
Preliminary modeling results for Zika virus transmission in 2017 September 12, 2017 

	
	
1	

Preliminary results of models to predict areas in the Americas with increased likelihood of 
Zika virus transmission in 2017 

 
The ZIKAVAT Collaboration* 

 
*Zika Modeling and Projections for Vaccination Trials Collaboration (in alphabetical order):  
Jason Asher1, Christopher Barker2, Grace Chen3, Derek Cummings4,5, Matteo Chinazzi6, Shelby 
Daniel-Wayman3, Marc Fischer7, Neil Ferguson8, Dean Follman3, M. Elizabeth Halloran9,10, 
Michael Johansson7, Kiersten Kugeler7, Jennifer Kwan3, Justin Lessler4, Ira M. Longini5, Stefano 
Merler11, Andrew Monaghan12, Ana Pastore y Piontti6, Alex Perkins13, D. Rebecca Prevots3, 
Robert Reiner12, Luca Rossi14, Isabel Rodriguez-Barraquer 4,15, Amir S. Siraj15, Kaiyuan Sun6, 
Alessandro Vespignani6, Qian Zhang6. 
 
1Biomedical Advanced Research and Development Authority, Washington, DC, USA; 
2University of California, Davis, California, USA; 3National Institutes of Health, Bethesda, MD, 
USA; 4Johns Hopkins, Bloomberg School of Public Health, Baltimore, Maryland, USA; 
5University of Florida, Gainesville, Florida, USA; 6Northeastern University, Boston, 
Massachusetts, USA; 7Centers for Disease Control and Prevention, Fort Collins, Colorado and 
San Juan, Puerto Rico, USA; 8Imperial College, London, UK; 9Fred Hutchinson Center, Seattle, 
WA, USA; 10University of Washington, Seattle, Washington, USA; 11Bruno Kessler Foundation, 
Trento, Italy;12National Center for Atmospheric Research, Boulder, Colorado, USA; 13University 
of Notre Dame, Notre Dame, Indiana, USA; 14Institute for Scientific Interchange Foundation, 
Turin, Italy; 15University of California, San Francisco, California, USA. 
 
 
Corresponding author:  Marc Fischer, Arboviral Diseases Branch, Centers for Disease 
Control and Prevention, Fort Collins, Colorado, mfischer@cdc.gov. 
 
 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/187591doi: bioRxiv preprint 

mailto:mfischer@cdc.gov
https://doi.org/10.1101/187591
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preliminary modeling results for Zika virus transmission in 2017 September 12, 2017 

	
	
2	

Abstract 
Numerous Zika virus vaccines are being developed. However, identifying sites to evaluate the 
efficacy of a Zika virus vaccine is challenging due to the general decrease in Zika virus activity. 
We compare results from three different modeling approaches to estimate areas that may have 
increased relative risk of Zika virus transmission during 2017.  The analysis focused on eight 
priority countries (i.e., Brazil, Colombia, Costa Rica, Dominican Republic, Ecuador, Mexico, 
Panama, and Peru). The models projected low incidence rates during 2017 for all locations in the 
priority countries but identified several subnational areas that may have increased relative risk of 
Zika virus transmission in 2017. Given the projected low incidence of disease, the total number 
of participants, number of study sites, or duration of study follow-up may need to be increased to 
meet the efficacy study endpoints.  
 
Introduction 
Zika virus is a mosquito-borne flavivirus primarily transmitted to humans by Aedes (Stegomyia) 
species mosquitoes [Petersen 2016]. The virus was first identified in Uganda in 1947 [Dick 
1952]. Prior to 2007, only sporadic human disease cases were reported from countries in Africa 
and Asia. From 2007‒2014, outbreaks were identified in Southeast Asia and the Western Pacific 
[Duffy 2009; Heang 2012; Cao-Lormeau 2013; Roth 2014]. In 2015, Zika virus was identified 
for the first time in the Americas with large outbreaks reported in Brazil and subsequent spread 
throughout the region [Zanluca 2015; Ikejezie 2017].  

Most Zika virus infections are asymptomatic [Duffy 2009]. For patients with 
symptomatic illness, disease is generally mild and characterized by acute onset of fever or rash. 
However, Zika virus infection during pregnancy can cause adverse outcomes such as fetal loss, 
congenital microcephaly, and other serious birth defects [Moore 2017; Rasmussen 2016]. There 
are no vaccines to prevent Zika virus infection. However, numerous candidate vaccines are being 
developed and several have entered clinical trials [Thomas 2017]. 

The National Institutes of Health (NIH) Vaccine Research Center is conducting a Phase 
2B clinical trial to evaluate the safety, immunogenicity, and efficacy of a Zika virus DNA 
vaccine in healthy adolescents and adults. The study will begin in July 2017 and will be 
performed at multiple sites in the Americas. The current protocol proposes to enroll 2,400 
subjects randomized on a 1:1 basis to receive the study vaccine or placebo. Assuming a 50% 
vaccine efficacy, the study could be completed in approximately 2 years if the average annual 
incidence of symptomatic Zika virus disease among participants receiving placebo is ≥2%. The 
sample size or study duration will need to be increased if the symptomatic disease rate among 
participants is <2% or if >10% of the participants are already protected at baseline.  

Many factors impact the likelihood and rate of ongoing Zika virus infections in a 
population (e.g., presence and abundance of vector mosquitoes, temperature, precipitation, 
human mobility, population density, living conditions, and baseline immunity). However, there 
are limited data and experience for predicting the occurrence and magnitude of future Zika virus 
disease outbreaks in the Americas. To help with study site selection to meet the efficacy 
endpoint, NIH and the Centers for Disease Control and Prevention (CDC) requested assistance 
from three academic groups to adapt and apply existing mathematical models to estimate areas 
that may have increased likelihood of Zika virus transmission in 2017. Comparing results from 
three different modeling approaches enables better characterization of the predictive uncertainty 
due to model and data limitations with higher confidence assigned to predictions for areas where 
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model agreement is strong. This report synthesizes findings from the three models obtained in 
early 2017. 
 
Methods 
We identified three models that had been developed and used to predict the geographic location 
or incidence of dengue or Zika virus disease in 2015‒2016. Each modeling team was tasked with 
providing a list of areas in the Americas with the highest probability of Zika virus transmission 
and estimated infection rates during 2017. Each model used different input variables and output 
measures, and relied on different units of reporting. Therefore, comparisons were limited to 
subnational areas within the same countries rather than between countries.  

To facilitate comparisons between models, data were aggregated to a state/province level 
and focused on eight priority countries (i.e., Brazil, Colombia, Costa Rica, Dominican Republic, 
Ecuador, Mexico, Panama, and Peru). These countries were selected based on their capacity and 
infrastructure to perform clinical trials, and preliminary assessments of expected Zika virus 
activity based on surveillance reports and previous experience with dengue and chikungunya 
viruses.  
 
Modeling Team 1 (MT1)1 
The Global Epidemic and Mobility Model (GLEAM) is a discrete stochastic epidemic 
computational model based on a meta-population approach in which the world is defined in 
geographical census areas connected in a network of interactions by human travel fluxes 
corresponding to transportation infrastructures and mobility patterns [Zhang 2017]. The model 
includes a multiscale mobility model integrating different layers of transportation networks 
ranging from long-range airline connections to short-range daily commuting patterns. GLEAM 
also integrates high-resolution demographic, socioeconomic, temperature, and vector abundance 
data. The model has been used to analyze the spatiotemporal spread and magnitude of the Zika 
epidemic in the Americas accounting for seasonal environmental factors and detailed population 
data. The model is fully stochastic and from any nominally identical initialization (initial 
conditions and disease model) generates an ensemble of possible epidemic evolutions for 
epidemic observables, such as newly generated cases, time of arrival of the infection, and 
number of traveling carriers. The model native grid cell resolution is 25 km x 25 km and cells are 
aggregated/projected to the desired level of resolution. For the purpose of studying the Zika 
outbreak, the model outputs include: 1) the median projected infection rate and 95% confidence 
intervals (95% CI) for each state/province in the eight priority countries (Tables 1–8); and 2) the 
probability that an urban area in any country/territory in the Americas will experience an annual 
Zika virus infection rate ≥10% in 2017 (Table 9).   

This modeling approach has been used previously to estimate the transmission and spread 
of pandemic influenza and Ebola [Tizzoni 2012; Gomes 2014; Poletto 2014]. In order to validate 
the approach for Zika virus, the authors compared model-based projections to independent 
surveillance reports of numbers of infections in Colombia, microcephaly cases in Brazil, and 
travel-associated disease cases in the continental United States and Europe [Zhang	2017].	 	

                                                
1MT1 includes Alessandro Vespignani, Ana Pastore y Piontti, Kaiyuan Sun, Matteo Chinazzi, M. 
Elizabeth Halloran, Ira M. Longini, Stefano Merler, Luca Rossi, and Qian Zhang. 
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Modeling Team 2 (MT2)2 
This approach compares model projections of infection rates with estimates of cumulative 
infections to date. Locations with a high projected infection rate that have experienced low 
transmission to date are presumed to be good candidates for vaccine trials because a relatively 
large portion of the population is still susceptible and likely to become infected before the 
epidemic subsides. The infection rate projections are informed by spatial layers of variables 
pertaining to human demography, purchasing power parity, temperature, and vector occurrence 
probability. Relationships between these variables and infection rates are drawn from the 
theoretical and empirical literature on other pathogens transmitted by Aedes aegypti mosquitoes, 
and remaining uncertainties in the model’s form are calibrated to seroprevalence estimates 
following introduction of chikungunya or Zika virus in immunologically naïve populations. The 
result is a spatial layer of location-specific projections of the number of Zika virus infections that 
are expected to occur in each 5 km by 5 km area across Latin America and the Caribbean 
[Perkins 2016]. The timeframe for the projected infections is from the beginning of the epidemic 
until however long it takes for the epidemic to end due to the buildup of sufficient herd 
immunity. The extent of herd immunity that is sufficient to end the epidemic is positively 
associated with transmission potential (i.e., a greater proportion of the population must build-up 
immunity in settings with intense transmission). Although this model does not predict the precise 
timeframe over which the Zika virus epidemic will run its course, other estimates suggest local 
epidemics may be extinguished by herd immunity 2–3 years after the initial introduction of Zika 
virus [Ferguson 2016]. 

Estimates of cumulative infections to date are based on a combination of cumulative 
reported cases and assumptions about the proportion of infections that are reported, denoted as p.  
It is generally accepted that p is extremely variable across settings and difficult to ascertain. 
Based on discussions among the modeling teams, there is general agreement that p may often be 
around 1-2%, could sometimes be as high as 5%, and is unlikely to exceed 10% in the settings 
under consideration. Given this overall uncertainty about p and collective opinion about what 
values it may likely take, we assumed that p ~ 0.01 + 0.9Beta(1.2,5). This implies that the 
expected value of p is 0.027 and that it does not exceed 0.1 or fall below 0.01. This approach to 
parameterizing p is similar to formulating a prior probability distribution based on “expert 
opinion” in a Bayesian analysis. For context, we note a limited number of published estimates of 
p: 0.015 (95% CI: 0.036-0.022) on Yap Island in 2007 [Duffy 2009]; 0.115 (95% CI: 0.073-
0.179) in French Polynesia in 2013-2014 [Kucharski 2016]; 0.021 (95% CI: 0.017-0.025) in 
Puerto Rico in 2016 [Chevalier 2017]; and 0.010 (standard deviation = 0.0093) across the 
Americas as a whole in 2013-2016 [Zhang 2017]. Subsequent refinements of this approach will 
seek to incorporate additional estimates and to more formally characterize uncertainty about p. 

The authors then compare the projected number of infections that will occur before the 
first wave of the epidemic concludes to estimates of the current cumulative incidence of infection 
to estimate the proportion of the population that remains at risk for infection. Locations with a 
large discrepancy between numbers of projected total infections and estimated infections to date 
are interpreted to be good candidates for vaccine trial sites (Tables 1–8).   
 
                                                
2MT2 includes Alex Perkins, Amir Siraj, Christopher Barker, and Robert Reiner. 
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Modeling Team 3 (MT3)3 
This approach uses the age-specific incidence of dengue to calculate the associated force of 
infection for dengue per administrative unit [Cummings 2009; Ferguson 2016; Rodriguez-
Barraquer 2016]. This hazard of infection previously was shown to correlate with Zika incidence 
in Colombia and with microcephaly incidence in Brazil. In each country, the relationship 
between dengue force of infection and reported Zika virus disease incidence (Mexico, Colombia) 
or microcephaly incidence (Brazil) is calculated based on a presumed linear relationship between 
the square root of Zika incidence (or a proxy) and the force of infection. A statistical probability 
score per administrative unit is calculated and is the probability of seeing the number of observed 
cases or greater for a given force of infection, if the square root of incidence is normally 
distributed with the predicted mean and observed variance of the residuals. This score is used to 
rank areas, and can be roughly interpreted as the probability of seeing the observed number of 
cases or fewer if the Zika epidemic has completed in an area with that force of infection for 
dengue (Tables 1–8). 
 
Integrating the model results 
Each province, state, or department in the eight priority countries was ranked according to the 
primary outcome measure for each of the models that provided data for that country (i.e., all 
three models for Brazil, Colombia, and Mexico, and models 1 and 2 for Costa Rica, Dominican 
Republic, Ecuador, Panama, and Peru). The MT3 output was not provided for countries for 
which age-specific dengue incidence data was unavailable.   

The median rank for the available models was calculated and states/provinces were 
ordered and mapped for each country. The consistency among models was assessed by 
identifying in each country the states, provinces, or departments ranking within the top quartile 
by two or more models.  

We used data from MT1 to identify states, provinces, or departments with a median 
projected infection rate ≥10% to approximate a symptomatic infection rate ≥2% in the eight 
priority countries, assuming that roughly 20% of cases are symptomatic [Duffy 2009]. We also 
used Model 1 data to identify municipalities in any country/territory in the Americas with ≥5% 
probability of having a projected Zika virus infection rate ≥10% in 2017. 
 
Results 
In order to compare the modeling results, we provide a list of locations (state, province or 
department) for the eight priority countries, prioritized by the median rank of the models’ 
outcomes. In Tables 1-8 and Figures 1-8 we provide the modeling results of the different 
models. We show the ranking of the different locations across models and compute a median 
rank. In addition, we provide the original results of the different models from which we construct 
the ranking of locations.  

The results show that 18 locations (states, provinces, or departments) in six different 
countries ranked within the top quartile for the given country by two or more models. These 
locations are the following: Minas Gerais, São Paulo, and Maranhão states in Brazil; Nariño, 
                                                
3MT3 includes Justin Lessler, Isabel Rodriguez-Barraquer, Derek Cummings, and Neil Ferguson. 
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Guajira, Córdoba, Bolívar, and Sucre states in Colombia; Monte Cristi, and Santiago provinces 
in Dominican Republic; Sucumbios and Los Ríos provinces in Ecuador; Sinaloa, San Luis 
Potosí, and Tamaulipas states in Mexico; Tumbes, Piura, Ucayali, and San Martin departments in 
Peru. For Costa Rica and Panama there are no locations ranked within the top quartile by two 
models. The median rank and range of model ranks (black line) for each state/province within 
each country are shown in Figure 9. The three models generate a relative ranking in each 
country; the ranking does not necessarily reflect an absolute risk or infer high virus transmission 
activity in the top-ranked locations. Locations may have low expected Zika transmission activity 
but still be ranked in the top places when compared to other places within the same country that 
show even lower activity.  

Only five locations in two countries have a projected median Zika virus infection rate 
larger than 5% in 2017: Sucumbios, Esmeraldas, and Orellana provinces in Ecuador; and 
Tumbes and Piura departments in Peru (see Tables 1-8). When comparing across the three 
models, three of the previous five locations with a projected Zika virus infection rate larger than 
5%, ranked within the top quartile for their country by two or more of the models: Sucumbios in 
Ecuador and Tumbes and Piura in Peru. 

MT1 also offers the possibility of zooming in the different locations, allowing the study of 
the outbreak at the level of municipalities or urban areas. Through this analysis, we observe that 
21 municipalities have a probability larger than 5% of having a projected Zika virus infection 
rate of at least 10% in 2017 (see Table 9). From the municipalities identified by MT1, nine of 
them are located within regions that are also identified by two or more of the models. The 
municipalities are the following: 

• Colombia:  Tumaco in Nariño state. 
• Ecuador:  Lago Agrio/Nueva Loja in Sucumbios province. 
• Mexico:  Los Mochis and Culiacan in Sinaloa state, and Tampico in Tamaulipas state. 
• Peru:  Piura in Piura department, Tumbes in Tumbes department, Tarapoto in San Martín 

department, and Pacallpa in Ucayali department. 
 

In Figures 1-8, we provide a geographical visualization of the administrative units ranked in 
the tables. We use a color map associated to the rank order to localize places according to their 
likelihood of Zika transmission. The purpose of the maps is to illustrate any potential regional 
clustering of provinces/states with relatively higher likelihood of activity within each country. 
We again stress that the maps report the median ranking, as obtained by aggregating the results 
of the three models, and that the ranking is just indicative of the relative likelihood of future 
transmission within each country.  
 
Summary 
These preliminary findings provide states/provinces and municipalities in eight priority countries 
where study sites may have increased likelihood of having sufficient Zika virus transmission to 
meet the efficacy end points in 2017. Due to substantial differences and uncertainties in data 
between countries, we limited the comparisons to estimates for subnational areas within each of 
the priority countries.   

All of the evaluated subnational areas in the priority countries had low projected 
incidence rates in 2017. Only three provinces or departments in two countries had a projected 
Zika virus infection rate >5% and ranked within the top quartile for their country by two or more 
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of the models. We also identified relatively few municipalities that have a projected Zika virus 
infection rate ≥10% and are located in states with consistently high rankings by two or more of 
the models.   

In summary, the models suggest that the total number of participants, number of study 
sites, and/or duration of study follow-up may need to be increased to meet the efficacy end 
points. The findings also support initiating a high number of study sites in multiple geographic 
areas to maximize the likelihood of having study capacity in one or more areas that experience 
Zika virus infections in 2017 and provide flexibility to responsively increase enrollment in areas 
with the highest incidence of infection 

This report is made available to share the approach and preliminary findings with the 
research community. Results should be interpreted cautiously given the model limitations and 
assumptions. Furthermore, projecting the Zika virus transmission at seasonal and longer 
timescales increases uncertainty, especially given the lack of comprehensive, quality surveillance 
data on current and previous Zika virus transmission activity. The modeling teams are continuing 
these efforts and will provide an updated report which will incorporate: 1) refined modeling 
methods, 2) updated surveillance data, and 3) further integration and discussion of similarities 
and differences between the model findings. 
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Table	1:	Brazil	modeling	results	by	state.	

State Median 
Rank 

MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Infection 

rate 

(95% CI) MT2† 
Susc. 
pop 

(95%CI) MT3 
Score 

Minas Gerais 1 1 19 1 19,987,031 0.06% (0.00-0.35) 13.2% (6.8-21.5) 0.023 

São Paulo 3 2 26 3 41,315,532 0.01% (0.00-0.03) 6.0% (4.1-13.3) 0.106 

Maranhão 5 12 5 5 6,401,099 <0.01%   32.1% (29.1-35.3) 0.224 

Amazonas 8 12 3 -- 3,585,205 <0.01%   33.9% (27.2-40.2) -- 

Ceará 8 12 4 8 8,382,131 <0.01%   33.5% (30.2-36.4) 0.316 

Mato Grosso 9 3 27 9 3,060,605 <0.01% (0.00-0.07) 3.2% (-29.6-20.1) 0.443 

Mato Grosso do Sul 9 9 7 16 2,506,342 <0.01% (0.00-0.52) 30.2% (27.0-34.5) 0.676 

Pará 10 12 10 2 7,438,518 <0.01%   27.3% (25.1-30.3) 0.03 

Rio Grande do Sul 10 10 22 6 10,482,802 <0.01% (0.00-0.03) 11.5% (4.5-19.9) 0.268 

Rondônia 11 11 17 4 1,576,505 <0.01% (0.00-0.02) 22.5% (18.5-26.3) 0.124 

Rio de Janeiro 11 5 21 11 14,324,781 <0.01% (0.00-0.03) 11.8% (-4.2-20.6) 0.502 

Rio Grande do Norte 12 12 6 20 3,023,570 <0.01%   31.5% (26.5-35.2) 0.799 

Roraima 12 12 1 23 456,864 <0.01%   37.9% (31.3-44.1) 0.962 

Piauí 12 12 2 15 3,377,661 <0.01%   36.2% (33.9-39.3) 0.666 

Tocantins 12 12 14 7 1,435,936 <0.01%   24.6% (14.7-30.5) 0.275 

Distrito Federal 12 12 23 10 2,647,348 <0.01%   7.4% (0.9-18.1) 0.448 

Acre 12 12 13 12 708,021 <0.01%   26.2% (20.1-30.2) 0.522 

Pernambuco 12 12 9 19 7,766,940 <0.01%   29.1% (26.2-32.5) 0.79 

Alagoas 12 8 12 18 2,812,590 <0.01% (0.00-0.01) 26.7% (19.3-31.6) 0.761 

Sergipe 12 12 8 21 1,991,960 <0.01%   29.9% (27.3-32.3) 0.883 

Paraíba 12 12 11 22 3,619,622 <0.01%   27.1% (22.5-31.4) 0.948 

Goiás 13 12 16 13 6,205,103 <0.01%   23.9% (18.8-28.8) 0.53 

Bahia 14 12 20 14 12,687,903 <0.01%   12.1% (-6.2-22.3) 0.66 

Espírito Santo 15 4 15 17 2,682,726 <0.01% (0.00-0.01) 24.4% (19.9-28.3) 0.735 

Amapá 15 12 18 -- 594,387 <0.01%   20.7% (17.7-22.8) -- 

Santa Catarina 16 7 24 -- 5,417,796 <0.01% (0.00-0.34) 7.3% (2.8-16.1) -- 

Paraná 16 6 25 -- 10,616,043 <0.01% (0.00-0.63) 6.8% (4.3-14.8) -- 

 
*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	
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*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	

Table	2:	Colombia	modeling	results	by	state.	

State Median  
Rank 

MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Inf. rate 

 
(95% CI) 

MT2† 
Susc. pop 

(95%CI) MT3 
Score 

Nariño 2 2 19 2 1,766,008 0.50% (0.04-2.17) 2.7% (1.6-5.7) 0.074 

La Guajira 3 1 3 4 985,498 0.58% (0.01-3.46) 30.2% (24.1-35.9) 0.137 

Córdoba 4 4 1 11 1,736,218 0.26% (0.02-1.00) 33.5% (30.0-37.1) 0.301 

Bolívar 5 9 4 5 2,122,021 0.05% (0.00-0.23) 29.8% (23.8-34.4) 0.157 

Sucre 7 5 7 7 859,909 0.16% (0.01-0.77) 27.3% (17.3-33.5) 0.205 

Antioquia 9 8 18 9 6,534,764 0.06% (0.01-0.39) 3.7% (1.0-10.6) 0.227 

Guainía 9 13 5 -- 42,123 0.01% (0.00-16.07) 28.8% (25.3-32.0) -- 

Cauca 10 10 15 3 1,391,889 0.05% (0.00-0.30) 7.8% (5.6-10.2) 0.135 

Magdalena 11 6 11 16 1,272,278 0.16% (0.02-0.70) 18.9% (5.0-26.6) 0.561 

Cesar 11 11 9 12 1,041,203 0.02% (0.00-0.18) 26.7% (17.6-32.8) 0.330 

Vichada 12 12 2 17 73,702 0.02% (0.00-10.75) 31.9% (24.3-37.9) 0.620 

Choco 12 23 12 8 505,046 <0.01%   13.5% (5.4-21.9) 0.222 

Caquetá 13 7 13 19 483,834 0.06% (0.01-0.36) 9.5% (-4.0-17.5) 0.641 

Risaralda 14 14 22 13 957,250 <0.01% (0.00-0.03) 0.1% (-8.4-9.6) 0.370 

Vaupés 14 17 10 -- 44,079 <0.01% (0.00-1.43) 23.8% (17.4-27.6) -- 

Atlántico 14 20 8 14 2,489,709 <0.01% (0.00-0.01) 27.1% (12.1-37.0) 0.404 

Caldas 15 15 20 1 989,942 <0.01% (0.00-0.02) 1.6% (-0.8-5.7) 0.068 

Putumayo 16 3 16 18 349,537 0.38% (0.03-3.02) 7.3% (-5.1-16.5) 0.632 

Guaviare 16 16 6 21 112,621 <0.01% (0.00-0.19) 28.6% (17.2-36.4) 0.774 

Boyacá 19 19 21 6 1,278,061 <0.01% (0.00-0.01) 1.2% (-0.3-2.1) 0.169 

Amazonas 19 23 14 -- 77,088 <0.01%   9.0% (-18.3-22.2) -- 

Meta 20 21 17 20 979,683 <0.01% (0.00-0.01) 5.4% (-19.1-17.2) 0.768 

Cundinamarca 23 23 24 15 2,721,368 <0.01%   -0.6% (-3.3-0.6) 0.496 

Quindío 23 23 23 10 568,473 <0.01%   -0.1% (-4.6-11.2) 0.235 

Santander 23 23 27 23 2,071,044 <0.01%   -6.6% (-32.9-6.3) 0.829 

Tolima 23 23 25 22 1,412,230 <0.01%   -1.5% (-29.1-11.5) 0.793 

Huila 24 18 29 24 1,168,910 <0.01% (0.00-0.01) -9.5% (-41.2-5.2) 0.832 

Norte Santander 25 22 31 25 1,367,716 <0.01% (0.00-0.01) -19.8% (-71.1-4.3) 0.837 

Valle 26 23 26 26 4,660,438 <0.01%   -5.2% (-38.8-11.1) 0.871 

Arauca 27 23 28 27 265,190 <0.01%   -7.1% (-44.2-11.3) 0.962 

Casanare 28 23 30 28 362,698 <0.01%   -16.7% (-73.6-11.9) 0.993 
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Table	3:	Costa	Rica	modeling	results	by	province.	

Province Median  
Rank 

MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Inf. rate 

 
(95% CI) 

MT2† 
Susc. 

pop 

(95%CI) MT3 
Score 

Limon 3 2 4 -- 386,862 <0.01% (0.00-3.99) 3.0% (-0.7-13.8)   

Puntarenas 3 3 2 -- 410,929 <0.01% (0.00-1.03) 7.8% (-0.6-15.7)   

Guanacaste 3 5 1 -- 354,154 <0.01%   16.5% (10.6-22.1)   

Cartago 4 1 7 -- 490,903 <0.01% (0.00-1.51) 0.8% (0.2-3.5)   

Alajuela 4 5 3 -- 885,571 <0.01%   6.1% (3.1-15.3)   

San Jose 5 4 6 -- 1,404,242 <0.01% (0.00-0.38) 1.3% (0.1-7.8)   

Heredia 5 5 5 -- 433,677 <0.01%   1.8% (0.5-10.1)   

 
 
*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	
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Table	4:	Dominican	Republic	modeling	results	by	province.	
 

Province Median  
Rank 

MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Inf. rate 

 
(95% CI) 

MT2† 
Susc. 

pop 

(95%CI) MT3 
Score 

Monte Cristi 2 1 3 -- 116,848 <0.01% (0.00-0.01) 33.9% (30.6-37.4)   
Santiago 4 6 2 -- 970,653 <0.01% (0.00-0.01) 34.1% (30.2-37.9)   
Valverde 6 10 1 -- 162,117 <0.01% (0.00-0.01) 34.9% (30.9-39.2)   
Espaillat 7 3 10 -- 301,254 <0.01% (0.00-0.01) 31.6% (29.0-33.8)   
Sánchez Ramírez 7 8 6 -- 182,808 <0.01% (0.00-0.01) 33.0% (29.9-36.0)   
Hermanas Mirabal 8 2 14 -- 96,647 <0.01% (0.00-0.01) 30.2% (27.3-33.0)   
La Romana 9 14 4 -- 196,134 <0.01%   33.3% (29.7-36.8)   
Duarte 10 11 9 -- 318,669 <0.01% (0.00-0.01) 31.7% (28.9-35.4)   
Dajabón 10 12 8 -- 137,343 <0.01% (0.00-0.01) 32.9% (30.1-36.0)   
Monseñor Nouel 10 14 6 -- 159,403 <0.01%   33.0% (29.4-37.0)   
San Pedro de Macorís 10 14 5 -- 230,075 <0.01%   33.2% (29.2-36.9)   
Puerto Plata 11 5 16 -- 304,307 <0.01% (0.00-0.01) 29.1% (27.4-31.3)   
Baoruco 12 14 10 -- 98,386 <0.01%   31.6% (29.6-34.4)   
Santiago Rodríguez 13 13 13 -- 57,191 <0.01% (0.00-0.01) 30.3% (28.8-32.7)   
María Trinidad Sánchez 13 14 12 -- 129,287 <0.01%   30.9% (28.7-33.1)   
San Juan 14 4 23 -- 244,052 <0.01% (0.00-0.01) 25.4% (22.3-28.5)   
La Vega 14 7 20 -- 372,969 <0.01% (0.00-0.01) 25.9% (23.6-28.8)   
La Estrelleta/Elias Pina 15 9 21 -- 86,066 <0.01% (0.00-0.01) 25.8% (23.1-28.7)   
San Cristóbal 15 14 15 -- 446,468 <0.01%   29.9% (27.9-32.0)   
Monte Plata 16 14 17 -- 206,972 <0.01%   27.7% (24.8-30.2)   
Peravia 16 14 18 -- 175,038 <0.01%   26.6% (24.5-28.8)   
La Altagracia 17 14 19 -- 263,460 <0.01%   26.2% (21.8-28.9)   
El Seibo 18 14 22 -- 92,467 <0.01%   25.7% (21.0-28.2)   
Barahona 19 14 24 -- 143,242 <0.01%   25.3% (23.4-27.7)   
Azua 20 14 25 -- 221,137 <0.01%   24.8% (22.5-26.4)   
Independencia 20 14 26 -- 62,587 <0.01%   24.6% (22.5-26.9)   
Hato Mayor 21 14 28 -- 75,665 <0.01%   23.2% (18.3-27.4)   
Santo Domingo 21 14 27 -- 2,559,326 <0.01%   23.6% (21.0-25.8)   
Distrito Nacional 22 14 30 -- 845,598 <0.01%   18.2% (15.4-21.2)   
Samaná 22 14 29 -- 88,288 <0.01%   20.3% (16.8-23.2)   
San José de Ocoa 22 14 32 -- 58,322 <0.01%   0.9% (-0.7-11.0)   
Pedernales 23 14 31 -- 44,944 <0.01%   17.2% (15.1-20.3)   

 
*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	
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Table	5:	Ecuador	modeling	results	by	province.	

Province Median  
Rank 

MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Inf. rate 

 
(95% CI) 

MT2† 
Susc. 

pop 

(95%CI) MT3 
Score 

Sucumbíos 4 1 6 -- 186,504 7.55% (0.21-15.90) 14.8% (6.6-24.4)   

Los Ríos 5 5 4 -- 777,079 0.81% (0.07-3.59) 18.6% (12.9-24.9)   

Esmeraldas 5 2 8 -- 555,848 5.81% (0.43-12.96) 12.0% (5.3-21.2)   

Orellana 6 3 9 -- 88,611 5.43% (0.38-12.54) 8.6% (4.1-19.9)   

Manabí 7 6 7 -- 1,281,663 0.55% (0.05-1.83) 13.0% (2.5-21.3)   

Guayas 7 11 2 -- 3,595,034 0.02% (0.00-0.13) 27.7% (24.4-30.4)   

El Oro 8 13 3 -- 613,666 <0.01% (0.00-0.62) 23.0% (18.9-27.3)   

Santa Elena 8 15 1 -- 292,220 <0.01% (0.00-0.01) 30.0% (27.0-32.8)   

Pastaza 9 4 14 -- 87,380 3.07% (0.49-6.55) 2.8% (1.1-12.3)   

Bolívar 12 7 16 -- 200,410 0.51% (0.04-2.36) 1.4% (0.3-6.3)   

Napo 12 8 16 -- 106,649 0.48% (0.06-1.30) 1.4% (0.2-10.8)   

Morona Santiago 12 12 12 -- 153,622 0.02% (0.00-0.31) 5.6% (2.2-16.2)   

Galápagos 12 19 5 -- 20,541 <0.01%   16.6% (10.6-21.6)   

Cotopaxi 14 10 18 -- 394,132 0.24% (0.02-1.21) 0.7% (0.1-2.7)   

Cañar 14 17 10 -- 234,668 <0.01% (0.00-0.02) 6.9% (5.0-8.7)   

Carchi 15 9 20 -- 155,648 0.34% (0.00-1.64) 0.0% (0.0-0.3)   

Zamora Chinchipe 15 14 15 -- 105,214 <0.01% (0.00-0.24) 2.2% (0.2-13.3)   

Loja 15 16 13 -- 450,634 <0.01% (0.00-0.17) 3.6% (2.3-7.6)   

Santo Domingo 
Tsáchilas 

15 19 11 -- 422,080 <0.01%   6.0% (1.6-17.8)   

Azuay 18 18 18 -- 726,744 <0.01% (0.00-0.03) 0.7% (0.5-1.1)   

Chimborazo 20 19 20 -- 468,077 <0.01%   0.0% (0.0-0.2)   

Imbabura 20 19 20 -- 394,164 <0.01%   0.0% (0.0-0.3)   

Pichincha 20 19 20 -- 2,449,094 <0.01%   0.0% (-0.1-0.3)   

Tungurahua 20 19 20 -- 530,294 <0.01%   0.0% (0.0-0.0)   

 
*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	
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*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>	1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	

Table	6:	Mexico	modeling	results	by	state	

State Median  
Rank 

MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Inf. 

 rate 

 
(95% CI) 

MT2† 
Susc. 

pop 

(95%CI) MT3 
Score 

Sinaloa 1 1 1 4 2,838,630 2.44% (0.02-14.95)   38.5% (31.2-44.1) 0.166 
San Luis Potosí 4 4 19 1 2,626,925 0.33% (0.00-4.29)    10.0% (9.0-10.9) 0.002 
Tamaulipas 5 5 2 7 2,684,165 0.28% (0.00-3.86)     37.4% (29.7-42.6) 0.286 
Sonora 9 3 9 14 2,663,174 0.58% (0.03-1.65)     29.1% (25.5-32.8) 0.552 
Quintana Roo 10 10 7 19 1,127,393 0.03% (0.00-1.56)     30.6% (25.5-34.1) 0.695 
Baja California Sur 11 2 11 17 569,628 1.55% (0.12-4.85)     25.4% (22.4-28.4) 0.622 
Nayarit 11 8 12 11 10,443,171 0.05% (0.00-11.01)   24.7% (20.6-27.7) 0.405 
Campeche 12 12 6 22 799,030 0.02% (0.00-1.29)     30.9% (24.9-35.2) 0.797 
Nuevo León 12 21 3 12 4,881,286 <0.01%   (0.00-0.29)     35.1% (27.5-40.1) 0.468 
Veracruz 14 6 14 26 7,620,285 0.18% (0.00-4.59)     21.5% (19.8-22.9) 0.936 
Guerrero 14 14 10 21 3,479,330 0.01% (0.00-2.08)    26.8% (24.8-28.8) 0.754 
Chihuahua 15 13 17 -- 3,309,967 0.01% (0.00-0.06)     15.4% (8.9-18.9) -- 
Colima 15 15 7 25 671,505 0.01% (0.00-18.45)   30.6% (26.4-34.1) 0.846 
Coahuila 15 25 15 15 3,197,854 <0.01% (0.00-0.01) 20.0% (15.4-22.9) 0.614 
Chiapas 16 9 16 16 4,960,867 0.04% (0.00-2.50)     15.8% (14.0-20.1) 0.615 
Jalisco 16 16 21 8 7,708,204 0.01% (0.00-1.61)     6.4% (3.2-18.2) 0.331 
Michoacán 17 17 20 2 4,448,339 0.01% (0.00-6.27)    6.8% (6.2-9.2) 0.023 
Oaxaca 18 7 18 20 3,846,384 0.11% (0.00-5.65)    13.0% (11.5-17.5) 0.697 
Hidalgo 18 11 24 18 3,058,115 0.02% (0.00-0.42)     3.6% (2.7-4.5) 0.651 
Durango 18 18 22 6 1,315,740 <0.01%   (0.00-1.24)    4.8% (3.4-15.0) 0.280 
Tabasco 19 19 5 23 2,301,101 <0.01%   (0.00-0.80)     32.3% (28.9-35.7) 0.808 
Puebla 20 20 25 9 6,319,334 <0.01%   (0.00-0.73)     2.8% (2.3-4.3) 0.354 
Yucatán 22 22 4 27 2,018,565 <0.01% (0.00-0.04) 33.3% (28.1-37.4) 0.957 
Zacatecas 23 23 28 13 1,582,975 <0.01% (0.00-0.06) 0.6% (0.3-3.6) 0.507 
Guanajuato 23 24 23 10 5,825,418 <0.01% (0.00-0.07) 4.1% (0.5-15.1) 0.382 
Morelos 24 26 13 24 1,876,080 <0.01%   23.2% (19.2-27.4) 0.837 
Baja California 26 26 26 -- 3,059,921 <0.01%   1.5% (0.8-10.2) -- 
México 26 26 30 3 17,214,830 <0.01%   0.2% (0.2-0.4) 0.143 
Querétaro 26 26 27 5 1,932,829 <0.01%   0.9% (0.7-4.2) 0.272 
Aguascalientes 28 26 29 -- 1,206,312 <0.01%   0.5% (0.0-12.9)   
Distrito Federal 29 26 31 -- 7,924,645 <0.01%   0.0% (0.0-0.0)   
Tlaxcala 29 26 31 -- 1,066,673 <0.01%   0.0% (0.0-0.0)   
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*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>	1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table	7:	Panama	results	by	province	
	
Province Median  

Rank 
MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Inf. 

 rate 

 
(95% CI) 

MT2† 
Susc. 

pop 

(95%CI) MT3 
Score 

Herrera 4 7 1 -- 99,504 <0.01% (0.00-0.13) 30.3% (27.5-33.6)   
Los Santos 5 8 2 -- 107,876 <0.01% (0.00-0.01) 29.3% (26.9-31.7)   
Emberá 6 4 8 -- 34,319 0.01% (0.00-0.45) 19.3% (12.0-25.3)   
Veraguas 6 5 6 -- 225,085 <0.01% (0.00-0.14) 23.2% (18.2-25.8)   
Ngäbe Buglé 7 1 12 -- 152,129 0.02% (0.00-0.47) 5.1% (2.5-15.1)   
Bocas del 
Toro 

7 2 11 -- 106,106 0.02% (0.00-0.59) 11.3% (6.8-16.4)   

Darién 7 3 10 -- 46,615 0.01% (0.00-0.68) 14.0% (8.1-22.0)   
Panamá 7 11 3 -- 1,207,922 <0.01%   25.5% (23.4-27.5)   
Colón 8 9 7 -- 221,879 <0.01% (0.00-0.00) 21.6% (18.2-24.7)   
Chiriquí 8 6 9 -- 437,495 <0.01% (0.00-0.12) 17.2% (13.9-20.1)   
Coclé 8 11 4 -- 218,284 <0.01%   24.8% (22.2-26.4)   
Panamá 
Oeste 

8 11 5 -- 358,910 <0.01%   24.5% (21.8-26.4)   

Guna Yala 12 10 13 -- 3,808 <0.01% (0.00-0.13) -183.3% (-427.6--61.6)   
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Table	8:	Peru	modeling	results	by	department. 

Department Median  
Rank 

MT1 
Rank 

MT2 
Rank 

MT3  
Rank 

Population MT1* 
Inf. rate 

 
(95% CI) 

MT2† 
Susc. 

pop 

(95%CI) MT3 
Score 

Tumbes 2 2 2 -- 193,544 6.31% (0.00-35.76) 29.7% (26.9-32.6)   

Piura 3 1 4 -- 1,707,749 7.10% (0.00-22.54) 18.9% (15.5-24.5)   

Loreto 4 7 1 -- 976,542 0.03% (0.00-8.14) 30.7% (25.2-33.8)   

Ucayali 5 6 3 -- 464,972 0.06% (0.00-23.78) 28.4% (25.4-31.7)   

San Martín 5 4 6 -- 774,056 0.10% (0.00-24.73) 16.8% (11.8-24.2)   

Lambayeque 6 5 7 -- 1,140,486 0.06% (0.00-0.32) 10.7% (5.1-22.2)   

Cajamarca 8 3 12 -- 1,455,633 0.17% (0.00-0.81) 2.6% (1.7-5.1)   

Madre de Dios 8 10 5 -- 121,804 <0.01%   18.1% (12.9-24.2)   

Amazonas 9 10 8 -- 427,666 <0.01%   8.2% (5.9-13.6)   

Callao 10 10 9 -- 260,540 <0.01%   4.0% (0.0-18.6)   

Junín 10 10 10 -- 1,249,333 <0.01%   2.8% (1.6-5.2)   

Lima Province 10 10 10 -- 7,957,501 <0.01%   2.8% (0.0-14.6)   

Huánuco 11 8 13 -- 817,699 <0.01% (0.00-1.11) 2.5% (1.4-5.6)   

Pasco 12 9 14 -- 286,905 <0.01% (0.00-0.14) 1.9% (1.1-4.2)   

Cuzco 13 10 15 -- 1,255,116 <0.01%   1.0% (0.6-2.0)   

La Libertad 13 10 16 -- 1,723,072 <0.01%   0.8% (0.1-7.6)   

Ayacucho 14 10 18 -- 651,575 <0.01%   0.3% (0.2-0.9)   

Lima 14 10 17 -- 1,462,706 <0.01%   0.4% (0.0-4.6)   

Ancash 15 10 20 -- 1,097,634 <0.01%   0.1% (0.0-4.0)   

Puno 15 10 19 -- 1,488,142 <0.01%   0.2% (0.1-0.5)   

Apurímac 16 10 21 -- 434,423 <0.01%   0.0% (0.0-0.0)   

Arequipa 16 10 21 -- 1,187,531 <0.01%   0.0% (0.0-0.0)   

Huancavelica 16 10 21 -- 491,764 <0.01%   0.0% (0.0-0.0)   

Ica 16 10 21 -- 719,368 <0.01%   0.0% (0.0-3.3)   

Moquegua 16 10 21 -- 173,112 <0.01%   0.0% (0.0-0.1)   

Tacna 16 10 21 -- 308,111 <0.01%   0.0% (0.0-0.1)   
 
*Median	and	95%	confidence	intervals	for	projected	infection	rates	in	2017	from	>	1,000	simulations.	
†	Proportion	of	the	population	still	at	risk	for	infection.	
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Table	9:	Probability	of	projected	annual	Zika	virus	infection	rates	≥	10%	in	2017	for	municipalities	
in	the	Americas		

Country State Municipality Municipality 
population 

Model 1 
Probability of 

infection rate ≥10% 
in 2017 

(95% CI) 

Ecuador Sucumbios Lago Agrio/Nueva Loja 249,959 49% (46-52) 
Peru Tumbes Tumbes 283,424 48% (45-51) 
Peru Piura Piura 1,730,114 45% (43-48) 
Mexico Sinaloa Los Mochis 1,049,654 40% (38-43) 
Bolivia Gran Chaco Yacuiba 243,077 27% (24-29) 
Ecuador Orellana El Coca 151,629 21% (19-24) 
Paraguay Alto Parana Ciudad del Este 2,336,625 21% (19-23) 
Mexico Tamaulipas Tampico 1,835,390 18% (16-20) 
Honduras Gracias a Dios Puerto Lempira 106,834 16% (14-18) 
Ecuador Esmeraldas Esmeraldas 599,629 12% (10-14) 
Peru San Martin Tarapoto 1,397,529 10% (9-12) 
Colombia Narino Tumaco 275,111 9% (7-10) 
Peru Ucayali Pucallpa 694,810 8% (7-10) 
Mexico Colima Colima 957,465 8% (6-9) 
Mexico Baja California Sur Cabo San Jose 149,391 8% (6-9) 
Honduras Colon Guanaja/Tocoa 221,233 6% (5-8) 
Colombia Guainia Puerto Inirida 53,718 6% (5-8) 
Mexico Michoacan Lazaro Cardenas 341,119 6% (4-7) 
Mexico Sinaloa Culiacan 1,481,563 5% (4-7) 
Colombia Vichada Puerto Carreno 39,127 5% (4-6) 
Venezuela Bolivar Santa Elena 8,160 5% (3-6) 
Mexico Oaxaca Santa Maria Huatulco 665,936 4% (3-6) 
Mexico Oaxaca Puerto Escondido 464,002 4% (3-5) 
Mexico Colima Manzanillo  390,234 4% (3-5) 
Mexico Chiapas Tapachula 921,029 3% (2-4) 
Mexico Nayarit Tepic 934,532 3% (2-4) 
Mexico Sinaloa Mazatlan 699,002 3% (2-4) 
Brazil Parana Umuarama 518,546 3% (2-4) 
Mexico Veracruz Minatitlan 1,881,784 3% (2-4) 
Colombia Amazonas Tarapaca 50,271 2% (2-3) 
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Figure	1:	Median	rank	for	the	three	models	for	each	state	in	Brazil.	The	color	scheme	
shows	how	each	state	ranks	within	the	country.	That	is,	the	lower	the	rank	(dark	blue),	the	
higher	the	relative	likelihood	of	future	Zika	transmission.		
	
	
	
	
	

AMAZONAS

RORAIMA

ACRE

PARANÁ

RIO GRANDE
DO SUL

PARÁ
MARANHÃO

PIAUÍ

BAHIA

MINAS GERAIS

SÃO PAOLO RIO DE
JANEIRO

CEARÁ

PARAÍBA
PERNAMBUCO

TOCANTINS

MATO GROSSO

MATO GROSSO
D0 SUL

GOIÁS

RONDÔNIA

AMAPÁ

SANTA
CATARINA

ESPÍRITO
SANTO

SERGRIPE
ALAGOAS

RIO GRANDE
DO NORTE

BRAZIL

P E R U

V E N E Z U E L A

C O L O M B I A

B O L I V I A

P A R A G U A Y

U R U G U A Y
A R G E N T I N A

low
Median rank 

Transmission likelihood

high

high low

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/187591doi: bioRxiv preprint 

https://doi.org/10.1101/187591
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preliminary modeling results for Zika virus transmission in 2017 September 12, 2017 

	
	
19	

 
 
 
 
Figure	2:	Median	rank	for	the	three	models	for	each	state	in	Colombia.	The	color	scheme	
shows	how	each	state	ranks	within	the	country.	That	is,	the	lower	the	rank	(dark	blue),	the	
higher	the	relative	likelihood	of	future	Zika	transmission.	
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Figure	 3:	 Median	 rank	 for	 the	 three	models	 for	 each	 province	 in	 Costa	 Rica.	 The	 color	
scheme	shows	how	each	state	ranks	within	the	country.	That	is,	the	lower	the	rank	(dark	
blue),	the	higher	the	relative	likelihood	of	future	Zika	transmission.	
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Figure	4:	Median	rank	for	the	three	models	for	each	province	in	Dominican	Republic.	The	
color	scheme	shows	how	each	state	ranks	within	the	country.	That	 is,	 the	 lower	the	rank	
(dark	blue),	the	higher	the	relative	likelihood	of	future	Zika	transmission.		
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Figure	5:	Median	rank	for	the	three	models	for	each	province	in	Ecuador.	The	color	scheme	
shows	how	each	state	ranks	within	the	country.	That	is,	the	lower	the	rank	(dark	blue),	the	
higher	the	relative	likelihood	of	future	Zika	transmission.	
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Figure	 6:	Median	 rank	 for	 the	 three	models	 for	 each	 state	 in	Mexico.	 The	 color	 scheme	
shows	how	each	state	ranks	within	the	country.	That	is,	the	lower	the	rank	(dark	blue),	the	
higher	the	relative	likelihood	of	future	Zika	transmission.	
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Figure	7:	Median	rank	for	the	three	models	for	each	province	in	Panama.	The	color	scheme	
shows	how	each	state	ranks	within	the	country.	That	is,	the	lower	the	rank	(dark	blue),	the	
higher	the	relative	likelihood	of	future	Zika	transmission.	
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Figure	8:	Median	rank	for	the	three	models	for	each	department	in	Peru.	The	color	scheme	
shows	how	each	state	ranks	within	the	country.	That	is,	the	lower	the	rank	(dark	blue),	the	
higher	the	relative	likelihood	of	future	Zika	transmission.	
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Figure	 9:	 Median	 rank	 (red	 dot)	 and	 range	 of	 model	 ranks	 (black	 line)	 for	 each	
state/province	within	each	country.	 	Individual	models	are	indicated	by	open	blue	shapes	
(square	=	Model	1;	cross	=	Model	2;	diamond	=	Model	3).		Additional	details	can	be	found	in	
Tables	1-8.	
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