two or more breaks that are fused, similar to the physical interpretation of the
‘double-break join’ model.

Each of these models implies different distributions of fusions across the 2D map,
enabling us to determine which model best fit the fusion patterns we observed. For example,
simple, short rearrangements fit the probability distribution described by the break-invasion
model, whereas complex interchromosomal rearrangements fit the distribution described by the
double-break join model (Ext. Fig. 4b).

Assessing the significance of somatic rearrangement fusions

To construct the probability matrices of the break-invasion, pf’j", and double-break join,

p{ijh,models, we divided the genome into bins containing a target of 100 rearrangements per bin.
To avoid cases in which a cluster of rearrangements is divided into two bins, we imposed a
minimal distance between breakpoints of 2 Kbp; if a bin boundary falls between two breakpoints
not meeting this condition the bin is extended until the condition is met. The distribution of bins
sizes is shown in Supp. Fig. 8a; the median bin size is 467 Kbp. Correspondingly, the distribution
in the number of breakpoints per bin is shown in Supp. Fig. 8b; the median number is 91. The
normalized distribution of number of breakpoint is the parameter r; used to construct the two
models. After binning the genome, we constructed the rearrangement matrix, kj, by assigning
each rearrangement in our dataset to a tile. Each sample was only allowed to contribute up to
one rearrangement per tile.

The overall background rate of events is represented by a linear combination of the
break-invasion and double-break join models. We defined the local rearrangement probability as

pij = axpif + (1 — ay)pf where the linear combination is taken over a set of parameters a*. We
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chose to use the distance between breakpoints as a natural choice for the classifier in this two-
dimensional genomic representation. We divided the 2D space into short (<1 Mbp), long (>1

Mbp), and inter-chromosomal translocations, and obtained the values of a* by minimizing the

Bayesian Inference Criteria (BIC). A list of recurrent rearrangements was then generated by
calculating a p-value in each tile with a binomial test statistics against k;, followed by control of
multiple hypotheses using the Benjamini—-Hochberg false discovery rate procedure.

One possibility is that these recurrent juxtapositions were mechanistically rather than
selectively favored, for instance because they have high rates of microhomology, enabling
microhomology-mediated repair. In fact, the opposite is true: only 14% of the recurrent fusions
exhibited more than 2 bases of microhomology, significantly lower than the genome-wide average
(25%; p<10™).

Power calculations

To analyze the number of tumor-normal pairs needed to reach saturation in the detection
of fusions we employed a binomial power model®®. We defined a null distribution, Hny ~
Binomial(N,pna), where poa = 1-(1-peo)™ is the probability of a patient having at least one
rearrangement, pg , is the 90" percentile value of p; from our background model probabilities,
and m is the median number of rearrangements per sample. The two-dimensional genomic
fusions map was divided into 100 x 100 kbp tiles in this power analysis.

We performed the analysis first as a function of the distance between breakpoints with
median number of rearrangements per sample of the entire cohort (Fig. 6a). The second analysis
was performed as a function of the median number of rearrangements per sample, spanning
values represented by the ICGC histologies with more than 15 samples (Fig. 6b). For each total
number of tumor-normal pairs, N, the general procedure involved: 1) finding the minimal number
of patients needed to reach significance level of p < 0.1/(# of tiles) based on Hy; 2) using this
value, calculating the minimal rate above background, r, that yields 90% power of the alternative
distribution, Hy; ~ Binomia(N,pn + r); 3) calculating contour lines of constant value rates above
background.

CESAM analysis

CESAM integrates rearrangement-derived breakpoints with RNA-seq data (FPKM-UQ) to
identify expression changes associated with breakpoints in cis, as previously described *. In brief,
normalized RNA-seq expression is regressed on a rearrangement breakpoint matrix, using
tissue-type, total number of rearrangements and principal components of the breakpoint matrix as
covariates. Expression data was dosage-adjusted prior to the analysis by normalizing the
expression level of each gene (FPKM) to the copy number level of the gene in each tumor
sample. This was done to remove effects due to copy-number dosage effects, i.e. not attributable
to cis-effects.

Three types of CESAM analyses were pursued to identify recurrent breakpoints
associated with expression changes in cis: i) genomic regions of clustered breakpoints (termed
‘breakpoint_cluster’ in the CESAM analysis), ii) breakpoint fusion regions (termed
‘fusion_analysis’), and iii) TAD-bound breakpoints separated by germ-layer (termed ‘TAD-
bound’). For each analysis, only regions with at least three tumors having associated RNA-seq
data. The ‘breakpoint_cluster’ and ‘fusion_analysis’ was performed on the complete pan-cancer
set and for each histology type separately (annotated e.g. “PCAWG” and “1D_ORGAN_Lymph”,
respectively in Supp. Table 3 and 6).

The association between adjusted gene expression changes of CESAM hits with
breakpoints was assessed by computing the average of copy number-adjusted gene expression
fold-change for each histology type.

To assess whether CESAM hits were associated with juxtaposition of normally distant
enhancer elements, the distant breakpoint of a rearrangement (here defined as the breakpoint
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most distant to the gene-of-interest) was intersected with tissue-matched enhancer regions ** with
a window of +/- 20 Kbp. Significance was assessed by random shuffling of breakpoint positions
on the mappable genome (alpha<0.1) and annotated as “cis_activating_enhancer” (Supp. Table
3).

Rearrangement-types and effect on expression, enhancer-distance and TSGs

For each cluster of rearrangements c;, the genomic centroid position of the breakpoints
was taken and the most deregulated gene within a window of +/- 1 Mbp of the centroid was
identified.

To calculate the fold-change expression, for each of ci, with a set of tumor samples
having a breakpoint at the cluster (denoted SV+) and a set of control samples without a
breakpoint in the cluster (denoted rearrangement-), expression fold change was calculated as the
median of the expression of SV+ samples divided by the median of the expression of SV-
samples. A randomized background set was calculated for each ci by random sampling (n=100) a
breakpoint from the PCAWG rearrangement set and computing fold-change as above with the
same set of SV+ and SV- samples.

The distance to the nearest tissue-specific enhancer was computed as described under
CESAM analysis.

Biallelic inactivation was assessed as described in detail in our accompanying PCAWG
paper (Radhakrishnan et al) by requiring a copy-number loss of one allele and a disruptive
rearrangement of the other allele. Only curated tumor-suppressor genes were assessed, as
described in Radhakrishnan et al. Enrichment of biallelic inactivation for each rearrangement
cluster type was assessed by comparing the frequencies to a permuted set (Fisher's exact test,
n=1,000), showing enrichment of biallelic inactivation at DEL-type Sp<0.005), NEUTRAL-type
(p<0.001) and FRAG-type (p<10™) and depletion of AMP-type (p<10™°) and FUSION-type (p<10’

) rearrangement clusters.

Rearrangement span and effect on TADs

The association between rearrangement size, TAD-disruption, and gene expression was
assessed for TAD-bound CESAM analysis rearrangements. Each rearrangement was associated
with the gene expression of the most significant CESAM-identified gene and separated into TAD-
disrupting and TAD-preserving. Fold-change expression change was associated with
rearrangement span (50 Kbp sliding bins with 25 Kbp overlap) with a 2nd order polynomial fit.

Statistical calculations and software

Statistical calculations for performed using R-3.3.2. Student’s t-test calculations were
obtained from stats::t.test. Wilcox rank-sum tests were obtained from stats::wilcox.test. The
Spearman rank correlation coefficients were calculated using stats::cor. The negative binomial
and Poisson distributions were fit to the breakpoint count histogram using MASS::fitdistr.
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Extended Figure 4
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Extended Figure 5
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Extended Figure 6
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Extended Figure 8
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