

1 **An automated high-throughput system for phenotypic screening of**
2 **chemical libraries on *C. elegans* and parasitic nematodes**

3

4 Frederick A. Partridge^{1¶}, Anwen E. Brown^{1¶}, Steven D. Buckingham^{1¶}, Nicky J. Willis^{2, #a}, Graham M.
5 Wynne², Ruth Forman³, Kathryn J. Else³, Alison A. Morrison⁴, Jacqueline B. Matthews⁴, Angela J.
6 Russell^{2,5}, David A. Lomas^{1*}, David B. Sattelle^{1*}

7

8 ¹ Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College
9 London, London, United Kingdom

10 ² Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United
11 Kingdom

12 ³ Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom

13 ⁴ Moredun Research Institute, Edinburgh, United Kingdom

14 ⁵ Department of Pharmacology, University of Oxford, Oxford, United Kingdom

15

16 * Corresponding author. E-mail address: d.sattelle@ucl.ac.uk (D.B.S.); d.lomas@ucl.ac.uk (D.A.L.)

17 [¶] These authors contributed equally.

18 ^{#a} Current address: Alzheimer's Research UK UCL Drug Discovery Institute, Faculty of Brain
19 Sciences, University College London, Gower Street, London, WC1E 6BT

20

21 **Abstract**

22 Parasitic nematodes infect hundreds of millions of people and farmed livestock. Further, plant
23 parasitic nematodes result in major crop damage. The pipeline of therapeutic compounds is limited
24 and parasite resistance to the existing anthelmintic compounds is a global threat. We have developed
25 an INVertebrate Automated Phenotyping Platform (INVAPP) for high-throughput, plate-based
26 chemical screening, and an algorithm (Paragon) which allows screening for compounds that have an
27 effect on motility and development of parasitic worms. We have validated its utility by determining
28 the efficacy of a panel of known anthelmintics against model and parasitic nematodes: *Caenorhabditis*
29 *elegans*, *Haemonchus contortus*, *Teladorsagia circumcincta*, and *Trichuris muris*. We then applied
30 the system to screen the Pathogen Box chemical library in a blinded fashion and identified known
31 anthelmintics, including tolfenpyrad, auranofin, and mebendazole and 14 compounds previously
32 undescribed as anthelmintics, including benzoxaborole and isoxazole chemotypes. This system offers
33 an effective, high-throughput system for the discovery of novel anthelmintics.

34 **1. Introduction**

35 Parasitic nematodes infect around one billion people, with the soil transmitted nematodes Ascaris,
36 hookworm and whipworm (*Trichuris trichiura*) each afflicting hundreds of millions of people (Hotez,
37 2013). These diseases cause high morbidity and are closely linked to poverty in the developing world.
38 The global impact of parasitic nematodes is worsened by their effect on livestock, equids and
39 companion animals. Parasitic nematodes of livestock are thought to cost approximately \$10 billion
40 annually with anthelmintic products comprising a major segment of the veterinary pharmaceuticals
41 market (Roeber et al., 2013).

42 There are concerns that mass drug administration (MDA) programs aimed at controlling or
43 eradicating human parasitic nematodes will become unsustainable by anthelmintic resistance,
44 jeopardising attempts to eradicate these important tropical diseases (Prichard et al., 2012). In the case
45 of *Trichuris*, modelling indicates that existing benzimidazole drugs are insufficiently effective for
46 single dose MDA programs designed to break transmission; therefore eradication cannot be achieved
47 (Keiser J and Utzinger J, 2008; Levecke et al., 2014; Turner et al., 2016). The current arsenal of
48 veterinary anthelmintics is threatened by the emergence and spread of resistance in parasitic
49 nematodes of domesticated animals, a recent example of which is the report of resistance to
50 monepantel in sheep nematode species only four years after introduction of the compound (Scott et
51 al., 2013). Multi-class resistance is also common in parasitic nematodes of ruminants (Rose et al.,
52 2015; Sutherland, 2015) and equids (Matthews, 2014). Thus, there is an urgent requirement for the
53 identification of novel classes of anthelmintics.

54 Phenotypic screening is enjoying a resurgence in recent years, and is playing an increasingly
55 important role in the modern drug discovery paradigm (Al-Ali, 2016). Furthermore, employment of
56 this approach using live nematodes *ex vivo* has been historically successful for target identification
57 and lead optimisation. For example, a series of acetonitrile derivatives were identified using a
58 *Haemonchus contortus* *in vitro* larval development assay, and this led to the discovery of monepantel
59 (Kaminsky et al., 2008).

60 1.1. *Automated systems for phenotypic screening of parasitic nematodes and models of parasites*

61 Given the need for new anthelmintics, there has been growing interest both in phenotypic screens for

62 identification of new classes of active small molecules and in systems for quantifying relevant

63 readouts of nematode viability such as growth and motility (Buckingham et al., 2014; Buckingham

64 and Sattelle, 2008). Manual scoring of motility, growth or viability has been effective and used to

65 screen libraries of up to 67,000 compounds (Burns et al., 2015; Tritten et al., 2011, 2012). Automated

66 systems offer the potential of higher throughput and greater reliability. Such approaches include

67 indirect assessment of viability by using the xCELLigence System; assessment of metabolic activity

68 via colorimetric assays such as resazurin, MTT, and acid phosphatase activity; assessment of motor

69 activity via isothermal microcalorimetry and quantification of movement-related light scattering

70 (Nutting et al., 2015; Silbereisen et al., 2011; Smout et al., 2010; Wangchuk et al., 2016a, 2016b).

71 Imaging-based systems for quantification of motility or growth have also been developed. The

72 “WormAssay” system quantifies the motility of macroscopic parasites such as *Brugia malayi* adult

73 worms (Marcellino et al., 2012). This system has been further developed into “The Worminator”,

74 which quantifies smaller, microscopic nematode stages and has been validated by quantifying the

75 activity of several anthelmintics (Storey et al., 2014). This system has a reported scan time of 30

76 seconds per well, hence a throughput of around one and a quarter 6-well plates per hour. A system

77 based on single-well imaging and thresholding of motile pixels with a throughput of around five 96-

78 well plates per hour has been reported (Preston et al., 2016a). Its utility has been demonstrated by the

79 successful screening of a 522-compound kinase inhibitor library and the 400-compound Medicine for

80 Malaria Venture Pathogen box on *Haemonchus contortus* larvae (Preston et al., 2015, 2016b). A

81 notable recently-described screen of the effects of 26000 compounds on *Caenorhabditis elegans*

82 growth/survival used WormScan, a system that uses a conventional flat-bed scanner to capture two

83 frames of images of whole plates and then uses an algorithm based on the difference image to assign a

84 value to each well that reflects motility/growth (Mathew et al., 2012, 2016). This led to the

85 identification of several compounds with previously unreported anthelmintic activity, including

86 compounds targeting PINK-1 and MEV-1. The authors reported a throughput of approximately 25-40
87 96-well plates per hour.

88

89 *1.2. Developing a new robust motility/growth quantification system focussed on rapid, high-*
90 *throughput chemical screening*

91 It is clear that recent developments in phenotypic screening of parasitic and model nematodes have
92 led to an acceleration of the discovery of potential novel anthelmintic compounds. Given the large
93 sizes of drug-like compound libraries and the need to efficiently identify the hit compounds therein
94 that are have the potential to be developed into potent and selective anthelmintic lead molecules, it is
95 desirable that nematode phenotypic screening be further accelerated. Here, we present the
96 development of the INVAPP / Paragon system, which quantifies nematode motility/growth with a
97 throughput of approximately 100 96-well plates per hour, with a robust and unbiased approach. We
98 validate the system by quantifying the activity of a panel of known anthelmintics on a variety of
99 nematode species, and then by screening, in a blinded fashion, the Medicines for Malaria Venture
100 Pathogen Box for compounds that block or reduce nematode growth.

101 2. Materials and methods

102 2.1. Ethics statement

103 All mouse experiments were approved by the University of Manchester Animal Welfare and Ethical
104 Review Board and performed under the regulation of the United Kingdom Home Office Scientific
105 Procedures Act (1986) and the Home Office project licence 70/8127.

106 All ovine experiments were approved by the Moredun Research Institute Experiments and Ethics
107 Committee and performed under the regulation of the United Kingdom Home Office Scientific
108 Procedures Act (1986) and the Home Office project licence 60/04421.

109 2.2. INVAPP / Paragon system

110 The INVAPP / Paragon system consists of a fast high-resolution camera (Andor Neo, resolution
111 2560x2160, maximum frame rate 100 frames per second) with a line-scan lens (Pentax YF3528).
112 Microtiter plates are placed in a holder built into the cabinet and imaged from below. Illumination is
113 provided by an LED panel with acrylic diffuser. Movies were captured using μ Manager (Edelstein et
114 al., 2014). The desirable movie frame length and duration of filming depends on the particular
115 organism under study and is specified below. Movies were analysed using MATLAB scripts. Briefly,
116 movies were analysed by calculating the variance through time for each pixel. The distribution of
117 these pixel variances was then considered, and pixels whose variance was above the threshold
118 (typically those greater than one standard deviation away from the mean variance) were considered
119 'motile'. Motile pixels were then counted and assigned by well, generating a movement score for each
120 well. The source code for this software has been released under the open source MIT license and is
121 available at <https://github.com/fpartridge/invapp-paragon>. A further MATLAB script has been
122 provided for batch processing of movies.

123 2.3. *Caenorhabditis elegans* motility and growth assays

124 *C. elegans* strains were maintained at 20 °C on nematode growth medium agar seeded with the *E. coli*
125 strain OP50. To obtain worms for screening, a mixed-stage liquid culture was prepared by washing
126 well-fed worms from one small NGM plate into a medium of 50 ml S-complete buffer with a pellet of
127 approximately 2-3 g *E. coli* HB101. Cultures were agitated at 200 rpm, 20 °C, until there were many

128 adults present, then synchronised at the L1 stage by bleaching. Fifty millilitre cultures were pelleted
129 and bleaching mix (1.5 ml 4M NaOH, 2.4 ml NaOCl, 2.1 ml water) added. Mixing for 4 minutes led
130 to the release of embryos, which were washed three times with 50 ml S-basal medium. The cultures
131 were incubated in 50 ml S-basal at 20 °C and agitated at 200 rpm overnight to allow eggs to hatch and
132 arrest as a synchronous L1 population.

133 For the growth assay, *C. elegans* were cultured in a 96-well plate format. Synchronised L1 were
134 diluted to approximately 20 worms per 50 µl in S complete medium with around 1% w/v HB101 *E.*
135 *coli*. Assay plates were prepared with 49 µl of S-basal and 1µl of DMSO or compound in DMSO
136 solution per well. Next, 50 µl of the L1 suspension were added to each well. Plates were incubated at
137 20°C before imaging using the INVAPP / Paragon system 5 days later. Prior to imaging, worm
138 motion was stimulated mechanically by inserting and removing a 96-well PCR plate into/from the
139 wells of the assay plate. Whole-plate 200 frame movies were recorded at 30 frames per second (7
140 seconds total).

141 For the adult motility assay, synchronised L1 were refed as a bulk 50 ml culture and cultured at 20 °C
142 until they developed into young adults. Worms were washed in S-basal and dispensed, approximately
143 20 worms per well, into 96-well plates with compound dissolved in DMSO, or DMSO alone and then
144 incubated for 3 hours. Whole-plate 200 frame movies were recorded at 30 frames per second (7
145 seconds total).

146 2.4. *Trichuris muris* motility assay

147 For the adult *T. muris* motility assay, male and female severe combined immune deficiency mice
148 (bred in the Biological Services Facility at the University of Manchester) were infected with 200
149 embryonated *T. muris* eggs in water by oral gavage. After 35 days, mice were killed and their caecae
150 and colons removed, opened longitudinally, and washed with pre-warmed Roswell Park Memorial
151 Institute (RPMI) 1640 media supplemented with penicillin (500 U/ml) and streptomycin (500 µg/ml).
152 Adult *T. muris* worms were then removed using fine forceps and maintained in RPMI-
153 1640/penicillin/streptomycin media at approximately 37 °C and studied on the same day. Individual
154 live worms were placed into 96 well plates containing 75 µl of RPMI-1640/penicillin/streptomycin

155 medium plus 1% v/v final concentration of DMSO or compound dissolved in DMSO. Plates were
156 incubated at 37 °C, 5% v/v CO₂, and motility was analysed after 24 hours. Whole plate 200 frame
157 movies were recorded at 10 frames per second (20 seconds total).

158 2.5. *Ovine parasitic nematode isolation*

159 Six month-old, male Texel cross lambs that were raised under helminth-free conditions were infected
160 *per os* either with 15,000 *T. circumcincta* (isolate MTci2) larvae (L₃) or 5,000 *H. contortus* (isolate
161 MHco3) L₃. Once a patent infection was detected by the observation of nematodes eggs in faeces
162 (around 21 days post-infection), the lambs were fitted with a collection harness and bag to enable
163 faecal collection. Pelleted faeces were collected from each bag 24 hours later and placed in a covered
164 seed tray, which was incubated at room temperature (>15 °C) for 10 days before larval recovery using
165 the modified Baermann technique (*Manual of veterinary parasitological laboratory techniques.*,
166 1986). The next day L₃ were recovered in ~250 ml H₂O, number estimation performed then the larvae
167 were stored in 100 ml tap water in 75 cm² surface area vented cap, suspension culture flasks (Sarstedt
168 Ltd UK) at ~ 5 °C for MTci2 and 8 °C for MHco3, respectively.

169 2.6. *T. circumcincta assay*

170 Ensheathed L3 *T. circumcincta* were used in this assay. Approximately 30 worms were added to wells
171 containing compound + DMSO or DMSO alone (final concentration 1% v/v). Worms were incubated
172 for 2 hours in the dark at 25 °C. Movement was stimulated by illuminating the plate with bright white
173 light for 3 minutes (Zeiss HAL100), before acquiring movies on the INVAPP / Paragon system (200
174 frames, 10 frames per second).

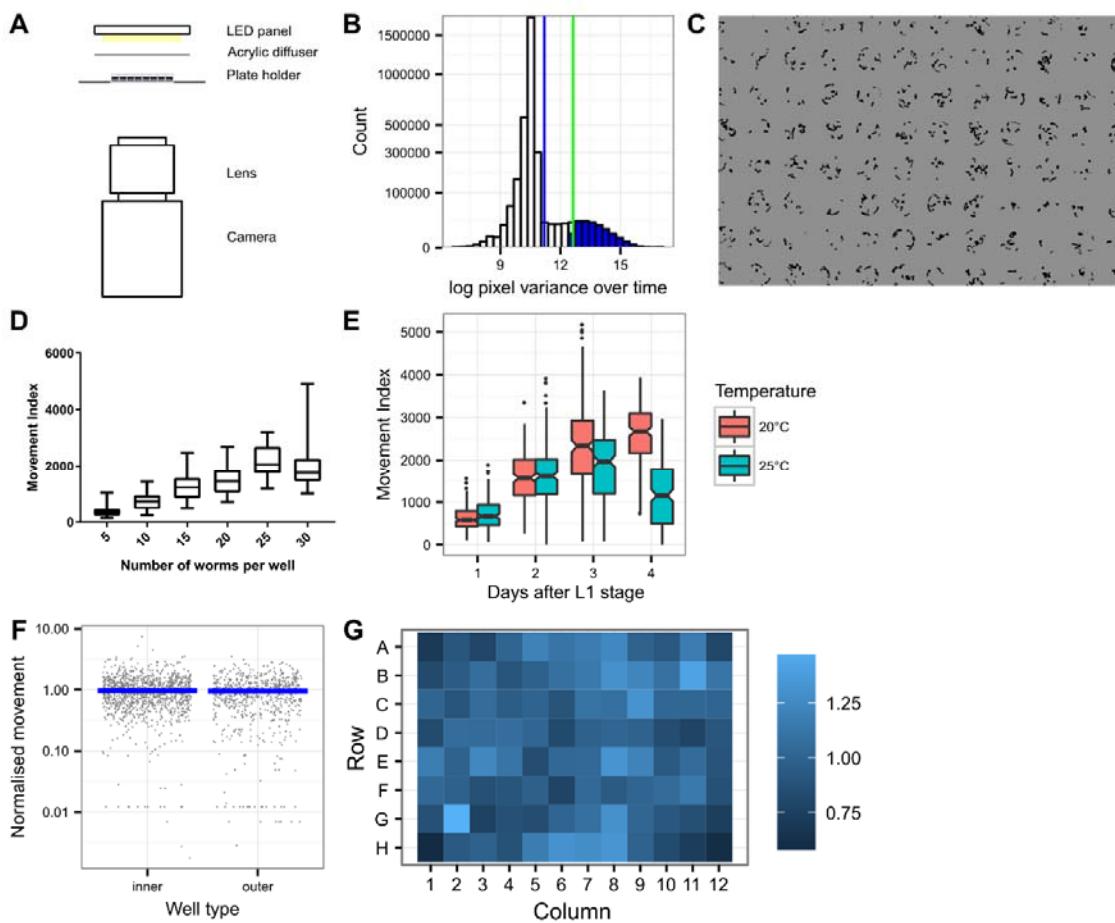
175 2.7. *H. contortus assay*

176 *H. contortus* exsheathed L3 (xL3) were prepared by treatment with sodium hypochlorite (Preston et
177 al., 2015). A 1ml solution containing around 1000 *H. contortus* L3 was placed in a 35 mm petri dish.
178 20 µl sodium hypochlorite solution (Fisher, S/5040/PC17) was added and incubated at room
179 temperature for 4 minutes. Exsheathment was monitored using a dissecting microscope. The worms
180 were filtered using a 10 µm cell strainer (pluriSelect), rinsed with 10x 1 ml S-basal solution, and
181 eluted with 1 ml S-basal solution. Around 30 xL3 worms (in S-basal solution) were added to wells

182 containing compound + DMSO or DMSO alone (final DMSO concentration 1% v/v). Worms were
183 incubated for 2 hours in the dark at 25 °C. Movement was stimulated by illuminating the plate with
184 bright white light for 3 minutes (Zeiss HAL100), before acquiring movies on the INVAPP / Paragon
185 system (200 frames, 30 frames per second). The INVAPP / Paragon *movementIndexThreshold*
186 parameter was set to 2 for analysis of *H. contortus* *xL3*, due to a lower prior expectation of worm
187 movement in the movie for this nematode.

188 2.8. *Pathogen Box screening*

189 The Pathogen Box library was obtained from the Medicines for Malaria Venture as 10 mM solutions
190 in DMSO, and then diluted in DMSO to 1 mM. It was then screened in the *C. elegans* growth assay as
191 described (final concentration 10 µM, n=5, 1% v/v final DMSO). Solid material for confirmatory
192 screening of actives was obtained from Sigma-Aldrich (tolfenpyrad) and Santa Cruz Biotechnology
193 (auranofin). Solid samples of MMV007920, MMV020152, MMV652003 and MMV688372 were
194 obtained from the Medicines for Malaria Venture.


195

196 **3. Results**

197 **3.1. INVAPP / Paragon: a high-throughput assay for quantifying nematode motility and growth**

198 We wanted to develop an assay for screening small molecules for their effect on the motility and
199 growth of diverse parasites. A high-throughput and automated system was particularly desirable,
200 given the large size of available small molecule libraries. To this end, we designed the INVAPP /
201 Paragon system. A schematic of the INVAPP hardware is shown in Fig 1A. This allows recording of
202 movies of entire microplates at high frame rate, reducing the per plate acquisition time to 10-30
203 seconds. Tens of thousands of compounds or conditions can therefore be readily screened per day.

204

205

206 **Fig 1. The INVAPP / Paragon movement index algorithm is a fully-automated high-throughput**
207 **system able to determine motility and growth rate.** (A) Schematic of the INVAPP setup (B)

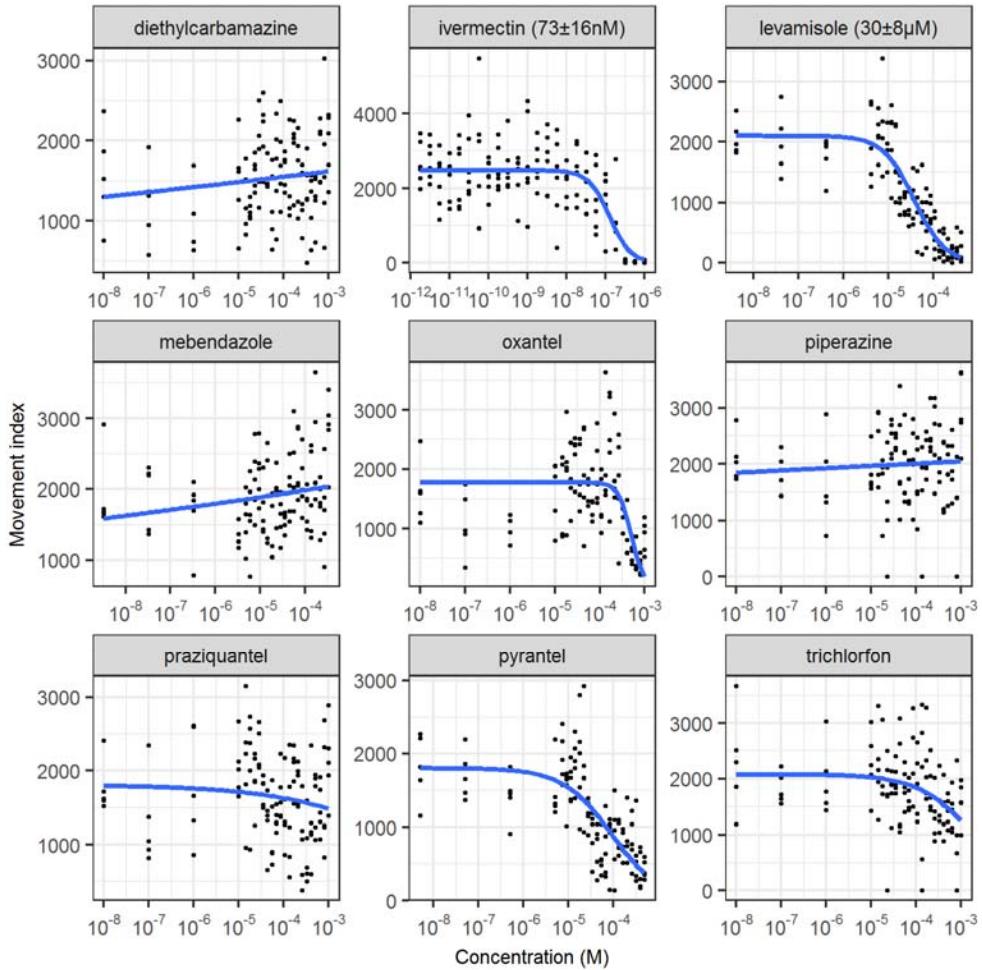
208 Principle of the algorithm: thresholding of moving pixels by statistical analysis of variance of each
209 pixel through time. Histogram shows the distribution of pixel variance over time. Blue vertical line
210 indicates mean pixel variance. The green vertical line indicates mean plus standard deviation of pixel
211 variance; the blue shaded portion of the histogram indicates pixels that exceed this threshold so are
212 deemed to be motile. (C) Image of 96-well plate containing *C. elegans* adults processed by the
213 INVAPP / Paragon movement index system. Dark pixels are those categorized as moving by the
214 algorithm. (D) Increasing the number of *C. elegans* worms per well leads to increase in reported
215 movement index. Boxplot bars indicate 95% confidence interval. (E) Movement index algorithm is
216 able to quantify *C. elegans* growth in 96-well plates. Movement index increases with growth.
217 Synchronized L1 population refed on day 0. Decrease in movement index in 25°C group on Day 4
218 reflects completion of the *C. elegans* lifecycle and exhaustion of the bacterial food source. Boxplot
219 notches indicate 95% confidence interval, n=192. (F) Absence of edge effects in this assay – analysis
220 of a 1920-well *C. elegans* growth dataset shows no difference of the normalised movement score for
221 96-well plate outer edge wells (the wells found in columns 1 and 12 or rows A and H) compared to
222 the score for inner wells (the other wells in the plate). Movement index for each well is normalised by
223 dividing by the mean movement index for all wells of that plate. The blue bar indicates median. (G)
224 No edge effects or other inhomogeneity across the plate – heat map shows average normalised
225 movement index for each well location.

226

227 We took a statistical approach to quantifying motility. The variance through time for each pixel in the
228 plate was calculated and the distribution of the variances examined. Pixels whose variance is greater
229 than a threshold of the mean plus typically one standard deviation are determined to be “motile” (Fig
230 1B). For organisms that are particularly small or have limited motility, such as *H. contortus* L3s, this
231 threshold was increased to the mean plus two standard deviations, reflecting a lower prior expectation
232 of worm movement in the movie. A similar approach was recently reported for the determination of
233 *H. contortus* motility (Preston et al., 2015). An example of this thresholding model is shown in Fig
234 1C, which shows analysis of a 96-well plate containing adult *C. elegans*. Dark pixels are those that

235 have been determined to be motile. Once the motility threshold has been applied to the data, ‘motile’
236 pixels are assigned by well to their plate location and counted. All analysis is fully automated via a set
237 of MATLAB scripts, available at <https://github.com/fpartridge/invapp-paragon>.

238 This approach was able to determine motility. To illustrate this, we analysed plates containing a
239 variable number of synchronized adult *C. elegans* worms. As expected, quantified movement
240 increased with the number of worms per well, reflecting a larger number of ‘motile’ pixels in the
241 recording (Fig 1D).

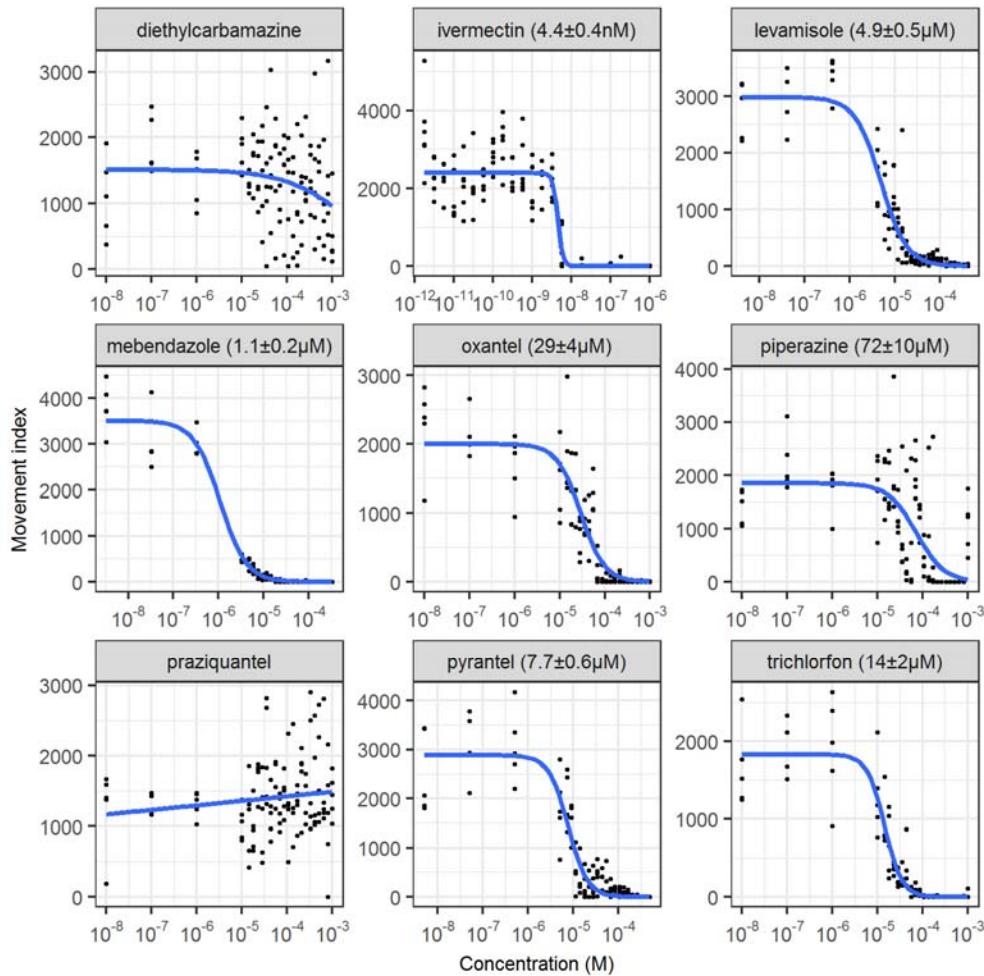

242 The system was also able to quantify nematode growth. To test this, we synchronised *C. elegans* at
243 the L1 stage, before refeeding them in plates at two temperatures commonly used in *C. elegans*
244 culture (20 °C and 25 °C). Plates were then analysed using INVAPP / Paragon every 24 hours. The
245 results are shown in Fig 1E. The quantified movement index increases as worms develop from L1 to
246 adult stage. The drop in motility in the 25 °C group on day 5 reflects growth of L1 progeny leading to
247 exhaustion of the bacterial food source and starvation.

248 When establishing a high-throughput assay it is important to consider the issue of edge effects (Malo
249 et al., 2006). Systematic biases across the plate are particularly common around edges. Typical causes
250 are evaporation, which is often worse at the edges, or temperature inhomogeneity. In our assay, given
251 that it involves imaging of whole plates, we also wanted to exclude the possibility of systemic bias
252 caused by optical distortion. To address these concerns, we analysed a 1920-well *C. elegans* growth
253 dataset. This was chosen because the long four-day incubation time gave the maximum possibility of
254 confounding evaporation differences. We classified wells on the outer rows and columns of the plate
255 as being outer wells, and compared their quantified motility to the inner wells (Fig 1F). There was no
256 significant difference between these groups (Mann-Whitney-Wilcoxon test, $P=0.77$), and therefore no
257 evidence of problematic edge effects in this assay. To further exclude the possibility of assay
258 inhomogeneity across the plate, we calculated a heat map showing average normalised motility for
259 each well (Fig 1G). Again, this showed no evidence of systemic bias by plate position.

260 *3.2. Validation of the INVAPP / Paragon assay using existing commercial anthelmintic
261 standards*

262 Having set up this high-throughput motility and growth assay, we wanted to validate its utility by
263 examining the effects of a panel of known anthelmintics. We selected nine anthelmintics with a
264 variety of reported mechanisms of action. Piperazine is a GABA agonist that acts at the
265 neuromuscular junction (Martin, 1985). Diethylcarbamazine has been proposed to have a similar
266 mechanism, although other mechanisms including targeting host arachidonic acid metabolism are also
267 thought to be important (Maizels and Denham, 1992). Levamisole, oxantel and pyrantel are nicotinic
268 acetylcholine receptor agonists that induce spastic paralysis (Martin et al., 1997). Mebendazole is an
269 inhibitor of beta-tubulin polymerisation (Driscoll et al., 1989). Ivermectin is a positive allosteric
270 modulator of glutamate-gated chloride channels although other targets have also been suggested
271 (Cully et al., 1994). Trichlorfon is a member of the organophosphate group of acetylcholine esterase
272 inhibitors. Praziquantel is thought to act by disrupting calcium ion homeostasis but its target is unclear
273 (Caffrey, 2007)

274 We first measured concentration-response curves for this panel of anthelmintics in an acute treatment
275 (3 hour) adult *C. elegans* assay. The results are shown in Fig 2. As expected, the major ion channel-
276 targeting drugs ivermectin, levamisole, oxantel and pyrantel were active in this assay, reflecting their
277 direct effects on worm motility.


278

279 **Fig 2. Determination of the effect of acute treatment with important anthelmintics on *C. elegans***
280 **adult motility using the INVAPP / Paragon movement index algorithm.** Blue line fitted using the
281 3-parameter log-logistic model. EC₅₀ values are shown in parentheses, with standard error for this
282 estimate calculated using *drc* (Ritz and Streibig, 2005).

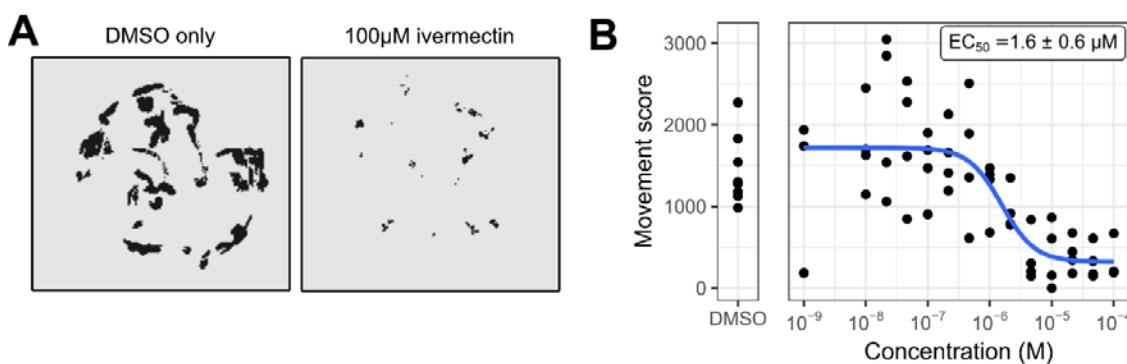
283

284 We then measured concentration-response curves for this panel of anthelmintics in a chronic
285 treatment *C. elegans* growth assay. The results are shown in Fig 3. Activity was again found with
286 ivermectin, levamisole, oxantel and pyrantel and, additionally, with mebendazole, piperazine and
287 trichlorfon. This reflects that some anthelmintic modes of action may not be measured in purely acute
288 motility assays, supporting the use of assays that involve growth or development. Diethylcarbamazine
289 and praziquantel were not active in these assay as expected. This reflects previously reported low *in*
290 *vitro* activity of diethylcarbamazine and its proposed mechanism of acting on host arachidonic acid
291 metabolism (Maizels and Denham, 1992). Praziquantel, used primarily to treat flukes and tapeworms,
292 is known to have limited efficacy against nematodes (Holden-Dye, 2007). Successfully demonstrating
293 the ability of the INVAPP / Paragon system to determine the effects of known anthelmintics increased
294 our confidence in this approach.

295

296

297 **Fig 3. Determination of the effect of important anthelmintics on *C. elegans* growth using the**
298 **INVAPP / Paragon movement index algorithm.** Blue line fitted using the 3-parameter log-logistic
299 model. EC₅₀ values are shown in parentheses, with standard error for this estimate calculated using
300 *drc* (Ritz and Streibig, 2005).


301

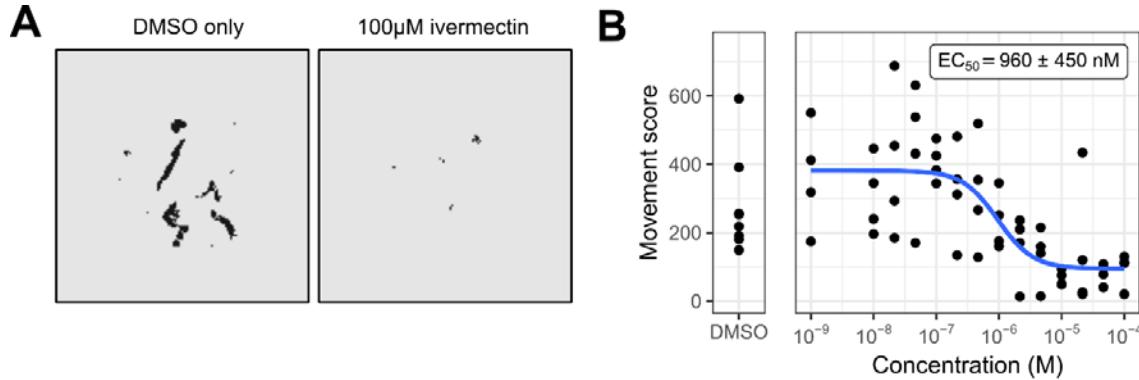
302 3.3. Adaptation of the INVAPP / Paragon assay to parasitic nematodes

303 *C. elegans* is a useful model because of the ease of laboratory culture and access to powerful genetic
304 tools. However, it is also valuable to screen parasitic nematodes directly. *T. circumcincta* is a globally
305 important parasitic nematode that infects small ruminants. We tested the ability of the INVAPP /
306 Paragon system to quantify the activity of the anthelmintic ivermectin on ensheathed *T. circumcincta*

307 L3. Worms were incubated at 25 °C with the compounds for 2 hours in the dark, after which
308 movement was induced by bright light and movies recorded on the INVAPP system. Fig 4A shows an
309 example of the INVAPP / Paragon motility thresholding of single wells treated with DMSO or DMSO
310 plus 100 µM ivermectin, showing much reduced, but not abolished movement, of these larvae in the
311 assay. We obtained a concentration-response curve for ivermectin (Fig 4B), demonstrating the ability
312 of the system to quantify motility of this parasite.

313

314


315 **Fig 4. Utilising the INVAPP / Paragon system with ensheathed L3 *T. circumcincta*.**

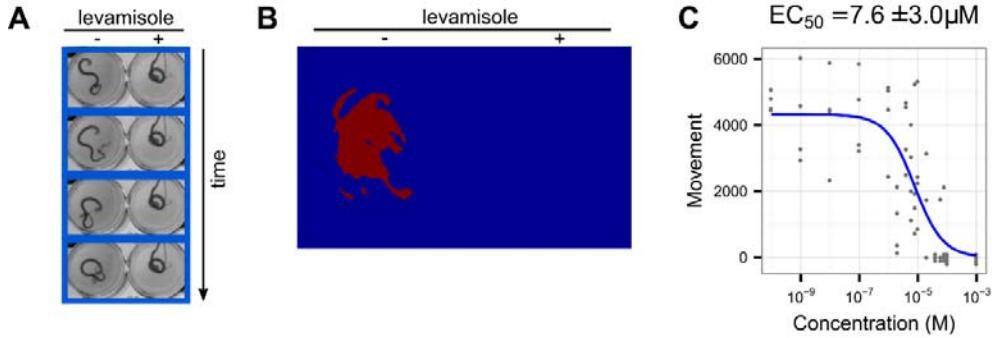
316 (A) INVAPP / Paragon motility thresholding of single wells treated with DMSO or a DMSO solution
317 of ivermectin (assay concentration 100 µM). Black pixels are scored as motile. (B) Concentration-
318 response curve for treatment with the anthelmintic ivermectin, n=4. Curve fitted using the four-
319 parameter log-logistic function. Error range on the EC_{50} estimate indicates standard error (delta
320 method).

321

322 *H. contortus*, the barber's pole worm, is another economically important gastrointestinal parasite of
323 small ruminants. We tested the ability of the INVAPP / Paragon system to quantify the activity of
324 ivermectin on exsheathed L3 (xL3) *H. contortus*. Worms were incubated at 25 °C with the
325 compounds for 2 hours in the dark, after which movement was induced by bright light and movies
326 recorded on the INVAPP system. An example of the INVAPP / Paragon motility thresholding of

327 single wells treated with DMSO or a DMSO solution of ivermectin (assay concentration 100 μ M) is
328 shown in Fig 5A. Movement of ivermectin-treated xL3s in the assay was considerably reduced. A
329 concentration-response curve for ivermectin is shown in Fig 5B, illustrating the ability of the system
330 to quantify motility of this parasite.

331


332 **Fig 5. Utilising the INVAPP / Paragon system with exsheathed L3 *H. contortus*.**

333 (A) INVAPP / Paragon motility thresholding of single wells treated with DMSO or a DMSO solution
334 of ivermectin (assay concentration 100 μ M). Black pixels are scored as motile. (B) Concentration-
335 response curve for treatment with the anthelmintic ivermectin, n=4. Curve fitted using the four-
336 parameter log-logistic function. Error range on the EC₅₀ estimate indicates standard error (delta
337 method).

338

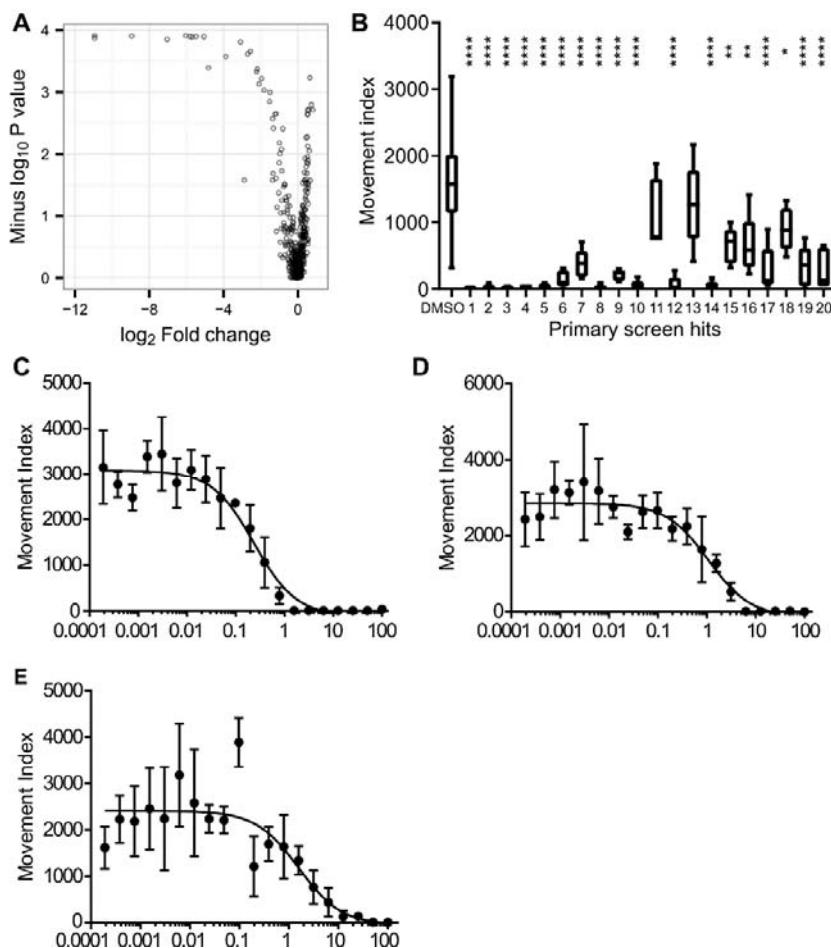
339 *Trichuris muris*, which infects mice, is a widely used laboratory model for investigating trichuriasis
340 and has been used as a system for *ex vivo* and *in vivo* testing of anthelmintic candidates for activity
341 against whipworm (Hurst et al., 2014; Tritten et al., 2011; Wimmersberger et al., 2013). We tested the
342 ability of the INVAPP / Paragon system to quantify the activity of the anthelmintic levamisole on
343 adult *T. muris*. Worms were incubated at 37 °C with the compounds for 24 hours in the dark, after
344 which movement was recorded on the INVAPP system. Fig 6A shows control and levamisole treated
345 wells. For illustration, selected frames of the movie are shown (3-second intervals). The readout of
346 'motile' pixels as determined by the INVAPP / Paragon algorithm is shown in Fig 6B, showing the

347 quantification of the loss of motility of the levamisole-treated worm. A concentration-response curve
348 for levamisole was measured (Fig 6C), which illustrates the ability of the system to quantify motility
349 of this parasite and thus measure anthelmintic activity.

350

351 **Fig 6. Utilising the INVAPP / Paragon system with adult *T. muris*.** (A) Example of section of
352 movie, showing control and levamisole-treated wells. Selected movie frames are shown at three-
353 second intervals (B) Pixels for these wells that are considered to be motile as determined by the
354 algorithm are shown in red. (C) Concentration-response curves for treatment with the anthelmintic
355 levamisole, n=4. Curve fitted using the three-parameter log-logistic function. Error range on the EC₅₀
356 estimate indicates standard error (delta method).

357


358 3.4. Screening the Pathogen Box for compounds that affect *C. elegans* growth

359 We then applied the INVAPP / Paragon assay system to the identification of novel anthelmintic small
360 molecules. We used the Pathogen Box, a collection of 400 diverse drug-like molecules that are known
361 to be active against various neglected disease pathogens (particularly, tuberculosis (or *Mycobacterium*
362 spp.), malaria and kinetoplastid protozoa). This library is distributed as an open-science project by the
363 Medicines for Malaria Venture. A screen of this library for compounds affecting motility of
364 exsheathed L3 of *H. contortus* has been published recently (Preston et al., 2016b), which identified
365 the insecticide, tolfenpyrad, as active against the larvae. To complement this approach, and with the
366 aim of identifying compounds blocking growth of nematodes as opposed to solely immobilising them,
367 we screened the library in a blinded fashion (n=5, concentration 10 μM) using the INVAPP / Paragon

368 *C. elegans* growth assay. For each compound, motility change and significance (Mann-Whitney-
369 Wilcoxon test) were calculated relative to DMSO-only control wells. A volcano plot showing the
370 results of this screen is shown in Fig 7A. Compounds that reproducibly reduced growth are found
371 towards the top left of this plot. To confirm identity of the hit molecules, we retested the top 20
372 putative hit compounds with the same library material (n=5, concentration 10 μ M) in the same
373 INVAPP / Paragon *C. elegans* growth assay (Fig 7B). A total of 18 out of 20 compounds were active
374 ($P < 0.05$, Dunnett's multiple comparison test).

375 The combined assay results from the primary and secondary screen are found in Supplementary File 1
376 and have been recorded in the PubChem database with Assay ID 1259336.

377

378

379 **Fig 7. Screening the Pathogen Box in the *C. elegans* growth screen.** (A) Volcano plot showing the
380 results of the primary screen (n=5, concentration = 10 μ M). Each point represents one compound.
381 Effective size is shown on the x axis, as log₂-fold change (ratio of the median movement for the
382 repeats of the compound to the median movement of DMSO-only wells). Statistical significance is
383 shown on the y axis as the -log₁₀ P value in the Mann-Whitney-Wilcoxon test. A location at the top
384 left of this plot indicates anthelmintic activity. (B) Secondary rescreen of hit compounds, in order of
385 their activity in the primary screen, from library material. Statistical significance compared to DMSO-
386 only control calculated by Dunnett's multiple comparison test (n=5, * indicates P < 0.05, ** indicates
387 P < 0.005, **** indicates P < 0.0005). (C,D,E) Concentration-response curves showing the activity of
388 known anthelmintics – (C) tolfenpyrad, (D) auranofin, (E) isradipine – that were found in the
389 Pathogen box screen retested using solid material (supplied by the Medicines for Malaria Venture) in
390 the *C. elegans* growth assay. A concentration-response curve for mebendazole in the assay was
391 presented in Fig. 3. Error bars indicate standard deviation, n=4. Curve fitting was undertaken using
392 three parameter log logistic model (Graphpad Prism).

393

394 3.5. *Identification of known anthelmintic compounds by screening the Pathogen Box in the C.*
395 *elegans growth assay*

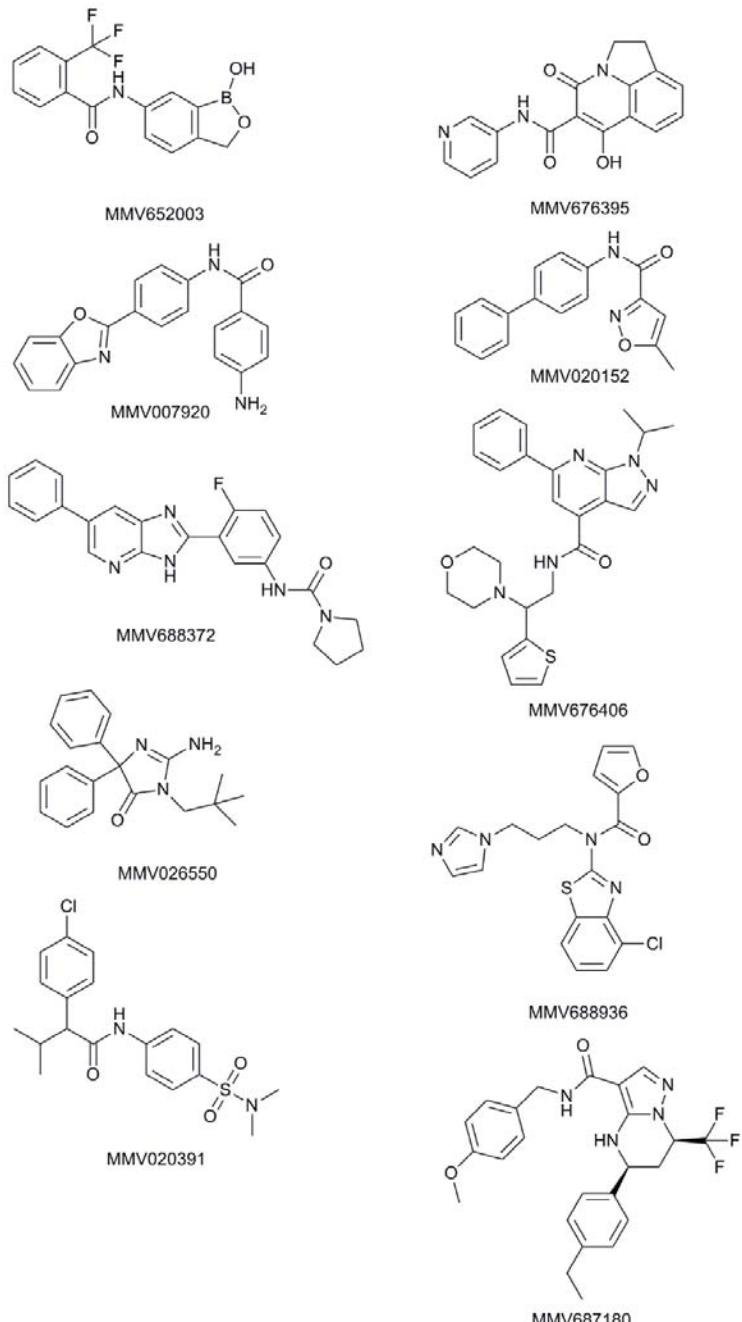
396 We first considered known anthelmintic compounds that we found to be active in this screen (Table
397 1). Mebendazole, an anthelmintic from the benzimidazole group, acts by inhibiting microtubule
398 synthesis. Tolfenpyrad is a broad-spectrum acaricide and insecticide that acts as an inhibitor of
399 complex I of the electron transport chain. It has been recently reported to reduce motility of *H.*
400 *contortus* exsheathed L3 and to block L3 to L4 development of this parasite *in vitro* (Preston et al.,
401 2016b). We confirmed activity of this compound using solid material. As shown in Fig 7C, the EC₅₀
402 was 200 ± 40 nM. Independently identifying these known anthelmintic compounds using a blinded
403 screening approach further validates the INVAPP/Paragon system as a robust high throughput
404 screening approach.

405

406 **Table 1. Named compounds that were active in the *C. elegans* growth screen.** Log₂-fold change in
407 growth estimate compared to DMSO-only controls. Hit ID is as in Fig 7B. EC₅₀ confidence interval is
408 the standard error. The EC₅₀ estimate for mebendazole is from Fig. 3.

Compound	MMV ID	PubChem CID	Hit ID	Log ₂ fold change in growth		EC ₅₀ (μM) ± standard error
				(1° screen)	(2° screen)	
Tolfenpyrad	MMV688934	10110536	1	-10.9	-10.6	0.2 ± 0.04
Auranofin	MMV688978	24199313	2	-10.9	-7.2	1.1 ± 0.3
Mebendazole	MMV003152	4030	5	-6.0	-5.7	1.1 ± 0.2
Isradipine	MMV001493	158617	16	-2.2	-1.4	1.6 ± 0.7
Tavaborole	n/a	11499245		n/a	n/a	8.6 ± 1.9

409
410 Auranofin is a gold(I) compound originally developed for the treatment of rheumatoid arthritis. It has
411 received attention for repurposing as an anti-cancer agent, with a number of clinical trials under way.
412 It has been shown that auranofin has *in vitro* and *in vivo* activity in several models of parasitic
413 diseases, including schistosomiasis (Kuntz et al., 2007), amoebiasis (Debnath et al., 2012),
414 leishmaniasis (Sharlow et al., 2014) and onchocerciasis (Bulman et al., 2015). A phase IIa trial of
415 auranofin for gastrointestinal protozoal infection is ongoing. We confirmed activity of this compound
416 in the *C. elegans* growth assay using solid material. As shown in Fig 7D, the EC₅₀ of this compound
417 was 1.1 ± 0.3 μM.


418 Isradipine is an antihypertensive drug that belongs to the dihydropyridine family of L-type calcium
419 channel blockers. A structurally related dihydropyridine, nemadipine-A, has been shown to cause
420 growth and egg laying defects in *C. elegans* by antagonising the L-type calcium channel α_1 -subunit
421 EGL-19 (Kwok et al., 2006). We confirmed activity of this compound in the *C. elegans* growth assay
422 using solid material. As shown in Fig 7E, the EC₅₀ of this compound was 1.6 ± 0.7 μM.

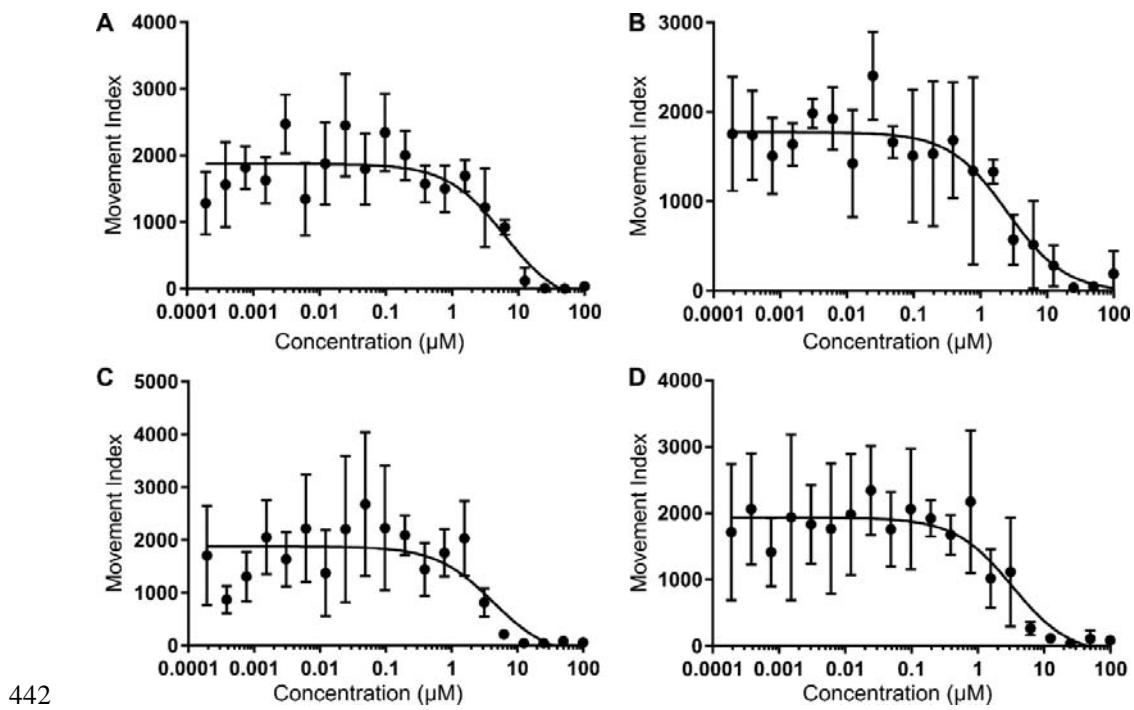
423

424 3.6. *Novel anthelmintics that block C. elegans growth*

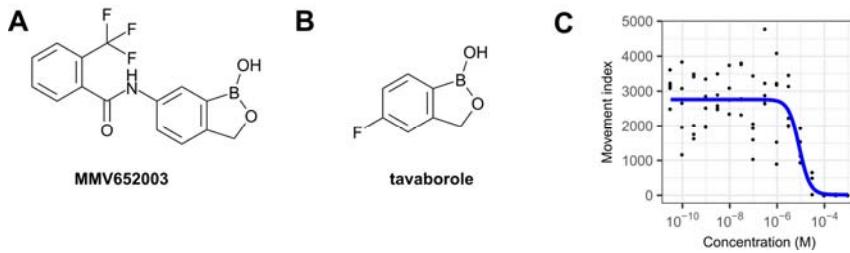
425 Fourteen compounds without previously-described anthelmintic activity were identified in the
426 Pathogen Box screen (Table 2). The structures of the most active compounds are shown in Fig 8. We
427 examined four of these compounds more closely. First, we determined activity, using solid material,
428 in the *C. elegans* growth assay (Fig 9). The EC₅₀ values for the confirmatory assay are shown in Table
429 2. These results have been recorded in the PubChem database with Assay ID 1259335.

430

432 **Fig 8. Structures of the most active compounds, previously undescribed as ananthelmintics, which**
433 **were found to have activity in the *C. elegans* growth screen.** Compound numbers from Medicines
434 for Malaria Venture Pathogen Box.


435

436


437 **Table 2. Compounds with previously unreported anthelmintic activity that were active in the *C.***
438 ***elegans* growth screen.** MMV ID is the compound identifier for the Medicines for Malaria Venture.
439 PubChem CID is the compound identifier for the PubChem database. Hit ID is as in Fig 7B. Log₂ fold
440 change in the growth estimate in the INVAPP / Paragon assay compared to DMSO-only controls.

MMV ID	PubChem CID	Hit ID	Log ₂ fold change in growth		EC ₅₀ (μM)
			(1° screen)	(2° screen)	
MMV652003	46196110	3	-8.9	-7.6	4.3±2.5
MMV007920	721133	4	-7.0	-5.4	6.2±2.4
MMV688372	72710598	6	-5.8	-4.0	3.3±1.7
MMV675994	44222802	7	-5.7	-2.0	n.d.
MMV026550	44530521	8	-5.5	-5.9	n.d.
MMV020391	7918647	9	-5.0	-2.7	n.d.
MMV676395	54678166	10	-4.8	-4.8	n.d.
MMV020152	8880740	12	-3.1	-6.9	2.5±1.0
MMV676406	30238526	14	-2.7	-8.0	n.d.
MMV688417	58346931	15	-2.6	-1.1	n.d.
MMV688936	18589797	17	-2.2	-3.7	n.d.
MMV1028806	16387386	18	-2.1	-0.8	n.d.
MMV688888	5179236	19	-2.0	-2.1	n.d.
MMV687180	41058173	20	-1.8	-3.6	n.d.

441

447 MMV007920 is a benzoxazole-containing compound previously identified in a screen for agents that
448 inhibit *Plasmodium falciparum* proliferation. The target of this compound is not known but it has
449 been suggested that some benzoxazole compounds act on beta-tubulin (Satyendra et al., 2011).
450 MMV020152 is an isoxazole-containing compound previously identified in a screen for compounds
451 that inhibit *P. falciparum* growth. A number of other compounds also containing isoxazole motifs
452 have been shown to have insecticidal activity (da Silva-Alves et al., 2013). MMV688372 is an
453 imidazopyridine-containing compound that has been previously shown to have *in vivo* anti-
454 trypanosomal activity (Tatipaka et al., 2014).
455 MMV652003 is a benzoxaborole-containing compound that has also been given the identifier
456 AN3520 in the literature. This compound has potent activity against *Trypanosoma sp.*, both *in vitro*,
457 and in murine models of human African trypanosomiasis (Nare et al., 2010). In this context this
458 compound has been iteratively improved leading to the identification of the close relative SCYX-7158
459 (Jacobs et al., 2011), which is currently in clinical trials. The anti-trypanosomal target of this
460 benzoxaborole class is not known (Jones et al., 2015). A simpler benzoxaborole compound,
461 tavaborole (Fig 10B), has been approved as an anti-fungal (Elewski et al., 2015). This acts by
462 inhibiting cytoplasmic leucyl-tRNA synthetase by forming an adduct with tRNA^{Leu} in the enzyme
463 editing site (Rock et al., 2007). Benzoxaborole anthelmintic agents are being developed by Anacor/Eli
464 Lilly (Akama et al., 2014; Zhang et al., 2011). Benzoxaborole compounds also show promise for
465 other infectious diseases, including malaria, cryptosporidiosis, toxoplasmosis and tuberculosis, in
466 each case acting via inhibition of leucyl-tRNA synthetase (Palencia et al., 2016a, 2016b; Sonoiki et
467 al., 2016).

468

469 **Fig 10. Benzoxaborole compounds as anthelmintics.** Structures of (A) the screen hit MMV652003
470 and (B) the related benzoxaborole tavaborole, which is approved as an anti-fungal. (C) Concentration-
471 response curve for tavaborole in the *C. elegans* growth assay.

472

473 Given the effect of MMV652003 and the similarity of this compound to the already approved drug
474 tavaborole, we determined whether tavaborole was effective in the *C. elegans* growth assay.
475 Tavaborole showed concentration-dependent growth inhibition (Fig 10C) with an EC₅₀ of 8.6 ± 1.9
476 μM (Table 1). This is similar to that of the benzoxaborole screen hit, MMV652003, which has an
477 EC₅₀ of 4.3 ± 2.5 μM (Table 1). These results support the development of a benzoxaborole anti-
478 nematode agent.

479 **4. Discussion**

480 There is an urgent need for new anthelmintics. Despite encouraging progress with MDA programs,
481 current strategies and therapies will not achieve eradication of, for example, *T. trichiura* (Keiser J and
482 Utzinger J, 2008; Turner et al., 2016). Furthermore, MDA, particularly with drugs that do not fully
483 clear infection, may lead to drug resistance (Vercruyse et al., 2011). The experience from veterinary
484 parasitology is that resistance to new anthelmintics can develop relatively rapidly after registration,
485 causing major economic impacts and risks to global food security (Scott et al., 2013).

486 In this manuscript, we present the INVAPP / Paragon system which, based on imaging of whole
487 microplates and thresholding pixel variance to determine motion, is able to quantify growth and/or
488 motility of parasitic nematodes and the free-living nematode, *C. elegans*. A strength of this system is
489 its high-throughput capability, typically imaging a whole plate for 5-20 seconds is sufficient to
490 reliably quantify motion in all 96 wells. We demonstrated this effect by determining efficacy of a
491 panel of anthelmintics in both acute motility and growth assays in *C. elegans* and of known
492 anthelmintics in *H. contortus*, *T. circumcincta*, and *T. muris* assays. We further demonstrated utility of
493 the system in a screen of small molecules for compounds that block or limit *C. elegans* growth.
494 Current anthelmintic screens generally focus on motility reduction, as growth of parasitic nematodes
495 can be difficult to model *in vitro*, with larvae failing to moult through their larval stages outside of the
496 host. However anthelmintic activity *in vivo* can be much broader than inhibition of motility and thus
497 screening compounds for their ability to inhibit *C. elegans* growth, rather than motility, represents a
498 useful strategy to identify compounds which can subsequently be tested for growth inhibition activity
499 *in vivo*. We used the Pathogen Box, a library of a collection of 400 diverse drug-like molecules known
500 to be active against various neglected diseases, distributed as an open-science project by the
501 Medicines for Malaria Venture.

502 Identifying the known anthelmintics mebendazole and tolfenpyrad (Preston et al., 2016b) using
503 independent blinded screening approach serves as an important validation and supports the robustness
504 of the screening platform. Repurposing of existing drugs for new indications is an established
505 approach in drug discovery (Zheng et al., 2017) and is particularly valuable for neglected tropical

506 diseases as it may reduce research and development costs and speed progress to clinical trials
507 (Pollastri and Campbell, 2011). Auranofin has recently been shown to have activity against filarial
508 nematode infection (Bulman et al., 2015). Our identification of auranofin as a compound that blocks
509 *C. elegans* growth lends support to test repurposing of this compound for nematode infections.
510 Isradipine, a safe and well-tolerated L-type calcium channel blocker, was also active in the screen.
511 Assaying the activity of isradipine in *in vivo* models of parasitic infection is a priority and could lead
512 to repurposing trials.

513 We also identified 14 compounds with previously undescribed anthelmintic activity in the *C. elegans*
514 growth assay, belonging to a variety of chemical classes. These include benzoxazole and isoxazole
515 compounds previously shown to have activity against *P. falciparum* (da Silva-Alves et al., 2013;
516 Satyendra et al., 2011), and an imidazopyridine-containing compound previously shown to have *in*
517 *vivo* anti-trypanosomal activity (Tatipaka et al., 2014). Another notable active compound was the
518 benzoxaborole, MMV652003. Since the identification and successful progression into the clinic of the
519 anti-fungal tavaborole, a number of benzoxaborole compounds have been reported to show potential
520 for trypanosomiasis, malaria, cryptosporidiosis, toxoplasmosis and tuberculosis (Liu et al., 2014).
521 These results support the idea that some drug chemotypes can have activity against a diversity of
522 infectious agents. Given the costs of drug development and the limited resources available for the
523 discovery of new drugs targeting neglected tropical diseases, it seems possible that an open source
524 medicinal chemistry program could catalyse discovery for many different indications (Voorhis et al.,
525 2016). Whilst preparing this manuscript we have applied the INVAPP / Paragon system to library-
526 scale screening measuring motility of *ex vivo* *T. muris* adults, which led to identification of a new
527 class of anthelmintics, the dihydrobenzoxazepinones (Partridge et al., 2017). Taken together these
528 results demonstrate the potential for anthelmintic discovery using this system.

529 We focused our application of the INVAPP / Paragon system to investigating parasitic diseases.
530 However, given its ability to determine growth and motility of *C. elegans* quickly and robustly, it
531 could also be applied to the study of other human diseases modelled in *C. elegans*.

532 In conclusion, we have developed a high-throughput system for measuring the growth and/or motility
533 of parasitic and free-living nematodes. Quantification of the activity of known anthelmintics and
534 identification of novel chemotypes with anthelmintic activity was demonstrated, validating our
535 approach. The system is well suited to library-scale screening of chemicals with many human and
536 animal health applications.

537

538 **Acknowledgements**

539 The Pathogen Box was designed and supplied by the Medicines for Malaria Venture (www.mmv.org).
540 Some *C. elegans* strains were provided by the CGC, which is funded by NIH Office of Research
541 Infrastructure Programs (P40 OD010440). F.A.P. is supported by Medical Research Council
542 (www.mrc.ac.uk) grant MR/N024842/1 to D.A.L. and D.B.S. and prior to that was supported by
543 CeBioscience Ltd and a University College London Fellowship. A.E.B. is supported by a studentship
544 from the Rosetrees Trust. R.F. is supported by Medical Research Council (www.mrc.ac.uk) grant
545 MR/N022661/1 to K.J.E. D.A.L. is supported by the NIHR UCLH Biomedical Research Centre.
546 J.B.M. and A.A.D. are funded by the Scottish Government through the Rural and Environmental
547 Science and Analytical Services (RESAS) Division.

548

549 5. References

550

551 Akama, T., Jarnagin, K., Plattner, J.J., Pulley, S.R., White, W.H., Zhang, Y.-K., Zhou, Y., 2014. 1 -
552 hydroxy-benzooxaboroles as antiparasitic agents. WO2014149793 A1.

553 Al-Ali, H., 2016. The evolution of drug discovery: from phenotypes to targets, and back.
554 *MedChemComm* 7, 788–798. doi:10.1039/C6MD00129G

555 Buckingham, S.D., Partridge, F.A., Sattelle, D.B., 2014. Automated, high-throughput, motility
556 analysis in *Caenorhabditis elegans* and parasitic nematodes: Applications in the search for
557 new anthelmintics. *Int. J. Parasitol. Drugs Drug Resist.* 4, 226–232.
558 doi:10.1016/j.ijpddr.2014.10.004

559 Buckingham, S.D., Sattelle, D.B., 2008. Strategies for automated analysis of *C. elegans* locomotion.
560 *Invert. Neurosci.* 8, 121. doi:10.1007/s10158-008-0077-3

561 Bulman, C.A., Bidlow, C.M., Lustigman, S., Cho-Ngwa, F., Williams, D., Alberto A. Rascón, J.,
562 Tricoche, N., Samje, M., Bell, A., Suzuki, B., Lim, K.C., Supakorndej, N., Supakorndej, P.,
563 Wolfe, A.R., Knudsen, G.M., Chen, S., Wilson, C., Ang, K.-H., Arkin, M., Gut, J., Franklin,
564 C., Marcellino, C., McKerrow, J.H., Debnath, A., Sakanari, J.A., 2015. Repurposing
565 Auranofin as a Lead Candidate for Treatment of Lymphatic Filariasis and Onchocerciasis.
566 *PLOS Negl Trop Dis* 9, e0003534. doi:10.1371/journal.pntd.0003534

567 Burns, A.R., Luciani, G.M., Musso, G., Bagg, R., Yeo, M., Zhang, Y., Rajendran, L., Glavin, J.,
568 Hunter, R., Redman, E., Stasiuk, S., Schertzberg, M., Angus McQuibban, G., Caffrey, C.R.,
569 Cutler, S.R., Tyers, M., Giaevers, G., Nislow, C., Fraser, A.G., MacRae, C.A., Gillear, J.,
570 Roy, P.J., 2015. *Caenorhabditis elegans* is a useful model for anthelmintic discovery. *Nat. Commun.* 6, 7485. doi:10.1038/ncomms8485

571 Caffrey, C.R., 2007. Chemotherapy of schistosomiasis: present and future. *Curr. Opin. Chem. Biol.*,
572 Next-generation therapeutics 11, 433–439. doi:10.1016/j.cbpa.2007.05.031

573 Cully, D.F., Vassilatis, D.K., Liu, K.K., Paress, P.S., Van der Ploeg, L.H.T., Schaeffer, J.M., Arena,
574 J.P., 1994. Cloning of an avermectin-sensitive glutamate-gated chloride channel from
575 *Caenorhabditis elegans*. *Nature* 371, 707–711. doi:10.1038/371707a0

576 da Silva-Alves, D.C.B., dos Anjos, J.V., Cavalcante, N.N.M., Santos, G.K.N., Navarro, D.M. do A.F.,
577 Srivastava, R.M., 2013. Larvicidal isoxazoles: Synthesis and their effective susceptibility
578 towards *Aedes aegypti* larvae. *Bioorg. Med. Chem.* 21, 940–947.
579 doi:10.1016/j.bmc.2012.12.006

580 Debnath, A., Parsonage, D., Andrade, R.M., He, C., Cobo, E.R., Hirata, K., Chen, S., García-Rivera,
581 G., Orozco, E., Martínez, M.B., Gunatilleke, S.S., Barrios, A.M., Arkin, M.R., Poole, L.B.,
582 McKerrow, J.H., Reed, S.L., 2012. A high-throughput drug screen for *Entamoeba histolytica*
583 identifies a new lead and target. *Nat. Med.* 18, 956–960. doi:10.1038/nm.2758

584 Driscoll, M., Dean, E., Reilly, E., Bergholz, E., Chalfie, M., 1989. Genetic and molecular analysis of
585 a *Caenorhabditis elegans* beta-tubulin that conveys benzimidazole sensitivity. *J. Cell Biol.*
586 109, 2993–3003. doi:10.1083/jcb.109.6.2993

587 Edelstein, A.D., Tsuchida, M.A., Amodaj, N., Pinkard, H., Vale, R.D., Stuurman, N., 2014. Advanced
588 methods of microscope control using μ Manager software. *J. Biol. Methods* 1, e10.
589 doi:10.14440/jbm.2014.36

590 Elewski, B.E., Aly, R., Baldwin, S.L., González Soto, R.F., Rich, P., Weisfeld, M., Wiltz, H., Zane,
591 L.T., Pollak, R., 2015. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-
592 based antifungal agent, for the treatment of toenail onychomycosis: Results from 2
593 randomized phase-III studies. *J. Am. Acad. Dermatol.* 73, 62–69.
594 doi:10.1016/j.jaad.2015.04.010

595 Holden-Dye, L., 2007. Anthelmintic drugs. *WormBook* 1–13. doi:10.1895/wormbook.1.143.1

596 Hotez, P.J., 2013. Forgotten People, Forgotten Diseases: The Neglected Tropical Diseases and their
597 Impact on Global Health and Development, Second edition. ed. ASM Press, Washington, DC.
598

599 Hurst, R.J., Hopwood, T., Gallagher, A.L., Partridge, F.A., Burgis, T., Sattelle, D.B., Else, K.J., 2014.
600 An antagonist of the retinoid X receptor reduces the viability of *Trichuris muris* in vitro.
601 *BMC Infect. Dis.* 14, 520. doi:10.1186/1471-2334-14-520

602 Jacobs, R.T., Nare, B., Wring, S.A., Orr, M.D., Chen, D., Sligar, J.M., Jenks, M.X., Noe, R.A.,
603 Bowling, T.S., Mercer, L.T., Rewerts, C., Gaukel, E., Owens, J., Parham, R., Randolph, R.,
604 Beaudet, B., Bacchi, C.J., Yarlett, N., Plattner, J.J., Freund, Y., Ding, C., Akama, T., Zhang,
605 Y.-K., Brun, R., Kaiser, M., Scandale, I., Don, R., 2011. SCYX-7158, an Orally-Active
606 Benzoxaborole for the Treatment of Stage 2 Human African Trypanosomiasis. *PLoS Negl. Trop. Dis.* 5, e1151. doi:10.1371/journal.pntd.0001151

607 Jones, D.C., Foth, B.J., Urbaniak, M.D., Patterson, S., Ong, H.B., Berriman, M., Fairlamb, A.H.,
608 2015. Genomic and Proteomic Studies on the Mode of Action of Oxaboroles against the
609 African Trypanosome. *PLoS Negl. Trop. Dis.* 9, e0004299. doi:10.1371/journal.pntd.0004299

610 Kaminsky, R., Ducray, P., Jung, M., Clover, R., Rufener, L., Bouvier, J., Weber, S.S., Wenger, A.,
611 Wieland-Berghausen, S., Goebel, T., Gauvry, N., Pautrat, F., Skripsky, T., Froelich, O.,
612 Komoin-Oka, C., Westlund, B., Sluder, A., Mäser, P., 2008. A new class of anthelmintics
613 effective against drug-resistant nematodes. *Nature* 452, 176–180. doi:10.1038/nature06722

614 Keiser J, Utzinger J, 2008. Efficacy of current drugs against soil-transmitted helminth infections:
615 Systematic review and meta-analysis. *JAMA* 299, 1937–1948. doi:10.1001/jama.299.16.1937

616 Kuntz, A.N., Davioud-Charvet, E., Sayed, A.A., Califf, L.L., Dessolin, J., Arnér, E.S.J., Williams,
617 D.L., 2007. Thioredoxin Glutathione Reductase from *Schistosoma mansoni*: An Essential
618 Parasite Enzyme and a Key Drug Target. *PLOS Med* 4, e206.
619 doi:10.1371/journal.pmed.0040206

620 Kwok, T.C.Y., Ricker, N., Fraser, R., Chan, A.W., Burns, A., Stanley, E.F., McCourt, P., Cutler, S.R.,
621 Roy, P.J., 2006. A small-molecule screen in *C. elegans* yields a new calcium channel
622 antagonist. *Nature* 441, 91–95. doi:10.1038/nature04657

623 Levecke, B., Montresor, A., Albonico, M., Ame, S.M., Behnke, J.M., Bethony, J.M., Noumedem,
624 C.D., Engels, D., Guillard, B., Kotze, A.C., Krolewiecki, A.J., McCarthy, J.S., Mekonnen, Z.,
625 Periago, M.V., Sopheap, H., Tchuem-Tchuenté, L.-A., Duong, T.T., Huong, N.T., Zeynudin,
626 A., Vercruyse, J., 2014. Assessment of Anthelmintic Efficacy of Mebendazole in School
627 Children in Six Countries Where Soil-Transmitted Helminths Are Endemic. *PLOS Negl Trop
628 Dis* 8, e3204. doi:10.1371/journal.pntd.0003204

629 Liu, C.T., Tomsho, J.W., Benkovic, S.J., 2014. The unique chemistry of benzoxaboroles: Current and
630 emerging applications in biotechnology and therapeutic treatments. *Bioorg. Med. Chem.,
631 Unlocking Nature through Chemistry* 22, 4462–4473. doi:10.1016/j.bmc.2014.04.065

632 Maizels, R.M., Denham, D.A., 1992. Diethylcarbamazine (DEC): immunopharmacological
633 interactions of an anti-filarial drug. *Parasitology* 105, S49–S60.
634 doi:10.1017/S0031182000075351

635 Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J., Nadon, R., 2006. Statistical practice in high-
636 throughput screening data analysis. *Nat. Biotechnol.* 24, 167–175. doi:10.1038/nbt1186

637 Marcellino, C., Gut, J., Lim, K.C., Singh, R., McKerrow, J., Sakanari, J., 2012. WormAssay: A Novel
638 Computer Application for Whole-Plate Motion-based Screening of Macroscopic Parasites.
639 *PLoS Negl Trop Dis* 6, e1494. doi:10.1371/journal.pntd.0001494

640 Martin, R. j., 1985. γ -Aminobutyric acid- and piperazine-activated single-channel currents from
641 Ascaris suum body muscle. *Br. J. Pharmacol.* 84, 445–461. doi:10.1111/j.1476-
642 5381.1985.tb12929.x

643 Martin, R.J., Robertson, A.P., Bjorn, H., 1997. Target sites of anthelmintics. *Parasitology* 114, 111–
644 124.

645 Mathew, M.D., Mathew, N.D., Ebert, P.R., 2012. WormScan: A Technique for High-Throughput
646 Phenotypic Analysis of *Caenorhabditis elegans*. *PLOS ONE* 7, e33483.
647 doi:10.1371/journal.pone.0033483

648 Mathew, M.D., Mathew, N.D., Miller, A., Simpson, M., Au, V., Garland, S., Gestin, M., Edgley,
649 M.L., Flibotte, S., Balgi, A., Chiang, J., Giaever, G., Dean, P., Tung, A., Roberge, M.,
650 Roskelley, C., Forge, T., Nislow, C., Moerman, D., 2016. Using *C. elegans* Forward and
651 Reverse Genetics to Identify New Compounds with Anthelmintic Activity. *PLOS Negl Trop
652 Dis* 10, e0005058. doi:10.1371/journal.pntd.0005058

654 Matthews, J.B., 2014. Anthelmintic resistance in equine nematodes. *Int. J. Parasitol. Drugs Drug*
655 *Resist.* 4, 310–315. doi:10.1016/j.ijpddr.2014.10.003

656 Nare, B., Wring, S., Bacchi, C., Beaudet, B., Bowling, T., Brun, R., Chen, D., Ding, C., Freund, Y.,
657 Gaukel, E., Hussain, A., Jarnagin, K., Jenks, M., Kaiser, M., Mercer, L., Mejia, E., Noe, A.,
658 Orr, M., Parham, R., Plattner, J., Randolph, R., Rattendi, D., Rewerts, C., Sligar, J., Yarlett,
659 N., Don, R., Jacobs, R., 2010. Discovery of Novel Orally Bioavailable Oxaborole 6-
660 Carboxamides That Demonstrate Cure in a Murine Model of Late-Stage Central Nervous
661 System African Trypanosomiasis. *Antimicrob. Agents Chemother.* 54, 4379–4388.
662 doi:10.1128/AAC.00498-10

663 Nutting, C.S., Eversole, R.R., Blair, K., Specht, S., Nutman, T.B., Klion, A.D., Wanji, S., Boussinesq,
664 M., Mackenzie, C.D., 2015. Analysis of Nematode Motion Using an Improved Light-Scatter
665 Based System. *PLOS Negl Trop Dis* 9, e0003523. doi:10.1371/journal.pntd.0003523

666 Palencia, A., Li, X., Bu, W., Choi, W., Ding, C.Z., Easom, E.E., Feng, L., Hernandez, V., Houston,
667 P., Liu, L., Meewan, M., Mohan, M., Rock, F.L., Sexton, H., Zhang, S., Zhou, Y., Wan, B.,
668 Wang, Y., Franzblau, S.G., Woolhiser, L., Gruppo, V., Lenaerts, A.J., O’Malley, T., Parish,
669 T., Cooper, C.B., Waters, M.G., Ma, Z., Ioerger, T.R., Sacchettini, J.C., Rullas, J., Angulo-
670 Barturen, I., Pérez-Herrán, E., Mendoza, A., Barros, D., Cusack, S., Plattner, J.J., Alley,
671 M.R.K., 2016a. Discovery of Novel Oral Protein Synthesis Inhibitors of *Mycobacterium*
672 *tuberculosis* That Target Leucyl-tRNA Synthetase. *Antimicrob. Agents Chemother.* 60,
673 6271–6280. doi:10.1128/AAC.01339-16

674 Palencia, A., Liu, R.-J., Lukarska, M., Gut, J., Bougdour, A., Touquet, B., Wang, E.-D., Li, X., Alley,
675 M.R.K., Freund, Y.R., Rosenthal, P.J., Hakimi, M.-A., Cusack, S., 2016b. *Cryptosporidium*
676 and *Toxoplasma* Parasites Are Inhibited by a Benzoxaborole Targeting Leucyl-tRNA
677 Synthetase. *Antimicrob. Agents Chemother.* 60, 5817–5827. doi:10.1128/AAC.00873-16

678 Partridge, F.A., Murphy, E.A., Willis, N.J., Bataille, C.J.R., Forman, R., Heyer-Chauhan, N., Marinić,
679 B., Sowood, D.J.C., Wynne, G.M., Else, K.J., Russell, A.J., Sattelle, D.B., 2017.
680 Dihydrobenz[e][1,4]oxazepin-2(3H)-ones, a new anthelmintic chemotype immobilising
681 whipworm and reducing infectivity in vivo. *PLoS Negl. Trop. Dis.* 11, e0005359.
682 doi:10.1371/journal.pntd.0005359

683 Pollastri, M.P., Campbell, R.K., 2011. Target repurposing for neglected diseases. *Future Med. Chem.*
684 3, 1307–1315. doi:10.4155/fmc.11.92

685 Preston, S., Jabbar, A., Nowell, C., Joachim, A., Ruttkowski, B., Baell, J., Cardno, T., Korhonen,
686 P.K., Piedrafita, D., Ansell, B.R.E., Jex, A.R., Hofmann, A., Gasser, R.B., 2015. Low cost
687 whole-organism screening of compounds for anthelmintic activity. *Int. J. Parasitol.* 45, 333–
688 343. doi:10.1016/j.ijpara.2015.01.007

689 Preston, S., Jabbar, A., Nowell, C., Joachim, A., Ruttkowski, B., Cardno, T., Hofmann, A., Gasser,
690 R.B., 2016a. Practical and low cost whole-organism motility assay: A step-by-step protocol.
691 *Mol. Cell. Probes* 30, 13–17. doi:10.1016/j.mcp.2015.08.005

692 Preston, S., Jiao, Y., Jabbar, A., McGee, S.L., Laleu, B., Willis, P., Wells, T.N.C., Gasser, R.B.,
693 2016b. Screening of the ‘Pathogen Box’ identifies an approved pesticide with major
694 anthelmintic activity against the barber’s pole worm. *Int. J. Parasitol. Drugs Drug Resist.*
695 doi:10.1016/j.ijpddr.2016.07.004

696 Prichard, R.K., Basáñez, M.-G., Boatin, B.A., McCarthy, J.S., García, H.H., Yang, G.-J., Sripa, B.,
697 Lustigman, S., 2012. A Research Agenda for Helminth Diseases of Humans: Intervention for
698 Control and Elimination. *PLoS Negl Trop Dis* 6, e1549. doi:10.1371/journal.pntd.0001549

699 Ritz, C., Streibig, J.C., 2005. Bioassay analysis using R. *J. Stat. Softw.* 12, 1–22.

700 Rock, F.L., Mao, W., Yaremchuk, A., Tukalo, M., Crépin, T., Zhou, H., Zhang, Y.-K., Hernandez, V.,
701 Akama, T., Baker, S.J., Plattner, J.J., Shapiro, L., Martinis, S.A., Benkovic, S.J., Cusack, S.,
702 Alley, M.R.K., 2007. An Antifungal Agent Inhibits an Aminoacyl-tRNA Synthetase by
703 Trapping tRNA in the Editing Site. *Science* 316, 1759–1761. doi:10.1126/science.1142189

704 Roeber, F., Jex, A.R., Gasser, R.B., 2013. Impact of gastrointestinal parasitic nematodes of sheep, and
705 the role of advanced molecular tools for exploring epidemiology and drug resistance - an
706 Australian perspective. *Parasit. Vectors* 6, 153. doi:10.1186/1756-3305-6-153

707 Rose, H., Rinaldi, L., Bosco, A., Mavrot, F., de Waal, T., Skuce, P., Charlier, J., Torgerson, P.R.,
708 Hertzberg, H., Hendrickx, G., Vercruyse, J., Morgan, E.R., 2015. Widespread anthelmintic

709 resistance in European farmed ruminants: a systematic review. *Vet. Rec.* 176, 546.
710 doi:10.1136/vr.102982

711 Satyendra, R.V., Vishnumurthy, K.A., Vagdevi, H.M., Rajesh, K.P., Manjunatha, H., Shruthi, A.,
712 2011. Synthesis, in vitro antioxidant, anthelmintic and molecular docking studies of novel
713 dichloro substituted benzoxazole-triazolo-thione derivatives. *Eur. J. Med. Chem.* 46, 3078–
714 3084. doi:10.1016/j.ejmech.2011.03.017

715 Scott, I., Pomroy, W.E., Kenyon, P.R., Smith, G., Adlington, B., Moss, A., 2013. Lack of efficacy of
716 monepantel against *Teladorsagia circumcincta* and *Trichostrongylus colubriformis*. *Vet.*
717 *Parasitol.* 198, 166–171. doi:10.1016/j.vetpar.2013.07.037

718 Sharlow, E.R., Leimgruber, S., Murray, S., Lira, A., Sciotti, R.J., Hickman, M., Hudson, T., Leed, S.,
719 Caridha, D., Barrios, A.M., Close, D., Grögl, M., Lazo, J.S., 2014. Auranofin Is an
720 Apoptosis-Simulating Agent with in Vitro and in Vivo Anti-leishmanial Activity. *ACS Chem.*
721 *Biol.* 9, 663–672. doi:10.1021/cb400800q

722 Silbereisen, A., Tritten, L., Keiser, J., 2011. Exploration of novel in vitro assays to study drugs against
723 *Trichuris* spp. *J. Microbiol. Methods* 87, 169–175. doi:10.1016/j.mimet.2011.08.009

724 Smout, M.J., Kotze, A.C., McCarthy, J.S., Loukas, A., 2010. A Novel High Throughput Assay for
725 Anthelmintic Drug Screening and Resistance Diagnosis by Real-Time Monitoring of Parasite
726 Motility. *PLoS Negl Trop Dis* 4, e885. doi:10.1371/journal.pntd.0000885

727 Sonoiki, E., Palencia, A., Guo, D., Ahyong, V., Dong, C., Li, X., Hernandez, V.S., Zhang, Y.-K.,
728 Choi, W., Gut, J., Legac, J., Cooper, R., Alley, M.R.K., Freund, Y.R., DeRisi, J., Cusack, S.,
729 Rosenthal, P.J., 2016. Antimalarial Benzoxaboroles Target *Plasmodium falciparum* Leucyl-
730 tRNA Synthetase. *Antimicrob. Agents Chemother.* 60, 4886–4895. doi:10.1128/AAC.00820-
731 16

732 Storey, B., Marcellino, C., Miller, M., Maclean, M., Mostafa, E., Howell, S., Sakanari, J.,
733 Wolstenholme, A., Kaplan, R., 2014. Utilization of computer processed high definition video
734 imaging for measuring motility of microscopic nematode stages on a quantitative scale: “The
735 Worminator.” *Int. J. Parasitol. Drugs Drug Resist.* 4, 233–243.
736 doi:10.1016/j.ijpddr.2014.08.003

737 Sutherland, I.A., 2015. Recent developments in the management of anthelmintic resistance in small
738 ruminants - an Australasian perspective. *N. Z. Vet. J.* 63, 183–187.
739 doi:10.1080/00480169.2015.1019947

740 Tatipaka, H.B., Gillespie, J.R., Chatterjee, A.K., Norcross, N.R., Hulverson, M.A., Ranade, R.M.,
741 Nagendar, P., Creason, S.A., McQueen, J., Duster, N.A., Nagle, A., Supek, F., Molteni, V.,
742 Wenzler, T., Brun, R., Glynne, R., Buckner, F.S., Gellb, M.H., 2014. Substituted 2-
743 Phenylimidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis. *J.*
744 *Med. Chem.* 57, 828–835. doi:10.1021/jm401178t

745 Tritten, L., Braissant, O., Keiser, J., 2012. Comparison of novel and existing tools for studying drug
746 sensitivity against the hookworm *Ancylostoma ceylanicum* in vitro. *Parasitology* 139, 348–
747 357. doi:10.1017/S0031182011001934

748 Tritten, L., Silbereisen, A., Keiser, J., 2011. *In vitro* and *in vivo* efficacy of Monepantel (AAD 1566)
749 against laboratory models of human intestinal nematode infections. *PLoS Negl. Trop. Dis.* 5,
750 e1457. doi:10.1371/journal.pntd.0001457

751 Turner, H.C., Truscott, J.E., Bettis, A.A., Hollingsworth, T.D., Brooker, S.J., Anderson, R.M., 2016.
752 Analysis of the population-level impact of co-administering ivermectin with albendazole or
753 mebendazole for the control and elimination of *Trichuris trichiura*. *Parasite Epidemiol.*
754 *Control* 1, 177–187. doi:10.1016/j.parepi.2016.02.004

755 Vercruyse, J., Albonico, M., Behnke, J.M., Kotze, A.C., Prichard, R.K., McCarthy, J.S., Montresor,
756 A., Levecke, B., 2011. Is anthelmintic resistance a concern for the control of human soil-
757 transmitted helminths? *Int. J. Parasitol. Drugs Drug Resist.* 1, 14–27.
758 doi:10.1016/j.ijpddr.2011.09.002

759 Voorhis, W.C.V., Adams, J.H., Adelfio, R., Ahyong, V., Akabas, M.H., Alano, P., Alday, A., Resto,
760 Y.A., Alsibae, A., Alzualde, A., Andrews, K.T., Avery, S.V., Avery, V.M., Ayong, L.,
761 Baker, M., Baker, S., Mamoun, C.B., Bhatia, S., Bickle, Q., Bounaadja, L., Bowling, T.,
762 Bosch, J., Boucher, L.E., Boyom, F.F., Brea, J., Brennan, M., Burton, A., Caffrey, C.R.,
763 Camarda, G., Carrasquilla, M., Carter, D., Cassera, M.B., Cheng, K.C.-C., Chindaudomsate,

764 W., Chubb, A., Colon, B.L., Colón-López, D.D., Corbett, Y., Crowther, G.J., Cowan, N.,
765 D'Alessandro, S., Dang, N.L., Delves, M., DeRisi, J.L., Du, A.Y., Duffy, S., El-Sayed,
766 S.A.E.-S., Ferdig, M.T., Robledo, J.A.F., Fidock, D.A., Florent, I., Fokou, P.V.T., Galstian,
767 A., Gamo, F.J., Gokool, S., Gold, B., Golub, T., Goldgof, G.M., Guha, R., Guiguenme, W.A.,
768 Gural, N., Guy, R.K., Hansen, M.A.E., Hanson, K.K., Hemphill, A., Huijsdijnen, R.H. van
769 Horri, T., Horrocks, P., Hughes, T.B., Huston, C., Igarashi, I., Ingram-Sieber, K., Itoe, M.A.,
770 Jadhav, A., Jensen, A.N., Jensen, L.T., Jiang, R.H.Y., Kaiser, A., Keiser, J., Ketas, T., Kicka,
771 S., Kim, S., Kirk, K., Kumar, V.P., Kyle, D.E., Lafuente, M.J., Landfear, S., Lee, N., Lee, S.,
772 Lehane, A.M., Li, F., Little, D., Liu, L., Llinás, M., Loza, M.I., Lubar, A., Lucantoni, L.,
773 Lucet, I., Maes, L., Mancama, D., Mansour, N.R., March, S., McGowan, S., Vera, I.M.,
774 Meister, S., Mercer, L., Mestres, J., Mfopa, A.N., Misra, R.N., Moon, S., Moore, J.P., Costa,
775 F.M.R. da, Müller, J., Muriana, A., Hewitt, S.N., Nare, B., Nathan, C., Narraido, N.,
776 Nawaratna, S., Ojo, K.K., Ortiz, D., Panic, G., Papadatos, G., Parapini, S., Patra, K., Pham,
777 N., Prats, S., Plouffe, D.M., Poulsen, S.-A., Pradhan, A., Quevedo, C., Quinn, R.J., Rice,
778 C.A., Rizk, M.A., Ruecker, A., Onge, R.S., Ferreira, R.S., Samra, J., Robinett, N.G., Schlecht,
779 U., Schmitt, M., Villela, F.S., Silvestrini, F., Sinden, R., Smith, D.A., Soldati, T., Spitzmüller,
780 A., Stamm, S.M., Sullivan, D.J., Sullivan, W., Suresh, S., Suzuki, B.M., Suzuki, Y.,
781 Swamidass, S.J., Taramelli, D., Tchokouaha, L.R.Y., Theron, A., Thomas, D., Tonissen, K.F.,
782 Townson, S., Tripathi, A.K., Trofimov, V., Udenze, K.O., Ullah, I., Vallieres, C., Vigil, E.,
783 Vinetz, J.M., Vinh, P.V., Vu, H., Watanabe, N., Weatherby, K., White, P.M., Wilks, A.F.,
784 Winzeler, E.A., Wojcik, E., Wree, M., Wu, W., Yokoyama, N., Zollo, P.H.A., Abla, N.,
785 Blasco, B., Burrows, J., Laleu, B., Leroy, D., Spangenberg, T., Wells, T., Willis, P.A., 2016.
786 Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected
787 Diseases and Beyond. *PLOS Pathog.* 12, e1005763. doi:10.1371/journal.ppat.1005763
788 Wangchuk, P., Giacomin, P.R., Pearson, M.S., Smout, M.J., Loukas, A., 2016a. Identification of lead
789 chemotherapeutic agents from medicinal plants against blood flukes and whipworms. *Sci.*
790 *Rep.* 6, 32101. doi:10.1038/srep32101
791 Wangchuk, P., Pearson, M.S., Giacomin, P.R., Becker, L., Sotillo, J., Pickering, D., Smout, M.J.,
792 Loukas, A., 2016b. Compounds Derived from the Bhutanese Daisy, *Ajania nubigena*,
793 Demonstrate Dual Anthelmintic Activity against *Schistosoma mansoni* and *Trichuris muris*.
794 *PLOS Negl Trop Dis* 10, e0004908. doi:10.1371/journal.pntd.0004908
795 Wimmersberger, D., Tritten, L., Keiser, J., 2013. Development of an *in vitro* drug sensitivity assay for
796 *Trichuris muris* first-stage larvae. *Parasit. Vectors* 6, 42. doi:10.1186/1756-3305-6-42
797 Zhang, Y., Zhou, H., Ding, C., Plattner, J., Freund, Y., 2011. Boron-Containing Small Molecules as
798 Antihelminth Agents. *WO/2011/063293*.
799 Zheng, W., Sun, W., Simeonov, A., 2017. Drug repurposing screens and synergistic drug-
800 combinations for infectious diseases. *Br. J. Pharmacol.* doi:10.1111/bph.13895
801
802

803 **6. Supplementary data**

804

805 **Supplementary File 1 – Results of primary and secondary screens of the Pathogen Box library**

806 **using the *C. elegans* growth assay.**

807