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ABSTRACT

Background

Evolutionary hypotheses predict that male fetuses are more vulnerable to poor maternal
conditions than females (Sex-biased Maternal Investment), but that the adaptive female fetus,
with a more responsive hypothalamic-pituitary-adrenal (HPA) axis, is put at later risk of
glucocorticoid mediated disorders where there is a mismatch between fetal and postnatal
environments (Predictive Adaptive Response). Self-report measures of prenatal and postnatal
depression and maternal report of child anxious depressed symptoms at 2.5, 3.5 and 5.0 years
were obtained from an ‘extensive’ sample of first time mothers recruited from the general
population (N = 794). Salivary NR3C1 1-F promoter methylation was assayed at 14 months
in an ‘intensive’ subsample (N = 176) stratified during pregnancy by psychosocial risk.
Generalised structural equation models (SEM) were fitted and estimated by maximum
likelihood to allow inclusion of participants from both intensive and extensive samples.
Results

Postnatal depression was associated with NR3C1 methylation and with anxious-depressed
symptoms in the daughters of mothers lacking the hypothesised protective effect of high
prenatal depression (prenatal-postnatal depression interaction for methylation, p =.00001; for
child symptoms, p =.011). In girls, NR3C1 methylation mediated the association between
maternal depression and child anxious-depressed symptoms. The effects were greater in girls
than boys, and the test of the sex differences in the effect of the prenatal-postnatal depression
interaction on both outcomes gave x*(2) = 5.95 (p=.051).

Conclusions

This is the first study to show in humans that, as a result of sex-biased reproductive
investment and fetal adaptation, epigenetic and early behavioural outcomes may arise through

different mechanisms in males and females. Epigenetic effects at the NR3C1 promoter
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mediated mismatch between prenatal and postnatal maternal conditions and child anxious-

depressed symptoms, specifically in females.

Key Words: maternal depression: NR3C1 methylation; child anxiety-depression: sex
differences: parental reproductive investment: epidemiological sampling: mediation:

longitudinal design

BACKGROUND

The ‘fetal origins’ hypothesis was first proposed to account for associations between low
birth weight and obesity, cardiovascular disease, and Type Il diabetes in middle and old age
[1]. According to this hypothesis, low birth weight reflects evolved adaptive mechanisms that
confer advantages later in life in food scarce environments, but create risk in the presence of
high calorie diets, common in industrialised societies. Far from being a mechanism specific
to nutrition in humans, adaptations prior to birth that anticipate later environments are found
across species, possibly reflecting a conserved ‘Predictive Adaptive Response’ (PAR)
mechanism [2, 3]. According to the PAR hypothesis matched prenatal and postnatal
conditions will be associated with good outcomes, while mismatching creates risks for later
offspring adaptation. In relation to effects on psychiatric disorders, many studies have
reported that anxiety, depression and behavioural symptoms in children are predicted by
prenatal stressors, maternal depression and anxiety, and by low birth weight [4 - 9] however

none has tested whether the PAR mechanism modifies these outcomes.

Fetal adaptations may additionally vary by sex of the fetus. According to the Trivers-
Willard (T-W) hypothesis, if maternal health during pregnancy predicts later reproductive

fitness in the offspring, then a male predominance of births will be favoured when maternal
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conditions are good, because healthy males compete successfully for females. By contrast,
when maternal conditions are poor, the sex ratio will be reversed, both to avoid bearing males
who compete less successfully for females, but also because, compared to females, health
outcomes for mothers following male births are poorer [10]. Although this hypothesis has
been subject to challenges and modifications [11], the central idea that reproductive strategies
associated with poor maternal conditions involve sacrifice of males and protection of females
has received substantial support. It is also consistent with well documented observations that
male fetuses are more vulnerable to threats such as preterm birth, and are more likely to
suffer neurodevelopmental consequences of fetal insults [12]. This hypothesis would appear
to predict better outcomes for females following poor maternal conditions. However, if this
protective effect in females arises from advantages conferred by fetal anticipation of matched
environments (PAR hypothesis), mismatches between maternal conditions during pregnancy
and the postnatal environment will create vulnerability. Combining the T-W and PAR
hypotheses leads to the prediction that the effects of prenatal risks will operate differently in
males and females. In females, vulnerability will be generated by particular combinations of
prenatal and postnatal risks, while in males poor outcomes will arise incrementally from
degree of prenatal risk. In the only human study we are aware of to have examined for the
combined effects predicted by the T-W and PAR hypotheses, matched environments indexed
by prenatal and postnatal depression (low-low and high-high) were associated with better
cognitive and motor outcomes over the first year of life than mismatched prenatal and
postnatal depression, and this effect was seen in females only [13]. However many studies
have reported sex differences in developmental outcomes in relation to prenatal risks, without
examining for the interplay with postnatal environments. Sex differences in fetal responses to
stress [14], and in later emotional and behavioural problems following maternal anxiety or

depression during pregnancy and low birth weight [4, 7, 8, 15, 16] have been identified.
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96 In animal models, prenatal and postnatal stress cause long-term elevations in

97  hypothalamic pituitary axis (HPA) reactivity and anxiety-like behaviours. This is mediated

98  viareduced glucocorticoid receptor (GR) gene NR3C1 expression, particularly in the

99  hippocampus which impairs HPA axis feedback mechanisms [17]. The epigenetic process of
100  DNA methylation involves the addition of methyl groups to CpG dinucleotides in gene
101 regulatory regions that are associated with repressed gene expression. Animal findings of the
102  epigenetic effects of early life stress have been translated to humans in a study reporting
103  elevated NR3C1 1-F promoter methylation and reduced NR3C1 expression in post-mortem
104  hippocampal tissue of suicide completers who were abused during childhood, when
105  compared to non-abused [18]. Other studies using peripheral DNA from blood or saliva of
106  infants and adolescents have shown increased levels of NR3C1 methylation associated with
107  prenatal and childhood adversities [19, 20, 21]. Several clinical studies examining leukocytes
108  have reported elevated methylation of the homologous human NR3C1 1-F promoter
109  (homologous to the rat 1-7 promoter) at a specific CpG (CpG unit 22,23, Figure 1) associated
110  with prenatal maternal depression [19, 22-24] and childhood stress [25]. Studies in humans
111 also find associations between prenatal anxiety and postnatal depression in mothers, and
112 adolescent depressive symptoms mediated via HPA axis dysregulation [26, 27], consistent
113 with the role of HPA axis dysregulation in adolescent depression [28]. Higher NR3C1
114  methylation levels, hypothesised to contribute to reduced NR3C1 expression (18), have been
115  associated with increased salivary cortisol stress responses in infants at 3 months [19] and a
116  flattened cortisol recovery slope following stress in adolescents [29], suggesting methylation

117 of NR3C1 may impair negative feedback of the HPA axis.

118 In the first study to examine the interplay between prenatal and postnatal depression in
119  relation to NR3C1 gene methylation, we showed that the association between postnatal

120  maternal depression and NR3C1 1-F promoter methylation in their children was stronger
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where mothers had reported lower depression during pregnancy, in line with the PAR
hypothesis [30]. However, we did not examine for sex differences. Sex differences in
glucocorticoid mechanisms associated with prenatal stress have been shown in animal
models. In rats many effects of prenatal stress on later development are seen only in females,
and these are abolished by adrenalectomy [31]. The effects predicted by a combination of the
T-W and PAR hypotheses, have been demonstrated in starlings where mismatched prehatch-
posthatch conditions had a greater effect on corticosterone levels in female than male chicks,
but prenatal risk increased mortality in male chicks [32, 33]. In humans, a sex difference in
associations between prenatal depression and NR3C1 1-F promoter methylation has been

reported [34], although the interplay with postnatal depression however was not analysed.

In this study we examined predictions based on the T-W sex-biased parental investment
and PAR hypotheses. In females, where individual and species vulnerability are reduced by
matching environments but increased by mismatching, the presence of good prenatal
conditions followed by adverse rearing experiences, and vice versa, will create vulnerability
to child anxiety and depression. Based on the animal models, we predicted this effect in
females will involve altered HPA axis reactivity arising from epigenetic modifications of the
GR gene. In males, where individuals are sacrificed for species advantage, the presence of
prenatal stress will create vulnerability, unmodified by later environment quality. The animal
models suggest that glucocorticoid mechanisms are implicated in excess male deaths under
unfavourable maternal conditions, but they may not contribute to effects of prenatal stress on

functioning after birth.

These predictions were tested in a longitudinal study using measures of prenatal and
postnatal depression, of NR3C1 1-F promoter region methylation at 14 months of age, and
anxious depressed symptoms in children across the preschool period. We predicted that in

girls but not boys, low prenatal depression followed by high postnatal maternal depression,
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and high prenatal depression followed by low postnatal depression will be associated with
elevated anxious depressed symptoms and elevated NR3C1 methylation. In boys, prenatal
and postnatal depression will be independent risks for elevated anxious-depressed symptoms,

without the interaction between them predicted for females.

METHODS

Design

The participants were members of the Wirral Child Health and Development Study, a
prospective epidemiological longitudinal cohort of first-time mothers recruited in pregnancy
to study prenatal and infancy origins of emotional and behavioural disorders. The full cohort
of 1233 mothers with live singleton births have participated in several waves of assessment
with a stratified random sub-sample of 316 identified for additional, more intensive
assessment (intensive sample). Strata were defined on the basis of low, medium and high
psychosocial risk (scores of <=2, 3 or >3 on an inter-partner psychological abuse scale
provided on entry to the study at 20 weeks of pregnancy), with higher selection probabilities
for those at higher risk. Appropriately analysed, the design allows estimates of means and
coefficients for the whole general population cohort to be derived even for measures
available only in the intensive sample [35].

Approval for the procedures was obtained from the Cheshire North and West Research
Ethics Committee (UK) (reference no. 05/Q1506/107). The extensive sample was identified
from consecutive first time mothers who booked for antenatal care at 12 weeks gestation
between 12/02/2007 and 29/10/2008. The booking clinic was administered by the Wirral
University Teaching Hospital which was the sole provider of universal prenatal care on the
Wirral Peninsula. Socioeconomic conditions on the Wirral range between the deprived inner

city and affluent suburbs, but with few from ethnic minorities. The study was introduced to
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the women by clinic midwives who asked for their agreement to be approached by study
research midwives when they attended for ultrasound scanning at 20 weeks gestation. After
complete description of the study to the women, written informed consent was obtained by

the study midwives, who then administered questionnaires and an interview in the clinic.

Participants

Of those approached by study midwives, 68.4% gave consent and completed the measures,
yielding an extensive sample of 1233 mothers with surviving singleton babies. The sampling
flow chart has been published previously [35]. The mean age at recruitment of extensive
sample participants was 26.8 years (s.d.5.8, range 18-51). Using the UK Index of Multiple
Deprivation (IMD) [36] based on data collected from the UK Census in 2001, 36.6 % of the
extensive sample reported socioeconomic profiles found in the most deprived UK quintile,
consistent with the high levels of deprivation in some parts of the Wirral. Forty eight women

(3.9%) described themselves as other than White British.

In addition to assessments of the mothers at 20 weeks gestation, mothers and infants
provided data at birth and postnatally at 5, 9, and 29 weeks, and at 14.19, s.d. 1.71 months
(‘14 months’), 30.86, s.d. 2.31 months (‘2.5 years’), 41.90 s.d. 2.48 months (‘3.5 years’) and
58.64 s.d. 3.74 months (‘5 years’). Two hundred and sixty eight mothers and infants came
into the lab at 14 months for detailed observational, interview and physiological measures.
This was the first occasion at which saliva for DNA was collected. Seven parents declined
consent for DNA collection, 3 samples were spoilt, and 25 assessments were curtailed before
saliva collection because of time constraints. Sufficient DNA for methylation analyses was
obtained from 181 infants. Maternal reports of child anxious-depressed symptoms were
available on 253 of the intensive sub-cohort at 2.5 years, on 825 of the whole cohort at 3.5

years and on 768 of the whole cohort at 4.5 years.
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Measures

Maternal depression

Maternal symptoms of depression were assessed at 20 weeks gestation and at every follow up
point using the Edinburgh Postnatal Depression Scale (EPDS), which has been used

extensively to assess prenatal and postnatal depression [37].

DNA methylation

Methylation status in the NR3C1 1-F promoter was examined at the same CpGs (CpG unit 22
and 23, shown in Figure 1) identified in previous studies (24). DNA collected from
Oragene® saliva samples, was extracted, bisulphite treated, amplified (Forward,
GACCTGGTCTCTCTGGGG; Reverse, TGCAACCCCGTAGCCCCTTTC) and runon a
Sequenom EpiTYPER system (Sequenom Inc., San Diego, US), providing an average for
methylation across the two CpG units. Data was transformed to percentage of methylation at
CpG unit 22 and 23 to allow for comparison with previous analysis of differential

methylation at this locus.

Child anxious-depressed symptoms

Child symptoms were assessed by maternal report at 2.5, 3.5 and 5.0 years using the
preschool Child Behavior Checklist (CBCL) [38]. It has 99 items each scored 0 (not true), 1
(somewhat or sometimes true), and 2 (very true or often true), which are summed to create
seven syndrome scales. Only the anxious/depressed scale was analysed for this report, and as

recommended in the CBCL manual, raw scores were used [39].

Stratification variable and confounders

Partner psychological abuse was assessed using a 20 item questionnaire covering humiliating,

demeaning or threatening utterances in the partner relationship during pregnancy over the
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previous year [40]. Maternal age (at this first pregnancy), marital status at 20 weeks
gestation, and socioeconomic status were included as covariates because of their established
associations with adult depression. Socioeconomic status was determined using the revised
English Index of Multiple Deprivation (IMD) [36] based on neighborhood deprivation. All
mothers were given IMD ranks according to the postcode of the area where they lived and
assigned to a quintile, based on the UK distribution of deprivation. Mother’s years of
education at enrolment in the study was recorded. Information about smoking was obtained at
20 and 32 weeks gestation and was included because of published associations with altered
DNA methylation [41]. Birth records provided sex of infant, one-minute Apgar score, and
birth weight and gestational age, from which a measure of fetal growth was obtained. Low
fetal growth is associated with elevated fetal glucocorticoid exposure and so might be
associated with elevated NR3C1 gene methylation. Obstetric risk was rated using a weighted
severity scale developed by a collaboration of American and Danish obstetricians and

paediatric neurologists [42].

Statistical Analysis

All analyses were undertaken in Stata 14 (StataCorp, 2015). Generalised structural
equation models (SEM) were fitted using the sem procedure and estimated by maximum
likelihood to allow inclusion of participants from both intensive and extensive strata. The
anxiety-depression scores at 2.5, 3.5 and 5.0 years and NR3C1 percent methylation at 14
months were highly skewed so scores were log-transformed and Winsorized at 2.5 standard
deviations to reduce their skew. For further robustness, we report standard errors and p-
values based on the heteroscedastic consistent estimator of the parameter covariance matrix.
The main analyses included the stratification variable and confounds except for perinatal
confounds as they may lie on a mediational pathway from prenatal depression, however the
effect of adding those variables was examined. Model estimates and tests allowed for

10
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differential missingness associated with any of the covariates and observed responses

included in the model, accounting for the stratified study design.

The pre-post environment mismatch predictions on both methylation and child
symptoms were examined first by testing for two-way interactions between prenatal and
postnatal depression in models estimated separately in females and males. We then tested for
the sex difference by examining the three-way, sex by prenatal depression by postnatal
depression interactions in a model that included both genders. The effects of combinations of
prenatal and postnatal depression giving rise to these interaction effects are shown in the
figures. The prediction of additive effects of prenatal and postnatal depression in boys was

examined in models without interaction terms.

In the fitted models methylation was specified as a factor, measured without error by
the observed methylation, a device that implicitly imputes rates of methylation where these
have not been observed, but doing so in a manner which recognises our uncertainty in these
unobserved values. This enables participants with partial data that would be informative for

some parts of the model to be included.

RESULTS

Descriptive Statistics

Table 1 gives summary statistics for males and females separately for the measures included
in the analysis, and shows the sample size at each data collection point. As described in the
statistical analysis section, differences in the available sample for different measures were
accounted for by use of weighted, maximum likelihood or covariate adjusted estimators.
Figure 2 shows the structure of the SEM model in which maternal history of depression

predicts NR3C1 methylation (solid red arrows) and maternal report of child anxious-

11
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depressed symptoms (solid black arrows). These analyses included the 412 girls and 382
boys on whom there were measures of maternal depression and maternal report of child

anxious-depressed symptoms at a minimum of one follow up point as well as all confounders.

Table 2 shows for girls and boys separately the estimated path coefficients from the
standardised prenatal depression, postnatal depression and their interaction (product) of
primary interest accounting for the stratification, attrition and confounders. We first tested the
prediction that there would be an interaction between prenatal and postnatal depression in
girls but not in boys. In girls there was a significant effect of the interaction between prenatal
and postnatal depression on both child anxiety-depression (p=.011) and NR3C1 1-F promoter
methylation (p =.00001). For boys, by contrast, anxious-depressed symptoms were not
predicted by the prenatal and postnatal depression interaction term (p=.920), and the effect on
NR3C1 methylation was smaller than for girls, though still significant (p=.003). Adding the
three additional potential confounders that were assessed after the prenatal exposure
(obstetric risk index, 1-minute Apgar score and birthweight/gestational age) made no material
difference to these associations. Fitting this model to boys and girls together, but allowing
the effects of prenatal and postnatal depression exposure on the two correlated outcomes to
differ by sex (in addition to a gender main effect), a Wald test of the sex differences in the
effect of the prenatal-postnatal depression interaction on both outcomes (a difference of 0.20
for anxiety-depression and 0.18 for methylation) gave y?(2) of 5.95 (p=.051), with the two

individual interactions contributing equally (anxiety-depression p=.088, methylation p=.069).

We then tested the prediction that in boys there would be independent and additive
effects of prenatal and postnatal depression, by estimating the model (not shown in the Table)
for boys without the interaction term. This showed a significant effect on child anxiety-
depression of postnatal depression (standardised coefficient 0.17, C1 0.04 to 0.30, p = .011)
and an effect of similar magnitude, that was non-significant, of prenatal depression (0.15, CI -

12
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0.02 to 0.33, p=.080). Independent effects on methylation were not seen (prenatal 0.05, CI -

0.17 to 0.27, p=.640; postnatal 0.13, CI -.09 to 0.36, p=.241).

Figure 3 displays how the interactions between prenatal and postnatal depression in the
prediction of anxious-depressed symptoms differed between girls and boys. It can be seen
that, in girls, at a low level of prenatal depression (1 standard deviation below the mean),
increasing postnatal depression was strongly associated with increasing child anxious-
depressed symptoms, while at a high level there was no association. With prenatal depression
at the mean, the association was intermediate between the low and high prenatal levels. In
boys, by contrast, as evidenced in parallel regression lines, there was no interplay between

prenatal and postnatal maternal depression.

As shown in Figure 4, the effects of prenatal-postnatal mismatch on methylation were
again strongly evident in girls, with the greatest association between postnatal depression and
methylation in the presence of low prenatal depression, and progressively weaker
associations at higher levels of prenatal depression. The progressive effect of prenatal

depression was also evident in boys but it was less strong.

In girls, replacing the correlation between the methylation and anxiety-depression
factors by a causal effect, higher NR3C1 methylation at 14 months was associated with
higher anxiety-depressed symptoms (standardised coefficient 0.36 CI 0.05 to 0.67, p=.025) .
The residual direct effect of the prenatal-postnatal interaction on child anxiety-depression
symptoms was substantially reduced, from -0.19 (shown in Table 2) to -0.06 (CI -0.26 to
0.15), becoming wholly nonsignificant (p=.600). For boys there was no evidence of an effect

of methylation on symptoms (standardised coefficient -0.03, C1 -0.31 to 0.24, p=.820).

DISCUSSION

13
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Many, although not all, of our predictions based on the evolutionary T-W and PAR
hypotheses for sex-biased parental investment and fetal programming were supported in this
longitudinal study, from 20 weeks of pregnancy and over the first 5 years of children’s lives.
Mismatching between prenatal and postnatal maternal depression was associated with greater
anxious-depressed symptoms and NR3C1 methylation in girls. Both effects were most
evident in girls exposed to high levels of postnatal depression. Their symptoms and NR3C1
methylation were higher where their mothers had reported low levels of depression during
pregnancy, in line with the idea that they had not been prepared by the fetal environment for
postnatal exposure to maternal depression. In girls only, elevated NR3C1 was associated with
higher anxious-depressed symptoms, and mediated the association between maternal
depression and child symptoms. In boys there was no evidence of effects of prenatal —
postnatal mismatch on anxious depressed symptoms. However, and contrary to our
prediction, the prenatal-postnatal mismatch effect on NR3C1 methylation was seen in boys as

well as in girls, although the size of the effect was smaller.

The strengths of the investigation include prospective study with a general population
sample, accounting for a number of plausible confounds and factors associated with attrition.
Also, by using SEM to create a latent variable from measurement at 3 time points over 2.5
years we reduced the risks arising from multiple testing for each time point, and we were able
to examine the predictions in relation to persistently elevated symptoms likely to confer risk
for an elevated trajectory for anxious-depressed symptoms over childhood [43]. The method
adopted for missing methylation data exploited the properties of maximum likelihood for
accounting for data assumed missing at random. Most missingness was by design because of
the systematic stratification of the intensive sample, thus meeting this assumption, and

inclusion of multiple covariates allowed us account for unplanned attrition. It is nevertheless
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possible that not all the necessary confounds to deal with non-random missingness were

identified.

There were four principal limitations in relation to the measurement of NR3C1
methylation. First, peripheral cell samples, both from blood and saliva, are heterogeneous,
which may account for some of the variability in methylation. This can introduce a confound
where other variables are associated with cellular heterogeneity [44]. Second, while studies
combining peripheral cell and CNS post mortem estimations suggest that they are often
substantially correlated [45], it cannot be assumed that DNA methylation in peripheral tissues
reflects methylation in relevant CNS regions. This is particularly a concern because of
substantial variations in epigenetic effects across brain regions and cell types. Third there are
many combinations of CpG sites, even on a relatively circumscribed region such as the
NR3C1 1-F promoter that could be examined, leading to the risk of multiple analyses and
‘significant’ findings occurring by chance. Fourth, although we accounted for a number of
plausible confounds, environmental variables other than those included in analyses may

better account for the findings.

No one study can establish the validity of estimates of peripheral cell methylation as
indices of CNS methylation, however a finding of the same pattern of associations for
peripheral cell methylation and for behaviours that undoubtedly reflect CNS function, and for
mediation of the association between maternal depression and symptoms by NR3C1
methylation is relevant to the issue. As is evident from the SEM models, and as seen in
Figures 3 and 4, there were striking similarities between the patterns of associations involving
interactions between prenatal and postnatal depression and sex differences, not only for child
anxious-depressed symptom but also for NR3C1 methylation. Furthermore, in this study we

reduced risks arising from multiple analyses of many potential methylation sites by
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examining only one site that had been identified from a meta-analysis of previous studies

[24].

CONCLUSIONS

Our findings are important in five major ways. First they provide pointers to study
designs that could be introduced into animal models where mechanisms can be examined
using experimentally controlled risks. These would for example examine the interplay
between prenatal and postnatal risks in relation to the role of the placenta in regulating
passage of maternal glucocorticoids to the foetus, which in turn can be controlled by further
epigenetic modifications of specific placental genes [46]. Second they illustrate how
evolutionary hypotheses regarding parental investment in offspring can be used to generate
novel, and in some ways surprising, predictions regarding parenting and early development in
humans. Third, testing in this way can generate further productive questions. In this study,
while there was good evidence for mismatch effects in females on NR3C1 methylation and
child symptoms, and for a sex difference in relation to child symptoms, the prenatal-postnatal
depression mismatch was also associated with NR3C1 methylation in males, which was
contrary to the predictions. Further study is needed into the conditions under which fetal
programming effects are seen in males as well as females, and under what conditions there
are sex differences in the behavioural implications of NR3C1 methylation. Fourth they show
that, even though human development is subject to many complex social and psychological
influences, biological mechanisms conserved across many non-human species, can be highly
influential. Fifth they suggest that some prenatal effects on epigenetic and behavioural

outcomes in early childhood, differ radically in males and females, and so further study of
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sex specific mechanisms is needed. This will have implications for our understanding of the

biology of psychiatric disorders arising in childhood.
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end of the human NR3C1 gene contains multiple first exons, with multiple transcriptional
start sites and mRNA splice variants. The region analyzed by bisulfite pyrosequencing
(primer sequences are in bold) contains 29 CpGs and encompasses exon 1-F, which is the

human homolog of the rat exon 1-7, previously shown to be differentially methylated [47]

Figure 2 Structural equation model fitted to NR3C1 1-F promoter methylation at 14

months and CBCL anxious-depressed scores at ages 2.5, 3.5, and 5 years

Figure 3 Regression lines for the interaction between pre- and post-natal depression and
child anxious-depressed symptoms, showing the effect of postnatal depression at the

mean and one standard deviation either side of the mean

Figure 4 Regression lines for the interaction between pre- and post-natal

depression and child NR3C1 1-F promoter methylation, showing the effect of

postnatal depression at the mean and one standard deviation either side of the mean
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Table 1 Summary statistics for outcomes, predictors and variables included as potential

confounders for the modelled sample (I = measure based on intensively assessed sub-sample

only)

Girls Boys

N Mean S Mean SD

Child anxious-depressed
125 1.54 1.77 | 120 1.27 1.61
symptoms 2.5 years(l)

Child anxious-depressed
387 1.60 1.64 | 366 1.59 1.70
symptoms 3.5 years

Child anxious-depressed
372 1.76 1.96 | 347 1.78 2.01
symptoms 5 years

Child NR3C1 methylation(l) 89 3.42 1.85 87 3.55 1.96

Prenatal EPDS maternal
412 6.94 4.74 382 7.42 4.54
depression scores

Mean postnatal EPDS
412 5.24 3.92 | 382 5.79 4.35
maternal depression scores

Stratum low 77% 75%
Stratum mid 412 8% 382 7%
Stratum high 16% 18%
Maternal age <21 years 10% 12%
Maternal age 21-30 years 412 56% 382 56%
Maternal age >30 years 34% 32%

No maternal education 412 62% 382 67%
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beyond age 18
Smoking — none 62% 64%
Smoking before pregnancy 412 21% 382 19%
Smoking during pregnancy 17% 18%
No partner 412 17% 382 19%
Most Deprived Quintile 412 37% 382 36%
Obstetric risk index 412 2.20 1.18 | 382 220 |1.19
Birthweight/gestation

412 83.6 11.9 382 86.5 |114
(gm/wk)
1 Minute Apgar score 412 8.95 1.60 382 8.86 |1.76
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Table 2 Summary of SEM analyses predicting NR3C1 1-F promoter methylation and

child anxious depressed symptoms

Female (n=412) Male (n=382)
Std Coeff 95% C.1 | Std Coeff 95% C.1
[p-value] [p-value]
Effects on child symptoms of
anxiety-depression
Prenatal maternal depression -0.06 -0.23,0.11 0.16 -0.00, 0.33
Postnatal maternal depression 0.21 0.05, 0.38 0.17 0.03,0.31
Prenatal-postnatal interaction -0.19 -0.34,-0.05 0.01 -0.11,0.12
[p=.011] [p=.920]
Effects on child NR3C1 1-F
promoter methylation
Prenatal maternal depression -.02 -0.28,0.24 -0.11 -0.34,0.12
Postnatal maternal depression 0.45 0.16, 0.75 0.38 0.11, 0.65
Prenatal-postnatal interaction -0.39 -0.56, -0.21 -0.21 -0.32.-0.08
[p=.00001] [p=.003]
Child anxious-depressed symptoms factor loadings
2.5 years 0.81 0.72
3.5 years 0.80 0.67
5 years 0.57 0.81

The table shows standardized factor loadings of child CBCL anxious-depressed

symptoms at ages 2.5, 3.5 and 5 years, and main effects and effects of interaction of
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prenatal and postnatal depression in the prediction of the anxious-depressed factor and
the NR3C1 1-F promoter methylation (effects of stratification factors and confounders
not shown). Anxious-depressed symptoms and methylation are analysed together as
correlated outcomes in an SEM. Coefficients for the effects of confounders and
stratification factors are not shown (stratum, maternal age, maternal smoking,

maternal education, no partner, neighbourhood deprivation).
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Figure 1 Scheme of the human NR3C1 gene analyzed by bisulfite pyrosequencing. The 5'-
end of the human NR3C1 gene contains multiple first exons, with multiple transcriptional
start sites and mRNA splice variants. The region analyzed by bisulfite pyrosequencing

(primer sequences are in bold) contains 29 CpGs and encompasses exon 1-F, which is the

human homolog of the rat exon 1-7, previously shown to be differentially methylated
[47]
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Figure 2 Structural equation model fitted to NR3C1 1-F promoter methylation at 14 months and
CBCL anxious-depressed scores at ages 2.5, 3.5, and 5 years
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Figure 3 Regression lines for the interaction between pre- and post-natal depression
and child anxious-depressed symptoms, showing the effect of postnatal depression at
the mean and one standard deviation either side of the mean
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Figure 4 Regression lines for the interaction between pre- and post-natal depression and
child NR3C1 1-F promoter methylation, showing the effect of postnatal depression at the
mean and one standard deviation either side of the mean
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